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ABSTRACT: Single-particle traces of the diffusive motion of molecules, cells,
or animals are by now routinely measured, similar to stochastic records of stock
prices or weather data. Deciphering the stochastic mechanism behind the
recorded dynamics is vital in understanding the observed systems. Typically,
the task is to decipher the exact type of diffusion and/or to determine the
system parameters. The tools used in this endeavor are currently being
revolutionized by modern machine-learning techniques. In this Perspective we
provide an overview of recently introduced methods in machine-learning for
diffusive time series, most notably, those successfully competing in the
anomalous diffusion challenge. As such methods are often criticized for their
lack of interpretability, we focus on means to include uncertainty estimates and
feature-based approaches, both improving interpretability and providing
concrete insight into the learning process of the machine. We expand the
discussion by examining predictions on different out-of-distribution data. We also comment on expected future developments.

Single-particle tracking (SPT) refers to the observation of
the microscopic motion of molecules. In 1828, Robert

Brown used SPT to observe the movement of granular
particles, laying the foundations of Brownian motion.1 After
advancements in theory spearheaded by Einstein, Smoluchow-
ski, Sutherland, and Langevin, Jean Perrin was able to give a
first estimate of Avogadro’s number by observing particle
motion in a colloid.2 While SPT applies mainly to observing
the movement of molecules or micron-sized tracer par-
ticles,3−15 similar SPT data are also garnered in systems
ranging from the movement of animals16−18 to eye move-
ment19,20 or stock dynamics.21,22 Understanding such
trajectories and developing techniques for their analysis is
thereby of vital importance in a multitude of different
fields.9,16,17,21,23−26 Mathematically such a motion is described
by a random walk, as introduced by Karl Pearson.27 Here the
position xi of a particle at time ti is obtained via a sequence of
random steps Δxi (i = 1, ..., T − 1), such that xn = x0 + ∑i=1

n Δxi
(n = 0, ..., T − 1). The simplest case, called the “Wiener
process”, whose steps Δxi are independent and identically
distributed according to (2πσ2)−1/2 exp(−Δxi2/[2σ2]) with
constant waiting time ti − ti−1 = Δt, will lead to a Gaussian
probability density function (PDF),
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where K1 = σ2/Δt. Due to the action of the Central Limit
Theorem (CLT), the same PDF is reached as long as the
increments are independent and identically distributed with

finite variance and finite mean waiting time.28,29 In particular,
this entails a linear growth of the mean-squared displacement
(MSD),30−32

x t K t( ) 22
1 (2)

This type of behavior is referred to as normal diffusion, the
best known example being the aforementioned Brownian
motion as described by Einstein, Smoluchowski, Sutherland,
and Langevin when analyzing the motion of small particles
suspended in liquids or gases.33−36

In practice, however, one often observes a non-Gaussian
PDF and/or an MSD that grows nonlinearly in time.5−8,37−48

Here we focus on the frequent case of power-law growth of the
MSD,

x t K t( ) 22 (3)

referred to as “anomalous diffusion”, with the anomalous
diffusion exponent α. A growth slower than linear (0 < α < 1)
is called subdiffusive, whereas a faster than linear growth (α >
1) is referred to as superdiffusive, with the special case of
ballistic motion for α = 2. For such behavior to emerge, one or
more of the conditions for the CLT to kick in need to be
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violated, as is the case when the system shows heterogeneities,
long time correlations, diverging mean waiting times, and/or
infinite jump variance. As an example, one may consider a
granular gas with a temperature changing over time, which
causes non-identically distributed increments since the incre-
ment variance is temperature dependent.49,50 As a random
walk, such a motion is modeled by scaled Brownian motion
(SBM), in which the diffusivity is time dependent.51,52 A
diffusivity increasing with time will lead to superdiffusion,
while a decreasing diffusivity will lead to subdiffusion. As
another prominent example, long time correlations are often
observed in biomolecules, whose crowded environments lead
to strong anticorrelations (viscoelastic effects), while active
motion may give rise to strong correlations. Mathematically
such motion is often modeled as so-called fractional Brownian
motion (FBM).53 There exist plenty of other models to explain
the occurrence of anomalous diffusion,54−59 apart from the
mentioned SBM and FBM. We here also consider continuous-
time random walk (CTRW), with random waiting times
between successive jumps,29,60,61 Lev́y walks (LW),62−66 and
annealed transient time motion (ATTM).67 We provide short
descriptions of each of these models in the Supporting
Information.
Since each of these models describes different physical

causes for anomalous diffusion, identifying the best-fitting
stochastic model is an important step in unraveling the physical
origin of an experimentally observed anomalous diffu-
sion.4,39−43,68 Similarly determining specific parameters
attributed to each model, such as the anomalous diffusion
exponent α and coefficient Kα, can help quantify and/or
differentiate between trajectories or systems.39,69 Typically this
task is tackled through the use of statistical observables, aiming
at quantifying the expected differences between the mod-
els.47,70−78 However, the stochastic nature of these models in
combination with the often noisy and limited experimental
data can severely hinder this process and may lead to
conflicting results from different observables. For example, it
has been shown that noisy data can lead to a mistaken
identification as subdiffusion.74,79

The rising computing power of modern processors has
brought along a competing approach. Machine learning (ML)
has already shown wide applicability in physical chemistry80

and is increasingly used in a variety of fields from materials
science81 to medicine82 or quantum chemistry.83 In particular,
in recent years ML has also been applied to anomalous
diffusion dynamics seen in SPT data.84−88 Here the task of
finding the best way to determine the underlying diffusion
model and model parameters is left to machines trained on
simulated trajectories, either by directly feeding into the
machine the raw position data or by extracting relevant
features from the trajectories first.
After shortly discussing classical methods, we here focus on

the competing approaches utilizing ML, most notably those
introduced during the so-called “Anomalous Diffusion (AnDi)
Challenge”.87,89 To address the “black box problem”, we
present a deeper look into approaches including uncertainty
estimates as well as those relying on extracted features. We
present tests for the limits of both approaches when applied to
out-of-distribution data. We conclude with a discussion on
benefits, shortcomings, and expected future developments of
ML techniques to analyze anomalous diffusion data.
Classical Approach. The simplest path to the anomalous

exponent is given by direct calculation of the scaling exponent

of the MSD, which, given an ensemble of N trajectories, is
defined as

=
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In experiments, one often relies on time-series analysis,
utilizing the time-averaged MSD (TAMSD),
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with observation time . As long as the system is ergodic, the
TAMSD for sufficiently long will convey the same
information as the MSD. However, for anomalous diffusion
this is often not the case�for instance, when models feature
diverging mean waiting times, such as CTRW or LW. This
indicates that, when experimental conditions allow access to
both ensemble MSD and TAMSD, the possible difference
between their behaviors allows one to differentiate between
ergodic and non-ergodic models.
An alternative method is provided by the p-variation

test.71,90,91 The sample p-variation is calculated using the
difference between every mth element of the trajectory,

= | |
=
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Different models often show different behaviors of the p-
variation. For example, for FBM we have

V mm
p p( ) /2 1 (7)

implying that, as a function of m, the p-variation increases for p
> 2/α and decreases for p < 2/α. This is in contrast to, e.g.,
CTRW, where the p-variation will decrease for p > 2 and
increase for p < 2, regardless of anomalous exponent α. Thus,
calculating the p-variation for different p values can help
differentiate between models or, for some models, provide an
estimate of the anomalous exponent α. However, static noise
may compromise the p-variation output, as, e.g., tested for
subdiffusive CTRWs.92 Alternatively, it is also possible to
decompose the anomalous dynamics into the Moses M, Noah
N, and Joseph J scaling exponents (with α/2 = J + L + M − 1),
obtained from the scaling of the cumulative absolute
increments, the sum of the squared increments, and the
rescaled range statistic. Each of these exponents corresponds to
the violation of one of the three conditions for the
CLT.78,93−95

Another method is given through the use of the single-
trajectory power spectral density (PSD),72−74

=S f t x t( , )
1

d e ( )ift

0

2

(8)

Of particular interest here is the coefficient of variation,

=f
f
f

( , )
( , )
( , ) (9)

where f( , ) and f( , ) are the mean value and variance of
the PSD. In FBM, for example, f( , ) shows distinct behavior
for subdiffusion ( f( , ) ≈ 1), superdiffusion ( f( , ) ≈ 2 ),
and normal diffusion ( f( , ) ≈ 5 /2), in the limit of high
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frequencies or long observation times.41 Single-trajectory PSDs
are also quite robust against static and dynamic noise.74

The aforementioned methods cover only a fraction of
possibilities. Other techniques not further specified here
include the use of the velocity autocorrelation,47 the first
passage statistics,75 the codifference,76 or the autocovariance.77

The applications of these statistical techniques, however,
struggle when data is sparse and often require an ensemble of
trajectories.74,79

As an alternative approach to classify SPT data, Thapa et al.
demonstrated that Bayesian inference may be used to
determine the best-fitting model and its parameters directly
from the position data of an SPT experiment using their
mathematical description.96 Specifically, these descriptions
allow one to directly calculate the likelihood of a given
trajectory for a specific model with the given parameters. These
parameters are then adjusted to maximize the probability of
the trajectory. The difference in the maximum likelihood is
used to determine the most probable model. This method has
shown great promise for processes for which the likelihood is
easily calculated in closed form, such as FBM or SBM. It
struggles, however, when models feature hidden waiting times,
though there have been recent advances using hidden Markov
processes.97 Even so, high computational cost remains an issue
for Bayesian inference, often resulting in a trade-off between
computational feasibility and accuracy.
The Anomalous Diffusion Challenge. ML in recent

years has grown into a strongly competing class of approaches.
In 2019, Granik et al., using a convolutional neural network,
demonstrated that one can differentiate between simulated
Brownian motion, CTRW, and sub- or superdiffusive FBM
trajectories.84 In the same year, Bo et al. used a similar
procedure to determine the anomalous diffusion exponent of
FBM trajectories via a recurrent neural network.85 Similarly, in
2020, Muñoz-Gil et al. demonstrated that a random tree forest
can differentiate between CTRW, LW, FBM and ATTM and
provide an estimate for the anomalous diffusion exponent.86 In
all these cases, it was shown that ML can achieve better
accuracy than conventional methods, especially when the
available data is sparse. It should be noted, however, that these
approaches all suffer from the often-quoted “black box
problem”, outputting answers without explanations as to how
these are obtained,98 as detailed below.
Among ML approaches, the mentioned strategies utilizing

convolutional neural networks,84,99 recurrent neural net-
works,85,88 and random tree forests86 already differ signifi-
cantly. In an effort to compare the performance of different
techniques, in 2020 Muñoz-Gil et al. launched the AnDi-
Challenge.87,89 Reported in 2021, the goal of the AnDi-
Challenge was to provide a competitive comparison of
different available methods to decode anomalous diffu-
sion.87,100 The AnDi-Challenge also continues to serve as a
benchmark to quickly assess the performance of newly
developed or improved methods.94,95,97,101−111

The challenge consisted of three tasks: (i) inference of the
anomalous diffusion exponent, (ii) classification of the
diffusion models, and (iii) segmentation of trajectories. For
tasks (i) and (ii), participants were given a set of trajectories,
each randomly generated from one of five different anomalous
diffusion models with a randomly chosen anomalous diffusion
exponent. For task (iii), the model and/or exponent changed
at a given point in the trajectory. Participants were required to
predict the change point, in addition to the model and the

anomalous diffusion exponent in both segments. To emulate
experimental data, all trajectories were corrupted by white
Gaussian noise of varying strength. Moderately sized training
data sets as well as the code necessary to generate further
labeled data are freely available in a repository.112

In total, 15 teams participated in the AnDi-Challenge, using
a variety of different methods. While most teams used some
form of ML, the more traditional approaches were represented
by teams using Bayesian inference97,111,113 and scaling analysis
as well as feature engineering, primarily based on a
decomposition method using the Moses, Noah, and Joseph
exponents.94,95

Several different ML techniques were used, some of which
were applied to the raw position data.85,101−105 Other methods
relied on features extracted from the input trajecto-
ries91,99,106−109,114 or used a combination of both strat-
egies.115,116 The techniques using raw data focused on deep
learning (DL),84,85,101−105 while the feature-based methods
also included other ML methods such as gradient boost-
ing,99,108,114 random forests,91,99,108,114 and extreme learning
machines.107 In the AnDi-Challenge, the ML methods
outperformed the classical approaches, with top results
obtained by DL, achieving an accuracy of 88% for model
classification and a mean absolute error (MAE) of 0.14 for the
regression of the anomalous diffusion exponent for 2D
trajectories.100 For comparison, the more traditional Bayesian
inference�with a limited amount of processes for which the
likelihood function was derived at that point�achieved an
accuracy of 53% and MAE of 0.20 in the challenge.100 Classical
observables such as the above-mentioned decomposition
method using the scaling exponents M, N, and J scored 51%
accuracy with an MAE of 0.31.100

The Raw Data Approach of Deep Learning. Following
the increasing availability of high computational power along
with increasingly more-detailed data sets, more and more ML
approaches rely on highly complex architectures involving
thousands of parameters. With DL we refer to neural networks
with many hidden layers, often resulting in several hundreds of
thousand of fitting parameters (weights).117 The complexity of
these models allows them to directly learn from massive
amounts of raw data with little to no need for human-
engineered preprocessing. Specifically for the analysis of
anomalous diffusion, this entails directly learning from the
position-time series of the recorded trajectories. To speed up
training and reduce the required data volume, the input data
undergo minimal preprocessing via a normalization of their
standard deviation. Since diffusion models only rely on the
increments of a process and no additional relevant information
is included on the absolute positions, the trajectories are often
also converted to the increment process.85,101−105,112 In
inhomogeneous, static environments, this condition may, of
course, no longer hold.
The DL solutions, as presented in the AnDi-Challenge and

newly developed ones since, mostly utilize convolution-
al84,102−105 and recurrent85,101,102,118 neural network architec-
tures. In convolutional neural networks, best known for their
applications in image classification, the layers consist of one or
several convolutional kernels that are slid along the input
tensor.119 Stacking multiple such layers makes it possible to
detect correlations in the sequence. Recurrent neural networks,
most notably the so-called “long short-term memory” (LSTM)
networks, are specifically designed for time sequence data,
making them useful for tasks such as speech recognition,
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translation, or sequence forecasts.120 Layers typically consist of
a single recurrent unit applied successively to each time step,
with outputs of the previous time step included as additional
inputs for the next time step. Figure 1 shows simplified

schematic representations of both architectures. Other notable
architectures that have been shown to be applicable to SPT
data analysis include graph neural networks115,116 and
transformer/encoder networks.103,104

In the AnDi-Challenge, all top results were achieved by
DL,84,100−103,106 though notably one of these did rely on
extracted features rather than the raw trajectories.106 Overall,
DL, and ML in general, showed great promise in the
community challenge. However, one should not dismiss the
shortcomings of such methods, which are most often criticized
for their lack of interpretability.98 To that end, we discuss
added uncertainty estimations, as well as feature-based
approaches, in the following.
Qualifying Deep Learning by Including Uncertain-

ties. Classical DL models only provide point estimates of the
output and do not furnish any concrete information on the
reliability of this estimate. In extreme cases, this also means
that these methods will provide outputs on data that have
nothing to do with the learned problem. Even within the
desired task, different inputs may provide the same point
estimate but underlie massively different uncertainties. As an
example, Figure 2 depicts two diffusion trajectories which, fed
into a neural network, would both be assigned an anomalous
diffusion exponent of α = 1, even though one input contains
considerably more information (data points) than the other.

To reveal the difference, one would need to output a
probability distribution of the α values instead. Examining
such a distribution reveals that, while the first trajectory is
roughly a Brownian motion, the prediction of the second is just
the result of obtaining no relevant information, with the
uniform distribution of the anomalous diffusion exponent over
the interval α ∈ [0, 2] leading to a point estimate of α = 1.
To change the predictions to a probability distribution, we

need to model two types of uncertainty.121,122 Aleatoric
uncertainty refers to the uncertainty inherent in the data
caused, for instance, by measurement noise or an inherent
stochasticity of the system. This uncertainty remains even for a
perfect model obtained from an infinite amount of data and
therefore must be included in the output of the neural network
model and trained by utilizing an appropriate loss
function.123,124 As no model is perfect, it is insufficient to
consider the aleatoric uncertainty alone. Namely, to account
for the difference between training and test data, or an
insufficient amount of training data in the first place, one needs
to introduce a second uncertainty measure. Epistemic (or
systematic) uncertainty can be included by considering the
weights of the neural network themselves as uncertain
quantities. Formally, the probability |p( ) of the weights θ,
given data , is given by Bayes’s rule,125

| = |
p

p p
p

( )
( ) ( )

( ) (10)

To obtain the final probability |p y x( , )i for some output y
given the input xi, we combine the aleatoric uncertainty,
represented by the probability p(y|xi, θ), for one set of weights
θ, with the epistemic uncertainty by marginalization over the
weights. The resulting integral is usually approximated through
Monte Carlo sampling,126,127

| = | | |
=

p y x p y x p
M

p y x( , ) d ( , ) ( )
1

( , )i i
m

M

i m
1

(11)

where θm is sampled from the distribution |p( ) for a
sufficient number M of discrete points. As an exact calculation
of |p( ) (via eq 10) quickly becomes computationally
infeasible for deep neural networks, one uses approximations
to generate the samples θm. Various methods, summarized
under the term Bayesian Deep Learning, have been proposed,
the simplest of which is to train an ensemble of neural
networks, known as deep ensembles.128 Other ways to generate
samples include MC-Dropout,129,130 in which one uses dropout

Figure 1. Schematic representation of convolutional and recurrent
neural network architectures for the analysis of single-particle
trajectories. In both cases, input data consist of normalized trajectory
positions (or increments) x1, ..., xN. In a convolutional neural network,
a kernel is slid along the input data, generating outputs for each
region. Usually each layer consists of multiple kernels with identical
sizes but different weights, each generating a new data sequence,
depicted in the figure as an additional dimension. We show here a
convolutional neural network with three layers utilizing 3, 5, and 6
kernels, respectively. In a recurrent neural network, as depicted in the
lower half, the data are passed in sequence through a recurrent unit,
with the output of the previous time step included as input in the next
step (vertical connections in the figure). Here we depict a stacked
recurrent neural network consisting of three layers with weight
matrices A, B, and C, respectively. For both recurrent and
convolutional networks, the resulting output is usually flattened into
a one-dimensional array and passed through one or multiple fully
connected layers, ending, e.g., in a prediction of the anomalous
diffusion exponent α or diffusion coefficient Kα.

Figure 2. Uncertainty problem of DL. The same anomalous diffusion
exponent is predicted for two trajectories of different lengths when fed
into a classical neural network�despite their differing amounts of
information. The two cases can be distinguished only when the
probability distribution of possible output anomalous diffusion
exponents is considered, instead of a point estimate. Such an estimate
can be provided by Bayesian neural networks. Figure adapted from ref
10. Copyright 2022, The Authors.
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to generate multiple samples from the same neural network,
and Stochastic Weight Averaging Gaussian (SWAG),131,132

which approximates |p( ) by a Gaussian distribution,
obtained by interpreting a stochastic gradient descent133 as
an approximate Bayesian Inference scheme.
Recently it was demonstrated that, based on Multi-SWAG, a

combination of SWAG and deep ensembles, one can add
informative uncertainty predictions to the DL solution for the
analysis of single-particle anomalous diffusion trajectories.110

The introduced method maintains the performance of the top
AnDi-Challenge competitors, while it provides a well-
calibrated uncertainty estimate with expected calibration
errors134,135 of only 0.0034 for the regression of α and

0.45% for the classification of the diffusion model. On top of
this, it was demonstrated110 that the added error prediction
improves the interpretability of the deep neural networks,
demonstrating in detail that the predicted behavior can be
linked to properties of the underlying diffusion models. Figure
S1 shows an example of how error predictions can be analyzed
when inferring the anomalous diffusion exponent.
To further elaborate on the study in ref 110, we now discuss

the results obtained from the Multi-SWAG approach when
confronting the introduced networks with previously unseen
out-of-distribution data. First, we examine the outputs when
feeding the network with a superposition of two models, the
increments of which are obtained by the weighted sum of the

Figure 3. ML classification for a superposition of two models. The panels depict the dependence of the mean confidence assigned by the neural
network when presented with a mixture of two models on the mixing factor β. The depicted results are obtained from two-dimensional trajectories
with 100 data points each.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Perspective

https://doi.org/10.1021/acs.jpclett.3c01351
J. Phys. Chem. Lett. 2023, 14, 7910−7923

7914

https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.3c01351/suppl_file/jz3c01351_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.3c01351/suppl_file/jz3c01351_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.3c01351?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.3c01351?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.3c01351?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.3c01351?fig=fig3&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.3c01351?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


increments of two models with random anomalous diffusion
exponents. With the mixing factor β, we then obtain

= +x x x(1 )new model1 model2 (12)

Based on two-dimensional trajectories of length 100, Figure 3
shows the dependence of the mean confidences, that is, the
mean value of the predicted model probabilities over 2 × 105
input trajectories, on the mixing factor β for different model
combinations, represented by the rows and columns in the
panel grid. For the convenience of the reader, the panels
include the redundant case of swapped models 1 and 2, which
results in a symmetry with respect to the panel grid diagonal,
i.e., superposition of a model with itself. In most cases, we see a
smooth transition of the confidence from the marginal cases on
the left and right, which are the normal predictions for pure
trajectories of models 2 and 1, respectively. A notable
exception, however, is the behavior for superpositions with
CTRW, as these often show high probabilities for ATTM.
Since ATTM could be considered a combination of CTRW
and Brownian motion, often showing the jumping motion of
CTRW interspersed with Brownian motion, this is not
unexpected. Moreover, we see that superpositions with LW
often show high probabilities for FBM, which can be explained
due to the similarity of LW with highly correlated FBM.
Analogous 1D behavior can be seen in Figure S2.
As another example we confront the trained neural network

with trajectories obtained from the mobile-immobile model
(MIM).136−138 In the MIM, trajectories switch between
mobile and immobile states, with mean residence times τm
and τim. At equilibrium, the fraction of time a test particle
spends in the mobile phase is given by fm = τm/(τm + τim). This
model provides information about the immobilized fraction of
the particle motion. Moreover, it includes a continuous
transition between a normal-diffusive (α = 1) CTRW on the
one side for a low fraction of the mobility ( fm → 0) and
Brownian motion on the other side for a high fraction of the
mobility ( fm → 1). The results, depicted in Figure 4, confirm
that the method correctly classifies the two extremes as CTRW
for low mobility and as Brownian motion for high mobility,

which for this method is represented as a split probability
among SBM, FBM, and ATTM (all three models that can
exhibit Brownian motion). In between these two limits we see
high confidences for ATTM, which is not surprising, as ATTM
is the only model, of those considered here, that mimics the
phase switching behavior of a MIM trajectory.

Feature-Based Classification of Single-Particle Tra-
jectories. As demonstrated by the AnDi-Challenge,100 DL
methods perform excellently in the analysis of the diffusion
models and outperform the more traditional approaches to
SPT data. However, the choice of a suitable classification
method is usually more subtle than simply looking at its
performance. The availability of tools and libraries for DL
makes it relatively easy to quickly create effective predictive
models. But due to their complexity, those models are black
boxes providing (almost) no insight into the decision-making
processes. In the previous section, we showed how confidences
can be established to judge the validity of the provided output.
Here we consider the interpretability of the parameters in the
ML approach. To give an example for the complexity in DL,
consider ResNet18, one of the simplest deep residual network
architectures used in ref 88 for trajectory classification. This
network originally had 11,220,420 parameters. The authors
were able to reduce this number to 399,556, with a positive
impact on the accuracy of the resulting classifier. Although this
is an impressive achievement, the interpretation of all those
remaining parameters is, of course, practically elusive.
The trade-off between a model’s accuracy and its

interpretability is one of the reasons for feature-based attempts
for the classification of diffusion models.86,91,99,108,114,139 These
feature-based methods are statistical learning algorithms that
do not operate on raw data. Instead, each data sample is
characterized by a vector of human-engineered features or
attributes. Those vectors are then used as inputs for a classifier
(see Figure 5 for a workflow of the method). In some sense,
those methods may be treated as a kind of extension to the
statistical techniques usually used for classification purposes.
Instead of conducting a testing procedure based on one
statistic, we can turn all of them into features and use them to
train the model. This could be of particular importance in
situations when single statistics yield inconclusive results or
when testing results based on different statistics significantly
differ from each other.140 Automated feature-based analysis
can thus be used in addition to DL methods to learn more
about the values of specific features and their relative
importance in categorizing input data.
Feature engineering, i.e., the process of extracting attributes

from raw data, is not a trivial task. It requires domain expertise
to pinpoint which features may be valuable for the process that
generated the given set of data. It may also be time and
resource consuming, as testing the impact of newly created
features on the predictions involves repetitive trial-and-error
work. It has been already shown that classifiers, which were
trained with a popular set of features, may not generalize well
beyond the situations encountered in the training set.99 Thus,
careful attention must be paid to the choice of the attributes.
They should cover all important characteristics of the process,
but, at the same time, they should contain the minimal amount
of unnecessary information, as each redundant piece of data
causes noise in the classification and may lead to overfitting
(see ref 141 for a general discussion concerning the choice of
features).

Figure 4. Classification for mobile-immobile model (MIM)
trajectories for different fractions of mobility. The MIM effectively
converges to CTRW for low mobile fractions fm and to Brownian
motion for fm ≈ 1. The depicted results are obtained from one-
dimensional trajectories with 250 data points each.
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Once the appropriate set of features is identified, the choice
of an actual classification algorithm is of secondary importance.
Very often, random forest86,91,99,114,139 or gradient boost-
ing86,91,99,108,114 methods are used, because they offer a
reasonable compromise between the accuracy of the results
and their interpretability. Both algorithms fall into the category
of ensemble learning, i.e., methods that generate many
classifiers and aggregate their results. In both cases, decision
trees142 are used as the basic classifier. In a random forest,
several trees are constructed from the same training data. For a
given input, the predictions of individual trees are collected,
and then their mode is taken as the output. In the case of
gradient boosting, the trees are not independent. Instead, the
single classifiers are built sequentially from the mistakes
committed by the ensemble (see Figure 6). In terms of
interpretability, both algorithms are placed between single
decision trees (which are easy to interpret) and DL (with the
black box problem).

In the AnDi-Challenge, the feature-based contribution was
outperformed by the winning teams using DL (73% accuracy
versus 88% for the winners). However, the authors of the
feature-based method further elaborated on their set of features
to achieve 83% accuracy on the same validation set.108 This
was based on a mixture of characteristics tailor-made to the
diffusion processes (e.g., MSD, anomalous diffusion exponent,
diffusion coefficient) and problem-agnostic ones (e.g.,
detrending moving average, kurtosis). All features used in
refs 87 and 108 are summarized in Table 1.
The authors were able to assess the importance of the

features in the overall classification and to calculate the

contribution of each attribute to the classification of every
single trajectory, giving some insight into the decision-making
process of the classifier.108 The results achieved with a simple
gradient boosting method indicate that the feature-based ML,
overshadowed somewhat by DL approaches in recent years,
constitutes a serious alternative to the state-of-the-art
approaches. It should also be mentioned that better
interpretability is not the only benefit related to feature-
based methods. Compared to DL, they usually work better on
small data sets and are computationally (and thus also
financially) cheaper; see ref 99 for a short comparison.
Additionally, in the case of SPT data, they naturally allow for
the simultaneous analysis of trajectories of different lengths.

Testing the Limitations of Machine Learning. During
the AnDi-Challenge, the competitors were provided with large
training data sets and tested on data generated from the same
distributions as those used for the training. This practice gives
an undeniable advantage to ML in general and to DL

Figure 5. Schematic workflow of the feature-based method: a set of features is extracted from raw trajectories and used as input to the classification
or regression model. Analysis of the impact of the features on the outcome gives insights into the decision-making process of the model.

Figure 6. Schematic comparison between random forest (left) and
gradient boosting methods (right). In the random forest, N
independent trees are built in parallel from random subsets of the
input data set. In gradient boosting, the next tree is constructed from
the residuals of the ensemble and added to it.

Table 1. Features Used to Characterize Single-Particle
Trajectoriesa

Original Features

Anomalous exponent
Diffusion coefficient
Asymmetry
Efficiency
Empirical velocity autocorrelation function
Fractal dimension
Maximal excursion
Mean maximal excursion
Mean Gaussianity
Mean-squared displacement ratio
Kurtosis
Statistics based on p-variation
Straightness
Trappedness

Additional Features

D’Agostino−Pearson test statistic
Kolmogorov−Smirnov statistic against χ2 distribution
Noah exponent
Moses exponent
Joseph exponent
Detrending moving average
Average moving window characteristics
Maximum standard deviation

aThe original set of features was used in the AnDi-Challenge and
achieved 73% accuracy. With the additional features, the performance
of the classifier increased to 83%. The definitions of the features may
be found in Appendix B and in ref 108.
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especially. Additionally, the artificial data used in the AnDi-
Challenge considered only white Gaussian noise, which may
not be sufficient to account for all of the noise sources present
in experimental data. To address these problems, we here test
ML models to analyze their performance when confronted
with (a) data corrupted with dynamic noise and (b) the task of
determining the anomalous exponent for models not included
in the training data. These tests should indicate (a) how robust
the methods are to different noise types and (b) how well the
learned determination of α can be generalized to other models.
Dynamic noise stems from the finite exposure time needed

to generate each data point. In contrast to the additive
Gaussian white noise, this error is characterized by temporal
integration, which for discrete time steps is replaced by a sum,

=
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x t x t
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x t j t( )
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( ) d
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e 0 e 0
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e e
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where τe = neΔt is the exposure time consisting of ne time steps
of length Δt.74,143 To test the ML models, we generate data
sets in the same manner as in the AnDi-Challenge but with
added dynamic noise of different exposure times containing
10,000 trajectories each. In Table 2 we see the results when

confronting the DL model introduced in ref 110 and a feature-
based model utilizing the features from ref 108 with data
corrupted by dynamic noise. For DL, the determination of the
anomalous exponent appears to be robust to the influence of
dynamic noise, resulting in only a slight performance decrease
from a MAE of 0.207 to 0.235 with increasing dynamic noise,
as characterized by exposure time steps ne, considering that a
slight performance loss with higher noise is to be expected.
The model does, however, seem to struggle with classification
for high dynamic noise, where the accuracy drops from 78%
down to 53.5% for the highest considered dynamic noise, ne =
20. A look at the confusion matrix in Figure 7 reveals that this
is caused by misclassification of LW and CTRW�evidently
the added Gaussian noise in the training data is not sufficient
to account for the changes incurred by dynamic noise. The
feature-based model proves more robust to the influence of
dynamic noise, showing a constant MAE of ∼0.22−0.23,
slightly outperforming the DL model for high dynamic noise.
Even more striking are the results obtained for classification:
while starting with a worse accuracy than DL (∼71%
compared to ∼78%), the feature-based model turns out to
be much less hampered by high dynamic noise levels, only
decreasing the accuracy to ∼65% (compared to ∼53.5% for

DL) at the highest noise level. Critically, when dealing with
experimental setups with high dynamic noise, for accurate
classification, dynamic noise should therefore be included in
the training data sets, especially when relying on a DL model.
We now consider a stochastic process not contained in the

training data. The elephant random walk (ERW) is a process
with infinite memory, according to which the next position of
the walker is given by

= +x xi i i1 (14)

with the random variable σi = ±1.144 The choice of σi is
determined through the memory of the previous time steps by
first drawing a random integer 0 ≤ j < i and then choosing σi =
σj with probability p or σi = −σj with probability 1 − p. The
first step σ0 is given as σ0 = 1 with probability q or σ0 = −1 with
probability 1 − q, and for this work, we choose q = 1/2. In ref
144 it was shown that, in the limit of many steps, this leads to
the long time behavior of the MSD,
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which corresponds to normal diffusion for p < 3/4 and
superdiffusion for p > 3/4 with α = 4p − 2. We generate a data
set containing 10,000 trajectories of length T = 100, uniformly
distributed in α ∈ 1, 1.05, ..., 2.0, where for α = 1 we choose p
< 3/4 randomly. To eliminate peculiarities caused by the
constant step size and to provide sufficiently many steps to
observe long time behavior (eq 15) of the MSD, we only take
every NN = 50th or NN = 200th data point, effectively
generating trajectories of length 5,000 or 200,000 and
shortening them to length 100, plus corrupting them with

Table 2. Performance of ML Models, When Confronted
with Data Corrupted by Dynamic Noise of Different
Strengths, As Characterized by the Exposure Length ne

a

MAE accuracy (%)

dynamic noise, ne DL feature DL feature

1 0.207 0.23 78 71
2 0.221 0.23 69.8 71
5 0.229 0.22 59.3 68
10 0.232 0.22 55.2 65
20 0.235 0.22 53.5 65

aThe case ne = 1 corresponds to no dynamic noise. The table shows
the performance for the DL-based method introduced in ref 110 as
well as a feature-based method utilizing the features introduced in ref
108.

Figure 7. Confusion matrix for dynamic noise with ne = 20 for the DL
model introduced in ref 110. While FBM, ATTM, and SBM show
behavior similar to that of the case without dynamic noise,
identification of CTRW and especially LW is strongly compromised
by dynamic noise.
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white Gaussian noise. The results when confronting the
models with this data set are listed in Table 3. For the DL

model introduced in ref 110 with this data set, we achieved an
MAE of ∼0.246 (for NN = 50). While this is a significant
improvement from the unknown prediction of α ∈ [0.05, 2]
(MAE of ∼0.49), on which the model was trained, it does not
improve much on the performance expected when only
identifying the ERW as superdiffusive with α ∈ [1, 2] (MAE
of ∼0.25). In addition, when considering the uncertainty
predictions that are provided by the method as well, we find
that the predictions learned on different models are of little to
no use when transferred to the ERW. Depicted in Figure 8, we

see that the predicted and observed errors differ significantly. A
possible reason for this can be found by closer inspection of
the predicted anomalous diffusion exponent, which reveals that
an unusually high number of trajectories are predicted at, or
close to, a ballistic motion with α = 2 (31% of trajectories are
predicted with α ≥ 1.9 as compared to 9.5% with a true α ≥
1.9). This might be caused by the ERW�on a single-trajectory
basis in the superdiffusive regime�featuring a drift that gets
eliminated only in the ensemble average. Detecting this drift,
while not specifically being trained to deal with it, might lead
the model to a falsely confident prediction of the ballistic

motion. For the feature-based model in Table 3, we achieved
MAEs of only ∼0.348 and ∼0.318 for NN = 50 and NN = 200,
respectively. For reference, we here also included the results
one can obtain when training the feature-based model on
subsets of the ERW data sets. These indicate what performance
could be expected with appropriately trained models achieving
a MAE of ∼0.318 (for NN = 50) and ∼0.166 (for NN = 200),
thereby significantly improving on the performance of the
models trained on the data sets of the AnDi-Challenge. In
conclusion, we see that while some information can be
extracted, for accurate predictions the machine needs to be
trained on the appropriate model.
It should be noted, however, that classical methods, such as

Bayesian inference, would similarly struggle when applied to a
wrong prior, likely resulting in falsely confident predictions as
well. Likewise, it is known that not considering a specific type
of noise can lead to wrong predictions when using statistical
observables.74 Nevertheless, it is important to stress that ML
does not circumvent the necessity of considering such cases
and should be applied appropriately.

Outlook. The results of the AnDi-Challenge proved the
potential of ML approaches when analyzing anomalous
diffusion data. They come, however, at some price, often
acting as a black box, providing answers without explanation.
This lack of explainability limits their usefulness when applied
to real-world problems and, inter alia, can lead to some
overconfidence in the output results. Building on the AnDi-
Challenge, we here presented two methods that improve the
machine’s explainability.
Extracting a set of statistical features, instead of using the

raw position data, allows us to use easier-to-interpret ML
algorithms. In addition, one can determine the importance of
each feature, further improving interpretability. In a recent
publication, Mangalam et al. proposed multifractal features in
order to improve the classification of anomalous diffusion,145

which will be examined in future publications. As an alternative
to the trade-off brought by feature-based methods, we can
include an uncertainty prediction in the output of deep neural
networks using the Multi-SWAG Bayesian DL method on top
of the ML algorithm, at no cost of accuracy. Apart from the
obvious use of an added reliability estimate, analysis of these
error predictions offers additional insights into the learning
process of the machine. Note that this method could also be
applied to feature-based DL approaches and that similar
techniques for gradient boosting or random forest algorithms
exist.146 Despite these improvements, we showed that these
methods can still be hampered by out-of-distribution test data,
such as noise or models not included in the training data,
possibly leading to overconfident predictions. To judge the
validity of ML outputs and prepare appropriate training data
sets, the analysis of experimental data using statistical methods
remains necessary. Moreover, we emphasize that visual
inspection as well as some intuition about the system will
always present another layer of confidence or caution.
Recent work has shown that sequence-to-sequence models

are appropriate to deal with trajectories changing between
different diffusion models and/or diffusion exponents,147,148 as
was the target of the third task of the AnDi-Challenge.
Extending such models to include error estimates will be the
subject of future work. As an example, we show the results of a
preliminary model, trained on trajectories with a single change
point, in Figure 9. Apart from its use for uncertainty
estimation, the included error output can improve the

Table 3. Performance of ML Models When Confronted with
Data Generated from the Elephant Random Walk (ERW)a

MAE

NN = 50 NN = 200

deep-learning model 0.246 0.264
feature-based model 0.348 0.318
trained on subset of NN = 50 0.196 0.175
trained on subset of NN = 200 0.197 0.166

aThe two cases NN = 50 and NN = 200 correspond to ERW, when
one takes every 50th or 200th data point. The table shows the
accuracy for the DL-based method introduced in ref 110 as well as a
feature-based method utilizing the features introduced in ref 108. For
reference, the table also shows what performance can be achieved
when the feature-based model is trained on a subset of the ERW test
data in the last two rows.

Figure 8. Confidence accuracy diagram obtained when trying to apply
the DL model from ref 110 to the elephant random walk (ERW). We
see a strong deviation between the predicted root-mean variance and
observed root-mean- squared error, indicating that the learning error
prediction from the other models does not translate well to the ERW.
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extraction of change points from the sequence, especially in
cases where the anomalous diffusion exponents before and
after the change point are similar, inhibiting the determination
of change points only by means of the mean predictions.
Similarly to the example of superpositions of diffusion

models used here, in a recent work, Muñoz-Gil et al. applied
unsupervised learning to anomalous diffusion, where different
neural networks are trained to reproduce trajectories generated
from a specific diffusion model for each network. They showed
that the differing performance in reproduction, when applied
to different diffusion models than trained on, can be used to
classify a single, or a superposition of, diffusion model(s).149

On another note, as we saw in Figure 2, predictions on very
short trajectories tend to gravitate toward the center of the
prior distributions. This will limit the usefulness of single-
trajectory analysis when applied to experimental data
consisting of many short trajectories. Exploring the applic-
ability of ML techniques to these kinds of data may provide an
interesting research avenue in the future; see also the approach
in ref 118.
The application of ML, and its comparison to conventional

methods, to trajectory ensembles as well as trajectories with
changing diffusion models will be the subject of the impending
second AnDi-Challenge. In addition, this challenge will include
video tracks of diffusing single particles, without direct access
to the positions of the tracers, thereby serving as an exploration
of noise types different from the simple white Gaussian type,
inherent to the conversion from video tracks to particle
trajectories.
Recent advances in computer vision could open a new track

of research on anomalous diffusion identification. The idea is
quite simple: instead of looking for custom neural network
architectures for identification purposes or preparing a robust
set of features, one could (at least theoretically) turn
trajectories into images and feed them into well-established
pretrained computer vision models that are known to excel in
object recognition. The main difficulty with this approach is
that one cannot simply take a plot of a trajectory as the image,
since in this case the temporal structure of the data is lost.

Hence, one needs image representations of trajectories that
retain the existing spatial and temporal relations.
First approaches utilizing the computer vision approach are

very promising. For instance, Garibo-i-Orts et al.150 used
Gramian angular fields to encode trajectories as images and
two well-established pretrained computer vision models
(ResNet and MobileNet) for both classification of diffusion
types and inference of the anomalous diffusion exponent α.
Their results for short trajectories already outperform the state-
of-the-art-methods. Markov transition fields151 or recurrence
plots152 are other candidates for trajectory imaging methods
that could potentially improve the performance of the
classifiers. One of the benefits of the computer vision approach
is that it allows one to use pretrained models, which are
available in popular DL libraries like, for instance, Keras. In
other words, it makes the analysis accessible to researchers
lacking an extensive background in ML.
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(112) Muñoz-Gil, G.; Requena, B.; Volpe, G.; Garcia-March, M. A.;
Manzo, C. AnDiChallenge/ANDI_datasets: Challenge 2020 release
(v.1.0), DOI: 10.5281/zenodo.4775311.
(113) Krog, J.; Jacobsen, L. H.; Lund, F. W.; Wüstner, D.; Lomholt,
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