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Abstract

We propose to use a hybridizable discontinuous Galerkin (HDG) method combined with
the continuous Galerkin (CG) method to approximate Maxwell’s equations. We make two
contributions in this paper. First, even though there are many papers using HDG methods
to approximate Maxwell’s equations, to our knowledge they all assume that the coefficients
are smooth (or constant). Here, we derive optimal convergence estimates for our HDG-CG
approximation when the electromagnetic coefficients are piecewise W', This requires new
techniques of analysis. Second, we use CG elements to approximate the Lagrange multiplier
used to enforce the divergence condition and we obtain a discrete system in which we can
decouple the discrete Lagrange multiplier. Because we are using a continuous Lagrange
multiplier space, the number of degrees of freedom devoted to this are less than for other
HDG methods. We present numerical experiments to confirm our theoretical results.

Keywords Hybridizable discontinuous Galerkin (HDG) method - Maxwell’s equations -
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1 Introduction

Maxwell’s equations govern the propagation of electromagnetic waves and have wide appli-
cations in science and technology; such as in the aerospace industry, telecommunications,
medicine, and biology. Hence, a large number of computational techniques have been devel-
oped for solving Maxwell’s equations, including finite difference methods, integral equation
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methods and finite element methods. Amongst these techniques, the finite element method
is a popular technique for the solution of time-harmonic electromagnetic problems due to its
ability to handle complex geometries and inhomogeneous materials.

The model problem we shall analyze is as follows. Let & C R3 be a simply connected
Lipschitz polyhedral domain with connected boundary 9€2, we consider the indefinite time-
harmonic Maxwell equations with a perfectly conducting boundary: find (u, p) that satisfies

Vx (u'Vxu)—’eut+&Vp=f in Q, (1a)
V.(eu)=p in 2, (1b)

nxu=>0 on 92, (1c)

p=0 on 0L2. (1d)

Here w, and €, are the relative magnetic permeability and the relative electric permittivity,
which may be complex valued (and the overbar denotes complex conjugation). In addition
f = ikeoj, where j is the given current density and €q is the permittivity of vacuum, and
k > 0 is the wave number. The function p denotes the charge density. We note that the
topological assumptions can be relaxed [27], but we choose the simplest setting here.

The Lagrange multiplier p is present to stabilize the problem by allowing the explicit
imposition of the divergence constraint (1b), and is important in order to stabilize low fre-
quency (small «) problems [14] including the special case k = 0 which corresponds to an
electrostatic field. In electromagnetism, the function f and p are not independent, because
conservation of charge requires that V - f + «2p = 0, so that the exact solution p = 0. To
simplify the presentation, shall assume that o = 0 in the remainder of the paper.

Among finite element methods, curl-conforming elements (i.e. in H (curl; 2)) have been
widely studied, see for example [22, 2629, 34]. These are often referred to as edge elements,
and are known to eliminate the problem of spurious modes which may arise when standard
finite elements are used to discretize Maxwell’s equations [4]. Low-order edge elements
are often used for problems in electromagnetics because they can be easily implemented,
however, the use of low-order edge elements often leads to a discrete linear system with
a large number of unknowns, especially for electromagnetic problems at high frequencies
(large k). As aresult, high-order edge elements have been developed [1, 2, 14] and shown to be
more effective than low-order edge elements. However, high-order edge elements introduce
extra degrees of freedom in the interior of the elements which increase dramatically with
the order of approximation. Typically, these interior degrees of freedom can be eliminated
by using a procedure known as static condensation [24]. However, the implementation of
high order edge element methods is complicated. Hence, non-conforming methods provide
an interesting alternative for this kind of problem and may also be attractive for nonlinear
problems.

Interior penalty discontinuous Galerkin (DG) methods have also been used to approximate
the solution of the Maxwell’s equations for some time. The first DG method for solving
Maxwell’s equations with high frequency was analyzed in [31] and much improved in [23].
In [20, 21], the local discontinuous Galerkin (LDG) method with high-order nodal elements is
used to solve Maxwell’s equations. From these studies we see that DG methods have several
distinct advantages including their capabilities to handle complex geometries, to provide
high-order accurate solutions, to perform hp adaptivity, and to retain excellent scalability.
However, many existing DG methods are known to be computationally expensive because
they have too many degrees of freedom due to nodal duplication on element boundaries.
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In part to improve computational efficiency, Hybridizable discontinuous Galerkin (HDG)
methods were proposed by Cockburn et al. in [13]. HDG methods are based on a mixed
formulation and utilize a numerical flux and a numerical trace to approximate the flux and
the trace of the solution. The volume based approximate flux and solution variables can be
eliminated by element-by-element condensation. This process leads to a global equation for
the approximate boundary traces only. As a result, HDG methods have significantly less
globally coupled unknowns, a smaller memory requirement, and lower computational cost
compared to other DG methods. HDG methods were first applied to Maxwell’s equations in
[30] but without an error analysis. Later on, an error analysis was provided in [9, 10, 15] for
zero frequency and in [19, 25] for impedance boundary conditions and non-zero wave number.
In a very recent paper [8], we used the concept of an M-decomposition, which was proposed
by Cockburn et al in [12] for elliptic PDEs to analyze HDG schemes for Maxwell’s equations
in two dimensions. This analysis provides conditions on the HDG spaces to obtain optimal
convergence, and superconvergence of some variables. The extension of this approach to 3D
is challenging, and remains to be done. It is worthwhile to mention that all the above works
only considered smooth (or even constant) coefficients.

When the material through which the waves propagate is heterogeneous, the functions
iy and €, are non constant, and have jumps between materials of different type. In such a
situation, the modest regularity pickup of the exact solution in the scale of Sobolev spaces
is typically lower than 1/2 and can be arbitrarily close to 0; see [3, Theorem 5.1]. To the
best of our knowledge, all the previously mentioned HDG methods have not been proved
to converge for nonsmooth coefficients because the standard analysis uses the solution of
a dual problem that must have a sufficiently regular solution to allow for approximation
using appropriate interpolation operators. When the coefficients are piecewise smooth, the
appropriate regularity estimates are not available. Thus even if the true solution is smooth, the
error analysis cannot currently be carried out using the methods considered in the previously
mentioned papers. The main novelty of this paper is to prove convergence of our HDG method
under realistic assumptions on the coefficients and low regularity for the solution of the adjoint
problem. In particular, we follow the main idea in [18] to construct a stable and commuting
quasi-interpolation operator, and then adapt the techniques in [5] (developed to analyze
standard DG methods) to approximate equation (1) using HDG under weak assumptions on
the coefficients, see Assumptions 1.

Furthermore, if we take g € HOl (2) and integrate (la) multiplied by Vg we obtain
&Vp,Vg)»2 @ = (f.Va);2 © giving an independent system for p (uner the assumption
p = 0). Unfortunately, such a decomposition does not hold for the discrete system found
in all the above mentioned HDG methods. A second novel contribution of this paper is to
mix the use of HDG spaces for u and a continuous Galerkin (CG) space for p. Our method,
which we term HDG-CG, retains the flexibility of HDG for the desired field u, but uses a
smaller space for p which is usually easy to approximate (and for which designing hp-spaces
is much easier than for edge elements). Then the system of the Lagrange multiplier p is SPD
and can be solved very efficiently by MG or AMG. In other words, it is good for designing
a block preconditioner and therefore, it is good for solving the whole system.

The outline of the paper is as follows. In Sect. 2, we recall the well-posedness and regularity
of solutions of the Maxwell equations (1). In Sect. 3, we set some notation and give the HDG
formulation of (1). The error analysis is given in Sect. 4, where we obtain optimal convergence
rate for the electric field # and V x u. Numerical experiments are provided to illustrate our
theoretical results in (5).
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2 Well-Posedness and Regularity of Maxwell’s Equations

In this section, we first set some notation which will be used through this paper. Second,
we discuss the well-posedness and regularity of Maxwell’s equations (1). Next, we give the
continuous inf-sup condition of the mixed form of (1) since we will use it later in our analysis
of the HDG-CG method for approximating (1).

For any bounded domain A C R3, let H" (A) denote the usual m'"-order Sobolev space
of vector functions on A, and || - |2, A, | - |m.A denote the corresponding norm and semi-norm.
We use (-, -)5 to denote the complex inner product on L%(A). Similarly, for the boundary
dA of A, we use (-, -)ya to denote the L? inner product on d A. We define

H(curl; A) == {u € L>(A) : V x u € L*(A)},
Ho(curl; A) :={u € H(curl; A) :n x u =0on dA},
H(div; A) :={u € L*(A) : V -u € L*(A)},
Hdiv) : A) == {u € L*(A) : V - (;u) = 0},
where n is the unit outward normal vector on d A.
In this paper, we allow the coefficients u, and €, of the Maxwell’s equations (1) to be

non-smooth. More precisely, we assume the following: The domain 2 can be decomposed

into N subdomains denoted 2;, j = 1,2..., N such that Q= UZI-V:] S_2j, Q;NQ; =ydif

i # j,and each subdomain Q2;, j =1,2..., N, is connected and has a Lipschitz boundary.
Moreover,

Assumption 1 (A) wu,, ¢ € W§’°°(sz) = {v € L®(Q); V(lg,) € L®(Q), i =
1,2..., N}
(B) There exist constants jt,, €, > 0 such that Re (u,) > i, and Re (¢,) > €, a.e. in Q.

We don’t require any positivity on the imaginary part of the coefficients in the Assumption
(B) although generally J(e,) > 0.

2.1 Regularity Results for Maxwell’s Equations

To investigate the regularity of the Maxwell’s equations (1), one needs to characterize the
space Hq(curl; ), H (divgr; Q) and L%(Q). The next three lemmas give several properties
of these spaces, and the proofs of these lemmas can be found in [22].

Lemma 2.1 ([22, Lemma 4.2 |) There exists so > 0 such Hg(curl; ) N H(divgr; Q) is
continuously embedded in H* (2) for all s < sy, i.e., the following estimate holds

el = € (Il 2y + 1V x ull 2 ) -

Lemma 2.2 ([22, Corollary 4.3]) The embedding Ho(curl; 2) N H(divgr; Q) — L*(Q) is
compact.

Lemma 2.3 ([22, Poincaré-Friedrichs-type inequality, Corollary 4.4]) There is a constant
C > 0 depending on 2 only, such that for any u € Hy(curl; ) N H(divgr; Q), we have

||”||L2(Q) <C|V x u||L2(Q)~
The rigorous proof of the next theorem giving the regularity of solutions of (1) is based

on [3, Theorem 5.1 ] and the details can be found in the arXiv preprint of this paper [7].
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Theorem 2.4 Suppose that . and €, satisfy Assumptions 1 and that k*> > 0 is not an
eigenvalue of the problem of finding w € H(curl; ), w # 0, such that

V x (171 x w) = ke w. )
Then (1) has a unique solution u € H(curl; Q) and there exists s > O such that
lullas @ + IV x ullgs @) = Clfll2gq),

where the constant C depends on s, Q, |y, €, and k.

We test (1a) with Vg (g € HOl (£2)) and use the usual regularity result for a second order
elliptic problem to get the following result (recall we assume p = 0).

Corollary 2.5 If u, and €, satisfy the Assumption 1, f € H(div; Q). Then there is sy > 0
such that for 0 < s < so, (1) has a unique solution p € Hol (2). Moreover, the following
regularity result holds,

Pl s @) < CIV - fllzzg), 3)
where the constant C depends on s, Q2 and €,.
2.2 Mixed Formulation of Maxwell’s Equations
To give our HDG formulation for Maxwell’s equations, we need to rewrite them into a mixed

form. This is rather standard, and we introduce a variable g which is just the scaled magnetic
field in electromagnetism. Let ¢ = ,ur’l V X u in (1) to get the following mixed form

urq—Vxu=0 in €, (4a)
Vxq—«lequ+&Vp=f in , (4b)
V. .(u)=0 in , (4¢)

nxu=>0 on 02, (4d)

p=0 on 082. (4e)

Then the mixed weak form of (4) is given as follows: find (¢, u, p) € L%(Q) x Ho(curl; Q) x
Hg () such that

(1rq, r)LZ(Q) —(Vxu, r)LZ(Q) =0, (5a)
(g, V x v)LZ(Q) - (Kzeruv v)LZ(Q) +(Vp, erv)LZ(Q) =(f, v)LZ(Q)v (5b)
(eru, Ve = 0 (5¢)

for all (r, v, x) € L*(Q) x Ho(curl; Q) x HJ ().
To shorten lengthy equations, forall (¢, u, p), (r, v, x) € L2(§2)xHo(curl; Q) XH& (2),
we define the sesquilinear form B~ by
B (q,u, p;r,v, x)
= (/’quvr)LZ(Q) —(V x uvr)LZ(Q) +(q,V x U)LZ(Q) (6)

+ E VP, v) 2 — (€1, Vi) 20 — (KP€ru, v) 2.
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By the definition of B~ in (6), we can write the mixed weak form of (5) as follows: find
(q.u, p) € L*(Q) x Ho(curl; Q) x H} () such that

B (q,u,p;r,v, x) = (f, U)LZ(Q) 7

for all (r, v, x) € L*(Q) x Ho(curl; Q) x HJ ().
Next, for all (q, u, p) € H(curl; Q) x Ho(curl; Q) x HO1 (2), we define the semi-norm
lII-1ll by

(g, w. I = IVRe (ur) qlI72 g, + IVRe (1) ull2 g
IV xulys g + VR () VpliTs ).

where ., and €, satisfy Assumption 1 and ¥ > 0. It is easy to prove that the semi-norm |||-|
is actually a norm.

®

Lemma 2.6 |||-||| defines a norm on the space L%(Q) x Ho(curl; Q) x H& ().

Forall(q, u, p), (r,v, x) € L2(Q) x Hy(curl; Q) XH(} (R2), we define the the sesquilinear
form B+ by

BE (g, u, p;r, v, x) =B (g, u, pir, v, ) + ( + D€, v) 2. ©)

The proof of the following continuous inf-sup condition for the coercive form B can be
founded in the arXiv preprint of this paper [7].

Lemma 2.7 (Continuous inf-sup condition) Let o = (q,u, p),T = (r,v,x) € L*(Q) x
H(curl; ) x HO1 (2), we have the following inf-sup condition

Re [BT(o; 7)]

= Cllla|ll- (10)
047 {kalt

3 The HDG Method

To describe the HDG method, we first define some notation. Let 7, := {K} denote a con-
forming and regular mesh of €2, where each element K is a tetrahedron. For each K € 7p,,
we let hg be the infimum of the diameters of balls containing K and denote the mesh size
h := maxge7, hg. Let 37, denote the set of faces F C 9K of the elements K € 7 (i.e.
faces of distinct elements are counted separately) and let Fj, denote the set of faces in the
mesh 7;,. We denote by A the diameter of the face F'. We abuse notation by using V x,
V- and V for broken curl, div and gradient operators with respect to the mesh partition 7,
respectively. To simplify the notation, we also define a function h on 73, 07} and Fj, which
depending on circumstances is defined by:

hix =hx, YK eT,  hlgx =hg, VYK eT,, hijp=hp, VFeF,.
Next, we list some formulas which will be frequently used in this paper.

(1) Let F € Fy, and let V- denote the surface divergence on F' where the definition of
V r- can be found in [27, Section 3.4 (page 48)] then the following identity holds for all
sufficiently smooth vector functions v defined in a neighborhood of F:

Vr-(nxv)=—n-(V xv)|F. (11)
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Table 1 Comparison of different HDG methods

Type qn uj, u DPh Dh Stabilization for pj,
1[10] k—1 k k~ k—1 k h(p, — pn)

11 [10] k—1 k k™ k—1 k None

11 [9] k k k k+1 k+1 b= (pp — Pn)

IV [6] k—1lork k k k k hE (py — Bn)

V [25] k—1lork k k k k h(py — Pn)
VI[15] k—1 k k k—1 k h(p, — Pn)

VII [15] k—1 k k~ k k h(p, — D)

(2) Let K be an element in the mesh 7j,, u, v € H(curl; K), w € H(div; F), p € H'(3F)
and (-, -\gF be the standard conjugate-linear H'/2 — H~1/2 duality pairing on 8 F. In
addition let V¢ denote the surface gradient on F. Then we have

(V xu,v)g =(nxu,v)x + @,V xv)g, (12a)
—(Vp-w, p)p={(w,Vrp)r — (ng - w, phor, (12b)
where n and n g are the unit normal to each face of K and each edge of 0 F.

Next, to give the HDG fomulation of (1). First we define the following finite element
spaces. Letk > 1,m =k — 1 orm =k,

0, :={q, € L*(Q) : q;|x € [Pu(K)P’.VK € Ty},
Up = {up € L*(Q) : up|x € [P(K)), VK € Tp},
Uy = {@tp € L*(Fp) 1 @nlp € [Pe(F)P. Gy - nlp = 0,YF € Fi,n x iylag = 0},
Py = {pn € Hy(Q) : pulk € Prs1(K), VK € T;}.

We can now derive the HDG method for (4) by multiplying each equation by the appro-
priate discrete test function, integrating element by element and using integration by parts
element by element in the usual way (c.f. [13]). Summing the results over all elements, the
HDG methods seeks (q;,, un, Un, pr) € Qp x Up x ﬁh x Py, such that

(rqp, r), — (Wp, V X rp)g, — (0 Xy, rp)e, =0, (13a)
@n, V X 07, + (0 X Gpp 01)o7, — (K€U, vp) 7,

+ &V, vi)T, = (f, o), (13b)
(erupn, Vyn)z, =0, (13¢)
(n xq,,vn)F,00=0 (13d)

for all (rp, vp, On, xn) € Q) x Up % ﬁh x Py, and the choice of n x q, follows the usual
HDG pattern,

nxq,=nxgq,+h""'nx @~ xn. (13e)

It is obvious to see that we can decouple the pressure pj, from the system (13) if we
take v, = Vyp. It is worth mentioning that such a decomposition does not hold for the
discrete system of other HDG methods in the literature. We list most of them in Table 1,
where, in the table, k and k~ is used as a compact way to denote the spaces P (K) and
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Pr_1(F)® Vﬁk.}r] (F), respectively. Here 73k(F ) is the spaces of homogeneous polynomials
of degree k on F.
Followmg the definition of BE, we define the discrete sesquilinear form Bi on the space
thUththhby
By, @p, wn, U, prs T, O, On, Xi)
= (rqp, ri)T, — @n, V X PR, — (0 X Wh, P,
+ (V x qp, vn)7;, + (@), 1 X Vp)oT, + (€Y pr, )7, (14)
+ (b (g — ), n X (= B))aT, — (&rttn, V)T, — (P€run, vi)7;,
B (@ns wns prs Th Vs xn) = By (@ns wny Prs Thy Vis Xa) + (€ + D€y, vp) T,
Then, we can rewrite the HDG formulation (13) in a compact form: find (g, uy, @p, pp) €
0, xUp x Uy x Py such that
By, @p, wn, U, prs P, v, O, xn) = (v T, (15)

for all (rp, vy, U, xn) € Q) x Up x Uh x Py.

Although 'BjE is defined on the space Q, x Uj X U n X Pp, the notation
fo(r v, v, X;Th, Vp, Oy, xp) is meaningful if (r, v, x) € H(curl Q) x Hy(curl; Q) x
HO (2). Moreover, if (q, u, p) € H(curl; Q) x Hy(curl; Q) x HO (R2) is the solution of (4),
then

B, (q,u,u, p;ry, vp, 0, xn) = (f, vi) 7, (16)
The proof of the following lemma is very simple and we omit it here.

Lemma3.1 Forany (qy, un, &n, ph; ¥, Vi, On, xn) € [Qp x Up X U, x Py1% we have

B, (@ps whs Uny Prs —Ths Vi, Oy —X0) = By, (Ph, Vs Vns X5 —qp, why Wy —pp). (17)

3.1 Preliminary Material

The approximation of Maxwell’s equations by DG methods is studied in [9, 10, 12, 15, 19,
25, 31] where the coefficients are assumed smooth so that the solution is regular enough for a
duality based error analysis,i.e.,u € H®(2) withs > 1/2. However, by Theorem 2.4, we only
have in general thatu € H*(2) with 1/2 > s > 0 if the coefficients satisfy the Assumption 1
and the traditional approach will fail. Recently, Ern et al. [17] derived an error estimate
for conforming methods under the Assumption 1 by constructing stable, commuting quasi-
interpolation projectors. The idea is to compose the canonical finite element interpolation
operators with a mollification technique; also see Schoberl [32] and Christiansen [11] for
more details.

In this section, we follow [27, Chapter 5] to construct standard interpolation operators
I?li" and Ifl“rl, which are only defined on H*(2) with s > 1/2; then by a modification
operator /C;, which was constructed in [16, 17], we can smooth functions in the space H* ()
with s > 0 into H* (Q) with s’ > 1/2; finally define the quasi-interpolations by

le — ((Id ’Ch | le\ ll-giv ’Ch , curl (ICLll‘l’Ch | chrl) IcurlK:

First, we define some spaces which will be useful in our analysis. For the convenience,
we define
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Vel = U, N H(curl; Q), VIV .= D(T;) N H (div; Q).
Di(K) = [Peo1 (K)P + Pt (K)x,  Di(F) = [Peo1 (F)F + Pri (F)x.
where 73/( (K) and ﬁk(F ) are the spaces of polynomials homogeneous of degree k on K and
F, respectively. It’s worth noting that Dy (K) and Dy (F) correspond to the RT space in
three dimensions on K and in two dimensions on F, respectively.
Next, we define Ig“’ to be the divergence conforming interpolation of the first family from

H*(Q) — VIV by [28, Page 328. Definition 5] and [27, Page 119. Definition 5.14] which
is defined element by element via

Tv. g )k = (0. gDk Vi € Pra(K), (18a)
m-IN, gy =(m-v,qk-1)F  VYqi—1 € Pr_1(F) (18b)
for all faces F C 0K, where s > 1/2 and v € H®(div; 2). Moreover, we define Iflurl be the

curl conforming interpolation of the second family from H* (curl; Q) — VZ““ element by
element by

5™, g )k = (0. @12k Vqi—> € Di—2(K), (19a)
<n « Izurlv X n, qk—l)F = (n X UV X I’l,qk_1>F qu—l € Dk—l(F)! (19b)
(Tt ai) e = (v T.qk-1)E ¥ai € Pi(E) (19)

for all faces F C 9K and all edges E C F, and v € H®(curl; Q) with s > 1/2.
The following lemma shows that the usual commutativity properties hold for the combined
first and second kind interpolants used here.

Lemma3.2 [18,(2.17)] Fors > 1/2 and v € H* (curl; K), let T3 and T define in (18)
and (19), respectively. Then we have the following commutativity property

V x (Z8) = IV (V x v).
By Lemma 3.2 and [16, Theorem 6.5], [17, Cororally 5.4] we now get the following

lemma.

Lemma 3.3 ([Stable, commuting projection]) There exist quasi-interpolation operator
T LYQ) — V§r and J9 : LY(Q) — VIV such that

(1) Up N Ho(curl; Q) is pointwise invariant under Jfl“rl.
(2) T8y € Ho(curl; Q) if v € Ho(curl; Q).
(3) For p € [1, o], there holds the stability

| di
1T N ewr@yer@) <C NIV lcwr@y:rr) < C.

(4) For p € [1,00] and s € [0, k + 1], we have the following estimates

1Ty — vy < C inf oy — vlLr) < Ch*|vls,p, (20a)
vhevg”

szurlv _ v||Lp(Q) <C il%/f 1 [[lvp — v||LP(Q) < Ch‘V|v|S’p. (20b)
V€ Zur

(5) Forv € H(curl; ), the following commute property holds
V x (Tv) = TV x v). @21)
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Lemma 3.4 (Discrete Helmholtz decomposition) For all v, € Uy, N Ho(curl; ), there exist
unique functions z, € Uy N Ho(curl; Q) and &, € Py, such that for all x;, € Py we have

vy, =2z + V&, (€zn, Vxn)T, =0. (22)
Moreover, the following stability results hold
IVénllz, = Cllvnllz,.  llznllg, < Clivallz,- (23)
Proof For all x, € Py, let &, € Py, be the solution of
(€rVén, V), = (€rvn, VXn)T,- (24)
The system (24) is well-defined for any v;, € U}, hence we have
IVénllz, < Clloall,. (25)

We take z;, = vy — V&, then (22) and ||z4||7;, < C|lvill7, hold. Finally, z;, is unique since
&y, is the unique solution of (24). ]

The proof of the following lemma with smooth coefficients ©, and €, is given in [22,
Lemma 4.5] and [23, Corollary 4.4]. We extend the result to allow piecewise smooth
coefficients. Its proof can be found in the arXiv preprint of this paper [7].

Lemma 3.5 Assume that v, € Uy N Ho(curl; Q) satisfies (e,vp, VXh)LZ(Q) = 0 for all
Xh € Py. Let ® € Ho(curl; Q) N Xg be the solution of V. x @ = V X vy, then, we have the
following stability estimate and and the approximation property for some s > 0:

10lms@ < CIV x vall 120, (26a)
lv, — ®||L2(Q) < Ch*||V x vh||L2(Q)~ (26b)

The final result of this section is ubiquitous in the analysis of DG methods for Maxwell’s
equations:

Lemma 3.6 (c.f[23, Proposition4.5]) Foralluy, € Uy, there exists a ufl e Up,NHy(curl; Q)
such that

1
lun — ujll, + WV x (wp —uj)ll7, < Cllhzn x [uyl 7, (27

3.2 Stability of the Coercive Discrete Problem

Next, for all (g, un, Un, pr) € Qp x Up x ﬁh x Py, we define

| @ wn @ p)|l; = IVRe (o) ql% + IV/Re (&) upll%

1 ~
+ IV xuplF + b~ 2n x @y — @) 37, (28)
+[IVRe (&) Vil .

where u,, k and €, were defined in the Assumption 1. The proof of the following lemma is
trivial, hence we omit it here.

Lemma 3.7 |||-|ll;, defines a norm on the space Q x Up x ﬁh X Pp.
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By the definition of |||-|||,, in (28), for all (r, v, x) € L%(Q) x Hy(curl; Q) x HO1 (), 1itis
easy to see that |||(r, v, n x v x n, p)|||;, is well defined since n X (v —n x v x n) = 0 on
d7y,. This will be used frequently in the error analysis.

Next, by the Cauchy-Schwarz inequality and the triangle inequality we have the following
result showing the boundedness of Bf

Lemma 3.8 (Boundedness of BY) Let o), = (g, wn, @h, ph), Th = (s Vn, Ohs Xn) €
0, xUp x Up x Py, then we have

1Bjy (@ns Tl < CllloalllyllTally- (29)

It is worth mentioning that the boundedness of B?f also holds if o, is replced by 0 =
(g, u,n x u x n, p) where (q, u, p) € H(curl; Q) x Ho(curl; Q) x HO1 (2), because n x
(u — n x u x n) = 0 on each face F € Fj,. Then we have the following inequality

1By (@ i)l < C (Igllz, + lullz + IV x ullz + [V pllz) lTall- (30)
By the inequalities (29) and (30), provided uj;, € Ho(curl; ) N Uy, we have
|Bj; (0 — on: Th)|
< C(lq —qullz + llu — upllg, (31)
+IV x @ —up)llz, + 1V — p)lz) lTalls.

In preparation for the proof of the following lemma, for any u, € Uy let uj, € Uy N
Ho(curl; @) by the conforming function in Lemma 3.6, then by Lemma 3.4, there exist
y, € Up N Hoy(curl; ) and n, € Py, such that for all x, € P, we have

wy, = yp + Vo, (&yp Vxn)z, =0. (32)
We can now prove the discrete analogue of Lemma 2.7.

I;gmma 3.9 (Discrete inf-sup condition) Forallop = (q;,, un, Un, pr) € Tp = @, xUjp x
Uy x Py, we have the following inf-sup condition

Re [B}f (045 Ta)]
sup ——1—22 7 > Cllally. (33)
O;éthe):;, |”Th|||h

Proof First, we take 7| = (g;,, 4, Un, — ph), then by the definition of B}J{ in (6), integration
by parts and the definition of |||-|||, in (28) we get

_1 ~
Re [B} (o4: T1)] = [IVRe (ur) g5 117, + W20 x (up — )54
+ llcy/Re (&) unl%; . (34)
lizilln = ol

Second, we take 7o = (—V x uy, 0,0, 0) and use Young’s inequality and trace inequality
to get

Re [Bj (0; T2)]

=Re [—(uurq;,. V x up)g, + IV x upl%, — (n x up —@p). V x up)yz;]

> —|(urg, V x w7 | + IV x w7, = 1 x @ =0n), V x widoz,| (35
1 _1 —~
> SV xunlg, = Cy (n\/Re () g%, + 1h™2n x (up — uh>||§f,h),

llz2ll, = Calllonllls-
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Third, we take 73 = (0, Vpp,n x Vp;, x r,0) and use Young’s inequality to get
Re [Bf (01; T3)] = [lv/Re (€,) Vphllth +Re [(k*e-upn, Vi) 7]

> SIVRe @) Vpully — Coley/Re @) wnlly, 36)
llz3lly < Callonlln-
Next, we take 74 = (0,0, 0, n;) to get
B (on; T4) = (e, V)7,
By (32), Young’s inequality and the Lemma 3.6, we have

Re [B} (0; T4)] = Re (e,uj, Vin) 7, + Re (e (u, — uf), V)7,
=Re [(e,(y, + Vu), Vi) 7,1 + Re [(e-(up — u}), Vu) 1,
= Re [(e,Vn, Vor) 7,1 + Re [(e,(wy, — uj), Vo)1,

1 1
5 IVRe (&) Vil = Csllhn x a1, (37

v

\Y

1 1 —~
> SIVRe () Vinll7, = Cslihin x (wy —@n)37;,
llalll, < Cellonlly-
Finally, we take 7, = (1 + C{ + C3 + Cs)T1 + Z?zz 7;. By (34)-(37) we have

Re [B}f (05 Ti)] = Crllonll7,

(38)
lzally < Cslilonlll-

The above two inequalities give the desired result (33). O

4 Error Analysis

In this section, we give an error analysis of the HDG approximation to Maxwell’s equations
given by (13). First, we state main results, i.e., Theorem 4.1, Corollary 4.2. Second, we define
a continuous operator A and discrete operator A as in [5], which is a crucial step to get the
error estimate without a duality argument. In the end, we provide the proof of Theorem 4.1.

4.1 Main Result

Before stating our main result, we introduce the standard L?-orthogonal projection operator
MY, : L*(K) — P, (K), which satisfies

(IMy,q.r)k = (¢. 1)k, Vr € Pu(K). (39)
In the error analysis, we shall use the following well-known bound:

lg — M5 qllz < Chllgllas ). (40)

where ¢ € H*(2) and s > 0 is the index guaranteed by Theorem 2.4.
Furthermore, p € H'™(Q), which means p may not continuous on €. Therefore, the
standard Lagrange interpolation operator is not applicable; hence we utilize the Scott-Zhang
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interpolation operator [33] Zj, : H'(2) — Py. For the Scott-Zhang interpolant we have the
following bound bound:

IV(p —Znp)lly, < CH Pl gies (@) 41)
Now we can state the main result:

Theorem 4.1 Suppose that w, and €, satisfy Assumption 1 and «? is not an eigenvalue of
(2). Then for h small enough,

(A) The HDG formulation has a unique solution (q;,, up, 4n, pr) € Q; x U x f]h X Py
(B) Let (q, u, p) be the solution of (7), then we have

g —qpllz, + lu —upllz + IV — P73
< C(IM%q — qllz, + 1T5"u — ullz, + 1TV xu) =V x ulg,
+IVZhp — P)lT) -

where C depends on k, 2, €, and ju,. Here I19, denotes L? projection (see (39)).

By the approximation properties of J° f,i", T Z“rl, IT3, and Z; in (20a), (20b), (40) and (41)
and using the regularity result in Theorem 2.4, we have:

Corollary 4.2 For general coefficients satisfying Assumption 1, and assuming «* is not a
Maxwell eigenvalue, then

lg —anllz +llu—upllz + 11V — pllz, < CRULfll2) + IV - fll2@),

where s € (0,1/2) and C depends on s, «, Q, € and 4.

4.2 Preliminary Estimates

Definition4.3 Let g € L*(S2), we define the operator A := (A9, A% AP) : L2(Q) —
H (curl; Q) x Hy(curl; Q) x HOI(Q) such that for all T = (r,v, x) € H(curl; Q) x
H(curl; Q) x HO1 (2) we have

BY(Ag: 1) = (6,8, V)20 (42)
By Definition 4.3 and Lemma 2.6 in [7] we get
1Al g @) + 1A gl ms @) < Cllergliag)- (43)
Moreover, if g € H (dive,, £2), then we have
AP gl gi+s @y < CIV - (@)l 12(0)- (44)

Definition 4.4ALetg € L%(), we define the operator Ay, = (AZ, Aj, Af, A}’:) cLA2(Q) >
0, xUp x Up x Py such that

B (Ang; Th) = (6,8, )7, (45)

for all T, = (ry, vy, Up, xn). Moreover, we define g, € U, to be the unique solution of

(er&n> )7, = (& V)75,
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Lemma 4.5 (Stability of A and A,) Let g € L*(2), then we have
IAgIN < Cligll 20 (462)
lARgl, < Cligl L2 (46b)

where |||-||| and |||-ll;, were defined in (8) and (28), respectively.
Proof Lett = (r,v, x) € LZ(Q) x Hq(curl; 2) x HOl (£2), by Lemma 2.7 and Definition 4.3
we get
Re [B*(Ag; 1)] Re [(erg, V) 2]
gl < € sup ———"2"= = Csup —— 2 < Cllg] 12
740 =i 740 izl

Next, let Ty, = (rp, v, Ui, xn) € Qp xUp % ﬁh X Pp. We use Lemma 3.9 and Definition 4.3
to get

Re [B; (Ang; Ti)] Re [(e-&; vi)7;]
Il Anglll, < C sup h = — 2 < Cligl 2
)70 llzrllly Ty 0 llzallly
O
Next, we define
Ag = (Alg, A'g, A'g, APg), 47)

where Ag was defined in (42). Then for all T, = (rp, v, Vi, xn) € Qp x Up x ﬁh x Py,
by the definition of BZ in (14), (42) and the definition of Bt in (9) we have

B (Ag; th) = (68, va)7, = B (Ang: Th). 48)
Lemma 4.6 Forany g € H(dive,; 2), we have
|Ag — Anglll, < Ch*(ligll 20 + IV - (€ @)ll2(@)- (49)

Proof First, let J (Ag) = (M5, (A%g), T (A%g), n x (T (A%g)) x n,
In(APg)) € Q) xUpx f]h x P, where IT{), was defined in (39) and Zj, is the Scott-Zhang
interpolant. Then
[19: (Ag) — Angll],
Re [By (T (Ag) — Ang: 7))

< C sup by (33)
0£1, 1z lln
Re [BF To) _ Mo
<C sup € [ h (jh (‘Ag) 'Ag’ Th)] by (48)
0-£7) lznllly
< Cl[|9: (Ag) - A, by (31). (50)
Next by the triangle inequality we have
4 — Angll],
< [|[Ag = 3n (Ag) ], + [[19x (Ag) — Angll,
= Cl[Ag = (Ag)|l, by (50)

< C (I, (Alg) — Algllg, + 1T (A"g) — A'glg;,
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+ IV x (T (A%g) — A“g) |7, + IV (Tn(APg) — AP g)l7;) by (31)
=C (I Alg) — Alglg, + IT5" (A g) — A'gllT,
+ 1TV x (A“g)) — V x (A" |7, + IV(Tn(APg) — APg)ll7,) by D).

By the approximation properties of I19,, Z, and J ?liv in (40), (41) and (20a) we get

4 — Ang]l,
<Ch(IAlas @) + 1A gllas @) + IV < (A"l as @) + AP gl g1+ ()
< CI* (gl 2 + 1V - (€8l 2@
where we used the regularity results (43) and (44). ]

Next, we define the following norm on the space W = H(curl; Q) + Uj, by
lwlidy = IVRe () wiZ, + IV x wlZ + [h~2n x [wl|,. (51)
Lemma 4.7 For any uj, € Uy, we have
A up — Apunllw < Ch*llupliw.
Proof Let uj, be defined as in Lemma 3.6, then by Lemma 3.4 we have
uj =zp + VEé, (ezn, Vaop)g, =0, (52)

where n, € Py and ||VE&, |7, < Cllujllg,, lzullz, < Clujllz,. Let ® € Ho(curl; Q) N

H (divgr; 2) be the solution of
Vx0O=Vxz,.
Then by (26a) in Lemma 3.5 we have
1© — zully, < CR*IV x zill7;,. (53)
Moreover, for all £, € P, we have (e,uy, V&,)7, = 0 and (6,0, V&,)7, = 0, then
1© — uy |7, < CRe [(6,(® — up), © — uy)7;]

< CRe [(&(® —up), ® — zj, — V&, + uj —up)7;1
< CRe [(&,(® — up), © — zj + uj, — up) 7).

This gives
1© —upllz, < CUO —zpllg;, + lluj, — unllz). (54)

By the definitions of || - ||w and [||-|l|;, in (51) and (28), we have, for & small enough and
s <1/2,

(A" — ADugllw
< (A = Awyunl], by (47)
< |A =A@, — ], + || - Aanel],

<cC <||uh ~ Ol + h“||®||L2(Q)) by (46a) and (49)

<C (”uh - ®||L2(Q) + 1 (llup — uz ||L2(Q) + ”uZ”LZ(Q)))
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= C (10 = zulz, + luf, = wnllz, +h* 2 ) by (54)
= Ch* (IIV % 2all 2y + I072m x Qunlllz, + Il 2g)) by (53) and (27)
< Ch* (Ih=2n x Ll + IV % af iz, + 5] 20 ) by (52)
< Ch’|lupllw by (27).
O

Lemma4.8 If k2 is not an eigenvalue of the problem (2), then for all w € W = Uy +
Ho(curl; Q2), there exists a positive constant C only depending on Q2 and k such that,

H .

e —A“wH > Cllwlw.

w

Proof Letz = 1/(1 +«%) and g = (z — A¥)w, then g € Ho(curl; Q) + Uy,. This implies
zw — g = A"w € Ho(curl; ). By the definition of A (see (4.3)), we know A" w satisfies
the following equation:

V x (u'V x (A"w)) 4 € (A" w) + & APw = €, w.
Setting w = (1/z) (A"*w + g) on the right hand side gives
1
V x (' x (A% w)) — e, (A" w) 4+ & APw = ~€.g,
z

and so zw — g € Ho(curl; 2) satisfies the following equation:

1
Vo 1V x (o - ) 6w — g) + &AM = —erg. (55)

2

Since «~ is not an eigenvalue of problem (2), then by the Theorem 2.4 we have

C C
lzw — gllH(cur;2) < mllfrglle(Q) =< mllgllw (56)

Since [lzw — gl geur:) = llzw — gllw. then by (56) we have

1
lwlw = m(llzw —glw +liglw) = Cliglw = Cliz = A wllw.

[m}

Lemma 4.9 If k2 is not an eigenvalue of problem (2) and h is small enough, then for all
we W =U),+ Ho(curl; Q2), there exists a positive constant C only depending on 2 and «
such that,

w
1+«2

—AZWH > Cllwllw.
w

Proof Letz = 1/(1 + «2), by Lemma 4.7 and 4.8 and the triangle inequality we have

Iz = Apwlw = [z = ADwlw — I[(A* = ApDwlw = (C = k") llwlw.

The desired result holds if 4 small enough. O
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The next result follows from the coercivity proved in the previous lemma.

Corollary 4.10 If k% is not an eigenvalue of problem (2) and h is small enough, then for all
wy, € Uy, there exists a positive constant C only depending on Q and k such that,

1 —1
u
(1+K2_Ah> o

4.3 Proof of (A) in Theorem 4.1

= Cllwnllw. (57)
w

Lemma 4.11 If«? is not an eigenvalue of problem (2) and h is small enough, then the HDG
scheme (7) has a unique solution o, = (q;,, wn, Up, pr) € Qp x Uy x Uy, X Py. Moreover,
we have

llorlly = CILFIlL2q)- (58)
Proof For any tj, = (rp, vp, U, xn) € Q) x Up x ﬁh x Py, we have
B, (@ns Th) = By (0n; Th) — (1 + kD) (€up, vi) 7, (59)

Ihen the HDG scheme (7) is equivalent to finding 6, = (q;,, un, Un, pr) € Q) x Up x
Uj x Py such that

1
Wgz(alﬂ Ty) — (€ Up, Vp)T;, = W(f’ Vp)T;,- (60)
By Definition 4.4, we have the following equations:
By (Apun; Th) = (erun, vi) 75, (61a)
1 1 1
m(f, Uh)T;, = m(frfh, Uh)?j, = WBZ—(-Ahfh; Th). (61b)

By (61), we can rewrite (60) as follows:

1 1
+ . —
B, (1 20h Anty 1 K_QAhfh’Th) 0.

Due to the coercivity of B; in Lemma 3.9, we have:

T2’ — Apup — ﬁﬂhfh =0,
ie.,
<; - AZ) up = ;Ath, (62)
1+«2 1+ «2
which is uniquely solvable by Lemma 4.9. Moreover, by (57), we have:
lunliz; < Claylw by (51)
< ClIAL fullw by (57) and (62)
= C[lnsall, by (28)
< Clfl 2 by (46b)
< ClIf 2 by (61b). (63)
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Next, by (59) we get
93;{(%; 1) = (1 + ) (e up, v, + (f,vn)7, (64)

for all Tp, = (rp, vu, On, xn) € Q) x Up X ﬁh X Pp. We can now prove the uniqueness
of any solution to the discrete HDG problem. Suppose f = 0, then u, = 0 by (63), and
so a5 = 0 by (64) and Lemma 3.9. Since the linear system corresponding to the discrete
HDG problem is square, uniqueness implies existence. Therefore, the HDG scheme (7) has
a unique solution. Furthermore,

Re [B) (o4; T1)]

llonlly < C sup by (33)
7, #0 lznlly
Re [(1 +«? : :
—C sup e [(1 4 k) (erup, vi) 7, + (F, vi) 7] by (64)
74 £0 Ty
< C(llup ”LZ(Q) + ||f||L2(Q))
= C||f||L2(Q) by (63).
O
4.4 Proof of (B) in Theorem 4.1
We first prove that a discrete inf-sup condition holds.
Lemma 4.12 (Discrete inf-sup condi/t\ions on B,) Let o, = (qp,un, Un, pn), Th =

(n, Vi, On, xn) € Xpn = Qp x Uy x Uy X Py, and suppose k2 is not a Maxwell eigenvalue
and h small enough. Then we have following inf-sup condition

Vs, = [ﬁf’r;anﬁf 2 Clinl ©
Proof By (38) in the proof of Lemma 3.9, there exists T1 = (r1, v1, 91, x1) € X, such that
Re [Bf (o4 D] = Cilloall,

llzilly = Callonlls-
This is equivalent to
Re [B), (o4: T1) + (1 + k) (€ un, v1) 7] = Cillosll;-
By the Cauchy-Schwarz inequality we have
Re [B, (04: T1)] = Callosll; — Call + k™) ller | oo a7, - (66)

Foruy, € Uy, we may choose uj, € U, N Ho(curl; 2) so that the estimate in Lemma 3.6,
is satisfied. Then by Lemma 3.4, there exist z, € Uj;, N Ho(curl; 2) and &, € Py, such that
for all x, € P, we have

u, =zn+ V&, (&zn, Viu)z, =0. (67)
Let® € Hyo(curl; Q)N H (divgr; ) be the solution of

Vx0O=Vxz.
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Then by (26a) we have

1@ —znll7, < CRPIV X zillT,

= Ch’|IV x uj |7, by (67)
< CH(IV x (@, — up)lz, + IV x upliz;) (68)
< Ch* (I~ 2n x [uplll5, + IV x uplz) by Lemma 3.6,

Let 7o = (rp, v2, 92, x2) € X}, be the solution of
B, (121 1) = (O, e,vp)7,
guaranteed by Lemma 4.11. This implies
B, (t2:04) = (O, €,up) 7, (69)
Furthermore, by (58) we have
llz2llp = Cli®ll 7. (70)

Next, we take t5 = (—r2, v2, V2, —x2) and T3 = (—qy,, up, Up, —pp) to get

B, (oh, 13) = B, (12; T3) by (17)
= (0, up)7, by (69)
= (e;up, O)7,
= (erup, (@ —zp — VEW) T, + (6pup, uj —up) g, + (€rup, up)g, by (67)
= (erup, ©® — zp) 75, + (epup, Wy —up))7, + (6rup, up) 7, by (13¢).

Then by the Lemma 3.6, (68), the Cauchy-Schwarz inequality and Young’s inequality, we
have

Re [B} (a; T5)]

1 _1
= SIVRe (&) wnlly, — Ch* (0~ 2n x s, + 1V x 1)

1 _1 —~
SIVRe (&) uply, — Ch* (Ih™2m x Ty = @D, + 1V x un )

1
SIVRe (€) il = Ch¥llonlly, (71)

where we used the definition of |||-||| in (28).
2C4 (146D |lerll Lo ()
3

v

Finally, we take 7, = 71 + . 5. Then by (66), (71) and letting & be
small enough we get the desired result. O

Our final lemma gives the desired error estimate:
Lemma 4.13 Let i, and €, satisfy Assumption 1. Suppose «* is not an eigenvalue of problem
(2). Let (q, u,Ap) € H (curl; Q) x Ho(curl; ) x HO1 () andoyn = (qp, un, Un, pn) € Xj =
0, xUp x Up x Py be the solution of (7) and (15), respectively. Then for h small enough,
we have

g — gullz, + lu —usllz + 1V — P73
< C (Mg — qllz, + 1T5"u — ullg, + 1TV xu) =V x ul7,
+IVZp — P)l7)
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where C depends on k, Q, €, and ji.

Proof First, let 0 = (q,u, u, p) and J,0 = (II},q, Jfl‘"lu, nx Jzuﬂu x n, Iy p), where
IT;, and Z), denote the standard L? projection and the Scott-Zhang interpolation, respectively.
Then

Re [B), (Jho —op; Th)]

9o —oull, < C  sup by (65)
047,63, Mznlly
Re [B, (Jpo —0; T
—C sup [B;, On ] by (16)
04743, llznlly
< C(IMS%q — gl + 1T u — ullg,
+ IV x (T — w7, + IV@hp — p)llT;) by (31)

=C (IN%q —qll7, + 1T u — ul|7,
+ 1TV xu) =V xullg, + IVZhp — p)ll,) by 21).

By the definition of |||-|||;, in (28) we have

IM%q — q4ll7, + 1T — upllz, + IV @ip — Pl
< C (Mg — qllz, + 1T5"u —ullg, + 1TV xu) =V x ul7,
+IV@hp - P)l7) -

Combined with the triangle inequality we get the desired result. O

5 Numerical Experiments

In this section, we present two numerical tests of the HDG-CG method for Maxwell’s equa-
tions. The domain of the following two examples is the unit cube 2 = (0, 1) x (0, 1) x
O, 1).

Example 1 We first test the convergence rate of the method for Maxwell’s equations with
wave number k = 1 when the coefficients are piecewise smooth but the solution is smooth.
More specifically, the data is chosen as

0.2 —0.4i, x < 0.5, _J1+2i, x <05,

= € =
r=1025-025i, x>0s5. "T)2+2i, x>05,

w="lup,uz,u3l", uy =1, up = (x —0.5)%z, uz = (x — 0.5)%y, p=0.

The source term is chosen to match the exact solution of Eq. 1 and the approximation errors
are listed in Table 2. In this case the duality approach would need to handle discontinuous
coefficients which limit the regularity of the dual solution to H*® with s < 1/2. Our anal-
ysis covers this case. Since the chosen true solution is smooth, we expect optimal order
convergence as is seen in Table 2.

Example 2 Next, we test the convergence rate of the method for the Maxwell’s equations

with wave number k = 1, when both the coefficients and the exact solution are piecewise
smooth. More specifically, the data is chosen as
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Table 2 History of convergence for Example 1

h

k 5 g — anll 2./ Nlal 2 e — wpll 2 gy /el 2 )
Error Rate Error Rate
1 172 5.10E-01 3.05E-01
1/4 2.75E-01 0.89 8.74E-02 1.80
1/8 1.42E-01 0.95 2.32E-02 1.91
1/16 7.22E-02 0.98 6.02E-03 1.95
1720 5.79E-02 0.99 3.88E-03 1.96
2 172 8.05E-02 2.45E-02
1/4 2.12E-02 1.93 3.05E-03 3.00
1/8 5.42E-03 1.96 3.84E-04 2.99
1712 2.43E-03 1.98 1.14E-04 2.99

Table 3 History of convergence for Example 2

k 2 lg = anll 20/ 14l 2 g lu = upll g2 gy /Nl 2 g
Error Rate Error Rate
1 2 5.10E-01 1.53E-01
2.75E-01 0.89 4.38E-02 1.80
1.42E-01 0.95 1.16E-02 1.91
16 7.20B-02 0.98 3.02E-03 1.95
20 5.79E-02 0.99 1.95E-03 1.96
2 2 8.05E-02 1.23E-02
2.12E-02 1.93 1.53E-03 3.00
5.42E-03 1.96 1.93E-04 2.99
12 2.43E-03 1.98 5.73E-05 2.9
_]0.2-04i, x < 0.5, )1 +2i, x <05,
Fr=1025-025i, x>05 < 242, x>05
u=[u,uz, u3]", uy = 2 or=03 0 (x —0.5)%z,
1, x=>0.5,

uz = (x —0.5)%y, p=0.

and the source term is chosen to match the exact solution of Eq.1 and the approximation
errors are listed in Table 3. In this case the solution is piecewise analytic and the mesh is
chosen so that the surface of discontinuity x = 0.5 is a union of faces in the mesh. Thus
standard error estimates for polynmial interpolation applied tetrahedron by tetrahedron give
an optimal error estimate. This is confirmed in Table 3.
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6 Conclusion

We have proved that the HDG-CG method for the time harmonic Maxwell system converges
even in the presence of general piecewise smooth coefficients, as are usually encountered in
practical applications. Our numerical results (see [7]) suggest that the method is stable even
when k = 0 so that the use of expanded HDG spaces for the Lagrange multiplier p is not
needed, and a CG space is sufficient.

We expect that the method of proof given in our paper will be useful for other HDG methods
which are intended for use on heterogeneous media. The dependence of the coefficients in
the estimates on the wave number x« was not traced, and this should be done in the future.
However the simple model problem used here would need to be revised to have Robin type
boundary conditions (or other boundary conditions) in which the dependency of the solution
of continuous problem on « is known.
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