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An experimental platform for
stochastic analyses of single
serotonergic fibers in the mouse
brain

Kasie C. Mays, Justin H. Haiman and Skirmantas JanuSonis*

Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara,
CA, United States

The self-organization of the serotonergic matrix, a massive axon meshwork in
all vertebrate brains, is driven by the structural and dynamical properties of its
constitutive elements. Each of these elements, a single serotonergic axon (fiber),
has a unique trajectory and can be supported by a soma that executes one of
the many available transcriptional programs. This “individuality” of serotonergic
neurons necessitates the development of specialized methods for single-fiber
analyses, both at the experimental and theoretical levels. We developed an
integrated platform that facilitates experimental isolation of single serotonergic
fibers in brain tissue, including regions with high fiber densities, and demonstrated
the potential of their quantitative analyses based on stochastic modeling. Single
fibers were visualized using two transgenic mouse models, one of which is the
first implementation of the Brainbow toolbox in this system. The trajectories of
serotonergic fibers were automatically traced in the three spatial dimensions with
a novel algorithm, and their properties were captured with a single parameter
associated with the directional von Mises-Fisher probability distribution. The
system represents an end-to-end workflow that can be imported into various
studies, including those investigating serotonergic dysfunction in brain disorders.
It also supports new research directions inspired by single-fiber analyses in the
serotonergic matrix, including supercomputing simulations and modeling in
physics.

KEYWORDS

5-hydroxytryptamine, serotonin, axon, varicosities, Brainbow, tortuosity, stochastic,
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1. Introduction

The structural and dynamical properties of single serotonergic fibers determine their
population-scale behavior and ultimately lead to the emergence of the serotonergic matrix in all
vertebrate brains. This matrix, composed of a very large number of meandering fibers and their
branches, is invariably present in mammals (Wilson and Molliver, 1991; Awasthi et al., 2021),
birds (Sako et al., 1986; Challet et al., 1996), reptiles (Bennis et al., 1990; Challet et al., 1991),
amphibians (Ueda et al., 1984; Bhat and Ganesh, 2023), bony fishes (Lillesaar, 2011; Lopez and
Gonzalez, 2014), and cartilaginous fishes (Stuesse et al., 1995; Carrera et al., 2008). The
fundamental role of the serotonergic matrix remains enigmatic; in adulthood, it may support
neuroplasticity (Lesch and Waider, 2012; Teissier et al., 2017; Huang et al., 2021; Daws et al.,
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2022; Morgan et al., 2023), with potential implications for artificial
neural networks (Lee et al., 2022).

The serotonergic fibers are long axons of neurons that express the
tryptophan hydroxylase 2 gene (Tph2) and can synthesize the
neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) from the
amino acid tryptophan. In mammals, their somata are restricted to the
raphe nuclei of the brainstem. The rostral raphe nuclei (the dorsal
raphe (DR), the median raphe, and the caudal linear nucleus) project
anteriorly to supply fibers to virtually all midbrain and forebrain brain
regions (Jacobs and Azmitia, 1992; Hornung, 2003).

Understanding the deeper structure of this system may require
novel conceptual frameworks. Serotonin is not the only neuroactive
compound that can be produced from tryptophan [e.g., tryptophan
can also be metabolized into kynurenic acid, quinolinic acid, or N,
N-dimethyltryptamine (DMT)] (Dean, 2018; Dean et al., 2019; Yabut
etal, 2019; Paul et al., 2022; Vargas et al., 2023), many serotonergic
neurons also release glutamate and other neurotransmitters (and
therefore can be considered “other-ergic” neurons that co-release
serotonin) (Okaty et al., 2019), and the population of the serotonergic
neurons is now known to consist of transcriptionally diverse, nested
cell clusters (Okaty et al., 2019; Ren et al., 2019; Okaty et al., 2020),
some with distinct neuroanatomical profiles (Ren et al., 2018; Okaty
et al., 2020).

The transcriptomics studies have highlighted the importance of
the understanding of serotonergic neurons at the single-cell level
(Okaty et al., 2020). Individual neurons can choose among several
their
developmental path and activation state (Okaty et al., 2019), and are

“adjacent” transcriptional networks, depending on
also affected by stochastic noise (Elowitz et al., 2002; Raj and van
Oudenaarden, 2008). These networks are likely to represent dynamical
attractors and are therefore computationally constrained (i.e., not
every set of gene activity is equally stable).

Further, individual serotonergic fibers acquire unique identities
because their trajectories are strongly stochastic (Janusonis and
Detering, 2019). It does not mean that any trajectory is possible in
practice. Individual trajectories may represent “sample paths”
(realizations) of rigorously-definable spatial stochastic processes,
which again implies computational constrains. We have demonstrated
the potential of this conceptualization in recent studies in which
serotonergic axons were modeled as paths of reflected fractional
Brownian motion (FBM), a stochastic continuous-time process
(Janusonis et al., 2020, 2023). In these supercomputing simulations,
performed in geometric shapes based on the mouse brain, the
resultant fiber densities approximated the actual serotonergic fiber
densities, with no other biological information. These models require
improvements to reflect neural tissue heterogeneities (Wang et al.,
2023), but they can eventually bridge the stochasticity on the
microscopic scale (the uniqueness of fiber trajectories in each brain)
and the determinism on the macroscopic scale [the predictability of
regional fiber densities (Awasthi et al., 2021)].

The serotonergic neurons are among the first neurons to acquire
a mature phenotype in the developing brain (Lidov and Molliver,
1982; Hendricks et al., 1999; Hawthorne et al., 2010). Somewhat
paradoxically, they also appear to remain highly dynamic in the adult
brain. In particular, serotonergic fibers can robustly regenerate after a
traumatic injury (Jin et al., 2016; Kajstura et al., 2018; Cooke et al.,
2022), with new paths (Jin et al., 2016). This potential and the
challenge of maintaining the physical continuity of extremely long,
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unfasciculated fibers suggests that a healthy adult brain may always
contain degenerating and regenerating serotonergic fibers. This in
turn implies that the fiber trajectories of given serotonergic neurons
may change during an individual’s life span. Because of technical
challenges, this prediction currently cannot be directly verified in
experimental studies. However, it is known that the maintenance of
the serotonergic fiber matrix depends on the adult expression of
Lmx1b and Pet1, two genes essential for the embryonic development
of serotonergic neurons (Kitt et al., 2022), and that the stochastic
serotonergic trajectories acquire interesting computational properties
if they do not stay constant (Lee et al., 2022).

The large-scale properties of the serotonergic matrix can
be theoretically predicted from the properties of single serotonergic
fibers—but not the other way around. Specifically, the same patterns
of regional fiber densities can be produced by different models, and
major alterations in fiber densities, such as in autism (Azmitia et al.,
2011) or epilepsy (Maia et al., 2019), does not imply specific changes
in the properties of single fibers. Importantly, these properties include
not only trajectories, but the pattern and probability distribution of
branching events, the spatial and temporal features of varicosities
(fiber “swellings”), and other features. The branching of serotonergic
fibers remains poorly understood because their paths often cross at
distances that fall below the limit of optical resolution, making the
definitive identification of branching points difficult even in three-
dimensional, high-resolution images (Janusonis et al, 2019).
Branching serotonergic fibers are more easily accessible in primary
brainstem cultures (Hingorani et al., 2022), but the artificial culture
environments limit the applicability of these observations in natural
neural tissue. The field also lacks a fundamental understanding of the
serotonergic varicosities. Their distribution may reflect the
developmental age of the fiber (Maddaloni et al., 2017), but the same
serotonergic fiber may also contain varicosities that differ in size,
shape, and spacing—both in brain tissue (Baizer, 2001; Gagnon and
Parent, 2014; Maddaloni et al., 2017) and in vitro (Hingorani et al.,
2022). This variability does not necessarily imply different varicosity
types and may instead reflect a dynamic process frozen at different
stages along the fiber trajectory (in fixed preparations). Serotonergic
varicosities are likely to be fluid structures, as suggested by
experimental studies of mice and Drosophila with elevated serotonin
levels (Daubert et al., 2010), a rat model of epilepsy (Maia et al., 2019),
and analyses of varicosities in other neurotransmitter systems.
Specifically, the appearance of varicosities may reflect the current state
of the fiber segment, the effects of its local microenvironment, and
purely stochastic fluctuations (Hellwig et al., 1994; Hatada et al., 1999;
Shepherd et al., 2002; Gu, 2021; Ma et al., 2022). Notably, the dynamics
of varicosities on the same fiber are likely to be correlated, necessitating
unambiguous discrimination among individual fibers that often cross
and intertwine in the same spatial location. An added complexity is
that different serotonergic fibers in the same location may execute
different transcriptional programs. Therefore, disregarding the
identity of fibers is equivalent to a gross distortion of the covariance
structure among these various elements, potentially leading to
incorrect statistical calculations and conclusions.

At present, reliable identification and analyses of extended
segments of single serotonergic fibers present serious challenges,
especially in brain tissue. In particular, it requires knowledge about
the continuity of a given fiber. Only a handful of recent studies have
focused on descriptions of single serotonergic fibers at this level of
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precision (Gagnon and Parent, 2014; Maddaloni et al., 2017; Janu$onis
et al, 2019; Hingorani et al., 2022). Furthermore, specialized
quantitative methods for their analyses are virtually absent. For
example, the tortuosity index, often used to describe meandering
fibers (Jin et al,, 2016; Pratelli et al., 2017), is a relatively unstable
metric in that it depends on the measured fiber length and imaging
dimensionality and also can vary drastically in different realizations
of the same spatial stochastic process.

This study aimed to (i) develop flexible and accessible
experimental mouse models to isolate single serotonergic fibers in
brain tissue, independently of their serotonin content or the expression
of the serotonin transporter (SERT), (ii) build an algorithm for high-
precision tracing of single fibers in noisy three-dimensional images,
and (iii) develop a statistical model to achieve a succinct description
of fiber trajectories that can vary strongly in their individual
appearance. The three parts constitute a workflow that can be imported
into various experimental setups.

2. Materials and methods
2.1. Transgenic mice

Three transgenic mouse lines were used in the study: Tph2-iCreER
(Tg (Tph2-icre/ERT2)6Gloss/J; RRID: IMSR_JAX:016584), ROSA™™S
(B6.129(Cg)-Gt(ROSA)26SormACTsdTomato, EGEP)Lwo /. RRTD: IMSR_
JAX:007676), and Brainbow 3.2 (line 7) (Tg(Thy1-Brainbow3.2)7]rs/];
RRID: IMSR_JAX:021227). The Tph2-iCreER mice express a
tamoxifen-inducible Cre recombinase under the control of the
promoter of the Tph2 gene that encodes a key enzyme in the serotonin
synthesis pathway. The ROSA™"™ (Cre reporter) mice ubiquitously
express a cell membrane-targeting tdTomato, which after
Cre-recombination is replaced with a cell membrane-targeting
enhanced green fluorescent protein (EGFP) (Muzumdar et al., 2007).
The Brainbow mice contain the Brainbow 3.2 construct under neuron-
specific regulatory elements from the ThyI gene (Cai et al., 2013). This
construct includes sequences for three cell membrane-targeting
(farnesylated) fluorescent proteins (mOrange2, EGFP, and mKate2)
that after Cre-recombination are expressed in random intensity
combinations in individual cells. The construct also includes a fourth
sequence (in the stop cassette) for a mutated (non-fluorescent and
nucleus-targeting), Phialidium-derived yellow fluorescent protein
[PhiYFP(Y65A)] that can be used to assess the transcriptional activity
of the locus in specific brain regions, before recombination (Cai
etal., 2013).

The breeders were purchased from The Jackson Laboratory (JAX),
and the colonies were kept in a vivarium on a 12:12 light-dark cycle
with free access to food and water. The ROSA™"™S mice were kept and
bred in the homozygous state, as suggested by the supplier. Mouse
litters, including the offspring of crosses, were PCR-genotyped by
using DNA from toe biopsies collected at postnatal day 7. Genomic
DNA was isolated with the QIAamp Fast DNA Tissue Kit (Qiagen
#51404), and the transgene sequences were amplified with an
Eppendorf Mastercycler pro S using iTaqg DNA polymerase (Bio-Rad
#1708870), a ANTP mix (Bio-Rad #1708874), and primers with
sequences provided by JAX (using the cycling protocol suggested by
the supplier of the polymerase). The amplicons were analyzed with a
2200 TapeStation (Agilent Technologies). All animal procedures have
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been approved by the UCSB Institutional Animal Care and
Use Committee.

2.2. EGFP labeling of serotonergic fibers

Tph2-iCreER and ROSA™'™C mice were crossed, and their
offspring with the transgenes were allowed to reach adulthood (at least
10 weeks of age). The induction of Cre-recombination was achieved
by administering tamoxifen (Millipore-Sigma #T5648) dissolved in
corn oil (Millipore-Sigma #C8267). The stock concentration (20 mg/
mL) was stored at —20°C, and mice were injected intraperitoneally
with around 0.1mL of the solution (at 75mg/kg) for 5 consecutive
days. Following the tamoxifen treatment, the mice were allowed to
survive for 1 week to 1 month. The brains of eight mice were processed
with immunohistochemistry and examined with microscopy.

2.3. Stochastic multicolor labeling of
serotonergic fibers with Brainbow AAVs

The Brainbow adeno-associated viruses (AAVs) (AAV-EFla-
BbTagBY [Addgene #45185-AAV9] and AAV-EF1a-BbChT [Addgene
#45186-AAV9]) (Cai et al., 2013) were stored at —75°C. Before use,
they were diluted to 1.5x 10" vg/mL each in a tube containing sterile,
alcohol-free saline. Adult (at least 10 weeks of age) Tph2-iCreER mice
were anesthetized with an intraperitoneal injection of a mixture of
ketamine (100 mg/kg) and xylazine (10 mg/kg) and placed in a small-
animal stereotaxic frame. Further anesthesia was maintained with
inhaled isoflurane, and the animal’s core temperature was maintained
at 37°C using a TCAT-2DF temperature controller (a closed loop
rectal probe-heating pad system; Physitemp Instruments). The
incision area (with hair removed) was given a subcutaneous injection
of lidocaine and disinfected with Betadine. A rostrocaudal skin
incision was made with a scalpel, and a small hole was drilled in the
skull directly over the DR. The needle of a 10pL-Hamilton
microsyringe was lowered into the dorsal raphe, and 1-2 pL of the
AAV mixture was slowly pressure-injected at the lambda, 3.5mm
ventral to the dura. The needle remained in the DR for 5-10 min and
was slowly withdrawn. The skin incision was closed with sterile wound
clips, and the animal was monitored until it fully recovered.

One week after the surgery, the induction of Cre-recombination
was achieved as described for the EGFP labeling. Following the
tamoxifen treatment, the mice were allowed to survive for 1-3 months
to ensure fluorophore transport to distal axon segments.

In this study, nine mice received Brainbow-AAV injections (after
a pilot series to fine-adjust the stereotaxic coordinates). Of these cases,
two mice had no detectable fibers in the DR, three mice had sparsely
labeled fibers in the DR and in some other brain regions, and four
mice had densely labeled fibers in the DR, with many fibers in other
with
immunohistochemistry). In one mouse in the latter group, the

brain  regions (all after signal enhancement
densities of Brainbow-labeled fibers in the entire brain were
comparable to those of the recently published monochrome map
(Awasthi et al., 2021). The actual success rate of the procedure is
difficult to assess because of gradual technical improvements and
unexpected delays in tissue processing caused by the COVID-19

pandemic (in 2020-2021). Based on our experience, we recommend
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long transport times (around 3 months) and storing sections in a
cryoprotectant at —20° (if they do not get immunostained in the next
several days).

We also attempted to label serotonergic fibers by crossing Tph2-
iCreER and Brainbow mice. Their offspring with the transgenes were
allowed to reach adulthood (at least 10weeks of age), and the
induction of Cre-recombination was performed as described for the
EGFP labeling. Following the tamoxifen treatment, the mice were
allowed to survive for around 1 month.

2.4. Immunohistochemistry

Mice were euthanized with CO, and their brains were dissected
into 0.1M phosphate-buffered saline (PBS, pH 7.2). They were
immediately immersion-fixed in 4% paraformaldehyde overnight at
4°C, cryoprotected in 30% sucrose for 2 days at 4°C, and sectioned
coronally at 40 pm thickness on a freezing microtome. The sections
were stored in PBS and processed further with immunohistochemistry
(IHC).

24.1.Cre IHC

Sections were rinsed in PBS and treated with a heat-induced
epitope retrieval (HIER) procedure (untreated sections produced no
signal). The HIER was performed in a basic Tris-HCI buffer solution
(10mM, pH 9.0), with 30s-microwave pulses at 30-50% power for
4-6min (to prevent section disintegration). The sections were rinsed
in PBS, blocked in 2% normal donkey serum (NDS) for 30 min at room
temperature, and incubated on a shaker in rabbit anti-Cre IgG (1:1000;
Abcam #ab216262) with 2% NDS and 0.5% Triton X-100 (TX) in PBS
for 3 days at 4°C. They were rinsed in PBS three times (10 min each)
and incubated in Cy3-conjugated donkey anti-rabbit IgG (1:200;
Jackson ImmunoResearch #711-165-152) with 2% NDS and 0.3% TX
for 90 min at room temperature. The sections were rinsed in PBS three
times (10 min each), mounted onto gelatin/chromium-subbed glass
slides, allowed to air-dry, and coverslipped with ProLong Gold
Antifade Mountant with no DAPI (ThermoFisher Scientific, #P36930).

2.4.2. PhiYFP(Y65A) IHC

Sections were rinsed in PBS, blocked in 2% normal donkey serum
(NDS) for 30 min at room temperature, and incubated on a shaker in
rabbit anti-PhiYFP(Y65A) IgG (1:500; kindly provided by Dr. Dawen
Cai) with 2% NDS and 0.5% TX in PBS for 3 days at 4°C. They were
rinsed in PBS three times (10min each) and incubated in
Cy3-conjugated donkey anti-rabbit IgG (1:400; Jackson
ImmunoResearch #711-165-152) with 2% NDS for 90 min at room
temperature. The sections were rinsed in PBS three times (10 min
each), mounted onto gelatin/chromium-subbed glass slides, allowed
to air-dry, and coverslipped with ProLong Gold Antifade Mountant
with no DAPL

2.4.3. EGFP IHC

Sections were rinsed in PBS, blocked in 2% normal donkey serum
(NDS) for 30 min at room temperature, and incubated on a shaker in
rabbit anti-GFP IgG (1:500; Abcam #ab6556) with 2% NDS and 0.3%
TX in PBS for 2-3 days at 4°C. They were rinsed in PBS three times
(10min each) and incubated in AlexaFluor 488-conjugated donkey
anti-rabbit IgG (1:1000; ThermoFisher #A21206) with 2% NDS for
90 min at room temperature. The sections were rinsed in PBS three
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times (10 min each), mounted onto gelatin/chromium-subbed glass
slides, allowed to air-dry, and coverslipped with ProLong Gold
Antifade Mountant with DAPI (ThermoFisher Scientific, #P36931).

2.4.4. Brainbow IHC

Sections were rinsed in PBS, blocked in 2% normal donkey or goat
serum (NDS or NGS, matching the host of the secondary antibodies)
for 30 min at room temperature, and incubated on a shaker in rabbit
anti-GFP IgG (1:500; Abcam #ab6556), rat anti-mTFP IgG (1:500;
Ximbio #155264), and guinea pig anti-TagRFP IgG (1:500; Ximbio
#155267), with 2% NDS or NGS and 0.3% TX in PBS for 3 days at
4°C. They were rinsed in PBS three times (10 min each) and incubated
in either a donkey or goat set of secondary antibodies diluted in PBS
with 2% NDS or NGS, respectively, for 90 min at room temperature.
The donkey set consisted of AlexaFluor 488-conjugated donkey anti-
rabbit IgG  (1:1000; #A21206),
594-conjugated donkey anti-rat IgG (1:500; Jackson ImmunoResearch
#712-585-150), and AlexaFluor 647-conjugated donkey anti-guinea
pig IgG (1:500; Jackson ImmunoResearch #706-605-148). The goat set
consisted of AlexaFluor 488-conjugated goat anti-rabbit IgG (1:1000;
ThermoFisher #A11034), AlexaFluor 546-conjugated goat anti-rat IgG
(1:1000; ThermoFisher #A11081), and AlexaFluor 647-conjugated
goat anti-guinea pig IgG (1:1000; ThermoFisher #A21450). The
sections were rinsed in PBS three times (10 min each) and stored in

ThermoFisher AlexaFluor

PBS at 4°C or immediately mounted onto gelatin/chromium-subbed
glass slides, allowed to air-dry, and coverslipped with ProLong Gold
Antifade Mountant with no DAPI. Initially, the primary antibody set
also included chicken anti-mCherry IgY (1:500; Ximbio #155259) and
the secondary antibody set included either AlexaFluor 594-conjugated
donkey anti-chicken IgY (1:500; Jackson ImmunoResearch #703-585-
155) or AlexaFluor 546-conjugated goat anti-chicken IgY (1:1000;
ThermoFisher #A11040). However, this fourth signal was eventually
eliminated because of its relative weakness and overlap with another
imaging channel. A similar reduction of fluorophore channels from
four to three was used by the authors of the Brainbow system (Cai
et al, 2013). The two secondary antibody sets produced
comparable results.

2.5. Microscopy imaging

Epifluorescence imaging was performed in one or two of three
channels (Cy3, GFP, and DAPI) on a Zeiss AxioVision Z1 using a 5x
objective (NA 0.13) or a 10x objective (NA 0.45).

Confocal imaging was performed in two channels (AlexaFluor
488 and DAPI) or three (Brainbow) channels (AlexaFluor 488,
AlexaFluor 594 or 546, and AlexaFluor 647) on a Leica SP8 resonant
scanning confocal system. High-power images were obtained using a
63 x oil objective (NA 1.40) with the XY-resolution of 60-70 nm/pixel
and the Z-resolution of 300nm/optical section. Typical z-stacks
consisted of around 100 optical sections. The figures show maximum-
intensity projections.

2.6. Computational analyses
In simulations, sample unit-vectors drawn from the von Mises-
Fisher (vMF) directional probability distribution were generated using

the Wood algorithm (Wood, 1994; Hoff, 2009). The vMF distribution
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is parametrized by the concentration parameter (k>0), which is
analogous to the inverse of the variance of the normal distribution
(Janusonis and Detering, 2019). Briefly, the algorithm first generates
a sample vector that has the required distribution around the fixed
mean direction of ,uo = (0,0,l) and then rotates the vector to any other
mean direction pt = ( 110,143 ) (where y is again a unit-vector). In the
first step, (i) a 2D-sample unit-vector v is generated from the uniform
distribution on the circle, (ii) a sample scalar w is generated from
(=L1) from the probability distribution that is proportional to e*™
(e.g., using rejection sampling), and (iii) the 3D-sample vector u¥is

0 2
then constructed as ¥ = (V I-w ,W) . In the second step, the
obtained vector is rotated to the required population mean with Mu®,
where the orthogonal 3 x 3 matrix M can be given by

2
U S 1" B

1+ p3 I+ p3

= 2
M=l -

H2

1+ p3 1+ 3
—H “H W

Fibers can then be simulated with repeated sampling, in which the
direction of each step has the vMF distribution with a constant k and
a mean direction iteratively defined as the direction of the
previous step.

Conversely, if the directions of all steps are already known (e.g.,
from experimental data), the fiber can be iteratively rotated such that
the current step direction always coincides with ul = (0,0,1), and then
the direction of the next step can be determined with respect to this
standardized direction. If the original next direction is given by u, the
standardized next direction is given by M~lu, where the elements of
M are constructed from the original current direction 4. In particular,
if the next direction is the same as the current direction, one obtains
M~! U= ,uo, as expected. After all directions have been standardized
to the corresponding previous directions, this unit-vector sample is
used to estimate k. Several methods are available that are based on the
length of the mean vector of the sample (L, where 0 < L <1 ). Ifall
steps maintain the same direction (i.e., the fiber is “infinitely” rigid),
L =1.If, conversely, all directions are equally possible (including the
unrealistic return to the previous point), L = 0 (in the limit). Therefore,
higher L values should correspond to higher k values. A precise
estimate of k for any L can be obtained by using a method based on a
fixed-point iteration (Tanabe et al, 2007). More conveniently, a
relatively accurate k estimate can also be obtained with the formula
(Tanabe et al., 2007)

L (3 - )
1-1>
The reported k values were calculated with this method. It should
be noted that, if L>0.9, an even simpler formula can be used,

1/(1- L) (Mardia and Jupp, 2000). It follows that this formula can
be used to estimate k values that are greater than 10 (which makes it
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highly applicable in studies of serotonergic fibers). Both formulas
assume that L has been calculated in the three spatial dimensions;
however, L-based estimators for lower and higher dimensions are
available (Mardia and Jupp, 2000; Tanabe et al., 2007). The toolbox of
directional statistics is rapidly expanding and includes goodness-of-fit
and similarity tests, regression models, and other methods analogous
to but mathematically different from those in classical statistics
(Pewsey and Garcia-Portugués, 2021).

All simulation and analysis scripts were written in Wolfram
Mathematica 13.

3. Results

3.1. The isolation of single fibers with EGFP
labeling

The induction of Cre-recombination is an inherently stochastic
event at the single-cell level, but the efficiency of this process can
be partially controlled with the dose and administration regimen of
the inducing agent (tamoxifen) (Zhang et al., 2005; Yoshinobu et al.,
2021). Once the production of the fluorophore has been initiated, it
can visualize all cell processes, especially if the fluorophore targets the
cell membrane (Muzumdar et al,, 2007; Cai et al., 2013). These
properties can support the visualization of sparse, theoretically
random subsets of neurons and their axons (Economo et al., 2016),
with each axon fully labeled (given a sufficient transport time).
Tph2-dependent
Cre-recombination, strong EGFP expression was observed in the

Following the induction of the
rostral raphe nuclei. EGFP-positive somata were detectable in
unstained sections (Figure 1A); the signal was further verified and
enhanced with GFP-immunohistochemistry (Figures 1B,C). After a
relatively short post-induction time (less than 2 weeks), uninterrupted
single fibers could be visualized in various brain regions
(Figures 1D-K). Some of these fibers could be traced over considerable
distances (Figure 1D) and contained rich statistical information about
the underlying stochastic process. These fibers were used in the
random-walk modeling described further. Some fibers had growth
cone-like swellings (Figures 1E,F) and resembled developing
serotonergic axons in the embryonic mouse brain (Hingorani et al.,
2022). However, these structures require further analyses because
their functional identity and terminal location cannot be confirmed
in this preparation (e.g., the fiber may continue in an adjacent section).
Some fibers in several regions (e.g., the inferior colliculus and the
dentate gyrus) contained fibers with multiple large swellings
(Figures 1G,H). They resembled spheroids, abnormal varicosities
associated with dystrophic serotonergic fibers (Daubert et al., 2010).
These segments may be in the process of natural degeneration, also
because their general morphology resembles that of collapsing axons
disconnected from their soma (Shaw and Bray, 1977; Baas and
Heidemann, 1986), but they may also represent fibers making
extension or branching decisions. True branching events were also
easily detected in the tissue (Figures 11-K). Some branching patterns
were nearly indistinguishable from those observed with high
resolution in primary serotonergic neuron cultures (Hingorani et al.,
2022). Overall, the transgenic model achieved reliable isolation of
single serotonergic fibers in a number of brain regions.
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FIGURE 1
Serotonergic somata and fibers in two mice with serotonergic neuron-specific EGFP expression (Toh2-iCreER; ROSA™'™C). These mice were allowed

to survive for 10 days after the tamoxifen treatment and were 5 months old at the time of the tissue collection. (A) An epifluorescence image of
unstained EGFP-positive somata (green) in the dorsal raphe (DR). (B,C) Epifluorescence images of GFP-positive somata (green) visualized with GFP-
immunohistochemistry in the rostral (B) and caudal (C) DR. Cell nuclei are blue (DAPI). (D—K) Confocal images of GFP-positive fibers (green) visualized
with GFP-immunohistochemistry in the superior colliculus (D,E), the inferior colliculus (G,l), and the polymorphic layer of the dentate gyrus of the
hippocampus (F,H,J,K). Cell nuclei are blue (DAPI). The images show an isolated fiber (D; arrows), growth cone-like dilated structures (E,F; asterisks),
varicosity-like structures (G,H), and branching (1-K; asterisks). The 3D-connectivity of the branching points was verified in the corresponding confocal
z-stacks. Some elements (arrowheads) are shown enlarged in insets. Ag, aqueduct; ¢, capillary; mlf, medial longitudinal fasciculus. Scale bars = 200 pm
in (A,B), 100 pm in (C), and 10 pm in (D) [applies to (D-K)I.
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3.2. The isolation of single fibers with
Brainbow labeling

In high-throughput applications, reliable isolation of single fibers
should be combined with the visualization of many fibers in the same
volume. Simultaneous visualization of many fibers is also important
in studies of interactions among different fibers, including the extent
of their spatial intermingling (e.g., a small tissue volume may contain
fiber segments from many individual fibers or may be dominated by
segments from the same few, tortuous fibers). A technical solution is
offered by the Brainbow 3.2 toolbox (Cai et al., 2013) which is uniquely
well suited for analyses of serotonergic fibers. To our knowledge, it has
not been used in this system; an early version of Brainbow (Brainbow
1.0) has been used to visualize serotonergic somata in raphe nuclei
(Weber et al., 2009), but it does not support neurite labeling.

In the initial approach, we induced the Tph2-dependent
Cre-recombination in mice carrying the Brainbow 3.2 transgene
(genotyped offspring of Tph2-iCreER and Brainbow crosses) and used
immunohistochemistry to visualize the expression of the Brainbow
fluorophores in the rostral raphe nuclei. We observed no Brainbow
signal, which was likely caused by a low or negligible expression of
Thyl in the raphe region of this transgenic line, perhaps due to a
position effect (Dr. Dawen Cai, personal communication). The Thyl
gene supports strong transgene expression in many, but not all, neuron
types (Cai et al.,, 2013), and another study has reported a weak or
undetectable brainstem expression of a different transgene driven by
the ThyI promoter (Dana et al., 2018).
test this
immunohistochemical staining for PhiYFP, a reporter of the

To directly explanation, we performed an
transcriptional activity of the Brainbow transgene region before
Cre-recombination (Cai et al., 2013). Strongly PhiYFP-positive cells
were found in the neocortex and the hippocampus, but no
immunoreactivity was detected in the rostral raphe nuclei and
adjacent midbrain structures (Figure 2). This finding can inform other
studies  attempting  Brainbow 3.2 labeling in this
neuroanatomical region.

We next attempted an alternative approach, by injecting Brainbow
AAVs (Cai et al., 2013) directly into the dorsal raphe of Tph2-iCreER
mice (with the induction of the Tph2-dependent Cre-recombination
1 week later). An immunohistochemical staining for three Brainbow

fluorophores (EGFP, mTFP, and TagRFP) revealed labeled somata that

10.3389/fnins.2023.1241919

were restricted to the raphe complex and showed varying fluorophore-
intensity combinations across individual cells, as expected (Figure 3).
Importantly, strong and dense labeling of serotonergic fibers was
found in the entire brain of some mice, including the diencephalon
and telencephalon (Figure 4). Generally, the Brainbow-labeling of
fibers showed a considerable variability across animal cases, likely
because of the uncontrolled differences in the stereotaxic injections,
the efficiency of the AAV-transfection, the efficiency of the tamoxifen-
induced Cre-recombination, and other experimental and physiological
factors. Our best case was an adult male with a post-induction
(transport) time of 3 months. The reliability of this approach may
be further improved; at this time, we recommend maximizing the
probability of a successful outcome by using batches of 5-10 animals.
It should be noted that a single successfully labeled brain can provide
an enormous amount of information about individual serotonergic
fibers in all brain regions, including their spatial interplay.

Some individual fibers appeared to claim considerable territories
in the habenula, a nucleus unusual in its highly constrained geometry
(Figures 4A,B). It is possible that fibers can become trapped in this
region, producing highly tortuous trajectories as they interact with the
physical borders. In contrast, fibers appeared to be well intermixed in
the basolateral amygdala (Figure 4C), a region with one of the highest
densities of serotonergic fibers in the entire brain (Awasthi et al.,
2021). Despite this high density, the Brainbow labeling revealed clearly
identifiable individual paths (Figure 4D), including full turns
(Figure 4E), as well as unambiguous branching events (Figure 4F),
some followed by an immediate intermingling of the branches with
fibers of different identities (Figure 4G).

3.3. The quantification of fiber trajectories:
theoretical considerations

This study focuses on one essential characteristic of serotonergic
fibers, their trajectories in the three-dimensional space. Considering
the individual uniqueness of these trajectories, their rigorous
quantification requires some theoretical assumptions.

We started with a top-down approach, by producing a series of
computer simulations of serotonergic fibers modeled as step-wise
random walks based on the von Mises-Fisher (vMF) directional
probability distribution (Figure 5). This distribution is parametrized

FIGURE 2

Epifluorescence images of PhiYFP-immunoreactivity in (A) the somatosensory cortex, (B) the hippocampus, and (C) the dorsal raphe (DR) of a mouse
with the Brainbow 3.2 transgene. The PhiYFP-signal is absent from the DR. | and VI, cortical layers | and VI; Ag, aqueduct; CA1, field CAL of the
hippocampus; DG, dentate gyrus; DRD, dorsal DR; DRV, ventral DR; mlf, medial longitudinal fasciculus. Scale bar = 100 pm.
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FIGURE 3

Confocal images of the immunoreactivity of the three Brainbow fluorophores (with the red, green, and blue channels merged) in the dorsal raphe (DR)
of a Tph2-iCreER mouse (male) that received an intracranial injection of the Brainbow-AAVs into the DR. This mouse was allowed to survive for around
3months after the tamoxifen treatment and was around 1 year old at the time of the tissue collection. (A) A low-power image of the DR. (B) A high-
power image of the lateral DR. (C) A high-power image of the ventral DR. Aq, aqueduct; DRD, dorsal DR; DRL, lateral DR; DRV, ventral DR; mlf, medial
longitudinal fasciculus. Scale bars = 150 um (A), 30 pm (B,C)
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FIGURE 4

Confocal images of fibers immunoreactive for the three Brainbow fluorophores (with the red, green, and blue channels merged) in the diencephalon
and telencephalon of a Tph2-iCreER mouse (male) that received an intracranial injection of Brainbow-AAVs in the dorsal raphe (DR). This mouse was
allowed to survive for around 3 months after the tamoxifen treatment and was around 1 year old at the time of the tissue collection. (A,B) The left and
right habenulas in the same section. In this geometrically constrained space, individual fibers appear to produce local high-density islands (pink and
green in the images). (C) The basolateral amygdala. (D—G) Four enlarged parts of (C) that show highly tortuous but readily separable trajectories (D,E)
and unambiguous branching points (F,G). Scale bars = 20 um (A-C) and 5um (D-GQ).

by the unitless concentration parameter (k) that determines the
stiffness of the fiber (low k values make the fiber more flexible, high x
values make it stiffer).

The selected model was based on our previous theoretical
investigations (Janusonis et al., 2019; Janu$onis and Detering, 2019).
The shown simulations are more physically realistic in that they include
an accurate scaling of the fiber diameter (set to 1 pm) with respect to
its length and also use a physically-informed step (set to 1.5pm). The
simulations show the typical appearance of fiber segments in
40 pm-thick sections (Figure 5A), computational extrapolations of
fibers over longer distances, with the corresponding tortuosity indices
(Figure 5B), and the dependence of the fiber appearance on the
concentration parameter, again with the corresponding tortuosity
indices (Figure 5C). The model performs well in capturing the
geometry and inherent variability of single serotonergic fibers. In
addition, the simulations demonstrate the limitations of the tortuosity
index which can vary strongly in different realizations of the same
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process (Figure 5B). The model can also produce realistic simulations
of Brainbow-labeled fibers (Figures 5D,E).

Since fibers are assumed to advance in steps that maintain the
same length (but not the same direction), the step length should
be ideally optimized with an unbiased and physically-informed
procedure. It is easy to see at the qualitative level that an excessively
small step can make a fiber appear stiffer that it actually is, and that an
excessively large step may lead to unstable computational estimates,
because the step can skip over important direction changes
(Figure 6A). This problem can become more severe with noise,
especially if the step and the noise signal are comparable in magnitude
(Figures 6B,C). One solution is to always indicate the step at which the
concentration parameter was estimated [e.g., k(2 pm) =30], but such
arbitrary decisions can complicate quantitative comparisons among
different studies. We used two calculations to investigate the
dependence of the concentration parameter on the step length, with
the goal of finding its optimal (“natural”) value.
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FIGURE 5
Simulated fibers produced by a step-wise random walk, in which the direction of each step was drawn from the von Mises-Fisher probability
distribution with the concentration parameter k. In (A—=C), the diameter of the fibers is 1 um and each step is 1.5 um in length. The tortuosity index (t) of
each fiber, calculated as the fiber length divided by the Euclidean distance between the fiber ends (Jin et al., 2016; Pratelli et al., 2017), is also shown
(A) Six realizations of a walk with x = 20 and 30 steps (the fiber length of 45 um), approximately corresponding to the mean segment length in a 40 pm-
thick section (Janusonis et al., 2019). Each fiber is shown in three non-perpendicular orientations that demonstrate caveats of two-dimensional
interpretations (the same fiber may appear very different, depending on its orientation with respect to the imaging plane). (B) Six realizations of a walk
with k = 20 and 300 steps (the fiber length of 450 um). The tortuosity index can be suboptimal in that it can strongly vary in fibers produced by the
same stochastic process. (C) Single realizations of walks with six x values (from 2 to 64) and 300 steps (the fiber length of 450 um). (D) A simulation of
Brainbow-labeled fibers. A set of 300 fibers, each with k = 15 and 300 steps of 1.5um, was computed in a volume matching the z-stack in Figure 4C
(Continued)

Frontiers in Neuroscience 10 frontiersin.org


https://doi.org/10.3389/fnins.2023.1241919
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Mays et al. 10.3389/fnins.2023.1241919

FIGURE 5 (Continued)

(185 pm x 185 pm X 21 pm). Each fiber was seeded randomly in the volume (using the uniform distribution in the three dimensions). The segments of the
fibers that escaped the volume were considered to be outside the “section” and are not shown. Each fiber was assigned a random color. The fiber
radius at each step was independently drawn from the normal distribution with the mean of 0.20 pm and the standard deviation of 0.15 um. (E) A
magnified part of (D).

FIGURE 6

Qualitative effects of the sampling step along a fiber trajectory. (A) Fiber trajectories can be described with a natural step that reflects the physical
structure of the fibers (left). With no noise, smaller steps (oversampling) will make a fiber appear more rigid and produce higher concentration
parameter (k) values (middle). In contrast, larger steps (undersampling) can make a fiber appear more flexible and produce lower k values; but it can
also result in computationally unstable directional distributions (right). (B) With noise, unnaturally small steps can also become unstable because their
order of magnitude may become comparable to that of the noise. (C) This phenomenon is demonstrated with the contour of mountains, where an
unnaturally small sampling step may capture the contour of relatively small, irrelevant objects and grossly reduce the estimate of k (i.e., the contour
may appear less rigid than it actually is).

First, we simulated a long fiber, with a known value of the ~ 3.4. High-precision tracing of single fibers

concentration parameter (k =20), and computed the estimates of this ~ With @ novel a lgorith m

parameter with the original step (set to one unit), as well as with

fractional steps and integer-multiples of the original step (Figure 7A). After a fiber has been isolated with transgenic methods and
The fractional and integer-multiple steps modeled excessively small ~ imaged with high resolution in the three spatial dimensions, it has to
and large steps, respectively. As expected, the real parameter value was ~ be converted to an array of XYZ-coordinates (i.e., an Nx 3 matrix,
recovered at step=1. However, the parameter was grossly — where N is the number of points). These coordinates (more precisely,
overestimated with the smaller steps and slight underestimated with ~ the resultant step-vectors) are sufficient to produce a numerical
the larger steps. It should be noted that we did not include extremely  estimate of the concentration parameter. This estimate becomes more
large steps (e.g., jumping from the beginning of the fiber to its  accurate with larger step numbers, with one important caveat: all steps
mid-point), which would make the estimates unstable. Importantly, ~ should reliably belong to the same fiber (i.e., the trace cannot
the plot produced an “inflection” point, corresponding to the correct  accidentally jump to another, adjacent fiber). Identity errors cannot

step length. be easily mitigated with larger samples; a single long, accurate trace
Second, we attempted the same approach in a set of actual  can produce a more reliable estimate than a set of unreliable traces.

serotonergic fibers that have been manually traced by several trained The conversion of visualized serotonergic fibers to trajectory

individuals blind to the model (Figure 7B). In this case, the “correct”  arrays is a non-trivial problem. Manual tracing is highly unreliable

step length was not known but could be recovered in a similar ~ because human tracers typically have to move up and down z-stacks
“inflection region.” The plot of the population means (Figure 7C) put  (a significant perceptual and memory challenge in noisy images), have
it at around 0.6-1.5 pm, which is in register with the typical diameter ~ to make subjective decisions in fibers whose varicosities alternate with
of serotonergic fibers. We set the step at 0.75-1.50pm in the  signal interruptions, and cannot maintain a steady level of
following analyses. performance due to fatigue. General-purpose systems, such as Imaris
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FIGURE 7

A quantitative method to obtain an optimal step for the sampling of
fiber trajectories. (A) The estimated « values of a simulated fiber
(shown in the inset) with the actual x = 20. The fiber length is 1,000
steps (one length-unit each). The smaller steps were produced by
dividing each original step into 2, 3, ... 9, and 10 steps (producing
steps of 0.1-0.5 units), and the larger steps were produced by
multiplying the original step by factors of 2—10 (producing steps of
2-10units). Even if the original step were unknown, it could

be recovered at the sharp “inflection” of the plot. (B) The estimated k
values of 213 serotonergic fibers in the mouse somatosensory cortex
that have been visualized with 5-HT-immunohistochemistry [using a
published protocol (Janusonis, 2018)], imaged with confocal
microscopy, and manually traced through three-dimensional
z-stacks with Simple Neurite Tracer, an ImageJ plugin (the inset
shows traced fibers in one z-stack). The plugin automatically selects
a step of approximately 0.15pm (Janu$onis and Detering, 2019),
which is considerably smaller than a typical fiber diameter. A gradual
increase in the step length shows that the original step strongly
overestimates k. (C) The mean estimated k values of the fiber set in
(B), which reveals an "inflection region” at the factor values of around
4-10. Considering the diameter of a typical fiber (around 1pm), these
factors (corresponding to steps of approximately 0.6-1.5pm) is a
well-balanced choice.

(Bitplane) have no built-in knowledge of the physical properties of
serotonergic fibers, which (in our hands) results in frequent incorrect
decisions. Deep learning-based segmentation systems can separate
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serotonergic fiber segments from the background, also in whole-brain
images, but they currently cannot reliably trace the individual,
uninterrupted trajectories of fibers over useful distances (Friedmann
et al., 2020).

We developed an algorithm that overcomes some of these
difficulties. It prioritizes accuracy over volume and speed and is
designed for high-resolution, three-dimensional confocal images of
serotonergic fibers labeled with a single fluorophore. In particular, it
is highly appropriate for EGFP-labeled serotonergic fibers in the
described transgenic model. In the near future, it can be extended to
Brainbow-labeled fibers (with an incorporation of the color
dimension). The key components of this algorithm are shown in
Figure 8. We next describe it in detail.

The z-stack of one fluorophore channel is imported as a series of
high-resolution, grayscale TTFF images (with the XY-scaling of around
60nm per pixel and the distance between two adjacent optical sections
of around 300nm). The images are auto-contrasted (with the
brightness range of 0-1) and Gaussian-blurred using a one-pixel
radius. The initial seed point is selected on a fiber in a specified
(“current”) optical section, manually or automatically, and the second
point is automatically detected as the brightest point on the circle
whose center is at the seed point and the radius is set at a fixed value
(R). The second point becomes the “current point,” and the “current
direction” is determined by the vector connecting the two points. This
initiates the tracing sequence (Figure 8A).

In the current optical section, the brightness of pixels is examined
on an arc that is centered at the current point. The radius (tracing
step) and angle of the arc are given by R and a fixed interval [—a, a],
respectively, where the angle of 0° corresponds to the current
direction (Figure 8B). The number of increments (2n) from —a to
should provide a sufficiently dense coverage of the arc; in particular,
the arc increment (a/n) should be less than one-half of the expected
fiber width. By sampling the arc, brightness peaks within a fixed
brightness interval [By,, Bm.x] are detected, but the peaks whose
width (spatial extent) at B, falls below a set threshold (W,;,) are not
kept. The latter procedure, along with the described Gaussian blur,
efficiently eliminates pixels whose strong brightness is noise-related
and does not extend to adjacent pixels. In the remaining peaks, the
peak closest to the current direction is selected (if there are more than
one), and its point with the brightest value is recorded as the next
candidate point.

In addition to the current optical section, this procedure is
repeated in N sections above and N sections below the current optical
section (if they exist), using the same arc. Among the next candidate
points across the entire subset of optical sections, the brightest point is
selected. It becomes the next current point of the fiber. The next
current direction is determined by the vector connecting the
XY-coordinates of the two most recent points, and the procedure
continues iteratively. It is automatically terminated when brightness
peaks are no longer detected or when an edge of the stack is reached.
It can also be terminated manually, after a fixed number of steps.

We note that the algorithm is “anisotropic” in that within each
optical section it prefers a bright value that is closest to the current
direction, but among the optical sections it prefers the brightest value
in the set (which may not be closest to the current direction in all
sections). This choice was based on tests in actual z-stacks and it
reflects an inherent property of confocal imaging: confocal images are
sets of 2D-images, not true 3D-images with isotropic resolution.

frontiersin.org


https://doi.org/10.3389/fnins.2023.1241919
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Mays et al. 10.3389/fnins.2023.1241919
B
0
- a
R
c / /_
D Optical sections
z=-3 z=-2 z=-1 z =0 (current) z=+1 z=+42 z=+43
1 1 1 1r 1 1r 1 pixel intensity
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 a(rad)
FIGURE 8

with the new XY-position, optical section, and direction.

(A) A seed point (yellow) and the initial search circle around it (with a radius of around 2 pm; left), with a corresponding polar plot of the brightness
values on the circle (where larger radii correspond to stronger brightness; right). The polar plot indicates the position of the second point, which
initiates the automated tracing procedure. (B) At each current fiber point (an XY-coordinate in a specific optical section), the “flashlight” tracing
algorithm scans the intensity of the pixel values in an arc that is centered at this point, with a radius R and the subtended angle [-a, a]. The middle point
of the arc (0) corresponds to the "expected” direction of the fiber (marked with the yellow segment), which is based on the current point and the point
before it. The values of R and a can be adjusted to reflect the general tortuosity of the fiber. For clarity, the first segment is shown straight and the value
of R is greatly exaggerated (it is typically on the order of the fiber width). A specified number of optical sections above and below the current optical
sections are also scanned in the same way. (C) If the algorithm fails to detect any intensity peaks in the given subset of optical sections, the step can

be automatically extended (the dark blue region). Since this extension increases the risk of false-positives (e.g., it may detect a segment of another fiber
in the vicinity), the search angle can be automatically decreased. The extended R is a multiple of the original R (0.5R, 1R, 1.5R, 2R, ...); in the figure, it is
shown smaller for compactness. (D) An example of a decision made by the tracing algorithm in one step (taken from the tracing sequence of an actual
EGFP-labeled fiber). The center plot shows the pixel intensity values in the current optical section (z = 0) in the arc centered at the current XY-position
with R =2 pm and a = 0.6x radians (the current direction is given by a = 0). The plots to the left and right of the middle plot show the corresponding
pixel values at the same current XY-position and direction in the three optical sections below and above the current optical section (typically, more
adjacent sections are used). In this example, the trace turns slightly to the right and three optical sections down. The trace then continues iteratively

As described, the algorithm would not be able to handle transient  radius to multiples of R (0.5R, 1R, 1.5R, 2R, ...), if no brightness peaks
interruptions in signal brightness that accidentally fall on the search  are detected across the optical section subset (Figure 8C). The set
arc. To prevent this, the algorithm can automatically extend its search ~ includes one radius that is smaller than the original radius. However,
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the increasing extensions (numbered i=1, 2, 3, 4, ..., ip,, where i=2
corresponds to the original R) increase the risk that the trace will jump
to another fiber located close to the fiber that is being traced.
Therefore, these extensions can be optionally accompanied by an
automatically narrowing search angle, given by a (i) = aoefk(lfz),
where a, is the original @ and k is a constant (the “narrowing
strength”). The maximal number of extensions should be restricted
(imax) to a small value, especially in dense areas. If the next point is
detected with the extensions, in the next step the extended R and the
narrowed « revert to their original values.

Since the arc is set in a 2D-plane, the actual distances between
adjacent points in the 3D-trace may slightly differ from the original
R. Extended R values also contribute to these deviations. However,
final traces can be automatically fine-tuned with a 3D-step of a fixed
length, by simply sliding along the original trace and re-marking
(“nudging”) all points such that they are separated by the same exact
Euclidean distance. Since the original steps are small, the recalculated
trajectory is typically visually indistinguishable from the original one.
However, the constant step improves the reliability of concentration
parameter estimates.

In some instances, the algorithm may fail to correctly process a
step. It can then be manually forced to bridge the gap, with an
automatic continuation. With an optimal parameter set, such instances
should be rare. In some cases, these adjustments are necessary to make
the trace follow a specific branch, when two options are available. The
question of whether either of the branches can be considered a
continuation of the original fiber (with regard to its prior history)
poses interesting questions in stochastic modeling.

Figure 8D shows an example of the automatic detection of the
next trace point in an actual EGFP-labeled serotonergic fiber. The
typical parameter values are given in Table 1. The algorithm is
currently implemented in Wolfram Mathematica, a leading computer

TABLE 1 Typical values of the tracing algorithm.

R Default search radius 0.75-1.50 pm
(tracing step)

a=a, Default search angle ~7/2 (90°)
(one side)

n Number of angle ~50
increments (one side)

k Angle attenuation in 0.0-0.1
extensions

Tnax Maximal number of 0-4
extensions

Boin Minimal brightness 10-50%

B Maximal brightness ~100%

Wiin Minimal peak width 0.05-0.20 pm

Winax Maximal peak width 1.0-3.0 pm

N Number of R/(z-step)

neighboring sections

(one side)

The values were obtained in stacks of grayscale images of 3,144 x 3,144 pixels, with the XY-
scaling of 60 nm/pixel and the Z-step of 300 nm. In some ranges, the more frequent values
are shown in bold.
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language in functional programming, but it can be moved to other
languages such as Python or Java.

3.5. The quantification of fiber trajectories:
an experimental example

After the image of a fiber has been converted into an array of
XYZ-coordinates, with a constant step in the 3D-space, the trace
can be iteratively rotated such that the current step always coincides
with the unit-vector (0, 0, 1). The direction of the next step is then
recorded as a unit-vector, and the next step becomes the current
step (Figure 9). The length of the mean of the collected vector
sample (shown in red in Figure 9) is used to calculate an estimate
of the vMF concentration parameter (k), as described in detail in
the Materials and Methods.

We computed the concentration parameters in a sample of
EGFP-labeled fibers in the inferior colliculus of mice with the
ROSA™™G transgene, after the Tph2-dependent Cre-recombination
(Figure 10). Most of the values clustered around k =20 (for the used
step of 1.5 pm), but two of them were around k =40. Larger samples
are required to achieve a better understanding of the distribution of
this parameter, which may reveal differences among fibers
belonging to transcriptionally different neurons or located in
different brain regions. For example, a recent study has found two
functionally distinct types of serotonergic fibers in the hippocampus
(Luchetti et al., 2020). Such analyses fall outside the scope of this
methodological study, but we are currently pursuing some of
these directions.

3.6. An assessment of the reliability of
traces

In order to assess the reliability of traces calculated by the
algorithm, we digitally dissected a sample volume from a Brainbow
z-stack obtained in the basolateral amygdala (Figure 4C). The volume
had a smaller XY-area but the same Z-span (Figure 11A). In each
optical section, the three fluorophore channels were merged and
converted to grayscale to make “color” information unavailable to the
algorithm. Nearly all (20) serotonergic fibers present in the volume
were automatically traced, and the continuity of the traces was
manually checked across all optical sections, point-by-point. If the
algorithm made an incorrect decision, the point was manually
corrected and the algorithm was allowed to automatically proceed. In
total, 18 of the 637 points required a correction (2.8% points). The final
traces are shown superimposed on the original image (Figure 11B; the
image is in color for better readability) and without it (Figure 11C).

The algorithm constructs fiber traces based on grayscale pixel
intensities in space. In contrast, Brainbow-labeling assigns each fiber
a “color” signature and therefore allows for isolation that is
independent of spatial information. It suggests that fiber traces
obtained in grayscale-converted 3D-images can be verified against
“color-filtered” images of the same brain region. A filter can
be produced by restricting each fluorophore channel to a narrow range
of pixel values or linking these values proportionally. Some fibers can
be isolated with the simple restriction of the signal to one fluorophore
channel (Figures 11D—-F). Future algorithm versions can incorporate
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FIGURE 9
Assuming the fiber is composed of constant-length segments, each of which has a direction drawn from the von Mises-Fisher distribution (with the
expected direction of each step given by the direction of the previous segment), the value of the concentration parameter (k) can be estimated by
sequentially rotating each current segment (a unit-vector) to the vertical position (shown just below the plane), recording the direction of the next
segment (represented by the unit vector just above the plane), and calculating the length (L) of the mean of all direction vectors (shown in red). If
L>09, x :1/(1 - L) is a good approximation. In particular, if all direction vectors point in the same direction, L approaches 1 and k approaches infinity,
as expected for a perfectly rigid, straight fiber.

this “color dimension” (in addition to the space dimensions) and
further reduce the error rate in point detection.

4. Discussion

We developed an integrated system for analyses of single
serotonergic fibers in brain tissue. It includes two transgenic mouse
models for the visualization of individual fibers, a mathematical model
of fiber trajectories, a high-precision algorithm for tracing fibers in
3D-images, and procedures to estimate a single theoretical parameter
from complex fiber paths. This system can be used in many
experimental setups, including those that use serotonergic
perturbations, and can be readily deployed in any mouse brain
regions. The study focused on the rostral raphe nuclei, but the caudal
raphe nuclei also express Tph2, making this system extendable to the
lower brainstem (with serotonergic fibers descending to the spinal
cord). Since both mouse models are based on Tph2-dependent
Cre-recombination, the single-fluorophore model may express EGFP
in the gut because the Tph2 gene is also active in enteric neurons
(Gershon, 2009; Neal et al., 2009; Yabut et al., 2019) and the ROSA™/™¢
construct is transcribed in the gut (Muzumdar et al., 2007). However,
the overwhelming amount of peripheral serotonin is synthesized by
the gut enterochromaffin cells that express a different gene, Tphl
(Gershon and Tack, 2007). Because the Brainbow AAVss are injected
intracranially, the labeled somata should be restricted to the raphe
complex in this model.

It should be noted that a number of other Cre models have been
produced for studies of serotonergic neurons. Some of them may not
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label all serotonergic neurons and some may label additional neuron
populations (Cardozo Pinto et al, 2019). They can be used in
combination with various Cre reporters (Navabpour et al., 2020) and
may work well with the Brainbow AAVs.

Our fiber-tracing algorithm seeks to harvest all available spatial
information in the 3D-image and reconstructs fiber trajectories in
step-by-step walks. It makes a minimal set of physical assumptions
(e.g., the fiber diameter cannot exceed a certain value and the fiber
cannot make 180° turns) and would perform nearly perfectly in high-
resolution images with no noise and no signal interruptions along the
fiber. The algorithm is useful because this set of assumptions is often
sufficient to obtain accurate traces in images of real neural tissue
where these ideal conditions can never be met.

When the imaging resolution is low, the fiber has significant signal
interruptions, and/or the noise is high, the algorithm may fail.
Importantly, in these cases the image itself may contain insufficient
information for a correct decision at a given tracing step. This
limitation cannot be overcome by any computational method without
additional information or further theoretical assumptions (which are
never cost-free). In the current implementation, the user can simply
override individual step decisions. Care should be exercised in these
instances because human visual perception is heavily
assumption-based.

Important additional information can be provided by Brainbow-
labeling. For example, a signal gap (Maddaloni et al., 2017; Hingorani
etal., 2022) is likely to be followed by several candidate fiber-segments,
each of which can be reasonably connected to the current end;
however, only one of these segments may have the same “color” It is

also possible that none of the segments has the expected “color;” thus
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FIGURE 10

bar=20pm.

(A,B) Confocal images of GFP-immunoreactive fibers in the inferior colliculus of two mice with serotonergic neuron-specific EGFP expression (Tph2-
iCreER; ROSA™™C) (C) An automatically traced fiber in the z-stack corresponding to (A). The fiber is located in an area with a relatively high fiber
density, but the algorithm can still follow its trajectory because fiber intersections can be disambiguated in the 3D-volume. (D) A set of automatically
traced fibers in a relatively noisy z-stack corresponding to (B). In (C,D), each yellow dot marks a detected trajectory point. The tracing quality was
verified manually across all optical sections. The estimated «k values (at the step of 1.5 pm) are shown in bold. (E) The X-, Y, and Z-coordinates (as a
function of the step number) of the traced fiber in (C). (F) The X-, Y, and Z-coordinates (as a function of the step number) of one of the traced fibers in
(D) (marked with an asterisk). In (E,F), the Z-coordinate is constrained within a range of 40 um (because of the thickness of the physical sections). Scale

indicating that the fiber simply left the section and there is no
actual gap.

If further assumptions are introduced, they should capture a
deeper understanding of what serotonergic fibers can and cannot
do, at a “zoomed-out” level. Convolutional neural networks
(CNNs) are particularly well positioned to accomplish this task.
A recently introduced CNN, based on the U-Net architecture, can
isolate large-diameter serotonergic fiber segments from the
background in light-sheet microscopy images of the entire brain
(Friedmann et al., 2020). However, this system operates well
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below the resolution necessary to capture many serotonergic
fibers and is not trained to extract information about fiber
continuity. Despite these challenges, future CNNs may be able to
automatically reject traces that are accurately built on local pixel
information (as implemented in our algorithm) but are still
unrealistic when viewed as a whole. It should be noted that
CNN-based decisions carry an inherent cost in that they can also
reject unusual (e.g., other species’ or pathology-induced)
trajectories that the network has never seen. Our algorithm is
essentially free of these risks.
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FIGURE 11

An assessment of the accuracy of the tracing algorithm. (A) The maximum-intensity projection of a subset volume of a z-stack of the basolateral
amygdala containing Brainbow-labeled fibers (Figure 4C). Scale bar = 10 pum. (B) Twenty automatically traced fibers (with the step of 0.75um and no
“color” information). Nine traces required no manual correction of any of the points, six traces required one point to be corrected, three traces required
two points to be corrected, and two traces required three points to be corrected. In total, 18 of 637 points (2.8%) had to be corrected. Many of the
corrections were due to two fibers crossing in the same optical section (in grayscale images). Single-point errors are often easily detectable in
maximume-intensity projections (e.g., the trace may jump to another fiber) and can be corrected before the dataset is used in stochastic analyses.

(C) The traces shown in isolation. The mean of the estimated « values was 26 (at the step of 0.75pm). (D—F) The maximum-intensity projections of the
“red,” "green,” and "blue” channels, respectively. The asterisks (one, two, and three) show three “color-isolated” fibers and their corresponding traces

In general, the pixel-analytical and artificial neural network
(ANN) approaches are complementary in that the former excels at
“microvision” (with some nearsightedness) and the latter at
“macrovision” (with some farsightedness). This distinction is not
strict, and future ANNs may be able to capture the continuous
trajectories of individual serotonergic fibers in 3D-images. Success
in this area depends on the available corpus of annotated training
samples. With regard to serotonergic fibers, such high-quality
annotations cannot be produced manually. Brainbow labeling
provides an accurate, high-throughput method to support this
effort: it effectively sorts image pixels by “color” thus “auto-
annotates” individual fibers with no human intervention. Training
sets can be further augmented with simulated fibers, computer-
generated at various densities in unlimited quantities (e.g., using
our model). Once the ANN has acquired knowledge about the
normal morphology and behavior of serotonergic fibers, it can
be used to automatically analyze tissue samples labeled with a single
fluorophore, including human brain biopsies and postmortem
samples processed with immunohistochemistry.

We note that currently two mathematical models of serotonergic
fibers exist. The first model is based on a step-wise walk guided by the
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vME-distribution (Janusonis and Detering, 2019) and was used in this
study. The second model is based on fractional Brownian motion
(FBM) (Janusonis et al., 2020, 2023). Both models appear highly
promising but are not mathematically compatible. One essential
difference, important in practical applications, is that the vMF-model
is purely spatial and has no time term; in contrast, FBM-paths develop
in space as a function of continuous time (notably, with no definable
“velocity” at any time point). Since the real-time dynamics are
typically unavailable in experimental fiber analyses (in most cases,
fibers are studied in fixed preparations), the vMF-model is superior in
this case. However, the FBM-model promises to eventually capture the
“deep” structure of serotonergic fibers, as they evolve in both space
and time. Live-imaging recordings of growing serotonergic fibers are
needed to advance these studies; efforts have already been made in
this direction (Jin et al., 2016; Hingorani et al., 2022). Interestingly,
normal Brownian motion (a special case of FBM) and the
vMF-distribution are related (Mardia and Jupp, 2000; Gatto, 2013). It
should also be noted that the field of “active Brownian particles” may
offer other theoretical tools (Romanczuk et al., 2012). We are actively
investigating the applicability of these frameworks in our larger
research program.
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Directional statistics deals with probability distributions on
manifolds (e.g., circles, spheres) rather than familiar Euclidean spaces
(e.g., lines, planes) (Mardia and Jupp, 2000). A trivial example is given
by probability distributions on the unit circle, where the same point
can be referred to as 0 or 360 (in degree units). Therefore, caution
should be exercised in applications of standard statistical tests to
concentration parameter estimates. Directional methods exist to test
unit-vector samples for their consistency with the von Mishes-Fisher
distribution (against other probability distributions), to compare the
concentration parameter estimates in two and more samples (which
is relevant to fiber comparisons), to perform ANOVA-and regression-
like tests, and to carry out other procedures analogous to those is
classical statistics (Mardia and Jupp, 2000; Pewsey and Garcia-
Portugués, 2021). A number of R packages are available for these
calculations (Pewsey and Garcia-Portugués, 2021), of which
Directional (Tsagris et al., 2023) is particularly useful for three-
dimensional analyses. We note that each estimate of the concentration
parameter is based on a relatively large sample of step-directions and
therefore comes with reliability information (e.g., a value based on 20
steps is less reliable than that based on 100 steps). Several methods
have been proposed to compute the confidence intervals of k estimates
(Mardia and Jupp, 2000; Matheson et al., 2023), which can be obtained
for each fiber.

Long and accurate fiber traces capture the entire distribution of
step-directions and thus accurately estimate the population value of
the concentration parameter. This value may in turn control the
regional density of serotonergic fibers, with developmental or clinical
implications (Janusonis and Detering, 2019). In Autism Spectrum
Disorder, both altered serotonergic fiber densities and abnormalities
of single serotonergic fibers have been observed (Azmitia et al., 2011).
In a mouse model, fluoxetine exposure has had a regional effect both
on the morphology of individual serotonergic fibers and their density
(Nazzi et al., 2019). Generally, the links between the properties of
individual serotonergic fibers and their resultant densities remain
poorly understood; our experimental platform directly supports
this effort.

The proposed framework also supports the rapidly growing
interest in single serotonergic neurons and fibers, far beyond their
classical (population-based) conceptualizations. Recent studies
include such diverse approaches as single-cell RNA-seq (Okaty
etal., 2020), high-resolution analyses in primary brainstem cultures
(Hingorani et al, 2022), supercomputing-based modeling
(Janusonis et al., 2020, 2023), potential applications in artificial
neural networks (Lee et al., 2022), and the development of novel,
broadly-applicable models in physics, directly inspired by the
properties of the serotonergic axons (Vojta et al., 2020; Saito, 2023;
Wang et al., 2023). It is conceivable that these new frameworks will
produce new fundamental insights into the brain as a self-
organizing system.
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