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Abstract
We introduce the stochastic process of incremental multifractional Brownian
motion (IMFBM), which locally behaves like fractional Brownian motion
with a given local Hurst exponent and diffusivity. When these parameters
change as function of time the process responds to the evolution gradually:
only new increments are governed by the new parameters, while still retain-
ing a power-law dependence on the past of the process. We obtain the mean
squared displacement and correlations of IMFBMwhich are given by element-
ary formulas. We also provide a comparison with simulations and introduce
estimation methods for IMFBM. This mathematically simple process is useful
in the description of anomalous diffusion dynamics in changing environments,
e.g. in viscoelastic systems, or when an actively moving particle changes its
degree of persistence or its mobility.
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1. Introduction and background

The modern study of diffusive processes started at the beginning of the 20th century when
Albert Einstein [1], Marian Smoluchowski [2], William Sutherland [3], and Paul Langevin [4]
proposed the physical theory of Brownian motions (later formalized by Norbert Wiener [5]),
laying the foundations for what is now the theory of stochastic processes and nonequilibrium
statistical physics [6–9]. Brownian motion is characterized by a linear mean squared displace-
ment (MSD) and a Gaussian probability density function (PDF) [10, 11]. While single particle
tracking already was well established in the early experiments of Perrin [12] and Nordlund
[13], with modern microscopic techniques the stochastic motion of microscopic particles or
even single molecules can now be routinely recorded in complex environments such as living
biological cells [14]. Single trajectories are also measured for moving cells, small organism, or
even large animals, among many other applications [14–20]. Such experiments demonstrate
that in many complex systems the MSD is no longer linear in time but follows the power-
law form ⟨X2(t)⟩ ∝ t2H, where the Hurst exponentH distinguishes subdiffusion (0< H< 1/2)
from superdiffusion (1/2< H< 1) [21].

A widely used generalization of the Einstein–Smoluchowski–Langevin theory of Brownian
motion is fractional Brownian motion (FBM) BH(t), the only stochastic process which is
Gaussian and exhibits power-law memory between its increments4⟨

dBH(s)
ds

dBH(t)
dt

⟩
= DCH|t− s|2H−2, CH ≡ H(2H− 1). (1)

Here the parameter D is the (generalized) diffusion coefficient. Integrating over this formula
twice shows that the MSD has the power-law form ⟨BH(t)2⟩= Dt2H. In this context the coef-
ficient D can be interpreted as the scale of the process for a given anomalous diffusion expo-
nent 2H. A process closely related to FBM was originally proposed by Kolmogorov [23], and
FBM was widely popularized by Benoît Mandelbrot and John van Ness in their seminal paper
[24, 25]. Mandelbrot and van Ness were in fact inspired not by diffusion, but Harold Hurst’s
studies of water flows [26], economic cycles, and fractional 1/fα noises. In line with their
interdisciplinary approach, contemporary applications of FBM span very diverse fields, from
broadband network traffic [27] to the structure of star clusters [28], and financial market
dynamics [29]. Characteristics of subdiffusive FBM were, i.a., observed for the motion of
submicron tracers in soft and bio matter [30–36]. Superdiffusive motion consistent with FBM
was observed in actively driven motion in biological cells [37, 38] and in movement ecology
[15, 39]. We note that non-Gaussian forms of FBM measured, e.g. in biological cells [40–42],
may arise from FBM with randomly fluctuating diffusion coefficient [43–46].

The cases of subdiffusion (0< H< 1/2) and superdiffusion (1/2< H< 1) have differ-
ing physical interpretations and are only rarely observed together [36, 47]. For 0< H< 1/2
the process exhibits negative memory (see equation (1)), a property referred to as antiper-
sistence. The negative dependence between increments and the covariance integrates to zero,´∞
−∞ ⟨ dBH(s)ds

dBH(s+t)
dt ⟩dt= 0. For 1/2< H< 1 the positive dependence between increments

4 For H ⩽ 1/2 this expression has a strong singularity at t− s= w→ 0 which should be carefully accounted for. In
integrals it is interpreted as d

dw
(H|w|2H−1sgn w) [22], similarly to equation (3) below.
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causes the memory to be persistent, featuring a non-integrable tail of the covariance func-
tion, such that

´∞
1 ⟨ dBH(s)ds

dBH(s+t)
dt ⟩dt=∞ [48]. It is worth adding that FBM is also used as a

noise in generalized Langevin equations [49–51].
Definition (1), while uniquely determining FBM and separating it from other anomalous

diffusion models, such as non-Gaussian subdiffusive random walks [21], does not provide an
explicit construction of the FBM process. This can be achieved with one of the few equivalent
integral representations. The Fourier representation, equivalently for the increments and the
process itself, reads5

dBH(t) =

√
D

γH

∞̂

−∞

iωeiωt

|ω|H+1/2
dt dZ(ω) and BH(t) =

√
D

γH

∞̂

−∞

eiωt− 1
|ω|H+1/2

dZ(ω) (2)

with the rescaling constant γH ≡
√
2π(sin(πH)Γ(2H+ 1))−1/2. This representation has the

advantage of emphasizing that FBM is a model for a system at statistical equilibrium. Indeed,
shifting time by some t0 only multiplies the integrand on the left by the complex phase
exp(it0ω) which leads to the same (real valued) PDF due to Gaussian distribution isotropy
of the dZ. It also directly demonstrates that FBM is a 1/fα process with power spectral density
|ω|1/2−H. Another representation of FBM is the integral

´ t
−∞

(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
dBs

with (t)+ ≡max(t,0); for more details see [52].
The strong symmetries of FBM make its Hurst index the unifying parameter governing

both its short and long time properties. This fact restricts some of its applications—crucially
for us it makes it impossible to describe an increasing number of regime-switching anomalous
diffusion systems in which the anomalous diffusion exponent and the diffusivity change as
functions of time. Examples for such phenomena include the motion of a tracer in the chan-
ging viscoelastic environment of cells during their cycle [53] or in viscoelastic solutions under
pressure and/or concentration changes [54, 55], in actin gels with changing mesh size [56],
the motion of lipid molecules in cooling bilayer membranes [35], passive and active intracel-
lular movement after treatment with chemicals [37, 57], or intra- and inter-daily variations in
the movement dynamics of larger animals [58]. Quite abrupt changes of H and/or D may be
effected by binding to larger objects or surfaces [41, 59] or multimerization [59, 60] of the
tracer.

In order to overcome the limitations of FBM, multifractional Brownian motion (MFBM)
models were created, initiallymotivated by terrainmodeling [61]. A process is considered to be
an MFBM if it resembles FBM locally, i.e. its increments dX(t) resemble increments of FBM
dBH with local parameters, a property called local self similarity [62]. This definition does not
specify any global features of the process, such as the dependence between different dX(s)
and dX(t)—these can vary from model to model. Benassi, Roux and Jaffard proposed an espe-
cially useful MFBM defined by substituting H→Ht into the right hand side of the integral in
equation (2) [63]. The simple mathematical form of the Fourier transform allowed Ayache et al
to calculate the exact distribution of this model, a clear advantage for practical applications;
in particular it has MSD Dt2Ht [64]. For information about other MFBM variants see, e.g. the

5 Mathematically interpreted as the stochastic integral over complex-valued white Gaussian noise dZ(ω).
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2006 review by Stoev and Taqqu [65]. Recently, a memory MFBM (MMFBM) model was
proposed in order to describe viscoelastic or persistent anomalous diffusion with physically
meaningful persistence of correlations [66]. Another very closely related class of processes are
linear time series models with fractionally integrated noises (ARFIMA) and time dependent
coefficients [67]. Inter alia MFBMs found applications in finance, where it is natural to expect
a time-dependence of the market dynamics [68–71], and also network traffic [72], geometry
of mountain ranges [73] or atmospheric turbulence [74], as well as heterogeneous diffusion
[45]. Statistical methods for analyzing MFBM models include wavelet decomposition [75],
covariance and MSD analysis and testing [76], or neural networks [77].

In the standard MFBM models the history of the Hurst exponent Hs,s< t does not affect
future observed displacements, only the local value ofHt matters. This feature does not affect
the above-mentioned applications of MFBMs as they are mostly concerned with the local
roughness of the observed data, not its global moments and correlations. This ‘amnesia’ of the
Hurst exponent is also the reason behind MFBMs’ simple mathematical structure. However,
it is not a desirable property for modeling diffusion in complex media where an evolving Ht

should reflect the physical changes in the environment which determine the further evolution of
the process due to the inherent long-range memory. The forgetfulness of MFBMs also forces
the trajectories to ‘bend’ to an evolving Ht: Rapid changes of Ht lead to rapid, jump-like
changes of the trajectory X(t). In physical and biological contexts we would rather expect
that—in the same manner as for the diffusivity—changes of H (even rapid) should lead to a
gradual response to a new environment due to the governing long-range memory structure.

In the following we introduce and state the fundamental properties of a minimal model for
FBM with a time-evolving Hurst exponent in section 2. We then present concrete results for a
step-wise change of the Hurst exponent and the diffusion coefficient in section 3. Finally we
discuss our results in a broader context in section 4. Simulation and estimation methods for
the model are shown in the supplementary material.

2. Definition of the minimal model

In our approach to establish a minimal model to resolve the question of how we can model
anomalous diffusion of the FBM type with long-range correlations and time-evolving transport
coefficients H and D we want to preserve the simple mathematical structure of the existing
MFBMmodels but modify this structure such that it does not directly affect the position of the
particle but reflects the gradual influence on the particle dynamics following environmental
changes as mediated by the memory structure of FBM. To this end we consider an FBM-type
diffusion for which the change in the environment leads to changes of the Hurst exponent and
diffusion coefficient. It is then physically more natural to assume that this will not cause the
whole trajectory to ‘switch’ to a new H, but only affect the new increments after the change.
In different words, changes of H should lead to direct changes of the increments and to only
indirect changes of the position.

The simplest way of fulfilling this requirement is to modify the memory structure of
FBM to ⟨

dBH(s)
ds

dBH(t)
dt

⟩
=
√
DsDtCHs,Ht |t− s|Hs+Ht−2, (3)

4
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Figure 1. Comparison of three trajectories, which represent normal Brownian motion
until t= 5 and then switch to subdiffusion, superdiffusion, or stay Brownian. The tra-
jectories are based on the same realization of the stochastic noise. We see how a low
H (<1/2) introduces antipersistence by amplifying the periods in which the trajectory
turns back and, conversely, how high H (>1/2) introduces a persistence by amplifying
excursions in the same direction. The right panel shows a zoom into the part of the tra-
jectory right after the switching of H. The simulations were performed using our intro-
duced model with time changing H, the procedure is explained in the supplementary
material.

where the rescaling constant CHs,Ht (CH,H = CH) is to be determined at the end of this section.
We also require the process to be Gaussian, as is FBM. Thus, the process (3) is uniquely
determined, as there is only one Gaussian variable with a given covariance (and zero mean).
The resulting dynamic has a Hurst index defined by the arithmetic mean H→ (Hs+Ht)/2
and a diffusion coefficient given by the geometric mean D→

√
DsDt. For any period with

constant parameters Ht = H and Dt = D this process clearly reduces to a standard FBM, and
thus this process belongs to the broad class of MFBMs. As it is defined through its increments
we will call it incremental MFBM (IMFBM). We demonstrate how a changing Hurst exponent
affects IMFBM trajectories in figure 1. We note that the trajectory of MBFM would lead to a
discontinuity at the point where H is changing.

Equation (3) completely determines the memory structure of IMFBM. The quantity
⟨dBH(s)dBH(t)⟩ can be interpreted as a response function r= r(s, t), that determines to which
extent any past infinitesimal change dBH(s) influences linearly the current change dBH(t):
the feedback is negative, i.e. r< 0, for Hs+Ht < 1 and positive (r> 0) for Hs+Ht > 1. A
heavy, non-integrable tail of r is present when Hs+Ht > 1.

Assuming we start our observation at 0, BH(0) = 0, the MSD of IMFBM can be obtained
from the integral6

⟨BH(t)2⟩=

⟨(ˆ t

0
dBH(s)

)2
⟩

=

ˆ t

0

ˆ t

0
⟨dBH(s1)dBH(s2)⟩, (4)

where the integrand is given by relation (3). Analogously, to obtain the full covariance
⟨BH(s)BH(t)⟩ only the limits of the integrals are changed to

´ s
0

´ t
0 . Note that the result does

6 This formulation is connected to Riemman Liouville FBM as originally formulated by Lévy [24, 78].
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Figure 2. Trajectory of IMFBM for which the Hurst exponent decreases linearly from
1 to 0 (left panel) or increases linearly from 0 to 1 (right panel). The grey areas show
boxes with fixed size ϵ, which cover the trajectory. The more irregular the trajectory is
locally, the more it ‘covers’ the space. In the limit ϵ→ 0 the number of required boxes
locally increases proportionally to the fractal dimension, ϵ−(2−Ht) [82].

not depend on the past of Ht,Dt, t< 0. If the evolution of the system initiated at some
t0 < 0 and we started observing it at time t= 0 the measured displacements BH(t)−BH(0)
would be the same as in (4). This is a practical feature based on the stationarity, ingrained
in (3), of the underlying displacements, due to which IMFBM depends only on observed
quantities.

From equation (4) it is also apparent that in the special case Ht = H= const. and Dt ̸=
const. the process reduces to

BH(t) =
ˆ t

0

√
DsdBH(s), (5)

which is a natural choice of extending FBM to incorporate a time-varying diffusivity [66].
When Ht = 1/2 this integral reduces to scaled Brownian motion, a widely used Markovian
model of diffusion with time-evolving diffusivity [79, 80].

The above example shows that the choice of time changing diffusivityD→
√
DsDt appears

quite natural. The second part of the IMFBM definition, the choice of H→ (Hs+Ht)/2
can be interpreted as imposing a linear dependence on the Hurst exponent history. The
current increment dBH is correlated with a past increment with a weight proportional to
|t− s|Hsds. This relation is linear only for substitutions of the form H→ λHs+(1−λ)Ht

with 0⩽ λ⩽ 1. Giving equal weight to past and present, λ= 1/2, appears as a reasonable
default choice. It also makes sure that trajectories of IMFBM (analogously to other MFBMs)
locally resemble FBM with parameters Dt,Ht, thus preserving the local roughness of the tra-
jectory: for smooth changes ofH andD it has local fractal dimension 2−Ht,7 as illustrated in
figure 2.

Returning to equation (3), we note that similar to (1) for FBM, it does not provide a rep-
resentation (a direct construction) of the process. In fact, without such a representation, one
cannot even be sure that such a process exists mathematically. Due to its elegant mathematical

7 It fulfils the conditions for a fractal dimension given in [81].
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Figure 3. Spectral densities calculated from a window of 1000 differentiated IMFBM
trajectory realizations with a single change of parameters from H1 = 0.3,D1 = 1 to
H2 = 0.7,D2 = 16 (see also section 3). In the Left panel the window is fully in the range
of H1 = 0.3 and the power law spectrum agrees with the one of classical FBM. In the
Right panel, analogously, we see the same for a window fully in the range of H2 = 0.7.
In the Centre panel we observe amixed spectrumwhich on the left side ismostly affected
by the subdiffusive H1 = 0.3 and on the right by the superdiffusive H2 = 0.7.

form the Fourier definition (2) of FBM turns out to be useful here, as well.We simply substitute
D→Dt and H→Ht into the left integral in (2) and get8

dBH(t)≡
√
Dt

γHt

∞̂

−∞

iωeiωt

|ω|Ht+1/2
dt dZ(ω). (6)

By construction, this representation makes sure that the process is Gaussian, as a combina-
tion of Gaussian increments dZ(ω). For Ht,Dt ̸= const. the process is non-ergodic and non-
stationary. Its increments belong to the class of evolutionary spectra processes [83] with power-
law time dependent spectrum sgn(ω)|ω|1−2Ht , see figure 3. This power-law distribution of the
probability mass over frequencies determines the local fractal properties of the process, which
are locally like those of regular FBM.

It follows from the linearity of the Fourier transform that the covariance of IFBM
fits our requirement (3); essentially this process has the two-point Fourier amplitude ∝√
DsDt|ω|1−Hs−Ht and it enforces (3). Using relation (6) we can determine the rescaling

coefficient CHs,Ht : this can be achieved using integral tables from which we find CHs,Ht =
cHs,HtC(Hs+Ht)/2 with cHs,Ht ≡ γ2

(Hs+Ht)/2
/(γHsγHt). For periods of constant H, cH,H =

1,CH,H = CH; otherwise the ratio c weakens the dependence by a factor increasing with the
difference betweenH values which accounts for the varying local amplitudes of different tra-
jectory segments.

3. Stepwise changes of Hurst exponent and diffusion coefficient

The simplest—and essential—practical example for an evolving H concerns the switching
between one distinct type of environment to another, and for which we can neglect the influ-
ence of short transition periods. In the model we then have that Ht,Dt reduce to step func-
tions with values (H1,D1), (H2,D2), etc at fixed intervals. As in any of the intervals with
constant Ht,Dt the increments of IMFBM are—in isolation—equivalent to FBM increments,

8 The process here is understood as a random generalized function, i.e. this definition uniquely determines all integrals´
ϕ(t)dBH(t) for bounded ϕ with bounded support.
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the corresponding pieces of trajectory are identical to segments of FBM with corresponding
parametersHj,Dj. If such a segment were measured without the rest of the trajectory the incre-
ments would be indistinguishable from those of normal FBM. Any statistical property, based
on ensemble-averages, time-averages, or both, will be the same. When multiple such segments
are experimentally observed, the IMFBM model provides additional information about their
codependence on the level of the position. Namely, any two trajectory segments depend on
each other through their compound Hurst exponents and diffusivities, (Hj+Hj+1)/2 and dif-
fusivity cHj,Hj+1

√
DjDj+1. Additionally, the full memory structure of a trajectory BH for any

number of transitions can be expressed by the direct formula obtained from the covariance
integral (4), see equation (S3).

To better understand the behavior of this model let us consider a simple concrete case cru-
cial for many applications. A single transition between two pairs of values (Hi,Di) at time τ
corresponds to the protocol

Ht =

{
H1, t⩽ τ,

H2, t> τ,
Dt =

{
D1, t⩽ τ,

D2, t> τ.
(7)

The associated MSD reads

⟨BH(t)2⟩=


D1t2H1 , t⩽ τ,

D2(t− τ)2H2 +D1τ
2H1

+cH1,H2

√
D1D2

(
tH1+H2 − (t− τ)H1+H2 − τH1+H2

)
, t> τ.

(8)

The cross term for t> τ has the asymptotic ∼ (H1 +H2)τcH1,H2

√
D1D2tH1+H2−1. Thus, as

expected, the MSD is dominated by H2 at long times, ⟨BH(t)2⟩ ∼ D2t2H2 , t→∞. When H1 +
H2 < 1 the cross term disappears completely at long times. In the opposite regime H1 +H2 >
1 its remaining presence is indicative of the long memory in the system. Shortly after the
transition at, t= τ + δ with δ→ 0, the asymptotic expansion of the MSD reads

⟨BH(t)2⟩ ∼ D1τ
2H1 +D2δ

2H2 +(H1 +H2)cH1,H2

√
D1D2τ

H1+H2−1δ− cH1,H2

√
D1D2δ

H1+H2 .

(9)

Among the three terms depending on δ the one with the smallest exponent dominates at δ→ 0.
Interestingly, in the case of weakening subdiffusionH1 +H2 < 1,H1 < H2, or subdiffusion

with decreasing diffusivity H1 = H2 < 1/2, D2 < D1, after the transition at τ the MSD locally
decreases. This may at first be seen as a paradox, taking into account that displacements after
time τ do increase, ⟨(BH(t+ τ)−BH(τ))2⟩= D2t2H2 . However, a similar behavior can also
be observed for other models with time-dependent antipersistence and is caused by the fact
that locally antipersistence dominates persistence, t2H1 ≪ t2H2 for H2 < H1, t→ 0. Thus, the
tendency to reverse the progression wins until a new piece of trajectory accumulates sufficient
weight. The same effect occurs for decreasing D as then new increments have less weight due
to their smaller amplitudes. Different examples of Hurst exponent transitions are shown in
figure 4.

8
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Figure 4. Illustration of different types of transitions at t= 1: (a) subdiffusion to nor-
mal diffusion, (b) normal to subdiffusion, (c) subdiffusion to subdiffusion with different
diffusivity, (d) superdiffusion to normal diffusion, (e) normal diffusion to superdiffu-
sion, and (f) superdiffusion to superdiffusion with different diffusivity. The MSDs in
the main plots were estimated using 103 trajectories. In order to visualize details of the
motion, in the inset plots with larger samples of 105 were used.

4. Discussion

The subject of anomalous diffusion is sometimes called a ‘jungle’ of models which alludes
to the richness and variety of mathematical tools it offers but also to common difficulties in
deciphering the ones best suited to a given system. New methods of describing transient dif-
fusion phenomena introduce additional time dependencies of the transport parameters which
adds yet another layer to the already complex modeling problem. This is why it is crucial to
have at disposal models as simple as possible, and which preserve as much as possible from
the elegant symmetries of anomalous diffusion processes—this is what made them useful in
the first place.

9
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Table 1. Comparison of typical already established MFBM models and IMFBM for
one change of Hurst exponent at time τ . In the line for MSD H∗ ≡min{H2,1/2,(H1 +
H2)/2} and constant D∗ can be read from the full formula (8). Note that for different
variants of MFBM the exact behavior in the left column my differ, the features given
are typical, see [65].

Classical MFBMs IMFBM

Dependence Long memory Long memory

Fractal dimension

{
2−H1, t< τ

2−H2, t> τ

{
2−H1, t< τ

2−H2, t> τ

MSD

{
Dt2H1 , t⩽ τ

Dt2H2 , t> τ

{
D1t

2H1 , t⩽ τ

∼ D1τ
2H1 +D∗(t− τ)2H∗ , t> τ

Trajectories Discontinuous at τ Continuous

What is presented here is an attempt at introducing a time dependence into FBM while
keeping its memory structure as simple as possible. Such processes—MFBMs—have already
been developed but they were not widely used for describing diffusion phenomena and existing
models do not have probabilistic features which we would expect from those for physical and
biological systems. The introduced IMFBM models a particle diffusing in a complex envir-
onment for which conditions change in time and after the transition new displacements are
governed by new diffusivity and new Hurst exponent while also keeping the memory of its
history before the transition; see table 1 for a comparison between classical MFBM models
and IFBM. It has two central features: the geometric averaging of diffusivities and arithmetic
averaging of Hurst exponents (see (3)) which are fully experimentally verifiable and distin-
guish it from other MFBM models.

IMFBM is a generalization of both FBM and scaled Brownian motion used to model diffu-
sionwith changing diffusivity. The transitions ofH andD can be both smooth or discontinuous.
It is Gaussian. The associatedMSD and covariance can always be expressed as integrals which
for the crucial case of step function protocols forH andD reduce to elementary functions. The
local fractal dimension of the IMFBM trajectories is 2−Ht.

Mathematical models such as IMFBM are indispensable in creating objective tools to
determine the best combination of stochastic models and their parameters given measured
data. They are becoming increasingly important with the fast growing numbers of increas-
ingly refined experiments in complex systems. Some of the existing solutions are provided,
e.g. by Bayesian analyzes [84, 85] or the machine learning apparatus [20, 86–88]. We provide
a guide towards statistical estimation of the transport parameters in our IMFBM model in the
supplementary material.

The IMFBM process can be used to model the data directly but we also see a potential
value in using it to construct more sophisticated tools. In many systems the evolution of H
and D should be considered to be random itself. This is an example of a doubly stochastic
modeling approach which is straightforward to introduce into anomalous diffusion studies
using IMFBM. Another classical and indispensable tool in stochastic modeling are Langevin
equations which are a class of stochastic differential equations suited to describe the diffusion
phenomena. It seems very natural to use IMFBM as a noise in those equations which would
then allow us to study the stochastic motion in the presence of an external potential and which
fulfils local fluctuation–dissipation relations.
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