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Gaussian Process-Enhanced, External and Internal Convertible
Form-Based Control of Underactuated Balance Robots

Feng Han and Jingang Yi

Abstract— External and internal convertible (EIC) form-
based motion control (i.e., EIC-based control) is one of the
effective approaches for underactuated balance robots. By
sequentially controller design, trajectory tracking of the ac-
tuated subsystem and balance of the unactuated subsystem can
be achieved simultaneously. However, with certain conditions,
there exists uncontrolled robot motion under the EIC-based
control. We first identify these conditions and then propose
an enhanced EIC-based control with a Gaussian process data-
driven robot dynamic model. Under the new enhanced EIC-
based control, the stability and performance of the closed-
loop system are guaranteed. We demonstrate the GP-enhanced
control experimentally using two examples of underactuated
balance robots.

I. INTRODUCTION

An underactuated balance robot possesses fewer control
inputs than the number of degrees of freedom (DOFs) [1],
[2]. Control design of underactuated balance robots needs to
achieve both the trajectory tracking of the actuated subsystem
and balance control of the unactuated subsystem [3], [4].
The balance of unstable coordinates of underactuated robots
brings additional challenges for robot control. Many methods
have been proposed to cope with the robot modeling [1],
[3]-[6], control design and applications [7], [8]. The ex-
ternal and internal convertible (EIC) form-based control
(i.e., EIC-based control) has been demonstrated as one of
the effective approaches to achieve simultaneous trajectory
tracking and balance [9]. Other balance control algorithms
include the orbital stabilization control [10]-[13], and energy
shaping-based control [14]-[16]. One limitation of these
methods is that the achieved balance-enforced trajectory is
not unique [2], [17].

Although the EIC-based control achieves stability and
balance [4], [9], [18], [19], certain system conditions should
be satisfied. Furthermore, an accurate robot dynamics model
is required and control robustness is not guaranteed under
model uncertainties. Machine learning-based method pro-
vides an efficient tool for robot modeling and control. In
particular, Gaussian process (GP) regression is an effective
learning approach that generates analytical structure and
bounded prediction errors [5], [20]-[23]. Development of
GP-based performance-guaranteed control for underactuated
balance robots has been reported [3], [20], [24], [25]. In [3],
the control input is partitioned into two parts. A GP-based
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inverse dynamics controller for unactuated subsystem to
achieve balance and a model predictive control (MPC) design
are used to simultaneously track the given reference trajec-
tory and obtain the balance equilibrium manifold (BEM).
The GP prediction uncertainties are incorporated into the
control design to enhance the control robustness. The work
in [4] followed the cascaded control design in the EIC-based
framework and the controller was adaptive to the prediction
uncertainties. The training data was also selected to reduce
the computational complexity.

In this paper, we take advantage of the structured GP
modeling in [4], [26] and present a method to resolve the
limitation of the original EIC-based control. We first show
that under EIC-based control, there exist uncontrolled mo-
tions that cause the entire system unstable. The uncontrolled
motion is because the EIC-based control is updated from
a low- to high-dimensional space. The conditions for the
stable GP-based model learning and control are identified
and presented. With the properly selected nominal model,
the uncontrolled motion is eliminated with the GP-based
data-driven robot dynamics. Finally, we propose a partial
EIC (PEIC)-based control by constructing a virtual inertial
matrix to reshape the dynamics coupling. The proposed GP-
based control is shown to achieve guaranteed stability and
performance. Experimental validation and demonstration are
presented by using two underactuated balance robots.

The major contributions of this work are twofold. Com-
pared with [4], [9], the uncontrolled motion of the EIC-based
control is identified and illustrated. To overcome the identi-
fied EIC-based control limitations, the conditions for nominal
GP model selection are presented. The proposed controller
is new and also achieves good performance and stability.
Second, unlike the work in [3] with the complex MPC with
high computational cost, the proposed GP models directly
capture the robot dynamics and the control design preserves
the EIC structure property. The demonstrated experiments
are also new compared with the previous work.

II. EIC-BASED CONTROL AND PROBLEM STATEMENT

A. Robot Dynamics and EIC-Based Control

We consider a general underactuated balance robot with
(n +m) DOFs, n,m € N, and the generalized coordinates
are denoted as ¢ = [q1 - - - @nim]T. The dynamics model is
expressed in a standard form

S:D(q)4d+C(q,q)4 + G(q) = Bu, (1)
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where D(q), C(q,q) and G(q) are the inertia, Coriolis and
gravity matrices, respectively. B denotes the input matrix
and u € R™ is the control input.

The generalized coordinates are partitioned as q =
l[ql qI1", with actuated and unactuated coordinates g, € R™
and g, € R™, respectively. We focus on the case n > m.
Without loss of generality, we assume that B = [I,, 0]%,
where I,, € R" is an identify matrix. The robot dynamics (1)
is rewritten as

Sa: Daada + Daudu +H, =u,
Su : Duada + Duuqu + Hu =0

(2a)
(2b)

for actuated and unactuated subsystems, respectively. Sub-
scripts “aa (uu)” and “wa and au” indicate the variables
related to the actuated (unactuated) coordinates and cou-
pling effects, respectively. For representation convenience,
we introduce H = Cq + G, H, = C,q + G,, and
H, = C,q + G,. The dependence of matrices D, C, and
G on q and q is dropped. Subsystems S, and S, are referred
to as external and internal subsystems, respectively [9].
Given the desired trajectory g the control input is first
designed to follow q? by temporarily neglecting S,, as

UEXt = DaaveXt + Daudu + Hay (3)

where error e, = q, — q? and v*™** € R" is the auxiliary
input that drives e, to the origin. To account for the dynamics
coupling, g, is balanced onto BEM. We note S, takes the
motion effect g, as an “external” control input. Assuming the
designed control u®** is applied to the system. The actuated
coordinates display the dynamics ¢, = v°**. The BEM is
defined as the instantaneous equilibrium of g, under the
“external” control. The BEM under control v**! is

&= {q; :I‘(qu;veXt) =0,q, :du:0}7 4)

where F(qu; UEXt) = -Duudu + DuaveXt + Hu-
To stabilize g,, onto £, we update g, motion to incorporate
balance control as

v = —DF (H, + D, v™), (3)

where D, = (D;,D,,)" "Dy, denotes the generalized
inverse of D,,. v!™ is the auxiliary control that drives error
e, = q,, — q,, towards zero. The final control is obtained by
replacing v*** in (3) with v, that is,

um = ljaa’vint + DoyGy + H,. (6)

The above EIC-based control achieves trajectory tracking
for S, and balance for S, simultaneously [9], [23]. It has
been shown in [9] that with an assumption that the robot
model errors are affine with tracking errors, the control wlnt
guarantees both e, and e, convergence to a neighborhood
of the origin exponentially.

B. Limitations of the EIC-based Control

In this subsection, we show the limitations of the above
EIC-based control design. The limitation comes from (5)

that uses a mapping from low-dimensional (m) to high-
dimensional (n) space. For robot control (6), it has been
shown that there exists a finite time 7" > 0 and for small
number € > 0, ||g,(t) — g5 (t)]| < e for t > T [9]. Given
the negligible error, we obtain Dy (qa, qu) = Dayu(qa, q5)-
We apply singular value decomposition to D,, and D ,

D,,=UAV", D! =VATU", (7)

where U € R™*™ and V' € R™*"™ are unitary orthogonal
matrices. A = [A,, 0] € R™*" and AT = [A! 0] €
R™ ™ and A,, = diag(o1,...,0.,) with all singular values
0<o1 <0< <oy

Since V is a unitary orthogonal matrix, its column vectors
serve as a set of complete bases in R™. Rewriting the g, and
v**" in span(V'), we have transformations

Pa = VTQa: vt = VT'UeXt7 3
where ¢ = [(b=HT (p)T]T Note that [p ¢l

still serves as a complete set of generalized coordinates for
S. The robot dynamics S, under control u®' is ¢, =
—D_ (D, v*™*+ H,). Plugging (7) and (8) into the above
dynamics yields

Gu = —D,,(UAvt + H,). ©))

For &, g, is obtained by solving T'g(q.; v™**) = 0. With

the above discussion, we substitute D,,,(q¢) with D.,,(q.)
in 'y and therefore, using (7), I'g = O is rewritten into

AvSt + UTHIP =0
qu:qqi7Qu=¢Iu:0

(10)

The BEM £ only depends on v, which is in the subspace
span{V3, ..., V;,} of V. The control effect v&** in the
subspace ker(D,,,) is disposable when obtaining the BEM.

The control »™¢ in (5) is augmented by matrix D}, using
v which is a map from a low- to high-dimensional space.
We substitute (7) into (5) and the motion of S, under control

v becomes
da _ ,Uint — _VA+UT (Hu 4 Du,quint) ) (]])

We rewrite the above equation in the new coordinate p, and
under the EIC-based control, the closed-loop of S becomes

ur (Hu + Duuv;ﬂnt)

Dai = ,i=1,...,m, (12a)
o

Batmij) =05 5 =1,.n—m, (12b)

Gu = vl (12¢)

Obviously, no control appears for coordinates in ker(D,,,) as
shown by (12b) and only m actuated coordinates in span(V')
are under active control; see (12a). The designed control
steers only a part of the generalized coordinates and the other
part is without control.

With the above-revealed limitation of the EIC-based con-
trol and considering the data-driven model for robot dynam-
ics, this work mainly focuses on the following problem.

Problem statement: The goal of robot control is to design
an enhanced EIC-based control to drive the g, to follow a
given profile g¢ and simultaneously g, to be stabilized on
the estimated &£ using the GP-based data-driven model.
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III. GP-BASED ROBOT DYNAMICS MODEL

In this section, we present a GP-based dynamics model.
The enhanced EIC-based control design in the next section
will be built on a selected nominal model.

A. GP-Based Robot Model

We consider to capture the robot dynamics using a GP-
based data-driven method. We consider a multivariate con-
tinuously smooth function y = f(x) + w, where w is the
zero-mean Gaussian noise. Denote the training data sampled
fromy = f(z)+wis D ={X,Y} = {wi,yi}f\;l, where
X ={z}N,, Y = {y;}NV,, &, € R%, and N € N
is the number of the data point. The GP model is trained
by maximizing posterior probability p(Y; X, a) over the
hyperparameters c. That is, o is obtained by solving

1 1
min —log(Y; X, a) = min —— Y7 K'Y — ~ log det(K),
@ a 2 2

where K = (Kyj), Kij = k(zi,®;) = oF exp(—5(x; —
wj)TW(SEi —azj)) +7926ija W = diag{Wl, SR Wnl} >0,
§;j =1 fori=j, and a = {W, 0,92} are parameters.

Given a new x*, the GP model predicts the corresponding
y and the joint distribution is

Y K kT
ol )
where k = k(x*, X) and k* = k(x*, z*). The mean value

and variance for input =* are

pi(x®) =kTK7'Y, Si(x*) = k* — kK 'k,

13)

(14)

To apply the GP model for robot dynamics S, we first
build a nominal model

S": D+ H = u, (15)

where D and H are the nominal inertia and nonlinear matri-
ces, respectively. In general, the nominal dynamics equation
does not hold for the data sampled from physical robot
systems. The GP models are built to capture the difference
between 8™ and S. The dynamics model difference is

H*=D{+H-Dj— H=u—D¢— H.

We build the GP models to capture H® = [(HS)T (H)T)T.
Two GP models are used to predict H; and H ;. The training
data D = {X,Y} are sampled from S as X = {z;}¥,,
Y = {H{}X . where @ = {q. 4. ).

The GP predicted mean and variance are denoted as
(pi(x),3;(x)) for HY, i = a,u. The GP-based robot
dynamics model S is then given as

Sgp : Daada + Daudu + ng =u,
ng,,p : Duada + Duuqu + ng = Oa

(16a)
(16b)

where H? = H; + p;(x), i = a,u. The GP-based model
prediction error is

A [Aa} _ {ua(w) Hf;} . (17)

wu(z) — Hy

To quantify the GP-based model prediction, we use Theo-
rem 6 in [27] and obtain the following property for A.

Lemma 1: Given the training dataset D, if the kernel
function k(z,, x;) is chosen such that H for S, has a finite
reproducing kernel Hilbert space norm | H||, < oo, for
given 0 < 1, < 1,

Pr{lla.) <|

1
KIS @)||} = na
where Pr{-} denotes the probability of an event, kK, € R”
2||H¢ ;|12 + 300g; In® ML

1—nd
G = maXg gex 3|1 +3; “k; (x, ) |. A similar conclu-

sion holds for A,, with probability 0 < 7, < 1.

(18)

and its i-th entry is kg =

B. Nominal Model Selection

With the constructed GP models, the next goal is to
develop an enhanced EIC-based control to achieve stability
and performance by eliminating the limitations that were
discussed in the previous section. To achieve such a goal, we
first require bounded matrices D and H. Inverting inertia
matrix D is required for feedback linearization and thus,
D is selected invertible. Second, the uncontrolled motion
exists in the kernel of matrix D,,,. If ker(D,,,) is constant,
the uncontrolled motion appears in the fixed subspace of
the configuration space. Therefore, it is required that the
kernel of D,, is non-constant. As mentioned previously,
the uncontrolled motion happens due to controller updating
from the low- to high-dimensional spaces. If the unactuated
coordinates depend on m (out of n) control inputs, we only
need to update this m-input set.

From the above reasoning, we obtain the following con-
ditions for the nominal model.

e Ci: D = DT » 0, ie., positive definite, HDH < d,

HEIH < h, where constants 0 < d,h < 00;

o Cy: rank(Dg,) = n, rank(Dy,,) = rank(D,,) = m;

o Cs: non-constant kernel of D,,,;

e C4: motion of the unactuated coordinates depend on

only m control inputs.
We will illustrate how to select nominal models that satisfy
the above conditions in Section V.

IV. GP-ENHANCED EIC-BASED CONTROL

In this section, we first present the partial EIC (PEIC)
control that takes advantage of the GP predictive model
and explicitly eliminates uncontrolled motion. Stability and
performance analysis are then discussed.

A. PEIC-Based Control Design

With GP predictive models S97, we incorporate the pre-
dictive variance of SJ7 into the auxiliary control v®** as

f)ext = qg — k:pl(Ea)ea — kdl(za)éa (19)

where kp1(3,), kq1(2,) > 0 are control gains that depend
on variance ¥,. Given the GP-based dynamics, the BEM is
estimated by solving the optimization problem

g, = arg H;in T (qu; ). (20)
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The updated control design is

'ﬁint qz - kp2(2u)éu - de(Eu)éuv

w =

2L

where é, = q, — ¢{ is the internal system tracking error
relative to the estimated BEM. kj2(X,), kg2(3,,) > 0 are
also designed and tuned by the estimated GP variance ¥,,.

Let AgS = g — q¢ denote the BEM estimation error and
the actual BEM is ¢, = g, + Aq¢,. The control design based
on the actual BEM is v"* = ¢¢ — k2 (Ey) e, — ka2 (Zw)ey
and therefore, we have

int __ Aint int
v, =0, —Av,",

where Avi'® = AGE +kpo AGE + kaa Ag. Compared to (4),
the BEM estimation error comes from GP modeling error and
optimization accuracy. It is reasonable to assume that Aqy, is
bounded. Because of the bounded Gaussian kernel function,
the GP prediction variances are also bounded, i.e.,
[Za(@)]| < (052 [ Zu(@)]| < (077)2,

a u

(22)

1/2
b

where o

max
Uu

max — maxi(ajzcai + %) = maxi(aj%m +
¥2,)1/2, o and ¥ are the hyperparameters in each channel.
Furthermore, we require the control gains to satisfy the

following bounds

kivn < Mkin) < kis,  kio < MKi2) < kia, ©t =p,d,

for constants kp;, kq; >0, j =1,---,4, where A(-) denotes
the eigenvalue operator.

The control design v™ in (5) revises the preliminary
control v***. Under the updated control, q, serves as a
control input to drive q,, to gq;,. For the PEIC-based control,
we instead consider a partial coupling constraint between
g, and g, and assign m control inputs (equivalently the
actuated coordinates) for unactuated subsystem control. To
achieve such a goal, we partition the actuated coordinates

as qq = [qga qZ;JT, qou € R™, qua € R"™, and
u = [ul ul]T. The S dynamics in (16) is rewritten as
D;, Dii Di,] [daa Hy Uq
Dy Dg, Dg.| |dou| + |HI| = |ua|, (23)
DZG/ D’Z’a Duu du ng 0

where all block matrices are in proper dimension. We
rewrite (23) into three groups as

S . DgGaa + HY, = Ua, (24a)
89 DY Gou + DG + HY, = w, (24b)
S’Lng : D'quadau + Duuqu + Hun — 0, (24C)

where HG = D& Gay + DS, Gu+ HI, HY, = D5 qaa +
D} g, + HJE, and Hy,, = Dy, Gaa + HJP. Apparently,

au’
S9P is virtually independent of S92, since there is “no
dynamics coupling”. The dynamics coupling virtually exists
only between SJ7 and SJP.

Let control ©** in (19) be partitioned into ©¢** and
X corresponding t0 q,, and @, respectively. ©XU is
directly applied to 89 and ©%** is updated for balance
control purpose. As aforementioned, the necessary conditions

to eliminate the uncontrolled motion in S, is that g, only

rext

depends on m inputs. The task of driving q,, to g¢, is assigned
to gg, coordinates only. With this observation, the PEIC-

based control is given as %" = [al 4l]T with

/"Al’a = Dgaﬁg){t + Hgn7 ’&’U« = Dgaﬁint + Dguqu + H:n’
(25)
where 9™t = — (DY,) ™" (Hyn + D, ®™). The auxiliary
controls are 92 and ©'*. The unactuated subsystem only
depends on wu,, under the PEIC design. Fig. 1 illustrates the

overall flowchart of the PEIC-based control design.

’ Nominal Model Selection Criteria k ————————

! i

= — GP.
: _________ »{ SP: Dq + H + n = Bu Learning EIC-control
i + Limitlations
1
Sampled &t » SI9P !
1 v 1
. l
~ext ~int gp
o & o S| [--

Estimate

i
|

I

i

| Updating
! BEM

I

I

I

I

i

i

i

PEIC-Based Control Design

v

——————— { Undereducated Balance robot System

Fig. 1. An overall flowchart of the PEIC-based control design.

B. Stability and Performance Analysis

To investigate the closed-loop dynamics, we take the
GP prediction error and the BEM estimation error into
consideration. The GP prediction error in (17) is extended to
Aga, Ayy and Ay, for qu, gau, g, dynamics, respectively.
Under the PEIC-based control, the dynamics of & becomes

daa - 'ﬁZXt - (Bga)ilAam
‘jau = _(Dxa)_l(Hun + Duuﬁzlt) - (Dga)_lAau’
Gy = "A’Lnt - D;ul [Au - Dsa(Dga)_lAau}-
The BEM obtained by (20) under input [g,, 9] is equiv-
alent to inverting (24c), that is,

pext — _ (Dﬁa)_l

u

Hun |qu,:(ji’(ju:du:0.
Substituting the above equation into the q,,, dynamics yields
Gau = St + Oy, wWhere Oy = —(DY,) 1Dy, o0 —
(D%,) " A4+ Oho and Oy denotes the higher order terms.
: _ [pT oT1T _ (T oTT
Defining the total error e, = le, e,]" ande =[e, é,]",
the closed-loop error dynamics becomes

. _léql | O
=[e] = [
—_——

In+m €4 0 .
] e+ o) =40 2o
——

A o

with Oy = (0T OTIT, O, = [OF, OTJT, Ouy =
—(Dg,) ' Agas Ou = =Dy (Ay — D (D)™  Agy) —
Avi" k, = diag(kp1, ky2), and kg = diag(kai, ka2)-

Because of bounded D), there exists _constants 0 <
da1,da2,dy1,dys < oo such that d,; < ||Daa|| < d, and
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dy1 < ||DuuH < dy2. The perturbation terms are further
expressed and bounded as

_ |l _ 0 _(pa -1 0
10,1 = |- [ ) U, | - P 8a+ g ||
< % [l + 2 1l + 10w
and
04l = [~ D3 (A — Dy (Df) ™ Ag) — Ao
< 25 Il + 22 1Al + Ao

The perturbation Oy, is due to approximation and Awvint

is the control difference due to the BEM calculation by the
GP prediction, and we assume they are affine functions with
total error e, that is,

[Onotll < cxllell + ez [|Av|| < e e + e

with 01 < ¢ < o0, = 1,--- ,411. From (22), we have
ke B2 || < o [|ka and || 2| < o™ [|ky]. Thus,
for 0 < n < 1, we can show that

Pri(Of < di +dz |le] + L IIKuII +lal|kall} =1,

with = NaNu» dl = C2 + ( + )04’ d2 =0 + 637

l]]ax(du1+0_7”) l O_anlx

l, =
With the above results wde have the following results about
the stability and performance of the PEIC-based control and
the proof is neglected due to page limit. The detailed proof
can be found in the extended version of the paper [28].

Lemma 2: For robot dynamics (2), using the GP-
based model (16) and under the PEIC-based control de-
sign (19), (21) and (25), the system error e exponentially
converges to a small ball near the origin.

V. EXPERIMENTAL RESULTS

We used two inverted pendulum platforms to conduct
experiments to validate and demonstrate the robot control
design. Fig. 2(a) shows a 2-DOF rotary inverted pendulum
and Fig. 2(b) for a 3-DOF robotic leg that has an inverted
link as the controlled balance task.

(®)

(a) A Furuta pendulum testbed. The base link joint 67 is actuated
and the pendulum link joint #2 is unactuated. (b) A three-link robotic leg
with two base links €1 and 02 are actuated and the top link 03 is unactuated.

Fig. 2.

The rotary inverted pendulum (2 DOFs, n = m = 1)
was made by Quanser Inc. and we used this platform to

illustrate the EIC-based control. The base joint (#;) was
actuated by a DC motor and the inverted pendulum joint (62)
was unactuated. The physical model in (2) is given in [29].
The control input is motor voltage. Since the condition Cy4
is satisfied automatically, there is no uncontrolled motion if
the EIC-based control is applied. Either a constant nominal
model or a time-varying nominal model should work. We
take the nominal models

nl . A 1 5 -2 Co T 0
s Dl_loo{_m g ] Hl_[_SJ,
n2 . . _ 1 21 rr.
SN )
where ¢; = cosf;, s; = sin6; for angle 0;, i = 1,2. The
control gains k,1 = 10 + 50%,, kg1 = 3 4+ 103,, kp2 =
1000 + 500%,,, and k4o = 100 4 2003, were chosen. The
reference trajectory was #; = 0.5sin¢+0.3sin 1.5¢ rad. The
control was implemented at 400 Hz in Matlab/Simulink real-
time system. For comparison purposes, we also implemented
a physical model-based EIC controller.
TABLE I
TRACKING ERRORS OF ROTATORY INVERTED PENDULUM

sl Sn2 Model-Based
le1]| (rad) 0.024 £+ 0.017 0.081 £+ 0.105 0.109 + 0.040
lea| (rad) 0.009 = 0.005 0.009 =+ 0.008 0.026 £ 0.015

Fig. 3 shows the experimental results. With either S"! or
S"2, the base link closely follows the reference trajectory
and a similar trend is found for the pendulum motion
(see Fig. 3(b)). However, the tracking error was reduced
and the pendulum closely followed the small vibrations
for S™. With 8”2, the tracking errors became large when
the base link changed rotation direction; see Fig. 3(c) at
t = 10,17, 22 s. Since condition Cy is automatically satisfied,
both nominal models worked for the learning and EIC-based
control design. Table I lists the statistics of the tracking errors
(i.e., mean and one standard deviation). For both subsystems,
the errors with the learning-based approach are smaller. In
particular, with a time-varying nominal model, the tracking
error (mean value) for e; and ey reduced 75% and 65%
respectively in comparison with those under the physical
model. A relatively large error was with S™2 and this can
be due to that a constant nominal model did not reflect the
time-varying property of the robot dynamics.

We next use a 3-DOF robotic leg (n = 2, m = 1)
to demonstrate the proposed control design. The control
implementation was at 200 Hz through Robot Operating
System (ROS). The nominal model was given by

0.15  0.025c; 0.025cs3 0
D= [0.025¢c, 0.15 0.05co3|, H= [02¢cy],
0.025¢3  0.05cog3 0.1 0.1s5

where ¢;; = cos(#; — ;). We applied an open-loop control
(combination of sine wave torque) to excite the system and
obtained the training data. The control gains were k,; =
15.015 +20%,, kg1 = 312 + 103, kpo = 25+ 203, kg2 =

8931



0.1
=
£
0.5 \ pad
\ 0 F— ¢
— \ —
3 A { i 2
=0 =g 1 ] =
= \\\ A \ l\ a2
S ! 3
! ‘\ ‘l = 01 ——BEM =
051 s &
Sn2 —
V g
Ref. — — — Snl Sn? ‘
-1 T T T T -0.2 . . . . . -0.1
0 5 10 15 20 25 30 0 5 10 15 20 25 30 5 10 15 20 25 30
Time (s) Time (s) Time(s)
(@) (b) (©
Fig. 3. Experiment results with rotary inverted pendulum (a) Arm rotation angles. (b) Pendulum rotation angles. (c) Tracking control errors.
0.5 SR
= 005 .
£ E ER -
< ; =0 05 Actual
05 d < 005 = - - = Ref.
- | Actual - - - Ref.| 0o -1
0.5 — e
=) —~ 0 0 S g N
2 E=) . > X -
= £ .02 < -05 A 2
ES 8
& -04 ~ 1
<
0.05 0 e ——
= B =
2 g e \
= g <
-0.1 10
0 5 10 15 2 4 6 8 10 12 14 16 0 1 2 3 4
Time (s) Time (s) Time (s)
(b) (©
1 L5
= = Actual
£ g 05 S il 1
] — é
< S £ 05
5 =R
— = 205
— = 1 | [E=3Emor Bound
3 3 B Error Traj.
By Y
Y¢ Initial Point
15
5 -2 -1 0 1 2
Time (s) Time (s) Error (rad)
(d) (e ()

Fig. 4. Experiment results with the underactuated robotic leg. (a) Motion profiles and (b) tracking errors under the PEIC-based control. (c) Motion profiles
under the EIC-based control. (d) Motion profiles in the new coordinate p, under the PEIC-based control. (¢) Motion profile p, under the EIC-based

control. (f) Error trajectory in the ||eq]|-||€4]| plane.

5.5 4+ 10%,,. The reference trajectory was 6 0.5sint,
04 = 0.4sin 3t rad. We chose q,, = 0 and q,,, = 2.

Under the proposed control, the system followed the given
reference trajectory closely and the third link was balanced
around the BEM as shown in Fig. 4(a). In Fig. 4(b), the
tracking error of joint ¢; is between —0.05 to 0.05 rad,
while the tracking error of joint 65 is between —0.1 to
0.1 rad. Fig. 4(c) shows the results under the regular EIC-
based control and it is clear that the system became unstable.
The motion of the actuated coordinate in the new coordinate
Do 1s shown in Figs. 4(d) and 4(e) and p,o represents the
uncontrolled motion variable. Although p,; followed the
reference, the p,o profile showed a large error due to the
lack of control. Fig. 4(f) shows the estimated error bound
and it is clear that the tracking error entered and remained
inside the bounded area. The above results confirmed that the
uncontrolled motion was eliminated and the simultaneously
tracking and balance control property of EIC-based control

was preserved. To further improve the tracking performance,
a large size of training data can be used with distributed GP
agents to reduce the computational cost [20].

VI. CONCLUSION

This paper proposed a learning-based controller for un-
deractuated balance robots. The proposed control was an
extension of the external and internal convertible form con-
trol (i.e., EIC-based control). The EIC-based control aimed
to achieve tracking and balance simultaneously. However,
we showed that uncontrolled motion existed under the EIC-
based control. We identified the conditions under which the
uncontrolled motion happened and also proposed the GP-
enhanced EIC-based control. The proposed new robot control
preserved the structure property of the EIC-based control
and achieved tracking and balance tasks. We demonstrated
the new control design on two experimental platforms and
confirmed that stability and balance were guaranteed.
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