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Abstract— External and internal convertible (EIC) form-
based motion control (i.e., EIC-based control) is one of the
effective approaches for underactuated balance robots. By
sequentially controller design, trajectory tracking of the ac-
tuated subsystem and balance of the unactuated subsystem can
be achieved simultaneously. However, with certain conditions,
there exists uncontrolled robot motion under the EIC-based
control. We first identify these conditions and then propose
an enhanced EIC-based control with a Gaussian process data-
driven robot dynamic model. Under the new enhanced EIC-
based control, the stability and performance of the closed-
loop system are guaranteed. We demonstrate the GP-enhanced
control experimentally using two examples of underactuated
balance robots.

I. INTRODUCTION

An underactuated balance robot possesses fewer control

inputs than the number of degrees of freedom (DOFs) [1],

[2]. Control design of underactuated balance robots needs to

achieve both the trajectory tracking of the actuated subsystem

and balance control of the unactuated subsystem [3], [4].

The balance of unstable coordinates of underactuated robots

brings additional challenges for robot control. Many methods

have been proposed to cope with the robot modeling [1],

[3]–[6], control design and applications [7], [8]. The ex-

ternal and internal convertible (EIC) form-based control

(i.e., EIC-based control) has been demonstrated as one of

the effective approaches to achieve simultaneous trajectory

tracking and balance [9]. Other balance control algorithms

include the orbital stabilization control [10]–[13], and energy

shaping-based control [14]–[16]. One limitation of these

methods is that the achieved balance-enforced trajectory is

not unique [2], [17].

Although the EIC-based control achieves stability and

balance [4], [9], [18], [19], certain system conditions should

be satisfied. Furthermore, an accurate robot dynamics model

is required and control robustness is not guaranteed under

model uncertainties. Machine learning-based method pro-

vides an efficient tool for robot modeling and control. In

particular, Gaussian process (GP) regression is an effective

learning approach that generates analytical structure and

bounded prediction errors [5], [20]–[23]. Development of

GP-based performance-guaranteed control for underactuated

balance robots has been reported [3], [20], [24], [25]. In [3],

the control input is partitioned into two parts. A GP-based
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inverse dynamics controller for unactuated subsystem to

achieve balance and a model predictive control (MPC) design

are used to simultaneously track the given reference trajec-

tory and obtain the balance equilibrium manifold (BEM).

The GP prediction uncertainties are incorporated into the

control design to enhance the control robustness. The work

in [4] followed the cascaded control design in the EIC-based

framework and the controller was adaptive to the prediction

uncertainties. The training data was also selected to reduce

the computational complexity.

In this paper, we take advantage of the structured GP

modeling in [4], [26] and present a method to resolve the

limitation of the original EIC-based control. We first show

that under EIC-based control, there exist uncontrolled mo-

tions that cause the entire system unstable. The uncontrolled

motion is because the EIC-based control is updated from

a low- to high-dimensional space. The conditions for the

stable GP-based model learning and control are identified

and presented. With the properly selected nominal model,

the uncontrolled motion is eliminated with the GP-based

data-driven robot dynamics. Finally, we propose a partial

EIC (PEIC)-based control by constructing a virtual inertial

matrix to reshape the dynamics coupling. The proposed GP-

based control is shown to achieve guaranteed stability and

performance. Experimental validation and demonstration are

presented by using two underactuated balance robots.

The major contributions of this work are twofold. Com-

pared with [4], [9], the uncontrolled motion of the EIC-based

control is identified and illustrated. To overcome the identi-

fied EIC-based control limitations, the conditions for nominal

GP model selection are presented. The proposed controller

is new and also achieves good performance and stability.

Second, unlike the work in [3] with the complex MPC with

high computational cost, the proposed GP models directly

capture the robot dynamics and the control design preserves

the EIC structure property. The demonstrated experiments

are also new compared with the previous work.

II. EIC-BASED CONTROL AND PROBLEM STATEMENT

A. Robot Dynamics and EIC-Based Control

We consider a general underactuated balance robot with

(n +m) DOFs, n,m ∈ N, and the generalized coordinates

are denoted as q = [q1 · · · qn+m]T . The dynamics model is

expressed in a standard form

S : D(q)q̈ +C(q, q̇)q̇ +G(q) = Bu, (1)
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where D(q), C(q, q̇) and G(q) are the inertia, Coriolis and

gravity matrices, respectively. B denotes the input matrix

and u ∈ R
m is the control input.

The generalized coordinates are partitioned as q =
[qT

a qT
u ]

T , with actuated and unactuated coordinates qa ∈ R
n

and qu ∈ R
m, respectively. We focus on the case n > m.

Without loss of generality, we assume that B = [In 0]T ,

where In ∈ R
n is an identify matrix. The robot dynamics (1)

is rewritten as

Sa : Daaq̈a +Dauq̈u +Ha = u, (2a)

Su : Duaq̈a +Duuq̈u +Hu = 0 (2b)

for actuated and unactuated subsystems, respectively. Sub-

scripts “aa (uu)” and “ua and au” indicate the variables

related to the actuated (unactuated) coordinates and cou-

pling effects, respectively. For representation convenience,

we introduce H = Cq̇ + G, Ha = Caq̇ + Ga, and

Hu = Cuq̇ +Gu. The dependence of matrices D, C, and

G on q and q̇ is dropped. Subsystems Sa and Su are referred

to as external and internal subsystems, respectively [9].

Given the desired trajectory qd
a the control input is first

designed to follow qd
a by temporarily neglecting Su as

uext = Daav
ext +Dauq̈u +Ha, (3)

where error ea = qa − qd
a and vext ∈ R

n is the auxiliary

input that drives ea to the origin. To account for the dynamics

coupling, qu is balanced onto BEM. We note Su takes the

motion effect q̈a as an “external” control input. Assuming the

designed control uext is applied to the system. The actuated

coordinates display the dynamics q̈a = vext. The BEM is

defined as the instantaneous equilibrium of qu under the

“external” control. The BEM under control vext is

E =
{
qe
u : Γ

(
qu;v

ext
)
= 0, q̇u = q̈u = 0

}
, (4)

where Γ(qu;v
ext) = Duuq̈u +Duav

ext +Hu.

To stabilize qu onto E , we update qa motion to incorporate

balance control as

vint = −D+
ua(Hu +Duuv

int
u ), (5)

where D+
ua = (DT

uaDua)
−1DT

ua denotes the generalized

inverse of Dua. vint
u is the auxiliary control that drives error

eu = qu − qe
u towards zero. The final control is obtained by

replacing vext in (3) with vint, that is,

uint = Daav
int +Dauq̈u +Ha. (6)

The above EIC-based control achieves trajectory tracking

for Sa and balance for Su simultaneously [9], [23]. It has

been shown in [9] that with an assumption that the robot

model errors are affine with tracking errors, the control uint

guarantees both ea and eu convergence to a neighborhood

of the origin exponentially.

B. Limitations of the EIC-based Control

In this subsection, we show the limitations of the above

EIC-based control design. The limitation comes from (5)

that uses a mapping from low-dimensional (m) to high-

dimensional (n) space. For robot control (6), it has been

shown that there exists a finite time T > 0 and for small

number ε > 0, ‖qu(t)− qe
u(t)‖ < ε for t > T [9]. Given

the negligible error, we obtain Dau(qa, qu) ≈ Dau(qa, q
e
u).

We apply singular value decomposition to Dua and D+
ua,

Dua = UΛV T , D+
ua = V Λ+UT , (7)

where U ∈ R
m×m and V ∈ R

n×n are unitary orthogonal

matrices. Λ = [Λm 0] ∈ R
m×n and Λ+ = [Λ−1

m 0]T ∈
R

n×m and Λm = diag(σ1, ..., σm) with all singular values

0 < σ1 ≤ σ2 ≤ · · · ≤ σm.
Since V is a unitary orthogonal matrix, its column vectors

serve as a set of complete bases in R
n. Rewriting the qa and

vext in span(V ), we have transformations

pa = V Tqa, νext = V Tvext, (8)

where νext = [(νext
m )T (νext

n )T ]T . Note that [pT
a qT

u ]
T

still serves as a complete set of generalized coordinates for

S . The robot dynamics Su under control uext is q̈u =
−D−1

uu (Duav
ext+Hu). Plugging (7) and (8) into the above

dynamics yields

q̈u = −D−1
uu (UΛνext

m +Hu). (9)

For E , qe
u is obtained by solving Γ0(qu;v

ext) = 0. With

the above discussion, we substitute D̄ua(q
e
u) with D̄ua(qu)

in Γ0 and therefore, using (7), Γ0 = 0 is rewritten into

Λνext
m +UTHgp

u

∣∣∣
qu=qe

u,q̇u=q̈u=0
= 0. (10)

The BEM E only depends on νext
m , which is in the subspace

span{V1, ...,Vm} of V . The control effect νext
n in the

subspace ker(Dua) is disposable when obtaining the BEM.
The control vint in (5) is augmented by matrix D+

ua using

vint
u , which is a map from a low- to high-dimensional space.

We substitute (7) into (5) and the motion of Sa under control

vint
u becomes

q̈a = vint = −V Λ+UT
(
Hu + D̄uv

int
u

)
. (11)

We rewrite the above equation in the new coordinate pa and

under the EIC-based control, the closed-loop of S becomes

p̈ai = −UT
i

(
Hu +Duuv

int
u

)
σi

, i = 1, ...,m, (12a)

p̈a(m+j) = 0, j = 1, ..., n−m, (12b)

q̈u = vint
u . (12c)

Obviously, no control appears for coordinates in ker(Dua) as

shown by (12b) and only m actuated coordinates in span(V )
are under active control; see (12a). The designed control

steers only a part of the generalized coordinates and the other

part is without control.
With the above-revealed limitation of the EIC-based con-

trol and considering the data-driven model for robot dynam-

ics, this work mainly focuses on the following problem.
Problem statement: The goal of robot control is to design

an enhanced EIC-based control to drive the qa to follow a

given profile qd
a and simultaneously qu to be stabilized on

the estimated E using the GP-based data-driven model.
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III. GP-BASED ROBOT DYNAMICS MODEL

In this section, we present a GP-based dynamics model.

The enhanced EIC-based control design in the next section

will be built on a selected nominal model.

A. GP-Based Robot Model

We consider to capture the robot dynamics using a GP-

based data-driven method. We consider a multivariate con-

tinuously smooth function y = f(x) + w, where w is the

zero-mean Gaussian noise. Denote the training data sampled

from y = f(x) + w is D = {X,Y } = {xi, yi}Ni=1, where

X = {xi}Ni=1, Y = {yi}Ni=1, xi ∈ R
nx , and N ∈ N

is the number of the data point. The GP model is trained

by maximizing posterior probability p(Y ;X,α) over the

hyperparameters α. That is, α is obtained by solving

min
α

− log(Y ;X,α) = min
α

−1

2
Y TK−1Y − 1

2
log det(K),

where K = (Kij), Kij = k(xi,xj) = σ2
f exp(− 1

2 (xi −
xj)

TW (xi−xj))+ϑ2δij , W = diag{W1, · · · ,Wnx
} > 0,

δij = 1 for i = j, and α = {W , σf , ϑ
2} are parameters.

Given a new x∗, the GP model predicts the corresponding

y and the joint distribution is[
Y
y

]
∼ N

(
0,

[
K kT

k k∗

])
, (13)

where k = k(x∗,X) and k∗ = k(x∗,x∗). The mean value

and variance for input x∗ are

μi(x
∗) = kTK−1Y , Σi(x

∗) = k∗ − kK−1kT . (14)

To apply the GP model for robot dynamics S , we first

build a nominal model

Sn : D̄q̈ + H̄ = u, (15)

where D̄ and H̄ are the nominal inertia and nonlinear matri-

ces, respectively. In general, the nominal dynamics equation

does not hold for the data sampled from physical robot

systems. The GP models are built to capture the difference

between Sn and S . The dynamics model difference is

He = Dq̈ +H − D̄q̈ − H̄ = u− D̄q̈ − H̄.

We build the GP models to capture He = [(He
a)

T (He
u)

T ]T .

Two GP models are used to predict He
a and He

u. The training

data D = {X,Y } are sampled from S as X = {xi}Ni=1,

Y = {He
i }Ni=1, where x = {q, q̇, q̈}.

The GP predicted mean and variance are denoted as

(μi(x),Σi(x)) for He
i , i = a, u. The GP-based robot

dynamics model Sgp is then given as

Sgp
a : D̄aaq̈a + D̄auq̈u +Hgp

a = u, (16a)

Sgp
u : D̄uaq̈a + D̄uuq̈u +Hgp

u = 0, (16b)

where Hgp
i = H̄i + μi(x), i = a, u. The GP-based model

prediction error is

Δ =

[
Δa

Δu

]
=

[
μa(x)−He

a

μu(x)−He
u

]
. (17)

To quantify the GP-based model prediction, we use Theo-

rem 6 in [27] and obtain the following property for Δ.
Lemma 1: Given the training dataset D, if the kernel

function k(xi,xj) is chosen such that He
a for Sa has a finite

reproducing kernel Hilbert space norm ‖He
a‖k < ∞, for

given 0 < ηa < 1,

Pr
{
‖Δa‖ ≤

∥∥∥κT
aΣ

1
2
a (x)

∥∥∥} ≥ ηa, (18)

where Pr{·} denotes the probability of an event, κa ∈ R
n

and its i-th entry is κai =
√
2‖He

a,i‖2k + 300ςi ln
3 N+1

1−η
1
n
a

,

ςi = maxx,x′∈X
1
2 ln |1 + ϑ−2

i ki (x,x
′) |. A similar conclu-

sion holds for Δu with probability 0 < ηu < 1.

B. Nominal Model Selection
With the constructed GP models, the next goal is to

develop an enhanced EIC-based control to achieve stability

and performance by eliminating the limitations that were

discussed in the previous section. To achieve such a goal, we

first require bounded matrices D̄ and H̄ . Inverting inertia

matrix D̄ is required for feedback linearization and thus,

D̄ is selected invertible. Second, the uncontrolled motion

exists in the kernel of matrix D̄ua. If ker(D̄ua) is constant,

the uncontrolled motion appears in the fixed subspace of

the configuration space. Therefore, it is required that the

kernel of D̄ua is non-constant. As mentioned previously,

the uncontrolled motion happens due to controller updating

from the low- to high-dimensional spaces. If the unactuated

coordinates depend on m (out of n) control inputs, we only

need to update this m-input set.
From the above reasoning, we obtain the following con-

ditions for the nominal model.

• C1: D̄ = D̄T 	 0, i.e., positive definite,
∥∥D̄∥∥ ≤ d,∥∥H̄∥∥ ≤ h, where constants 0 < d, h < ∞;

• C2: rank(D̄aa) = n, rank(D̄uu) = rank(D̄ua) = m;

• C3: non-constant kernel of D̄ua;

• C4: motion of the unactuated coordinates depend on

only m control inputs.

We will illustrate how to select nominal models that satisfy

the above conditions in Section V.

IV. GP-ENHANCED EIC-BASED CONTROL

In this section, we first present the partial EIC (PEIC)

control that takes advantage of the GP predictive model

and explicitly eliminates uncontrolled motion. Stability and

performance analysis are then discussed.

A. PEIC-Based Control Design
With GP predictive models Sgp, we incorporate the pre-

dictive variance of Sgp
a into the auxiliary control vext as

v̂ext = q̈d
a − kp1(Σa)ea − kd1(Σa)ėa (19)

where kp1(Σa),kd1(Σa) 	 0 are control gains that depend

on variance Σa. Given the GP-based dynamics, the BEM is

estimated by solving the optimization problem

q̂e
u = argmin

qu

‖Γ(qu; v̂ext)‖. (20)
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The updated control design is

v̂int
u = ¨̂qe

u − kp2(Σu)êu − kd2(Σu) ˙̂eu, (21)

where êu = qu − q̂e
u is the internal system tracking error

relative to the estimated BEM. kp2(Σu),kd2(Σu) 	 0 are

also designed and tuned by the estimated GP variance Σu.

Let Δqe
u = qe

u− q̂e
u denote the BEM estimation error and

the actual BEM is qe
u = q̂e

u+Δqe
u. The control design based

on the actual BEM is vint
u = q̈e

u−kp2(Σu)eu−kd2(Σu)eu
and therefore, we have

vint
u = v̂int

u −Δvint
u ,

where Δvint
u = Δq̈e

u+kp2Δqe
u+kd2Δq̇e

u. Compared to (4),

the BEM estimation error comes from GP modeling error and

optimization accuracy. It is reasonable to assume that Δqe
u is

bounded. Because of the bounded Gaussian kernel function,

the GP prediction variances are also bounded, i.e.,

‖Σa(x)‖ ≤ (σmax
a )2, ‖Σu(x)‖ ≤ (σmax

u )2, (22)

where σmax
a = maxi(σ

2
fai

+ ϑ2
ai)

1/2, σmax
u = maxi(σ

2
fui

+

ϑ2
ui)

1/2, σf and ϑ are the hyperparameters in each channel.

Furthermore, we require the control gains to satisfy the

following bounds

ki1 ≤ λ(ki1) ≤ ki3, ki2 ≤ λ(ki2) ≤ ki4, i = p, d,

for constants kpj , kdj > 0, j = 1, · · · , 4, where λ(·) denotes

the eigenvalue operator.

The control design vint in (5) revises the preliminary

control vext. Under the updated control, qa serves as a

control input to drive qu to qe
u. For the PEIC-based control,

we instead consider a partial coupling constraint between

qa and qu and assign m control inputs (equivalently the

actuated coordinates) for unactuated subsystem control. To

achieve such a goal, we partition the actuated coordinates

as qa = [qT
aa qT

au]
T , qau ∈ R

m, qaa ∈ R
n−m, and

u = [uT
a uT

u ]
T . The Sgp dynamics in (16) is rewritten as⎡

⎣D̄
a
aa D̄au

aa D̄a
au

D̄ua
aa D̄u

aa D̄u
au

D̄a
ua D̄u

ua D̄uu

⎤
⎦
⎡
⎣q̈aaq̈au
q̈u

⎤
⎦+

⎡
⎣H

gp
aa

Hgp
au

Hgp
u

⎤
⎦ =

⎡
⎣ua

uu

0

⎤
⎦ , (23)

where all block matrices are in proper dimension. We

rewrite (23) into three groups as

Sgp
aa : D̄a

aaq̈aa +Ha
an = ua, (24a)

Sgp
au : D̄u

aaq̈au + D̄u
auq̈u +Hu

an = uu, (24b)

Sgp
u : D̄u

uaq̈au + D̄uuq̈u +Hun = 0, (24c)

where Haa
an = D̄au

aa q̈au+D̄a
auq̈u+Hgp

aa , Hu
an = D̄ua

aa q̈aa+
D̄u

auq̈u + Hgp
au, and Hun = D̄a

uaq̈aa + Hgp
u . Apparently,

Sgp
u is virtually independent of Sgp

aa , since there is “no

dynamics coupling”. The dynamics coupling virtually exists

only between Sgp
u and Sgp

au.

Let control v̂ext in (19) be partitioned into v̂ext
a and

v̂ext
u , corresponding to qaa and qau, respectively. v̂ext

a is

directly applied to Sgp and v̂ext
u is updated for balance

control purpose. As aforementioned, the necessary conditions

to eliminate the uncontrolled motion in Sa is that qu only

depends on m inputs. The task of driving qu to qe
u is assigned

to qau coordinates only. With this observation, the PEIC-

based control is given as ûint = [ûT
a ûT

u ]
T with

ûa = D̄a
aav̂

ext
a +Ha

an, ûu = D̄u
aav̂

int + D̄u
auq̈u +Hu

an,
(25)

where v̂int = − (
D̄u

ua

)−1 (
Hun + D̄uuv̂

int
u

)
. The auxiliary

controls are v̂ext
a and v̂int

u . The unactuated subsystem only

depends on uu under the PEIC design. Fig. 1 illustrates the

overall flowchart of the PEIC-based control design.

Fig. 1. An overall flowchart of the PEIC-based control design.

B. Stability and Performance Analysis

To investigate the closed-loop dynamics, we take the

GP prediction error and the BEM estimation error into

consideration. The GP prediction error in (17) is extended to

Δaa, Δau and Δu for qaa, qau, qu dynamics, respectively.

Under the PEIC-based control, the dynamics of S becomes

q̈aa = v̂ext
a − (D̄a

aa)
−1Δaa,

q̈au = −(D̄u
ua)

−1(Hun + D̄uuv̂
int
u )− (D̄u

aa)
−1Δau,

q̈u = v̂int
u − D̄−1

uu [Δu − D̄u
ua(D̄

u
aa)

−1Δau].

The BEM obtained by (20) under input [q̈aa v̂ext
u ] is equiv-

alent to inverting (24c), that is,

v̂ext
u = − (

D̄u
ua

)−1
Hun

∣∣
qu=q̂e

u,q̇u=q̈u=0
.

Substituting the above equation into the qau dynamics yields

q̈au = v̂ext
u + Oau, where Oau = −(D̄u

ua)
−1D̄uuv̂

int
u −

(D̄u
aa)

−1Δau+Ohot and Ohot denotes the higher order terms.

Defining the total error eq = [eTa eTu ]
T and e = [eTq ėTq ]

T ,

the closed-loop error dynamics becomes

ė =

[
ėq
ëq

]
=

[
0 In+m

−kp −kd

]
︸ ︷︷ ︸

A

[
eq
ėq

]
+

[
0

Otot

]
︸ ︷︷ ︸

O

= Ae+O (26)

with Otot = [OT
a OT

u ]
T , Oa = [OT

aa OT
au]

T , Oaa =
−(D̄a

aa)
−1Δaa, Ou = −D̄−1

uu (Δu − D̄u
ua(D̄

u
aa)

−1Δau) −
Δvint

u , kp = diag(kp1,kp2), and kd = diag(kd1,kd2).
Because of bounded D̄, there exists constants 0 <

da1, da2, du1, du2 < ∞ such that da1 ≤ ∥∥D̄aa

∥∥ ≤ da2 and
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du1 ≤ ∥∥D̄uu

∥∥ ≤ du2. The perturbation terms are further

expressed and bounded as

‖Oa‖ =

∥∥∥∥−
[

0
(D̄u

ua)
−1D̄uuv̂

int
u

]
− (D̄a

aa)
−1Δa +

[
0

Ohot

]∥∥∥∥
≤ du2

σ1

∥∥v̂int
u

∥∥+ 1
da1

‖Δa‖+ ‖Ohot‖
and

‖Ou‖ =
∥∥−D̄−1

uu (Δu − D̄u
ua(D̄

u
aa)

−1Δau)−Δvint
u

∥∥
≤ 1

du1
‖Δu‖+ σm

du1da1
‖Δa‖+

∥∥Δvint
u

∥∥ .
The perturbation Ohot is due to approximation and Δvint

u

is the control difference due to the BEM calculation by the

GP prediction, and we assume they are affine functions with

total error e, that is,

‖Ohot‖ ≤ c1 ‖e‖+ c2,
∥∥Δvint

u

∥∥ ≤ c3 ‖e‖+ c4

with 0 < ci < ∞, i = 1, · · · , 4. From (22), we have

‖κT
aΣ

1
2
a ‖ ≤ σmax

a ‖κa‖ and ‖κT
uΣ

1
2
u ‖ ≤ σmax

u ‖κu‖. Thus,

for 0 < η < 1, we can show that

Pr {‖O‖ ≤ d1 + d2 ‖e‖+ lu ‖κu‖+ la ‖κa‖} ≥ η,

with η = ηaηu, d1 = c2 + (1 + du2

σ1
)c4, d2 = c1 + du2

σ1
c3,

la =
σmax
a (du1+σm)

du1da1
, lu =

σmax
u

du1
.

With the above results, we have the following results about

the stability and performance of the PEIC-based control and

the proof is neglected due to page limit. The detailed proof

can be found in the extended version of the paper [28].

Lemma 2: For robot dynamics (2), using the GP-

based model (16) and under the PEIC-based control de-

sign (19), (21) and (25), the system error e exponentially

converges to a small ball near the origin.

V. EXPERIMENTAL RESULTS

We used two inverted pendulum platforms to conduct

experiments to validate and demonstrate the robot control

design. Fig. 2(a) shows a 2-DOF rotary inverted pendulum

and Fig. 2(b) for a 3-DOF robotic leg that has an inverted

link as the controlled balance task.

(a) (b)

Fig. 2. (a) A Furuta pendulum testbed. The base link joint θ1 is actuated
and the pendulum link joint θ2 is unactuated. (b) A three-link robotic leg
with two base links θ1 and θ2 are actuated and the top link θ3 is unactuated.

The rotary inverted pendulum (2 DOFs, n = m = 1)

was made by Quanser Inc. and we used this platform to

illustrate the EIC-based control. The base joint (θ1) was

actuated by a DC motor and the inverted pendulum joint (θ2)

was unactuated. The physical model in (2) is given in [29].

The control input is motor voltage. Since the condition C4
is satisfied automatically, there is no uncontrolled motion if

the EIC-based control is applied. Either a constant nominal

model or a time-varying nominal model should work. We

take the nominal models

Sn1 : D̄1 =
1

100

[
5 −2 c2

−2 c2 2

]
, H̄1 =

[
0

− s2

]
,

Sn2 : D̄2 =
1

100

[
2 1
1 2

]
, H̄2 = 0,

where ci = cos θi, si = sin θi for angle θi, i = 1, 2. The

control gains kp1 = 10 + 50Σa, kd1 = 3 + 10Σa, kp2 =
1000 + 500Σu, and kd2 = 100 + 200Σu were chosen. The

reference trajectory was θ1 = 0.5 sin t+0.3 sin 1.5t rad. The

control was implemented at 400 Hz in Matlab/Simulink real-

time system. For comparison purposes, we also implemented

a physical model-based EIC controller.

TABLE I

TRACKING ERRORS OF ROTATORY INVERTED PENDULUM

Sn1 Sn2 Model-Based

|e1| (rad) 0.024± 0.017 0.081± 0.105 0.109± 0.040

|e2| (rad) 0.009± 0.005 0.009± 0.008 0.026± 0.015

Fig. 3 shows the experimental results. With either Sn1 or

Sn2, the base link closely follows the reference trajectory

and a similar trend is found for the pendulum motion

(see Fig. 3(b)). However, the tracking error was reduced

and the pendulum closely followed the small vibrations

for Sn1. With Sn2, the tracking errors became large when

the base link changed rotation direction; see Fig. 3(c) at

t = 10, 17, 22 s. Since condition C4 is automatically satisfied,

both nominal models worked for the learning and EIC-based

control design. Table I lists the statistics of the tracking errors

(i.e., mean and one standard deviation). For both subsystems,

the errors with the learning-based approach are smaller. In

particular, with a time-varying nominal model, the tracking

error (mean value) for e1 and e2 reduced 75% and 65%
respectively in comparison with those under the physical

model. A relatively large error was with Sn2 and this can

be due to that a constant nominal model did not reflect the

time-varying property of the robot dynamics.

We next use a 3-DOF robotic leg (n = 2, m = 1)

to demonstrate the proposed control design. The control

implementation was at 200 Hz through Robot Operating

System (ROS). The nominal model was given by

D̄ =

⎡
⎢⎢⎣

0.15 0.025 c2 0.025 c3

0.025 c2 0.15 0.05 c23

0.025 c3 0.05 c23 0.1

⎤
⎥⎥⎦ , H̄ =

⎡
⎢⎢⎣

0

0.2 c2

0.1 s3

⎤
⎥⎥⎦ ,

where cij = cos(θi − θj). We applied an open-loop control

(combination of sine wave torque) to excite the system and

obtained the training data. The control gains were kp1 =
15.0I2+20Σa, kd1 = 3I2+10Σa, kp2 = 25+20Σu, kd2 =
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(a) (b) (c)

Fig. 3. Experiment results with rotary inverted pendulum (a) Arm rotation angles. (b) Pendulum rotation angles. (c) Tracking control errors.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Experiment results with the underactuated robotic leg. (a) Motion profiles and (b) tracking errors under the PEIC-based control. (c) Motion profiles
under the EIC-based control. (d) Motion profiles in the new coordinate pa under the PEIC-based control. (e) Motion profile pa under the EIC-based
control. (f) Error trajectory in the ‖eq‖-‖ėq‖ plane.

5.5 + 10Σu. The reference trajectory was θd1 = 0.5 sin t,
θd2 = 0.4 sin 3t rad. We chose qaa = θ1 and qau = θ2.

Under the proposed control, the system followed the given

reference trajectory closely and the third link was balanced

around the BEM as shown in Fig. 4(a). In Fig. 4(b), the

tracking error of joint θ1 is between −0.05 to 0.05 rad,

while the tracking error of joint θ2 is between −0.1 to

0.1 rad. Fig. 4(c) shows the results under the regular EIC-

based control and it is clear that the system became unstable.

The motion of the actuated coordinate in the new coordinate

pa is shown in Figs. 4(d) and 4(e) and pa2 represents the

uncontrolled motion variable. Although pa1 followed the

reference, the pa2 profile showed a large error due to the

lack of control. Fig. 4(f) shows the estimated error bound

and it is clear that the tracking error entered and remained

inside the bounded area. The above results confirmed that the

uncontrolled motion was eliminated and the simultaneously

tracking and balance control property of EIC-based control

was preserved. To further improve the tracking performance,

a large size of training data can be used with distributed GP

agents to reduce the computational cost [20].

VI. CONCLUSION

This paper proposed a learning-based controller for un-

deractuated balance robots. The proposed control was an

extension of the external and internal convertible form con-

trol (i.e., EIC-based control). The EIC-based control aimed

to achieve tracking and balance simultaneously. However,

we showed that uncontrolled motion existed under the EIC-

based control. We identified the conditions under which the

uncontrolled motion happened and also proposed the GP-

enhanced EIC-based control. The proposed new robot control

preserved the structure property of the EIC-based control

and achieved tracking and balance tasks. We demonstrated

the new control design on two experimental platforms and

confirmed that stability and balance were guaranteed.
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