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Brain Computer Interface (BCI)-Enhanced Knee Exoskeleton Control
for Assisted Sit-to-Stand Movement

Chunchu Zhu, Sushant Maurya, Jingang Yi, and Ashish Dutta

Abstract— As the aging and disabled populations grow, the
demand for effective assistance in daily activities such as sit-to-
stand (STS) has been increasing. Wearable exoskeletons are a
promising technology for reducing the effort required for STS.
This study explores the sensor fusion of electroencephalography
(EEG) signals, which reveal pre-movement intentions, with in-
ertial measurement unit (IMU) data, offering real-time motion
information for enhanced knee exoskeleton control in STS
assistance. The EEG-IMU sensor fusion approach improves the
temporal accuracy and robustness of STS intention detection.
By detecting STS intentions with lower latencies, the knee
exoskeleton provides timely and smooth support, enhancing the
user experience. The proposed method reduces system latency,
enabling rapid user-exoskeleton interaction. Experimental re-
sults demonstrate the effectiveness of the brain-computer in-
terface (BCI)-enhanced knee exoskeleton for improving STS
efficiency and user experience.

I. INTRODUCTION

With increased aging populations, effective assistance, and
care services are frequently needed for elders for their daily
activities such as sit-to-stand (STS) movements [1]. Wearable
exoskeletons and sensors show promise in reducing efforts
during personal daily activities (e.g., [2] for STS). Under-
standing the biomechanics, motor control characteristics,
and detecting the human motion intentions is crucial for
developing appropriate wearable devices and assistance [3].
Most intention detection methods use wearable sensors such
as inertial measurement units (IMUs), electromyography
(EMG), or other physical or electrophysiological sensors.
One approach involves the analysis of multi-channel my-
oelectric signals, providing insights into muscle activation
sequence and levels during STS movements [4]. Wearable
IMUs have been utilized to detect human activities and
postural transitions, providing new ways to monitor mobility
and fall risk [S]-[8]. Additionally, wearable pendants and
shoe devices have been employed to accurately detect STS
and gait, potentially assessing fall risk in the elders [9], [10].

While these intention detection methods provide valuable
insights for assistive devices, IMU and EMG cannot pre-
dict intentions before the actual motion happens. Recent
electroencephalography (EEG)-based research suggests that
movement intentions can be decoded from scalp recordings
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before execution, offering insights into motor planning and
preparation [11]. However, EEG-only prediction accuracy
is insufficient for practical use. Combining EEG and EMG
captures both preparatory brain signals and muscle activity
related to the movement execution, enabling a comprehensive
understanding of user intentions [12]. Accurate movement
predictions have been realized and reported by using the EEG
and EMG sensor fusion [13], [14].

Despite promising results from EEG-EMG fusion in im-
proving intention detection accuracy, real-time integration
and synchronization for accurate gait and motion intention
detection remain challenging. Alternatively, IMU measure-
ments provide direct real-time motion data, and wearable
IMUs are small-size, inexpensive, and convenient for daily
use. IMU data complements EEG signals that indicate user
intentions before movement execution. EEG-IMU fusion has
been used to develop accurate and power-efficient drowsiness
detection systems for activities like driving, mining, and
industrial tasks [15]. It has also been applied to detect
activities in healthy subjects and those with Parkinson’s
disease [16], [17]. However, most EEG-IMU integration
studies were not developed for real-time applications.

This work explores the feasibility of EEG-IMU sensor fu-
sion for real-time knee exoskeleton control in STS assistance.
A machine learning-based fusion scheme is proposed to in-
tegrate EEG and IMU measurements, emphasizing efficient,
high-accuracy, and low-latency interpretation during STS
motion. An impedance exoskeleton controller is integrated
with the intention detection system for real-time assistance,
providing timely and smooth support for an intuitive and
comfortable user experience. We demonstrate the EEG-IMU
integration and exoskeleton control design through multiple
subject experiments. The main contributions are twofold.
First, EEG-IMU fusion reduces system latency in intention
detection, allowing rapid exoskeleton response to user com-
mands, and enhancing real-time interaction and seamless
assistance. Second, integrating EEG-IMU sensor fusion into
exoskeleton systems significantly improves user experience.
The significance lies in the complementary nature of EEG
and IMU, where EEG provides neural insights on intention
and IMU offers real-time kinematic data, enabling more
accurate and responsive exoskeleton control.

The rest of the paper is organized as follows. Section II
discusses the BCl-based real-time intention detection and
the exoskeleton control strategy. Section III introduces the
experiment setups. Experimental results and discussion are
presented in Section IV and finally, we summarize the
concluding remarks in Section V.
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II. THE BCI-ENHANCED EXOSKELETON CONTROL

In this section, we present the BCI-based human-
exoskeleton interface for STS assistance. Fig. 1 illustrates the
overall architecture of the system design. In the following,
we present the details about the EEG data processing, the
EEG-IMU fusion design, and the exoskeleton control.

A. EEG Data Processing

EEG signals are often contaminated with unwanted arti-
facts, such as those caused by muscle activity, which can
hinder accurate interpretation and analysis. Various methods
have been proposed to remove muscle-related artifacts from
EEG signals [18]. In the context of STS movement, the EEG
artifacts are mainly induced by muscle activation. Therefore,
the online recursive independent component analysis (OR-
ICA) algorithm was applied to the raw EEG data [19].

To address the issue of dependent source signals caused
by the mixing process, we first employ a whitening process
to enhance the independence of sources and reduce signal
correlations. This involves pre-multiplying the whitening
matrix M to the recorded EEG signals X € R™*N  where
n represents the number of EEG channels, and N denotes
the number of samples in the sliding time window under
consideration, resulting in whitened signals, denoted as v =
M X . The whitening matrix M is updated iteratively using
the online recursive-least-squares (RLS) whitening formula,
known for its fast convergence. The ORICA algorithm aims
to find the de-mixing matrix, W, to recover the original EEG
sources from the whitened signals v, that is, X = Wo is
the recovered EEG data [20]. The iterative update of W is
obtained by the ORICA algorithm.

The recovered EEG data is transformed into filtered EEG
data using the filter bank common spatial pattern (FBCSP)
to extract features. FBCSP enhances the performance of the
common spatial pattern (CSP) algorithm in motor imagery-
based BCIs by autonomously selecting EEG characteristics
in different frequency bands [21]. Let X e RN pe
the recovered multichannel EEG data matrix. We divide
the EEG data into m frequency sub-bands using bandpass
filters. Let X ; be the EEG data in the jth frequency sub-
band. For each X j» we apply CSP to extract spatial filters
U, that maximize the variance differences and discriminate
between two classes of EEG signals (e.g., sit vs. stand motor
imagery). The filtered EEG data Y is obtained by projecting
X onto the spatial filters Uj, that is, Y; UJT X;.
The final FBCSP features are obtained by concatenating
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Overall design of the BCI-enhanced knee exoskeleton control for STS movement.

the CSP features Y; from all frequency bands as Yz =
[Y1,Y5,...,Y,,], representing the autonomous selection of
key temporal-spatial discriminative EEG characteristics for
motor imagery classification.

B. EEG-IMU Sensor Fusion

To detect human intention, we propose a sensor fusion
approach that combines the EEG features and IMU data.
The FBCSP features Ygg(t) and the IMU data I(t) are
vectorized as input for a classifier to distinguish between
the different motor imagery tasks. In the STS context, the
intention to transit from a seated to a standing position
inherently involves temporal patterns and sequences, both
in terms of cognitive decision-making and physical motion
dynamics. The long short-term memory (LSTM) network
is a type of recurrent neural network (RNN) architecture
specifically designed to capture long-term dependencies in
time series data. LSTMs demonstrate exceptional proficiency
in deciphering intricate temporal nuances. This capability
enables them to recognize subtle intention or motion cues
that may span across varying time scales and understand the
relationship between these data. Therefore, we use the LSTM
network to capture both the temporal and spatial dependen-
cies to improve the accuracy and lower the detection latency
of the system.

Fig. 2 shows the detailed configuration of the LSTM
network. It is composed of LSTM cells, which contain
memory cells, input gates, forget gates, and output gates.
The outputs of the LSTM pass through a Dropout layer
before they go through a fully connected layer with the
rectified linear unit (ReLU) to prevent model overfitting.
The hidden layer is connected to the Softmax activation
function, where the class scores are converted to probabilities
for different activities. Similar LSTM-based gait activity
and pose estimation schemes were developed for human or
animal locomotion for real-time applications [7], [22].
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Fig. 2. Schematic of the LSTM-based intention recognition.



C. Exoskeleton Control

Fig. 3(a) illustrates the overall exoskeleton control
flowchart. The exoskeleton controller is built on the BCI-
enhanced intention detection system. Once the STS intention
is detected through the system, the knee exoskeleton control
is activated and assistive knee torque is then applied.
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Y

Human - Exo
System

Joint Torque
Observer
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Fig. 3. (a) The flowchart schematic of the BCI-enhanced exoskeleton
control design. (b) The schematic of the 3-DOF planar robotic system to
represent the human STS movement.

The knee joint plays a crucial role in STS motion, and
an effective controller ensures smooth transitions between
phases. Assuming the human knee joint and exoskeleton are
aligned and the movements are synchronous, the human-
exoskeleton system can be modeled as a 3 degree-of-freedom
(DOF) system in the sagittal plane. Fig. 3(b) illustrates
the schematic of the modeling configuration. The human-
exoskeleton system is captured by three links: shank or
exoskeleton lower link (link 1), thigh or exoskeleton upper
link (link 2), and upper body (link 3). Denoting the ankle,
knee, and hip angles as ¢, 6, and 03, respectively, we
introduce q = [#; 6, 65]7 as the generalized coordinate.
Similar to the work in [23], the STS motion dynamics are
described as

D(q)G+C(q,9)q + G(q) = T + Te, 1)

where D(q),C(q,q), and G(q) are the inertia, Coriolis,
and gravity matrices, respectively. The torque inputs 1, =
[Ta T T1]T are human joint torques at ankle, knee, and hip
joints, and 7. = [0 7. 0]7 is the applied exoskeleton torque
at the knee joint. Similar to [2], an observer is applied to
estimate the driving joint torques 7p. With the estimated
T, an impedance compensation model is proposed as the
following inverse dynamics to estimate and obtain the desired
motion profile g,..

A[D(q)dgr + C(q,4)4r + G(q)] = T, 2

where ¢, and @, are the estimated joint acceleration and
velocity references, respectively. A diag(1, A\g, 1) and
A € (0,1] is the assistive ratio, designed as M\
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m tanh((62 — 05:/2)/n2) + n3, with adjustable parameters
11, 12, and N3 and Oy, is the knee angle at natural stance.
The overall controller design logic is also illustrated in
Fig. 3(a). With the computed joint angle profile g, by inverse
dynamics (2), the exoskeleton control torque is design as

Tek = kp(fa — 0,) + ka(fs — 0,), 3)

where k,, and k4 are the control gains.

III. EXPERIMENTS

In this section, a synchronized EEG and IMU signal
acquisition experiment is designed to verify the effectiveness
of the proposed BCI-enhanced knee exoskeleton control.

A. Data Collection and Processing

Fig. 4(a) shows the wearable sensing and exoskele-
ton systems and their interconnections. Two IMUs (LP-
RESEARCH Inc.) were attached to the subject’s right thigh
and trunk to collect 3-axial orientation angles, gyroscope
rates, and linear accelerations. A motion capture system (10
Vicon Vantage cameras) was used to obtain ground-truth
trunk positions for validation. A 32-channel wireless high-
density EEG system with active electrodes (Brain Products
GmbH) was connected to the Liveamp wireless adapter,
and EEG data was streamed through Lab Streaming Layer
(LSL) software. Peripheral EEG channels susceptible to eye
blinks and facial/cranial muscle activity were removed from
analysis, the retained 23 EEG channels include the frontal
cortex (F7, F3, Fz, F4, and F8), the central cortex (FCS5,
FC1, FC2, FC6, C3, Cz, and C4), the parietal cortex (CP1,
CP2, P3, Pz, and P4), left temporal (T7, CP5, P7), and
right temporal (T8, CP6, P8). Data from all sensors was
synchronized and collected at 100 Hz through a portable
embedded computer (Intel NUC7i7DNK, Intel Corp.).
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Fig. 4. (a) Schematic of the wearable sensing system, the interconnections,

and the experiment setup. (b) The synchronous acquisition diagram that
illustrates the experiment protocols during the STS movement.
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(a) Confusion matrix for detecting States A and B using EEG features in offline STS classification. The x-axis is the predicted labels and the

y-axis is the true label. (b) Offline prediction accuracy and (c) Detection latency comparison for three sensing data sets.

Fig. 4(a) also shows the quasi-direct drive bilateral knee
exoskeleton with high-torque, high-backdrivability, and high-
bandwidth features [24], [25]. The low-level controller re-
ceived states from the high-level controller (Linux embedded
system) and conducted torque feedback control for the
exoskeleton. The parameter values of the used controller
were: k, = 15, kg = 0.08, A\, = 0.2, 71 = 0.2, np = —4,
and 13 = 0.8. The raw EEG and IMU data were recorded,
followed by the pre-processing using a 1 s sliding window
with a 0.2 s shift. The EEG data was then processed to
extract the features of the neural network. Similar to [26],
m = 6 EEG frequency sub-bands were selected in this work,
ie., 4-8, 8-12, 12-16, 16-20, and 20-30 Hz.

In the experiments, 5 wireless surface EMGs (DTS EMG,
Noraxon, Inc., AZ, USA) were attached to the right leg knee
extensor muscles [rectus femoris (RFEM), vastus lateralis
(VLAT), and vastus medialis (VMED)] and knee flexor mus-
cles [biceps femoris (BFLH) and semitendinosus (SEMT)] to
measure muscle activations and effort during STS tasks with
and without assistive torques. The EMG data were collected
at 1500 Hz, bandpass filtered (10-500 Hz), normalized to the
average muscle activation throughout the trial, rectified, and
analyzed using the root mean square average.

B. Experimental Protocols

Five young subjects, naive BCI users (Five males; age:
25.6+£2.4 years; height: 175.8+£7 cm; weight: 67.4+12.9 kg)
participated in the experiments. The subjects were self-
reported as healthy without any known neurophysiological
or musculoskeletal disorders. An informed consent form was
signed by all the subjects, and the Institutional Review Board
(IRB) at Rutgers University approved the testing protocols.

Fig. 4(b) illustrates the human subject experimental se-
quence during the STS movement. The experiments con-
sisted of offline training and real-time validation sessions.
During offline data collection, subjects naturally seated in
front of the computer, and followed the synchronous experi-
mental paradigm to perform the corresponding actions (first
performed motor imagination and then the corresponding
STS actions). The protocol details are as follows:

e 0-5 s: The screen reminded the subject to be prepared
for the instructions.

e 5-10 s: A picture about STS movement was played on
the screen, reminding the subjects of the movement to
perform motor imagery (State A).
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e 10-15 s: At 10 s, the computer emitted a beep prompt
and a ‘1’ pattern appeared on the screen, prompting the
subject to perform the STS task execution correspond-
ing to the motor imagery (State B).

15-30 s: At 15 s, the computer emitted a beep prompt
for the second time and showed “Relax and Sit Down”
on the screen, reminding the subject that the ongoing
trial was over and indicating the start of the next 15 s
of resting interval.

The offline training session contained 40 trials for each
subject. A 5-min break was given after 10 trials.

In the real-time validation session, subjects were equipped
with the exoskeleton and followed the same paradigm. An
additional IMU sensor on the right shank captured the knee
joint angle. The exoskeleton provided assistive torques based
on detected intentions, and each subject completed 10 real-
time trials. To compare results across subjects, the STS
gait percentage was normalized based on knee joint angle
progression. Given the knee angle 65 (¢), the gait percentage
s is computed as:

2 0a(t)dt
[y (t)dt

fto

where to and t; represent the starting time (seated) and the
finishing time (standing) throughout the STS motion.

x 100%,

IV. RESULTS
A. Experimental Results

Offline experimental results validate the LSTM network’s
ability to distinguish States A and B using EEG FBCSP
features alone. Fig. 5(a) shows the model struggled to
classify the states, especially during motor imagery, confirm-
ing intention detection before movement but distinguishing
motor imagery from execution requires spatial data (e.g.,
IMU). Comparing offline STS state classification using three
sensing data sets for all subjects, see Fig. 5(b), the detection
accuracy is 88.1 = 1 % for EEG FBCSP features only,
98.1£0.6 % with IMU data only, and 98.8+0.4 % for EEG-
IMU feature fusion. Table I provides detailed comparisons
among five subjects, with the best sensor fusion performance
exceeding 99 %. Fig. 5(c) shows that average detection
latencies are 474478 ms, 17021 ms, 144-+15 ms for EEG
only, IMU only, and EEG-IMU sensor fusion, respectively.

Real-time BCl-enhanced exoskeleton control was evalu-
ated based on the algorithm’s detection feasibility and the



TABLE I
OFFLINE COMPARISON OF THE STS PREDICTION ACCURACY

Group S1 S2 S3 S4 S5 Ave. Acc.
EEG only (%) | 87.3 | 88.6 | 86.9 | 88.2 | 89.5 88.1
IMU only (%) | 97.5 | 98.2 | 98.9 | 97.6 | 98.1 98.1
EEG-IMU (%) | 98.5 | 99.1 | 99.1 | 98.3 | 98.9 98.8

TABLE 11
REAL-TIME COMPARISON OF THE ACCURACY, TPR, AND LATENCY
Group S1 S2 S3 S4 S5 Ave.
Acc (%) 96.2 90.6 89.9 93.2 90.5 92.1
TPR (%) 97.5 93.4 96.9 94.6 95.2 95.5
Latency (ms) 142 158 147 143 151 148

effectiveness of impedance control in reducing muscle effort.
To this end, we focus on the performance in State B (actual
STS motion). The detection accuracy is defined as:

Theorrect

Acc = x 100%,

Ntotal

where N 18 the total number of samples, and Ncorrect 1S
the number of samples that were classified correctly with the
model. The sensor fusion performance of the system was also
evaluated using the true positive rate (TPR), which indicates
the percentage of times that STS movement was detected
correctly,

TPR x 100%,

“TPYFN

where TP is the true positives and FN is the false negatives.
Table II lists the accuracy, TPR, and average latency for each
subject. Real-time STS experiments achieved an average
accuracy of 92 % and TPR of 95 %. With the EEG-
IMU sensor fusion, the STS movements are detected around
150 ms on average after the motion happens.

Fig. 6(a) shows the exoskeleton output torque 7. j from
all subjects. Notably, the exoskeleton torques exhibit greater
variance during the initial STS phase, stabilizing in the latter
phase. This variance is attributed to additional exertion at
gait initiation and variations in subjects’ standing velocities.
EMG amplitudes varied among individuals due to movement
and musculoskeletal differences, so we focused on com-
paring muscle activation reduction percentages. Fig. 6(b)
shows the EMG data for a representative subject during
five STS repetitions. Knee extensor muscle (RFEM, VLAT,
VMED) activation was significantly reduced with assistive
torques, especially in the early STS phase, indicating the
exoskeleton’s role in assisting human motion. Table III
summarizes the muscle activation reductions among the
subjects. Average peak muscle activities of RFEM, VLAT,
VMED, and BFLH were reduced by 13.2%, 3.8%, 9.7%, and
9.1%, respectively, compared to no exoskeleton condition.
Although SEMT activation decreased initially, it increased
towards the end, possibly due to individual compensatory
mechanisms or the exoskeleton’s impact on muscle workload
distribution. Further analysis is needed to ensure harmonious
assistance and reduce non-typical muscle activation.
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Fig. 6. (a) Knee exoskeleton torque outputs during STS movements. (b)
EMG patterns for one subject during five STS movements with and without
the exoskeleton controller. The solid lines are the mean values and the
shaded areas are the standard deviations.

TABLE III
MUSCLE ACTIVATION REDUCTION PERCENTAGE ACROSS ALL SUBJECTS

Muscles S1 S2 S3 S4 S5 Ave.
RFEM (%) | —19.7 | —14.9 | —139 | —7.4 | —10.2 | —13.2
VLAT (%) —-9.3 —1.2 —-3.1 —0.7 —5.1 —3.8
VMED (%) | —20.1 —-7.1 -7.9 -3.5 | —10.1 —9.7
BFLH (%) | —16.8 —8.2 —6.1 —4.2 | —104 -9.1
SEMT (%) —1.5 4.1 —-0.4 4.5 3.9 2.2

B. Discussion

The proposed sensor fusion algorithm integrates EEG
and IMU features for accurate and robust human intention
detection, providing a comprehensive view of user intentions.
The LSTM network effectively captures the dynamic nature
of human intentions by modeling temporal dependencies
in the fused sensor data. Our findings demonstrate that
STS movement intentions can be detected solely from EEG
features, even before motion initiation, which has significant
implications for knee exoskeleton control.

The EEG-IMU sensor fusion technique can be applied in
various exoskeleton scenarios, such as rehabilitation, daily-
life assistance, and construction worksites. As highlighted
in [27], exoskeletons must exhibit reaction times surpass-
ing physiological limits to enhance user balance during
various postures and movements. Reducing response times
is crucial, as latency profoundly impacts user experience,



satisfaction, sense of control, and interaction with the ex-
oskeleton. Fig. 5(c) shows average detection latency times
of 170 £ 21 ms and 144 £+ 15 ms for IMU only and
EEG-IMU sensor fusion, respectively. The significance of
latency reduction, even by 30-50 ms, cannot be understated
in the exoskeleton domain, leading to tangible usability
enhancements and improved user outcomes, particularly in
rehabilitation contexts where precise movements are vital for
effective therapies.

Although our study has made progress in real-time decod-
ing of motor imagery for STS movements, some limitations
remain, such as the lack of an explicit comparison of muscle
activation under EEG-IMU fusion against IMU only or
assist-as-needed controllers in Table III. Future work will
conduct comprehensive comparisons, develop new metrics to
objectively capture graceful human-exoskeleton interactions,
uncover the relationship between EEG and kinematic data
during motion, increase participant sample size, use more
EEG active electrodes, quantify human-exoskeleton interac-
tion comfort, and refine signal processing techniques.

V. CONCLUSION

This study introduces a machine learning-based approach
that fuses EEG and IMU data for human STS intention de-
tection. The approach combines FBCSP features from EEG
data with IMU velocity and acceleration features, capturing
spatial and temporal characteristics of both brain and body.
A synchronized EEG and IMU data acquisition experiment
was designed to verify the effectiveness of the proposed
model. Results showed promising performance in detecting
movement onset and emphasized the potential of our human-
exoskeleton interface in reducing muscle activation through
the proposed impedance controller. This work contributes to
the growing field of EEG-based intention detection and its
applications in exoskeleton technology.
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