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Abstract— As the aging and disabled populations grow, the
demand for effective assistance in daily activities such as sit-to-
stand (STS) has been increasing. Wearable exoskeletons are a
promising technology for reducing the effort required for STS.
This study explores the sensor fusion of electroencephalography
(EEG) signals, which reveal pre-movement intentions, with in-
ertial measurement unit (IMU) data, offering real-time motion
information for enhanced knee exoskeleton control in STS
assistance. The EEG-IMU sensor fusion approach improves the
temporal accuracy and robustness of STS intention detection.
By detecting STS intentions with lower latencies, the knee
exoskeleton provides timely and smooth support, enhancing the
user experience. The proposed method reduces system latency,
enabling rapid user-exoskeleton interaction. Experimental re-
sults demonstrate the effectiveness of the brain-computer in-
terface (BCI)-enhanced knee exoskeleton for improving STS
efficiency and user experience.

I. INTRODUCTION

With increased aging populations, effective assistance, and

care services are frequently needed for elders for their daily

activities such as sit-to-stand (STS) movements [1]. Wearable

exoskeletons and sensors show promise in reducing efforts

during personal daily activities (e.g., [2] for STS). Under-

standing the biomechanics, motor control characteristics,

and detecting the human motion intentions is crucial for

developing appropriate wearable devices and assistance [3].

Most intention detection methods use wearable sensors such

as inertial measurement units (IMUs), electromyography

(EMG), or other physical or electrophysiological sensors.

One approach involves the analysis of multi-channel my-

oelectric signals, providing insights into muscle activation

sequence and levels during STS movements [4]. Wearable

IMUs have been utilized to detect human activities and

postural transitions, providing new ways to monitor mobility

and fall risk [5]–[8]. Additionally, wearable pendants and

shoe devices have been employed to accurately detect STS

and gait, potentially assessing fall risk in the elders [9], [10].

While these intention detection methods provide valuable

insights for assistive devices, IMU and EMG cannot pre-

dict intentions before the actual motion happens. Recent

electroencephalography (EEG)-based research suggests that

movement intentions can be decoded from scalp recordings
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before execution, offering insights into motor planning and

preparation [11]. However, EEG-only prediction accuracy

is insufficient for practical use. Combining EEG and EMG

captures both preparatory brain signals and muscle activity

related to the movement execution, enabling a comprehensive

understanding of user intentions [12]. Accurate movement

predictions have been realized and reported by using the EEG

and EMG sensor fusion [13], [14].

Despite promising results from EEG-EMG fusion in im-

proving intention detection accuracy, real-time integration

and synchronization for accurate gait and motion intention

detection remain challenging. Alternatively, IMU measure-

ments provide direct real-time motion data, and wearable

IMUs are small-size, inexpensive, and convenient for daily

use. IMU data complements EEG signals that indicate user

intentions before movement execution. EEG-IMU fusion has

been used to develop accurate and power-efficient drowsiness

detection systems for activities like driving, mining, and

industrial tasks [15]. It has also been applied to detect

activities in healthy subjects and those with Parkinson’s

disease [16], [17]. However, most EEG-IMU integration

studies were not developed for real-time applications.

This work explores the feasibility of EEG-IMU sensor fu-

sion for real-time knee exoskeleton control in STS assistance.

A machine learning-based fusion scheme is proposed to in-

tegrate EEG and IMU measurements, emphasizing efficient,

high-accuracy, and low-latency interpretation during STS

motion. An impedance exoskeleton controller is integrated

with the intention detection system for real-time assistance,

providing timely and smooth support for an intuitive and

comfortable user experience. We demonstrate the EEG-IMU

integration and exoskeleton control design through multiple

subject experiments. The main contributions are twofold.

First, EEG-IMU fusion reduces system latency in intention

detection, allowing rapid exoskeleton response to user com-

mands, and enhancing real-time interaction and seamless

assistance. Second, integrating EEG-IMU sensor fusion into

exoskeleton systems significantly improves user experience.

The significance lies in the complementary nature of EEG

and IMU, where EEG provides neural insights on intention

and IMU offers real-time kinematic data, enabling more

accurate and responsive exoskeleton control.

The rest of the paper is organized as follows. Section II

discusses the BCI-based real-time intention detection and

the exoskeleton control strategy. Section III introduces the

experiment setups. Experimental results and discussion are

presented in Section IV and finally, we summarize the

concluding remarks in Section V.
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Fig. 1. Overall design of the BCI-enhanced knee exoskeleton control for STS movement.

II. THE BCI-ENHANCED EXOSKELETON CONTROL

In this section, we present the BCI-based human-

exoskeleton interface for STS assistance. Fig. 1 illustrates the

overall architecture of the system design. In the following,

we present the details about the EEG data processing, the

EEG-IMU fusion design, and the exoskeleton control.

A. EEG Data Processing

EEG signals are often contaminated with unwanted arti-

facts, such as those caused by muscle activity, which can

hinder accurate interpretation and analysis. Various methods

have been proposed to remove muscle-related artifacts from

EEG signals [18]. In the context of STS movement, the EEG

artifacts are mainly induced by muscle activation. Therefore,

the online recursive independent component analysis (OR-

ICA) algorithm was applied to the raw EEG data [19].

To address the issue of dependent source signals caused

by the mixing process, we first employ a whitening process

to enhance the independence of sources and reduce signal

correlations. This involves pre-multiplying the whitening

matrix M to the recorded EEG signals X ∈ R
n×N , where

n represents the number of EEG channels, and N denotes

the number of samples in the sliding time window under

consideration, resulting in whitened signals, denoted as v =
MX . The whitening matrix M is updated iteratively using

the online recursive-least-squares (RLS) whitening formula,

known for its fast convergence. The ORICA algorithm aims

to find the de-mixing matrix, W , to recover the original EEG

sources from the whitened signals v, that is, X̂ = Wv is

the recovered EEG data [20]. The iterative update of W is

obtained by the ORICA algorithm.

The recovered EEG data is transformed into filtered EEG

data using the filter bank common spatial pattern (FBCSP)

to extract features. FBCSP enhances the performance of the

common spatial pattern (CSP) algorithm in motor imagery-

based BCIs by autonomously selecting EEG characteristics

in different frequency bands [21]. Let X̂ ∈ R
n×N be

the recovered multichannel EEG data matrix. We divide

the EEG data into m frequency sub-bands using bandpass

filters. Let X̂j be the EEG data in the jth frequency sub-

band. For each X̂j , we apply CSP to extract spatial filters

Uj that maximize the variance differences and discriminate

between two classes of EEG signals (e.g., sit vs. stand motor

imagery). The filtered EEG data Yj is obtained by projecting

X̂j onto the spatial filters Uj , that is, Yj = UT
j X̂j .

The final FBCSP features are obtained by concatenating

the CSP features Yi from all frequency bands as YFB =
[Y1,Y2, . . . ,Ym], representing the autonomous selection of

key temporal-spatial discriminative EEG characteristics for

motor imagery classification.

B. EEG-IMU Sensor Fusion

To detect human intention, we propose a sensor fusion

approach that combines the EEG features and IMU data.

The FBCSP features YFB(t) and the IMU data I(t) are

vectorized as input for a classifier to distinguish between

the different motor imagery tasks. In the STS context, the

intention to transit from a seated to a standing position

inherently involves temporal patterns and sequences, both

in terms of cognitive decision-making and physical motion

dynamics. The long short-term memory (LSTM) network

is a type of recurrent neural network (RNN) architecture

specifically designed to capture long-term dependencies in

time series data. LSTMs demonstrate exceptional proficiency

in deciphering intricate temporal nuances. This capability

enables them to recognize subtle intention or motion cues

that may span across varying time scales and understand the

relationship between these data. Therefore, we use the LSTM

network to capture both the temporal and spatial dependen-

cies to improve the accuracy and lower the detection latency

of the system.

Fig. 2 shows the detailed configuration of the LSTM

network. It is composed of LSTM cells, which contain

memory cells, input gates, forget gates, and output gates.

The outputs of the LSTM pass through a Dropout layer

before they go through a fully connected layer with the

rectified linear unit (ReLU) to prevent model overfitting.

The hidden layer is connected to the Softmax activation

function, where the class scores are converted to probabilities

for different activities. Similar LSTM-based gait activity

and pose estimation schemes were developed for human or

animal locomotion for real-time applications [7], [22].

Fig. 2. Schematic of the LSTM-based intention recognition.
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C. Exoskeleton Control

Fig. 3(a) illustrates the overall exoskeleton control

flowchart. The exoskeleton controller is built on the BCI-

enhanced intention detection system. Once the STS intention

is detected through the system, the knee exoskeleton control

is activated and assistive knee torque is then applied.

(a) (b)

Fig. 3. (a) The flowchart schematic of the BCI-enhanced exoskeleton
control design. (b) The schematic of the 3-DOF planar robotic system to
represent the human STS movement.

The knee joint plays a crucial role in STS motion, and

an effective controller ensures smooth transitions between

phases. Assuming the human knee joint and exoskeleton are

aligned and the movements are synchronous, the human-

exoskeleton system can be modeled as a 3 degree-of-freedom

(DOF) system in the sagittal plane. Fig. 3(b) illustrates

the schematic of the modeling configuration. The human-

exoskeleton system is captured by three links: shank or

exoskeleton lower link (link 1), thigh or exoskeleton upper

link (link 2), and upper body (link 3). Denoting the ankle,

knee, and hip angles as θ1, θ2, and θ3, respectively, we

introduce q = [θ1 θ2 θ3]
T as the generalized coordinate.

Similar to the work in [23], the STS motion dynamics are

described as

D(q)q̈ +C(q, q̇)q̇ +G(q) = τh + τe, (1)

where D(q),C(q, q̇), and G(q) are the inertia, Coriolis,

and gravity matrices, respectively. The torque inputs τh =
[τa τk τh]

T are human joint torques at ankle, knee, and hip

joints, and τe = [0 τe,k 0]T is the applied exoskeleton torque

at the knee joint. Similar to [2], an observer is applied to

estimate the driving joint torques τ̂h. With the estimated

τ̂h, an impedance compensation model is proposed as the

following inverse dynamics to estimate and obtain the desired

motion profile qr.

λ [D(q)q̈r +C(q, q̇)q̇r +G(q)] = τ̂h, (2)

where q̈r and q̇r are the estimated joint acceleration and

velocity references, respectively. λ = diag(1, λk, 1) and

λk ∈ (0, 1] is the assistive ratio, designed as λk =

η1 tanh((θ2 − θst/2)/η2) + η3, with adjustable parameters

η1, η2, and η3 and θst is the knee angle at natural stance.

The overall controller design logic is also illustrated in

Fig. 3(a). With the computed joint angle profile qr by inverse

dynamics (2), the exoskeleton control torque is design as

τe,k = kp(θ2 − θr) + kd(θ̇2 − θ̇r), (3)

where kp and kd are the control gains.

III. EXPERIMENTS

In this section, a synchronized EEG and IMU signal

acquisition experiment is designed to verify the effectiveness

of the proposed BCI-enhanced knee exoskeleton control.

A. Data Collection and Processing

Fig. 4(a) shows the wearable sensing and exoskele-

ton systems and their interconnections. Two IMUs (LP-

RESEARCH Inc.) were attached to the subject’s right thigh

and trunk to collect 3-axial orientation angles, gyroscope

rates, and linear accelerations. A motion capture system (10

Vicon Vantage cameras) was used to obtain ground-truth

trunk positions for validation. A 32-channel wireless high-

density EEG system with active electrodes (Brain Products

GmbH) was connected to the Liveamp wireless adapter,

and EEG data was streamed through Lab Streaming Layer

(LSL) software. Peripheral EEG channels susceptible to eye

blinks and facial/cranial muscle activity were removed from

analysis, the retained 23 EEG channels include the frontal

cortex (F7, F3, Fz, F4, and F8), the central cortex (FC5,

FC1, FC2, FC6, C3, Cz, and C4), the parietal cortex (CP1,

CP2, P3, Pz, and P4), left temporal (T7, CP5, P7), and

right temporal (T8, CP6, P8). Data from all sensors was

synchronized and collected at 100 Hz through a portable

embedded computer (Intel NUC7i7DNK, Intel Corp.).

(a)

(b)

Fig. 4. (a) Schematic of the wearable sensing system, the interconnections,
and the experiment setup. (b) The synchronous acquisition diagram that
illustrates the experiment protocols during the STS movement.

280



(a) (b) (c)

Fig. 5. (a) Confusion matrix for detecting States A and B using EEG features in offline STS classification. The x-axis is the predicted labels and the
y-axis is the true label. (b) Offline prediction accuracy and (c) Detection latency comparison for three sensing data sets.

Fig. 4(a) also shows the quasi-direct drive bilateral knee

exoskeleton with high-torque, high-backdrivability, and high-

bandwidth features [24], [25]. The low-level controller re-

ceived states from the high-level controller (Linux embedded

system) and conducted torque feedback control for the

exoskeleton. The parameter values of the used controller

were: kp = 15, kd = 0.08, λk = 0.2, η1 = 0.2, η2 = −4,

and η3 = 0.8. The raw EEG and IMU data were recorded,

followed by the pre-processing using a 1 s sliding window

with a 0.2 s shift. The EEG data was then processed to

extract the features of the neural network. Similar to [26],

m = 6 EEG frequency sub-bands were selected in this work,

i.e., 4-8, 8-12, 12-16, 16-20, and 20-30 Hz.

In the experiments, 5 wireless surface EMGs (DTS EMG,

Noraxon, Inc., AZ, USA) were attached to the right leg knee

extensor muscles [rectus femoris (RFEM), vastus lateralis

(VLAT), and vastus medialis (VMED)] and knee flexor mus-

cles [biceps femoris (BFLH) and semitendinosus (SEMT)] to

measure muscle activations and effort during STS tasks with

and without assistive torques. The EMG data were collected

at 1500 Hz, bandpass filtered (10-500 Hz), normalized to the

average muscle activation throughout the trial, rectified, and

analyzed using the root mean square average.

B. Experimental Protocols

Five young subjects, naive BCI users (Five males; age:

25.6±2.4 years; height: 175.8±7 cm; weight: 67.4±12.9 kg)

participated in the experiments. The subjects were self-

reported as healthy without any known neurophysiological

or musculoskeletal disorders. An informed consent form was

signed by all the subjects, and the Institutional Review Board

(IRB) at Rutgers University approved the testing protocols.

Fig. 4(b) illustrates the human subject experimental se-

quence during the STS movement. The experiments con-

sisted of offline training and real-time validation sessions.

During offline data collection, subjects naturally seated in

front of the computer, and followed the synchronous experi-

mental paradigm to perform the corresponding actions (first

performed motor imagination and then the corresponding

STS actions). The protocol details are as follows:

• 0-5 s: The screen reminded the subject to be prepared

for the instructions.

• 5-10 s: A picture about STS movement was played on

the screen, reminding the subjects of the movement to

perform motor imagery (State A).

• 10-15 s: At 10 s, the computer emitted a beep prompt

and a ‘↑’ pattern appeared on the screen, prompting the

subject to perform the STS task execution correspond-

ing to the motor imagery (State B).

• 15-30 s: At 15 s, the computer emitted a beep prompt

for the second time and showed “Relax and Sit Down”

on the screen, reminding the subject that the ongoing

trial was over and indicating the start of the next 15 s

of resting interval.

The offline training session contained 40 trials for each

subject. A 5-min break was given after 10 trials.

In the real-time validation session, subjects were equipped

with the exoskeleton and followed the same paradigm. An

additional IMU sensor on the right shank captured the knee

joint angle. The exoskeleton provided assistive torques based

on detected intentions, and each subject completed 10 real-

time trials. To compare results across subjects, the STS

gait percentage was normalized based on knee joint angle

progression. Given the knee angle θ2(t), the gait percentage

s is computed as:

s =

∫ t

t0
θ2(t)dt

∫ tf
t0

θ2(t)dt
× 100%,

where t0 and tf represent the starting time (seated) and the

finishing time (standing) throughout the STS motion.

IV. RESULTS

A. Experimental Results

Offline experimental results validate the LSTM network’s

ability to distinguish States A and B using EEG FBCSP

features alone. Fig. 5(a) shows the model struggled to

classify the states, especially during motor imagery, confirm-

ing intention detection before movement but distinguishing

motor imagery from execution requires spatial data (e.g.,

IMU). Comparing offline STS state classification using three

sensing data sets for all subjects, see Fig. 5(b), the detection

accuracy is 88.1 ± 1 % for EEG FBCSP features only,

98.1±0.6 % with IMU data only, and 98.8±0.4 % for EEG-

IMU feature fusion. Table I provides detailed comparisons

among five subjects, with the best sensor fusion performance

exceeding 99 %. Fig. 5(c) shows that average detection

latencies are 474±78 ms, 170±21 ms, 144±15 ms for EEG

only, IMU only, and EEG-IMU sensor fusion, respectively.

Real-time BCI-enhanced exoskeleton control was evalu-

ated based on the algorithm’s detection feasibility and the
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TABLE I

OFFLINE COMPARISON OF THE STS PREDICTION ACCURACY

Group S1 S2 S3 S4 S5 Ave. Acc.

EEG only (%) 87.3 88.6 86.9 88.2 89.5 88.1

IMU only (%) 97.5 98.2 98.9 97.6 98.1 98.1

EEG-IMU (%) 98.5 99.1 99.1 98.3 98.9 98.8

TABLE II

REAL-TIME COMPARISON OF THE ACCURACY, TPR, AND LATENCY

Group S1 S2 S3 S4 S5 Ave.

Acc (%) 96.2 90.6 89.9 93.2 90.5 92.1

TPR (%) 97.5 93.4 96.9 94.6 95.2 95.5

Latency (ms) 142 158 147 143 151 148

effectiveness of impedance control in reducing muscle effort.

To this end, we focus on the performance in State B (actual

STS motion). The detection accuracy is defined as:

Acc =
ncorrect

ntotal

× 100%,

where ntotal is the total number of samples, and ncorrect is

the number of samples that were classified correctly with the

model. The sensor fusion performance of the system was also

evaluated using the true positive rate (TPR), which indicates

the percentage of times that STS movement was detected

correctly,

TPR =
TP

TP + FN
× 100%,

where TP is the true positives and FN is the false negatives.

Table II lists the accuracy, TPR, and average latency for each

subject. Real-time STS experiments achieved an average

accuracy of 92 % and TPR of 95 %. With the EEG-

IMU sensor fusion, the STS movements are detected around

150 ms on average after the motion happens.

Fig. 6(a) shows the exoskeleton output torque τe,k from

all subjects. Notably, the exoskeleton torques exhibit greater

variance during the initial STS phase, stabilizing in the latter

phase. This variance is attributed to additional exertion at

gait initiation and variations in subjects’ standing velocities.

EMG amplitudes varied among individuals due to movement

and musculoskeletal differences, so we focused on com-

paring muscle activation reduction percentages. Fig. 6(b)

shows the EMG data for a representative subject during

five STS repetitions. Knee extensor muscle (RFEM, VLAT,

VMED) activation was significantly reduced with assistive

torques, especially in the early STS phase, indicating the

exoskeleton’s role in assisting human motion. Table III

summarizes the muscle activation reductions among the

subjects. Average peak muscle activities of RFEM, VLAT,

VMED, and BFLH were reduced by 13.2%, 3.8%, 9.7%, and

9.1%, respectively, compared to no exoskeleton condition.

Although SEMT activation decreased initially, it increased

towards the end, possibly due to individual compensatory

mechanisms or the exoskeleton’s impact on muscle workload

distribution. Further analysis is needed to ensure harmonious

assistance and reduce non-typical muscle activation.

(a)

(b)
Fig. 6. (a) Knee exoskeleton torque outputs during STS movements. (b)
EMG patterns for one subject during five STS movements with and without
the exoskeleton controller. The solid lines are the mean values and the
shaded areas are the standard deviations.

TABLE III

MUSCLE ACTIVATION REDUCTION PERCENTAGE ACROSS ALL SUBJECTS

Muscles S1 S2 S3 S4 S5 Ave.

RFEM (%) −19.7 −14.9 −13.9 −7.4 −10.2 −13.2

VLAT (%) −9.3 −1.2 −3.1 −0.7 −5.1 −3.8

VMED (%) −20.1 −7.1 −7.9 −3.5 −10.1 −9.7

BFLH (%) −16.8 −8.2 −6.1 −4.2 −10.4 −9.1

SEMT (%) −1.5 4.1 −0.4 4.5 3.9 2.2

B. Discussion

The proposed sensor fusion algorithm integrates EEG

and IMU features for accurate and robust human intention

detection, providing a comprehensive view of user intentions.

The LSTM network effectively captures the dynamic nature

of human intentions by modeling temporal dependencies

in the fused sensor data. Our findings demonstrate that

STS movement intentions can be detected solely from EEG

features, even before motion initiation, which has significant

implications for knee exoskeleton control.

The EEG-IMU sensor fusion technique can be applied in

various exoskeleton scenarios, such as rehabilitation, daily-

life assistance, and construction worksites. As highlighted

in [27], exoskeletons must exhibit reaction times surpass-

ing physiological limits to enhance user balance during

various postures and movements. Reducing response times

is crucial, as latency profoundly impacts user experience,

282



satisfaction, sense of control, and interaction with the ex-

oskeleton. Fig. 5(c) shows average detection latency times

of 170 ± 21 ms and 144 ± 15 ms for IMU only and

EEG-IMU sensor fusion, respectively. The significance of

latency reduction, even by 30-50 ms, cannot be understated

in the exoskeleton domain, leading to tangible usability

enhancements and improved user outcomes, particularly in

rehabilitation contexts where precise movements are vital for

effective therapies.

Although our study has made progress in real-time decod-

ing of motor imagery for STS movements, some limitations

remain, such as the lack of an explicit comparison of muscle

activation under EEG-IMU fusion against IMU only or

assist-as-needed controllers in Table III. Future work will

conduct comprehensive comparisons, develop new metrics to

objectively capture graceful human-exoskeleton interactions,

uncover the relationship between EEG and kinematic data

during motion, increase participant sample size, use more

EEG active electrodes, quantify human-exoskeleton interac-

tion comfort, and refine signal processing techniques.

V. CONCLUSION

This study introduces a machine learning-based approach

that fuses EEG and IMU data for human STS intention de-

tection. The approach combines FBCSP features from EEG

data with IMU velocity and acceleration features, capturing

spatial and temporal characteristics of both brain and body.

A synchronized EEG and IMU data acquisition experiment

was designed to verify the effectiveness of the proposed

model. Results showed promising performance in detecting

movement onset and emphasized the potential of our human-

exoskeleton interface in reducing muscle activation through

the proposed impedance controller. This work contributes to

the growing field of EEG-based intention detection and its

applications in exoskeleton technology.
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