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Abstract
We propose to use a hybridizable discontinuous Galerkin (HDG) method combined with
the continuous Galerkin (CG) method to approximate Maxwell’s equations. We make two
contributions in this paper. First, even though there are many papers using HDG methods
to approximate Maxwell’s equations, to our knowledge they all assume that the coefficients
are smooth (or constant). Here, we derive optimal convergence estimates for our HDG-CG
approximation when the electromagnetic coefficients are piecewise W 1,∞. This requires new
techniques of analysis. Second, we use CG elements to approximate the Lagrange multiplier
used to enforce the divergence condition and we obtain a discrete system in which we can
decouple the discrete Lagrange multiplier. Because we are using a continuous Lagrange
multiplier space, the number of degrees of freedom devoted to this are less than for other
HDG methods. We present numerical experiments to confirm our theoretical results.

Keywords Hybridizable discontinuous Galerkin (HDG) method · Maxwell’s equations ·
Piecewise smooth coefficients · Minimal regularity · Error analysis

Mathematics Subject Classification 65N30

1 Introduction

Maxwell’s equations govern the propagation of electromagnetic waves and have wide appli-
cations in science and technology; such as in the aerospace industry, telecommunications,
medicine, and biology. Hence, a large number of computational techniques have been devel-
oped for solving Maxwell’s equations, including finite difference methods, integral equation
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methods and finite element methods. Amongst these techniques, the finite element method
is a popular technique for the solution of time-harmonic electromagnetic problems due to its
ability to handle complex geometries and inhomogeneous materials.

The model problem we shall analyze is as follows. Let � ⊂ R
3 be a simply connected

Lipschitz polyhedral domain with connected boundary ∂�, we consider the indefinite time-
harmonic Maxwell equations with a perfectly conducting boundary: find (u, p) that satisfies

∇ × (μ−1
r ∇ × u) − κ2εru + εr∇ p = f in �, (1a)

∇ · (εru) = ρ in �, (1b)

n × u = 0 on ∂�, (1c)

p = 0 on ∂�. (1d)

Here μr and εr are the relative magnetic permeability and the relative electric permittivity,
which may be complex valued (and the overbar denotes complex conjugation). In addition
f = ikε0 j , where j is the given current density and ε0 is the permittivity of vacuum, and
κ > 0 is the wave number. The function ρ denotes the charge density. We note that the
topological assumptions can be relaxed [27], but we choose the simplest setting here.

The Lagrange multiplier p is present to stabilize the problem by allowing the explicit
imposition of the divergence constraint (1b), and is important in order to stabilize low fre-
quency (small κ) problems [14] including the special case κ = 0 which corresponds to an
electrostatic field. In electromagnetism, the function f and ρ are not independent, because
conservation of charge requires that ∇ · f + κ2ρ = 0, so that the exact solution p = 0. To
simplify the presentation, shall assume that ρ = 0 in the remainder of the paper.

Among finite element methods, curl-conforming elements (i.e. in H(curl;�)) have been
widely studied, see for example [22, 26–29, 34]. These are often referred to as edge elements,
and are known to eliminate the problem of spurious modes which may arise when standard
finite elements are used to discretize Maxwell’s equations [4]. Low-order edge elements
are often used for problems in electromagnetics because they can be easily implemented,
however, the use of low-order edge elements often leads to a discrete linear system with
a large number of unknowns, especially for electromagnetic problems at high frequencies
(large κ). As a result, high-order edge elements have been developed [1, 2, 14] and shown to be
more effective than low-order edge elements. However, high-order edge elements introduce
extra degrees of freedom in the interior of the elements which increase dramatically with
the order of approximation. Typically, these interior degrees of freedom can be eliminated
by using a procedure known as static condensation [24]. However, the implementation of
high order edge element methods is complicated. Hence, non-conforming methods provide
an interesting alternative for this kind of problem and may also be attractive for nonlinear
problems.

Interior penalty discontinuousGalerkin (DG)methods have also been used to approximate
the solution of the Maxwell’s equations for some time. The first DG method for solving
Maxwell’s equations with high frequency was analyzed in [31] and much improved in [23].
In [20, 21], the local discontinuousGalerkin (LDG)methodwith high-order nodal elements is
used to solve Maxwell’s equations. From these studies we see that DG methods have several
distinct advantages including their capabilities to handle complex geometries, to provide
high-order accurate solutions, to perform hp adaptivity, and to retain excellent scalability.
However, many existing DG methods are known to be computationally expensive because
they have too many degrees of freedom due to nodal duplication on element boundaries.
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In part to improve computational efficiency, Hybridizable discontinuous Galerkin (HDG)
methods were proposed by Cockburn et al. in [13]. HDG methods are based on a mixed
formulation and utilize a numerical flux and a numerical trace to approximate the flux and
the trace of the solution. The volume based approximate flux and solution variables can be
eliminated by element-by-element condensation. This process leads to a global equation for
the approximate boundary traces only. As a result, HDG methods have significantly less
globally coupled unknowns, a smaller memory requirement, and lower computational cost
compared to other DG methods. HDG methods were first applied to Maxwell’s equations in
[30] but without an error analysis. Later on, an error analysis was provided in [9, 10, 15] for
zero frequency and in [19, 25] for impedance boundary conditions and non-zerowave number.
In a very recent paper [8], we used the concept of an M-decomposition, which was proposed
by Cockburn et al in [12] for elliptic PDEs to analyze HDG schemes for Maxwell’s equations
in two dimensions. This analysis provides conditions on the HDG spaces to obtain optimal
convergence, and superconvergence of some variables. The extension of this approach to 3D
is challenging, and remains to be done. It is worthwhile to mention that all the above works
only considered smooth (or even constant) coefficients.

When the material through which the waves propagate is heterogeneous, the functions
μr and εr are non constant, and have jumps between materials of different type. In such a
situation, the modest regularity pickup of the exact solution in the scale of Sobolev spaces
is typically lower than 1/2 and can be arbitrarily close to 0; see [3, Theorem 5.1]. To the
best of our knowledge, all the previously mentioned HDG methods have not been proved
to converge for nonsmooth coefficients because the standard analysis uses the solution of
a dual problem that must have a sufficiently regular solution to allow for approximation
using appropriate interpolation operators. When the coefficients are piecewise smooth, the
appropriate regularity estimates are not available. Thus even if the true solution is smooth, the
error analysis cannot currently be carried out using the methods considered in the previously
mentioned papers. Themain novelty of this paper is to prove convergence of ourHDGmethod
under realistic assumptions on the coefficients and low regularity for the solution of the adjoint
problem. In particular, we follow the main idea in [18] to construct a stable and commuting
quasi-interpolation operator, and then adapt the techniques in [5] (developed to analyze
standard DG methods) to approximate equation (1) using HDG under weak assumptions on
the coefficients, see Assumptions 1.

Furthermore, if we take q ∈ H1
0 (�) and integrate (1a) multiplied by ∇q we obtain

(εr∇ p,∇q)L2(�) = ( f ,∇q)L2(�) giving an independent system for p (uner the assumption
p = 0). Unfortunately, such a decomposition does not hold for the discrete system found
in all the above mentioned HDG methods. A second novel contribution of this paper is to
mix the use of HDG spaces for u and a continuous Galerkin (CG) space for p. Our method,
which we term HDG-CG, retains the flexibility of HDG for the desired field u, but uses a
smaller space for p which is usually easy to approximate (and for which designing hp-spaces
is much easier than for edge elements). Then the system of the Lagrange multiplier p is SPD
and can be solved very efficiently by MG or AMG. In other words, it is good for designing
a block preconditioner and therefore, it is good for solving the whole system.

Theoutline of the paper is as follows. InSect. 2,we recall the well-posedness and regularity
of solutions of the Maxwell equations (1). In Sect. 3, we set some notation and give the HDG
formulation of (1). The error analysis is given in Sect. 4, wherewe obtain optimal convergence
rate for the electric field u and ∇ × u. Numerical experiments are provided to illustrate our
theoretical results in (5).
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2 Well-Posedness and Regularity of Maxwell’s Equations

In this section, we first set some notation which will be used through this paper. Second,
we discuss the well-posedness and regularity of Maxwell’s equations (1). Next, we give the
continuous inf-sup condition of the mixed form of (1) since we will use it later in our analysis
of the HDG-CG method for approximating (1).

For any bounded domain � ⊂ R
3, let Hm(�) denote the usual mth-order Sobolev space

of vector functions on�, and ‖·‖m,�, | · |m,� denote the corresponding norm and semi-norm.
We use (·, ·)� to denote the complex inner product on L2(�). Similarly, for the boundary
∂� of �, we use 〈·, ·〉∂� to denote the L2 inner product on ∂�. We define

H(curl;�) := {u ∈ L2(�) : ∇ × u ∈ L2(�)},
H0(curl;�) := {u ∈ H(curl;�) : n × u = 0 on ∂�},
H(div;�) := {u ∈ L2(�) : ∇ · u ∈ L2(�)},

H(div0εr ;�) := {u ∈ L2(�) : ∇ · (εru) = 0},
where n is the unit outward normal vector on ∂�.

In this paper, we allow the coefficients μr and εr of the Maxwell’s equations (1) to be
non-smooth. More precisely, we assume the following: The domain � can be decomposed
into N subdomains denoted � j , j = 1, 2 . . . , N such that �̄ = ⋃N

j=1 �̄ j , �i ∩ � j = ∅ if
i �= j , and each subdomain � j , j = 1, 2 . . . , N , is connected and has a Lipschitz boundary.
Moreover,

Assumption 1 (A) μr , εr ∈ W 1,∞
� (�) := {v ∈ L∞(�); ∇(v|�i ) ∈ L∞(�i ), i =

1, 2 . . . , N }.
(B) There exist constants μ̄r , ε̄r > 0 such that Re (μr ) > μ̄r and Re (εr ) > ε̄r a.e. in �.

We don’t require any positivity on the imaginary part of the coefficients in the Assumption
(B) although generally �(εr ) ≥ 0.

2.1 Regularity Results for Maxwell’s Equations

To investigate the regularity of the Maxwell’s equations (1), one needs to characterize the
space H0(curl;�), H(div0εr ;�) and L2(�). The next three lemmas give several properties
of these spaces, and the proofs of these lemmas can be found in [22].

Lemma 2.1 ([22, Lemma 4.2 ]) There exists s0 > 0 such H0(curl;�) ∩ H(div0εr ;�) is
continuously embedded in Hs(�) for all s < s0, i.e., the following estimate holds

‖u‖Hs (�) ≤ C
(
‖u‖L2(�) + ‖∇ × u‖L2(�)

)
.

Lemma 2.2 ([22, Corollary 4.3]) The embedding H0(curl;�) ∩ H(div0εr ;�) ↪→ L2(�) is
compact.

Lemma 2.3 ([22, Poincaré-Friedrichs-type inequality, Corollary 4.4]) There is a constant
C > 0 depending on � only, such that for any u ∈H0(curl;�) ∩ H(div0εr ;�), we have

‖u‖L2(�) ≤ C‖∇ × u‖L2(�).

The rigorous proof of the next theorem giving the regularity of solutions of (1) is based
on [3, Theorem 5.1 ] and the details can be found in the arXiv preprint of this paper [7].
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Theorem 2.4 Suppose that μr and εr satisfy Assumptions 1 and that κ2 > 0 is not an
eigenvalue of the problem of finding w ∈ H0(curl;�), w �= 0, such that

∇ × (μ−1
r ∇ × w) = κ2εrw. (2)

Then (1) has a unique solution u ∈ H0(curl;�) and there exists s > 0 such that

‖u‖Hs (�) + ‖∇ × u‖Hs (�) ≤ C‖ f ‖L2(�),

where the constant C depends on s, �, μr , εr and κ .

We test (1a) with ∇q (q ∈ H1
0 (�)) and use the usual regularity result for a second order

elliptic problem to get the following result (recall we assume p = 0).

Corollary 2.5 If μr and εr satisfy the Assumption 1, f ∈ H(div;�). Then there is s0 > 0
such that for 0 < s < s0, (1) has a unique solution p ∈ H1

0 (�). Moreover, the following
regularity result holds,

‖p‖H1+s (�) ≤ C‖∇ · f ‖L2(�), (3)

where the constant C depends on s, � and εr .

2.2 Mixed Formulation of Maxwell’s Equations

To give our HDG formulation for Maxwell’s equations, we need to rewrite them into a mixed
form. This is rather standard, and we introduce a variable q which is just the scaled magnetic
field in electromagnetism. Let q = μ−1

r ∇ × u in (1) to get the following mixed form

μrq − ∇ × u = 0 in �, (4a)

∇ × q − κ2εru + εr∇ p = f in �, (4b)

∇ · (εru) = 0 in �, (4c)

n × u = 0 on ∂�, (4d)

p = 0 on ∂�. (4e)

Then themixedweak form of (4) is given as follows: find (q, u, p) ∈ L2(�)×H0(curl;�)×
H1
0 (�) such that

(μrq, r)L2(�) − (∇ × u, r)L2(�) = 0, (5a)

(q,∇ × v)L2(�) − (κ2εru, v)L2(�) + ( ∇ p, εrv)L2(�) = ( f , v)L2(�), (5b)

(εru,∇χ)L2(�) = 0 (5c)

for all (r, v, χ) ∈ L2(�) × H0(curl;�) × H1
0 (�).

To shorten lengthy equations, for all (q, u, p), (r, v, χ) ∈ L2(�)×H0(curl;�)×H1
0 (�),

we define the sesquilinear form B− by

B−(q, u, p; r, v, χ)

= (μrq, r)L2(�) − (∇ × u, r)L2(�) + (q,∇ × v)L2(�)

+ (ε̄r∇ p, v)L2(�) − (εru,∇χ)L2(�) − (κ2εru, v)L2(�).

(6)
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By the definition of B− in (6), we can write the mixed weak form of (5) as follows: find
(q, u, p) ∈ L2(�) × H0(curl;�) × H1

0 (�) such that

B−(q, u, p; r, v, χ) = ( f , v)L2(�) (7)

for all (r, v, χ) ∈ L2(�) × H0(curl;�) × H1
0 (�).

Next, for all (q, u, p) ∈ H(curl;�) × H0(curl;�) × H1
0 (�), we define the semi-norm

|||·||| by
|||(q, u, p)|||2 = ‖√Re (μr ) q‖2

L2(�)
+ ‖√Re (εr ) u‖2

L2(�)

+ ‖∇ × u‖2
L2(�)

+ ‖√Re (εr ) ∇ p‖2
L2(�)

,
(8)

where μr , and εr satisfy Assumption 1 and κ > 0. It is easy to prove that the semi-norm |||·|||
is actually a norm.

Lemma 2.6 |||·||| defines a norm on the space L2(�) × H0(curl;�) × H1
0 (�).

For all (q, u, p), (r, v, χ) ∈ L2(�)×H0(curl;�)×H1
0 (�),wedefine the the sesquilinear

form B+ by

B+(q, u, p; r, v, χ) = B−(q, u, p; r, v, χ) + (κ2 + 1)(εru, v)L2(�). (9)

The proof of the following continuous inf-sup condition for the coercive form B+ can be
founded in the arXiv preprint of this paper [7].

Lemma 2.7 (Continuous inf-sup condition) Let σ = (q, u, p), τ = (r, v, χ) ∈ L2(�) ×
H0(curl;�) × H1

0 (�), we have the following inf-sup condition

sup
0 �=τ

Re [B+(σ ; τ )]
|||τ ||| ≥ C |||σ |||. (10)

3 The HDGMethod

To describe the HDG method, we first define some notation. Let Th := {K } denote a con-
forming and regular mesh of �, where each element K is a tetrahedron. For each K ∈ Th ,
we let hK be the infimum of the diameters of balls containing K and denote the mesh size
h := maxK∈Th hK . Let ∂Th denote the set of faces F ⊂ ∂K of the elements K ∈ Th (i.e.
faces of distinct elements are counted separately) and let Fh denote the set of faces in the
mesh Th . We denote by hF the diameter of the face F . We abuse notation by using ∇×,
∇· and ∇ for broken curl, div and gradient operators with respect to the mesh partition Th ,
respectively. To simplify the notation, we also define a function h on Th , ∂Th and Fh which
depending on circumstances is defined by:

h|K = hK , ∀K ∈ Th, h|∂K = hK , ∀K ∈ Th, h|F = hF , ∀F ∈ Fh .

Next, we list some formulas which will be frequently used in this paper.

(1) Let F ∈ Fh , and let ∇F · denote the surface divergence on F where the definition of
∇F · can be found in [27, Section 3.4 (page 48)] then the following identity holds for all
sufficiently smooth vector functions v defined in a neighborhood of F :

∇F · (n × v) = −n · (∇ × v)|F . (11)
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Table 1 Comparison of different HDG methods

Type qh uh ûh ph p̂h Stabilization for ph

I [10] k − 1 k k− k − 1 k h(ph − p̂h)

II [10] k − 1 k k− k − 1 k None

III [9] k k k k + 1 k + 1 h−1(ph − p̂h)

IV [6] k − 1 or k k k k k h±1(ph − p̂h)

V [25] k − 1 or k k k k k h(ph − p̂h)

VI [15] k − 1 k k k − 1 k h(ph − p̂h)

VII [15] k − 1 k k− k k h(ph − p̂h)

(2) Let K be an element in the mesh Th , u, v ∈ H(curl; K ), w ∈ H(div; F), p ∈ H1(∂F)

and 〈〈·, ·〉〉∂F be the standard conjugate-linear H1/2 − H−1/2 duality pairing on ∂F . In
addition let ∇F denote the surface gradient on F . Then we have

(∇ × u, v)K = 〈n × u, v〉∂K + (u,∇ × v)K , (12a)

− 〈∇F · w, p〉F = 〈w,∇F p〉F − 〈〈nE · w, p〉〉∂F , (12b)

where n and nE are the unit normal to each face of ∂K and each edge of ∂F .

Next, to give the HDG fomulation of (1). First we define the following finite element
spaces. Let k ≥ 1, m = k − 1 or m = k,

Qh := {qh ∈ L2(�) : qh |K ∈ [Pm(K )]3,∀K ∈ Th},
Uh := {uh ∈ L2(�) : uh |K ∈ [Pk(K )]3,∀K ∈ Th},
Ûh := {̂uh ∈ L2(Fh) : ûh |F ∈ [Pk(F)]3, ûh · n|F = 0,∀F ∈ Fh, n × ûh |∂� = 0},
Ph := {ph ∈ H1

0 (�) : ph |K ∈ Pk+1(K ),∀K ∈ Th}.
We can now derive the HDG method for (4) by multiplying each equation by the appro-

priate discrete test function, integrating element by element and using integration by parts
element by element in the usual way (c.f. [13]). Summing the results over all elements, the
HDG methods seeks (qh, uh, ûh, ph) ∈ Qh × Uh × Ûh × Ph , such that

(μrqh, rh)Th − (uh,∇ × rh)Th − 〈n × ûh, rh〉∂Th = 0, (13a)

(qh,∇ × vh)Th + 〈n × q̂h, vh〉∂Th − (κ2εruh, vh)Th

+ (εr∇ ph, vh)Th = ( f , vh)Th , (13b)

(εruh,∇χh)Th = 0, (13c)

〈n × q̂h, v̂h〉Fh/∂� = 0 (13d)

for all (rh, vh, v̂h, χh) ∈ Qh × Uh × Ûh × Ph , and the choice of n × q̂h follows the usual
HDG pattern,

n × q̂h = n × qh + h−1n × (uh − ûh) × n. (13e)

It is obvious to see that we can decouple the pressure ph from the system (13) if we
take vh = ∇χh . It is worth mentioning that such a decomposition does not hold for the
discrete system of other HDG methods in the literature. We list most of them in Table 1,
where, in the table, k and k− is used as a compact way to denote the spaces Pk(K ) and

123



26 Page 8 of 24 Journal of Scientific Computing (2024) 101 :26

Pk−1(F)⊕∇P̃k+1(F), respectively. Here P̃k(F) is the spaces of homogeneous polynomials
of degree k on F .

Following the definition of B±, we define the discrete sesquilinear formB±
h on the space

Qh × Uh × Ûh × Ph by

B−
h (qh, uh, ûh, ph; rh, vh, v̂h, χh)

= (μrqh, rh)Th − (uh,∇ × rh)Th − 〈n × ûh, rh〉∂Th

+ (∇ × qh, vh)Th + 〈qh, n × v̂h〉∂Th + (ε̄r∇ ph, vh)Th

+ 〈h−1n × (uh − ûh), n × (vh − v̂h)〉∂Th − (εruh,∇χh)Th − (κ2εruh, vh)Th ,

B+
h (qh, uh, ph; rh, vh, χh) = B−

h (qh, uh, ph; rh, vh, χh) + (κ2 + 1)(εruh, vh)Th .

(14)

Then,we can rewrite theHDG formulation (13) in a compact form: find (qh, uh, ûh, ph) ∈
Qh × Uh × Ûh × Ph such that

B−
h (qh, uh, ûh, ph; rh, vh, v̂h, χh) = ( f , vh)Th (15)

for all (rh, vh, v̂h, χh) ∈ Qh × Uh × Ûh × Ph .
Although B±

h is defined on the space Qh × Uh × Ûh × Ph , the notation
B±

h (r, v, v, χ; rh, vh, v̂h, χh) is meaningful if (r, v, χ) ∈ H(curl;�) × H0(curl;�) ×
H1
0 (�). Moreover, if (q, u, p) ∈ H(curl;�) × H0(curl;�) × H1

0 (�) is the solution of (4),
then

B−
h (q, u, u, p; rh, vh, v̂h, χh) = ( f , vh)Th . (16)

The proof of the following lemma is very simple and we omit it here.

Lemma 3.1 For any (qh, uh, ûh, ph; rh, vh, v̂h, χh) ∈ [Qh × Uh × Ûh × Ph]2, we have
B−

h (qh, uh, ûh, ph;−rh, vh, v̂h,−χh) = B−
h (rh, vh, v̂h, χh;−qh, uh, ûh,−ph). (17)

3.1 Preliminary Material

The approximation of Maxwell’s equations by DG methods is studied in [9, 10, 12, 15, 19,
25, 31] where the coefficients are assumed smooth so that the solution is regular enough for a
duality based error analysis, i.e.,u ∈ Hs(�)with s > 1/2.However, byTheorem2.4,weonly
have in general that u ∈ Hs(�)with 1/2 > s > 0 if the coefficients satisfy the Assumption 1
and the traditional approach will fail. Recently, Ern et al. [17] derived an error estimate
for conforming methods under the Assumption 1 by constructing stable, commuting quasi-
interpolation projectors. The idea is to compose the canonical finite element interpolation
operators with a mollification technique; also see Schöberl [32] and Christiansen [11] for
more details.

In this section, we follow [27, Chapter 5] to construct standard interpolation operators
Idiv
h and Icurl

h , which are only defined on Hs(�) with s > 1/2; then by a modification
operatorKh which was constructed in [16, 17], we can smooth functions in the space Hs(�)

with s > 0 into Hs′(�) with s′ > 1/2; finally define the quasi-interpolations by

J div
h = ((Idiv

h Kh |V div
h

)−1Idiv
h Kh, J curl

h = (Icurl
h Kh |V curl

h
)−1Icurl

h Kh .

First, we define some spaces which will be useful in our analysis. For the convenience,
we define
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V curl
h := Uh ∩ H(curl;�), V div

h := Dk(Th) ∩ H(div;�),

Dk(K ) := [Pk−1(K )]3 + P̃k−1(K )x, Dk(F) := [Pk−1(F)]3 + P̃k−1(F)x.

where P̃k(K ) and P̃k(F) are the spaces of polynomials homogeneous of degree k on K and
F , respectively. It’s worth noting that Dk(K ) and Dk(F) correspond to the RT space in
three dimensions on K and in two dimensions on F , respectively.

Next, we defineIdiv
h to be the divergence conforming interpolation of the first family from

Hs(�) → V div
h by [28, Page 328. Definition 5] and [27, Page 119. Definition 5.14] which

is defined element by element via

(Idiv
h v, qk−2)K = (v, qk−2)K ∀qk−2 ∈ Pk−2(K ), (18a)

〈n · Idiv
h v, qk−1〉F = 〈n · v, qk−1〉F ∀qk−1 ∈ Pk−1(F) (18b)

for all faces F ⊂ ∂K , where s > 1/2 and v ∈ Hs(div;�). Moreover, we define Icurl
h be the

curl conforming interpolation of the second family from Hs(curl;�) → V curl
h element by

element by

(Icurl
h v, qk−2)K = (v, qk−2)K ∀qk−2 ∈ Dk−2(K ), (19a)

〈n × Icurl
h v × n, qk−1〉F = 〈n × v × n, qk−1〉F ∀qk−1 ∈ Dk−1(F), (19b)

〈〈Icurl
h v · τ , qk〉〉E = 〈〈v · τ , qk−1〉〉E ∀qk ∈ Pk(E) (19c)

for all faces F ⊂ ∂K and all edges E ⊂ ∂F , and v ∈ Hs(curl;�) with s > 1/2.
The following lemma shows that the usual commutativity properties hold for the combined

first and second kind interpolants used here.

Lemma 3.2 [18, (2.17)] For s > 1/2 and v ∈ Hs(curl; K ), let Idiv
h and Icurl

h define in (18)
and (19), respectively. Then we have the following commutativity property

∇ × (Icurl
h v) = Idiv

h (∇ × v).

By Lemma 3.2 and [16, Theorem 6.5], [17, Cororally 5.4] we now get the following
lemma.

Lemma 3.3 ([Stable, commuting projection]) There exist quasi-interpolation operator
J curl

h : L1(�) → V curl
h and J div

h : L1(�) → V div
h such that

(1) Uh ∩ H0(curl;�) is pointwise invariant under J curl
h .

(2) J curl
h v ∈ H0(curl;�) if v ∈ H0(curl;�).

(3) For p ∈ [1,∞], there holds the stability
‖J curl

h ‖L(L p(�);L p(�)) ≤ C, ‖J div
h ‖L(L p(�);L p(�)) ≤ C .

(4) For p ∈ [1,∞] and s ∈ [0, k + 1], we have the following estimates

‖J div
h v − v‖L p(�) ≤ C inf

vh∈Vdiv
h

‖vh − v‖L p(�) ≤ Chs |v|s,p, (20a)

‖J curl
h v − v‖L p(�) ≤ C inf

vh∈V curl
h

‖vh − v‖L p(�) ≤ Chs |v|s,p. (20b)

(5) For v ∈ H(curl;�), the following commute property holds

∇ × (J curl
h v) = J div

h (∇ × v). (21)
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Lemma 3.4 (Discrete Helmholtz decomposition) For all vh ∈ Uh ∩ H0(curl;�), there exist
unique functions zh ∈ Uh ∩ H0(curl;�) and ξh ∈ Ph such that for all χh ∈ Ph we have

vh = zh + ∇ξh, (εr zh,∇χh)Th = 0. (22)

Moreover, the following stability results hold

‖∇ξh‖Th ≤ C‖vh‖Th , ‖zh‖Th ≤ C‖vh‖Th . (23)

Proof For all χh ∈ Ph , let ξh ∈ Ph be the solution of

(εr∇ξh,∇χh)Th = (εrvh,∇χh)Th . (24)

The system (24) is well-defined for any vh ∈ Uh , hence we have

‖∇ξh‖Th ≤ C‖vh‖Th . (25)

We take zh = vh − ∇ξh , then (22) and ‖zh‖Th ≤ C‖vh‖Th hold. Finally, zh is unique since
ξh is the unique solution of (24). ��

The proof of the following lemma with smooth coefficients μr and εr is given in [22,
Lemma 4.5] and [23, Corollary 4.4]. We extend the result to allow piecewise smooth
coefficients. Its proof can be found in the arXiv preprint of this paper [7].

Lemma 3.5 Assume that vh ∈ Uh ∩ H0(curl;�) satisfies (εrvh,∇χh)L2(�) = 0 for all
χh ∈ Ph. Let � ∈ H0(curl;�) ∩ X0 be the solution of ∇ × � = ∇ × vh, then, we have the
following stability estimate and and the approximation property for some s > 0:

‖�‖Hs (�) ≤ C‖∇ × vh‖L2(�), (26a)

‖vh − �‖L2(�) ≤ Chs‖∇ × vh‖L2(�). (26b)

The final result of this section is ubiquitous in the analysis of DG methods for Maxwell’s
equations:

Lemma 3.6 (c.f [23, Proposition 4.5])For all uh ∈ Uh, there exists a uch ∈ Uh∩H0(curl;�)

such that

‖uh − uch‖Th + ‖h∇ × (uh − uch)‖Th ≤ C‖h 1
2 n × [[uh]]‖Fh . (27)

3.2 Stability of the Coercive Discrete Problem

Next, for all (qh, uh, ûh, ph) ∈ Qh × Uh × Ûh × Ph , we define

∣
∣
∣
∣
∣
∣(qh, uh, ûh, ph)

∣
∣
∣
∣
∣
∣2
h = ‖√Re (μr ) qh‖2Th

+ ‖√Re (εr ) uh‖2Th

+ ‖∇ × uh‖2Th
+ ‖h− 1

2 n × (uh − ûh)‖2∂Th

+ ‖√Re (εr ) ∇ ph‖2Th
,

(28)

where μr , κ and εr were defined in the Assumption 1. The proof of the following lemma is
trivial, hence we omit it here.

Lemma 3.7 |||·|||h defines a norm on the space Qh × Uh × Ûh × Ph.
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By the definition of |||·|||h in (28), for all (r, v, χ) ∈ L2(�) × H0(curl;�) × H1
0 (�), it is

easy to see that |||(r, v, n × v × n, p)|||h is well defined since n × (v − n × v × n) = 0 on
∂Th . This will be used frequently in the error analysis.

Next, by the Cauchy-Schwarz inequality and the triangle inequality we have the following
result showing the boundedness of B±

h .

Lemma 3.8 (Boundedness of B±
h ) Let σ h = (qh, uh, ûh, ph), τ h = (rh, vh, v̂h, χh) ∈

Qh × Uh × Ûh × Ph, then we have

|B±
h (σ h; τ h)| ≤ C |||σ h |||h |||τ h |||h . (29)

It is worth mentioning that the boundedness of B±
h also holds if σ h is replced by σ =

(q, u, n × u × n, p) where (q, u, p) ∈ H(curl;�) × H0(curl;�) × H1
0 (�), because n ×

(u − n × u × n) = 0 on each face F ∈ Fh . Then we have the following inequality

|B±
h (σ ; τ h)| ≤ C

(‖q‖Th + ‖u‖Th + ‖∇ × u‖Th + ‖∇ p‖Th

) |||τ h |||h . (30)

By the inequalities (29) and (30), provided uh ∈ H0(curl;�) ∩ Uh , we have

|B±
h (σ − σ h; τ h)|
≤ C

(‖q − qh‖Th + ‖u − uh‖Th

+‖∇ × (u − uh)‖Th + ‖∇(p − ph)‖Th

) |||τ h |||h .
(31)

In preparation for the proof of the following lemma, for any uh ∈ Uh let uch ∈ Uh ∩
H0(curl;�) by the conforming function in Lemma 3.6, then by Lemma 3.4, there exist
yh ∈ Uh ∩ H0(curl;�) and ηh ∈ Ph , such that for all χh ∈ Ph we have

uch = yh + ∇ηh, (εr yh,∇χh)Th = 0. (32)

We can now prove the discrete analogue of Lemma 2.7.

Lemma 3.9 (Discrete inf-sup condition) For all σ h = (qh, uh, ûh, ph) ∈ �h = Qh ×Uh ×
Ûh × Ph, we have the following inf-sup condition

sup
0 �=τ h∈�h

Re [B+
h (σ h; τ h)]

|||τ h |||h
≥ C |||σ h |||h . (33)

Proof First, we take τ 1 = (qh, uh, ûh,−ph), then by the definition ofB
+
h in (6), integration

by parts and the definition of |||·|||h in (28) we get

Re [B+
h (σ h; τ 1)] = ‖√Re (μr ) qh‖2Th

+ ‖h− 1
2 n × (uh − ûh)‖2∂Th

+ ‖κ√
Re (εr ) uh‖2Th

,

|||τ 1|||h = |||σ h |||h .
(34)

Second, we take τ 2 = (−∇×uh, 0, 0, 0) and use Young’s inequality and trace inequality
to get

Re [B+
h (σ h; τ 2)]

= Re [−(μrqh,∇ × uh)Th + ‖∇ × uh‖2Th
− 〈n × (uh − ûh),∇ × uh〉∂Th ]

≥ −|(μrqh,∇ × uh)Th | + ‖∇ × uh‖2Th
− |〈n × (uh − ûh),∇ × uh〉∂Th |

≥ 1

2
‖∇ × uh‖2Th

− C1

(
‖√Re (μr ) qh‖2Th

+ ‖h− 1
2 n × (uh − ûh)‖2∂Th

)
,

|||τ 2|||h ≤ C2|||σ h |||h .

(35)
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Third, we take τ 3 = (0,∇ ph, n × ∇ ph × n, 0) and use Young’s inequality to get

Re [B+
h (σ h; τ 3)] = ‖√Re (εr ) ∇ ph‖2Th

+ Re [(κ2εruh,∇ ph)Th ]
≥ 1

2
‖√Re (εr ) ∇ ph‖2Th

− C3‖κ
√
Re (εr ) uh‖2Th

,

|||τ 3|||h ≤ C4|||σ h |||h .
(36)

Next, we take τ 4 = (0, 0, 0, ηh) to get

B+
h (σ h; τ 4) = (εruh,∇ηh)Th .

By (32), Young’s inequality and the Lemma 3.6, we have

Re [B+
h (σ h; τ 4)] = Re (εruch,∇ηh)Th + Re (εr (uh − uch),∇ηh)Th

= Re [(εr ( yh + ∇ηh),∇ηh)Th ] + Re [(εr (uh − uch),∇ηh)Th ]
= Re [(εr∇ηh,∇ηh)Th ] + Re [(εr (uh − uch),∇ηh)Th ]
≥ 1

2
‖√Re (εr ) ∇ηh‖2Th

− C5‖h 1
2 n × [[uh]]‖2Fh

≥ 1

2
‖√Re (εr ) ∇ηh‖2Th

− C5‖h 1
2 n × (uh − ûh)‖2∂Th

,

|||τ 4|||h ≤ C6|||σ h |||h .

(37)

Finally, we take τ h = (1 + C1 + C3 + C5)τ 1 + ∑4
i=2 τ i . By (34)-(37) we have

Re [B+
h (σ h; τ h)] ≥ C7|||σ h |||2h,

|||τ h |||h ≤ C8|||σ h |||h .
(38)

The above two inequalities give the desired result (33). ��

4 Error Analysis

In this section, we give an error analysis of the HDG approximation to Maxwell’s equations
given by (13). First, we state main results, i.e., Theorem 4.1, Corollary 4.2. Second, we define
a continuous operator A and discrete operator Ah as in [5], which is a crucial step to get the
error estimate without a duality argument. In the end, we provide the proof of Theorem 4.1.

4.1 Main Result

Before stating our main result, we introduce the standard L2-orthogonal projection operator
�o

m : L2(K ) → Pm(K ), which satisfies

(�o
mq, r)K = (q, r)K , ∀r ∈ Pm(K ). (39)

In the error analysis, we shall use the following well-known bound:

‖q − �o
mq‖Th ≤ Chs‖q‖Hs (�), (40)

where q ∈ Hs(�) and s > 0 is the index guaranteed by Theorem 2.4.
Furthermore, p ∈ H1+s(�), which means p may not continuous on �. Therefore, the

standard Lagrange interpolation operator is not applicable; hence we utilize the Scott-Zhang
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interpolation operator [33] Ih : H1(�) → Ph . For the Scott-Zhang interpolant we have the
following bound bound:

‖∇(p − Ih p)‖Th ≤ Chs‖p‖H1+s (�). (41)

Now we can state the main result:

Theorem 4.1 Suppose that μr and εr satisfy Assumption 1 and κ2 is not an eigenvalue of
(2). Then for h small enough,

(A) The HDG formulation has a unique solution (qh, uh, ûh, ph) ∈ Qh × Uh × Ûh × Ph;
(B) Let (q, u, p) be the solution of (7), then we have

‖q − qh‖Th + ‖u − uh‖Th + ‖∇(p − ph)‖Th

≤ C
(‖�o

mq − q‖Th + ‖J curl
h u − u‖Th + ‖J div

h (∇ × u) − ∇ × u‖Th

+‖∇(Ih p − p)‖Th

)
,

where C depends on κ , �, εr and μr . Here �o
m denotes L2 projection (see (39)).

By the approximation properties ofJ div
h ,J curl

h , �o
m and Ih in (20a), (20b), (40) and (41)

and using the regularity result in Theorem 2.4, we have:

Corollary 4.2 For general coefficients satisfying Assumption 1, and assuming κ2 is not a
Maxwell eigenvalue, then

‖q − qh‖Th + ‖u − uh‖Th + ‖∇(p − ph)‖Th ≤ Chs(‖ f ‖L2(�) + ‖∇ · f ‖L2(�)),

where s ∈ (0, 1/2) and C depends on s, κ , �, εr and μr .

4.2 Preliminary Estimates

Definition 4.3 Let g ∈ L2(�), we define the operator A := (Aq ,Au,Ap) : L2(�) →
H(curl;�) × H0(curl;�) × H1

0 (�) such that for all τ = (r, v, χ) ∈ H(curl;�) ×
H0(curl;�) × H1

0 (�) we have

B+(Ag; τ ) = (εr g, v)L2(�). (42)

By Definition 4.3 and Lemma 2.6 in [7] we get

‖Aq g‖Hs (�) + ‖Au g‖Hs (�) ≤ C‖εr g‖L2(�). (43)

Moreover, if g ∈ H(divεr ,�), then we have

‖Ap g‖H1+s (�) ≤ C‖∇ · (εr g)‖L2(�). (44)

Definition 4.4 Let g ∈ L2(�), we define the operatorAh := (A
q
h ,A

u
h ,A

û
h ,A

p
h ) : L2(�) →

Qh × Uh × Ûh × Ph such that

B+
h (Ah g; τ h) = (εr g, vh)Th (45)

for all τ h = (rh, vh, v̂h, χh). Moreover, we define gh ∈ Uh to be the unique solution of

(εr gh, vh)Th = (g, vh)Th .
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Lemma 4.5 (Stability of A and Ah) Let g ∈ L2(�), then we have

|||Ag||| ≤ C‖g‖L2(�), (46a)

|||Ah g|||h ≤ C‖g‖L2(�). (46b)

where |||·||| and |||·|||h were defined in (8) and (28), respectively.

Proof Let τ = (r, v, χ) ∈ L2(�)×H0(curl;�)×H1
0 (�), by Lemma 2.7 andDefinition 4.3

we get

|||Ag||| ≤ C sup
τ �=0

Re [B+(Ag; τ )]
|||τ ||| = C sup

τ �=0

Re [(εr g, v)L2(�)]
|||τ ||| ≤ C‖g‖L2(�).

Next, let τ h = (rh, vh, v̂h, χh) ∈ Qh×Uh×Ûh×Ph .We use Lemma 3.9 andDefinition 4.3
to get

|||Ah g|||h ≤ C sup
τ h �=0

Re [B+
h (Ah g; τ h)]
|||τ h |||h

= C sup
τ h �=0

Re [(εr g; vh)Th ]
|||τ h |||h

≤ C‖g‖L2(�).

��
Next, we define

Ãg = (Aq g,Au g,Au g,Ap g), (47)

where Ag was defined in (42). Then for all τ h = (rh, vh, v̂h, χh) ∈ Qh × Uh × Ûh × Ph ,
by the definition of B+

h in (14), (42) and the definition of B+ in (9) we have

B+
h (Ãg; τ h) = (εr g, vh)Th = B+

h (Ah g; τ h). (48)

Lemma 4.6 For any g ∈ H(divεr ;�), we have
∣
∣
∣
∣
∣
∣Ãg − Ah g

∣
∣
∣
∣
∣
∣
h ≤ Chs(‖g‖L2(�) + ‖∇ · (εr g)‖L2(�)). (49)

Proof First, let Ih
(
Ãg

) = (�o
m(Aq g),J curl

h (Au g), n × (J curl
h (Au g)) × n,

Ih(Ap g)) ∈ Qh×Uh×Ûh×Ph , where�o
m was defined in (39) and Ih is the Scott-Zhang

interpolant. Then
∣
∣
∣
∣
∣
∣Ih

(
Ãg

) − Ah g
∣
∣
∣
∣
∣
∣
h

≤ C sup
0 �=τ h

Re
[
B+

h

(
Ih

(
Ãg

) − Ah g; τ h
)]

|||τ h |||h by (33)

≤ C sup
0 �=τ h

Re
[
B+

h

(
Ih

(
Ãg

) − Ãg; τ h
)]

|||τ h |||h
by (48)

≤ C
∣
∣
∣
∣
∣
∣Ih

(
Ãg

) − Ãg
∣
∣
∣
∣
∣
∣
h by (31). (50)

Next by the triangle inequality we have
∣
∣
∣
∣
∣
∣Ãg − Ah g

∣
∣
∣
∣
∣
∣
h

≤ ∣
∣
∣
∣
∣
∣Ãg − Ih

(
Ãg

)∣
∣
∣
∣
∣
∣
h + ∣

∣
∣
∣
∣
∣Ih

(
Ãg

) − Ah g
∣
∣
∣
∣
∣
∣
h

≤ C
∣
∣
∣
∣
∣
∣Ãg − Ih

(
Ãg

)∣
∣
∣
∣
∣
∣
h by (50)

≤ C
(‖�o

m(Aq g) − Aq g‖Th + ‖J curl
h (Au g) − Au g‖Th
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+ ‖∇ × (J curl
h (Au g) − Au g)‖Th + ‖∇(Ih(Ap g) − Ap g)‖Th

)
by (31)

= C
(‖�o

m(Aq g) − Aq g‖Th + ‖J curl
h (Au g) − Au g‖Th

+ ‖J div
h (∇ × (Au g)) − ∇ × (Au g)‖Th + ‖∇(Ih(Ap g) − Ap g)‖Th

)
by (21).

By the approximation properties of �o
m , Ih and J div

h in (40), (41) and (20a) we get
∣
∣
∣
∣
∣
∣Ãg − Ah g

∣
∣
∣
∣
∣
∣
h

≤ Chs(‖Aq g‖Hs (�) + ‖Au g‖Hs (�) + ‖∇ × (Au g)‖Hs (�) + ‖Ap g‖H1+s (�))

≤ Chs(‖g‖L2(�) + ‖∇ · (εr g)‖L2(�)),

where we used the regularity results (43) and (44). ��
Next, we define the following norm on the space W = H0(curl;�) + Uh by

‖w‖2W := ‖√Re (εr ) w‖2Th
+ ‖∇ × w‖2Th

+ ‖h− 1
2 n × [[w]]‖2Fh

. (51)

Lemma 4.7 For any uh ∈ Uh, we have

‖Auuh − Au
huh‖W ≤ Chs‖uh‖W .

Proof Let uch be defined as in Lemma 3.6, then by Lemma 3.4 we have

uch = zh + ∇ξh, (εr zh,∇ηh)Th = 0, (52)

where ηh ∈ Ph and ‖∇ξh‖Th ≤ C‖uch‖Th , ‖zh‖Th ≤ C‖uch‖Th . Let � ∈ H0(curl;�) ∩
H(div0εr ;�) be the solution of

∇ × � = ∇ × zh .

Then by (26a) in Lemma 3.5 we have

‖� − zh‖Th ≤ Chs‖∇ × zh‖Th . (53)

Moreover, for all ξh ∈ Ph we have (εruh,∇ξh)Th = 0 and (εr�,∇ξh)Th = 0, then

‖� − uh‖2Th
≤ CRe [(εr (� − uh),� − uh)Th ]
≤ CRe [(εr (� − uh),� − zh − ∇ξh + uch − uh)Th ]
≤ CRe [(εr (� − uh),� − zh + uch − uh)Th ].

This gives

‖� − uh‖Th ≤ C(‖� − zh‖Th + ‖uch − uh‖Th ). (54)

By the definitions of ‖ · ‖W and |||·|||h in (51) and (28), we have, for h small enough and
s ≤ 1/2,

‖(Au − Au
h )uh‖W

≤ ∣
∣
∣
∣
∣
∣(Ã − Ah)uh

∣
∣
∣
∣
∣
∣
h by (47)

≤ ∣
∣
∣
∣
∣
∣(Ã − Ah)(uh − �)

∣
∣
∣
∣
∣
∣
h + ∣

∣
∣
∣
∣
∣(Ã − Ah)�

∣
∣
∣
∣
∣
∣
h

≤ C
(
‖uh − �‖L2(�) + hs‖�‖L2(�)

)
by (46a) and (49)

≤ C
(
‖uh − �‖L2(�) + hs(‖uh − uch‖L2(�) + ‖uch‖L2(�))

)
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≤ C
(
‖� − zh‖Th + ‖uch − uh‖Th + hs‖uch‖L2(�)

)
by (54)

≤ Chs
(
‖∇ × zh‖L2(�) + ‖h− 1

2 n × [[uh]]‖Fh + ‖uch‖L2(�)

)
by (53) and (27)

≤ Chs
(
‖h− 1

2 n × [[uh]]‖Fh + ‖∇ × uch‖Fh + ‖uch‖L2(�)

)
by (52)

≤ Chs‖uh‖W by (27).

��
Lemma 4.8 If κ2 is not an eigenvalue of the problem (2), then for all w ∈ W = Uh +
H0(curl;�), there exists a positive constant C only depending on � and κ such that,

∥
∥
∥
∥

w

1 + κ2 − Auw

∥
∥
∥
∥
W

≥ C‖w‖W .

Proof Let z = 1/(1 + κ2) and g = (z − Au)w, then g ∈ H0(curl;�) + Uh . This implies
zw − g = Auw ∈ H0(curl;�). By the definition of Au (see (4.3)), we know Auw satisfies
the following equation:

∇ × (μ−1
r ∇ × (Auw)) + εr (A

uw) + ε̄rA
pw = εrw.

Setting w = (1/z)(Auw + g) on the right hand side gives

∇ × (μ−1
r ∇ × (Auw)) − κ2εr (A

uw) + ε̄rA
pw = 1

z
εr g,

and so zw − g ∈ H0(curl;�) satisfies the following equation:

∇ × (μ−1
r ∇ × ((zw − g))) − κ2εr (zw − g) + ε̄rA

pw = 1

z
εr g. (55)

Since κ2 is not an eigenvalue of problem (2), then by the Theorem 2.4 we have

‖zw − g‖H(curl;�) ≤ C

|z| ‖εr g‖L2(�) ≤ C

|z| ‖g‖W . (56)

Since ‖zw − g‖H(curl;�) = ‖zw − g‖W , then by (56) we have

‖w‖W ≤ 1

|z| (‖zw − g‖W + ‖g‖W ) ≤ C‖g‖W = C‖(z − Au)w‖W .

��
Lemma 4.9 If κ2 is not an eigenvalue of problem (2) and h is small enough, then for all
w ∈ W = Uh + H0(curl;�), there exists a positive constant C only depending on � and κ

such that,
∥
∥
∥
∥

w

1 + κ2 − Au
hw

∥
∥
∥
∥
W

≥ C‖w‖W .

Proof Let z = 1/(1 + κ2), by Lemma 4.7 and 4.8 and the triangle inequality we have

‖(z − Au
h )w‖W ≥ ‖(z − Au)w‖W − ‖(Au − Au

h )w‖W ≥ (C − hs)‖w‖W .

The desired result holds if h small enough. ��
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The next result follows from the coercivity proved in the previous lemma.

Corollary 4.10 If κ2 is not an eigenvalue of problem (2) and h is small enough, then for all
wh ∈ Uh, there exists a positive constant C only depending on � and κ such that,

∥
∥
∥
∥
∥

(
1

1 + κ2 − Au
h

)−1

wh

∥
∥
∥
∥
∥
W

≤ C‖wh‖W . (57)

4.3 Proof of (A) in Theorem 4.1

Lemma 4.11 If κ2 is not an eigenvalue of problem (2) and h is small enough, then the HDG
scheme (7) has a unique solution σ h = (qh, uh, ûh, ph) ∈ Qh ×Uh × Ûh × Ph. Moreover,
we have

|||σ h |||h ≤ C‖ f ‖L2(�). (58)

Proof For any τ h = (rh, vh, v̂h, χh) ∈ Qh × Uh × Ûh × Ph , we have

B−
h (σ h; τ h) = B+

h (σ h; τ h) − (1 + κ2)(εruh, vh)Th . (59)

Then the HDG scheme (7) is equivalent to finding σ h = (qh, uh, ûh, ph) ∈ Qh × Uh ×
Ûh × Ph such that

1

1 + κ2B
+
h (σ h; τ h) − (εruh, vh)Th = 1

1 + κ2 ( f , vh)Th . (60)

By Definition 4.4, we have the following equations:

B+
h (Ahuh; τ h) = (εruh, vh)Th , (61a)

1

1 + κ2 ( f , vh)Th = 1

1 + κ2 (εr f h, vh)Th = 1

1 + κ2B
+
h (Ah f h; τ h). (61b)

By (61), we can rewrite (60) as follows:

B+
h

(
1

1 + κ2 σ h − Ahuh − 1

1 + κ2Ah f h; τ h

)

= 0.

Due to the coercivity of B+
h in Lemma 3.9, we have:

1

1 + κ2 σ h − Ahuh − 1

1 + κ2Ah f h = 0,

i.e.,
(

1

1 + κ2 − Au
h

)

uh = 1

1 + κ2A
u
h f h, (62)

which is uniquely solvable by Lemma 4.9. Moreover, by (57), we have:

‖uh‖Th ≤ C‖uh‖W by (51)

≤ C‖Au
h f h‖W by (57) and (62)

≤ C
∣
∣
∣
∣
∣
∣Ah f h

∣
∣
∣
∣
∣
∣
h by (28)

≤ C‖ f h‖L2(�) by (46b)

≤ C‖ f ‖L2(�) by (61b). (63)
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Next, by (59) we get

B+
h (σ h; τ h) = (1 + κ2)(εruh, vh)Th + ( f , vh)Th (64)

for all τ h = (rh, vh, v̂h, χh) ∈ Qh × Uh × Ûh × Ph . We can now prove the uniqueness
of any solution to the discrete HDG problem. Suppose f = 0, then uh = 0 by (63), and
so σ h = 0 by (64) and Lemma 3.9. Since the linear system corresponding to the discrete
HDG problem is square, uniqueness implies existence. Therefore, the HDG scheme (7) has
a unique solution. Furthermore,

|||σ h |||h ≤ C sup
τ h �=0

Re [B+
h (σ h; τ h)]

|||τ h |||h by (33)

= C sup
τ h �=0

Re [(1 + κ2)(εruh, vh)Th + ( f , vh)Th ]
|||τ h |||h

by (64)

≤ C(‖uh‖L2(�) + ‖ f ‖L2(�))

≤ C‖ f ‖L2(�) by (63).

��

4.4 Proof of (B) in Theorem 4.1

We first prove that a discrete inf-sup condition holds.

Lemma 4.12 (Discrete inf-sup conditions on B−
h ) Let σ h = (qh, uh, ûh, ph), τ h =

(rh, vh, v̂h, χh) ∈ �h = Qh ×Uh × Ûh × Ph, and suppose κ2 is not a Maxwell eigenvalue
and h small enough. Then we have following inf-sup condition

sup
0 �=σ h∈�h

Re [B−
h (σ h; τ h)]

|||τ h |||h ≥ C |||σ h |||h . (65)

Proof By (38) in the proof of Lemma 3.9, there exists τ 1 = (r1, v1, v̂1, χ1) ∈ �h such that

Re [B+
h (σ h; τ 1)] ≥ C1|||σ h |||2h,

|||τ 1|||h ≤ C2|||σ h |||h .
This is equivalent to

Re [B−
h (σ h; τ 1) + (1 + κ2)(εruh, v1)Th ] ≥ C1|||σ h |||2h .

By the Cauchy-Schwarz inequality we have

Re [B−
h (σ h; τ 1)] ≥ C3|||σ h |||2h − C4(1 + κ2)‖εr‖L∞(�)‖uh‖2Th

. (66)

For uh ∈ Uh , we may choose uch ∈ Uh ∩ H0(curl;�) so that the estimate in Lemma 3.6,
is satisfied. Then by Lemma 3.4, there exist zh ∈ Uh ∩ H0(curl;�) and ξh ∈ Ph , such that
for all χh ∈ Ph we have

uch = zh + ∇ξh, (εr zh,∇χh)Th = 0. (67)

Let � ∈ H0(curl;�) ∩ H(div0εr ;�) be the solution of

∇ × � = ∇ × zh .
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Then by (26a) we have

‖� − zh‖Th ≤ Chs‖∇ × zh‖Th

= Chs‖∇ × uch‖Th by (67)

≤ Chs(‖∇ × (uch − uh)‖Th + ‖∇ × uh‖Th ) (68)

≤ Chs(‖h− 1
2 n × [[uh]]‖Fh + ‖∇ × uh‖Th ) by Lemma 3.6.

Let τ 2 = (r2, v2, v̂2, χ2) ∈ �h be the solution of

B−
h (τ 2; τ h) = (�, εrvh)Th

guaranteed by Lemma 4.11. This implies

B−
h (τ 2; σ h) = (�, εruh)Th . (69)

Furthermore, by (58) we have

|||τ 2|||h ≤ C‖�‖Th . (70)

Next, we take τ 

2 = (−r2, v2, v̂2,−χ2) and τ 3 = (−qh, uh, ûh,−ph) to get

B−
h (σ h, τ



2) = B−

h (τ 2; τ 3) by (17)

= (�, εruh)Th by (69)

= (εruh,�)Th

= (εruh, (� − zh − ∇ξh))Th + (εruh, uch − uh)Th + (εruh, uh)Th by (67)

= (εruh,� − zh)Th + (εruh, (uch − uh))Th + (εruh, uh)Th by (13c).

Then by the Lemma 3.6, (68), the Cauchy-Schwarz inequality and Young’s inequality, we
have

Re [B−
h (σ h; τ 


2)]
≥ 1

2
‖√Re (εr ) uh‖2Th

− Ch2s
(
‖h− 1

2 n × [[uh]]‖2Fh
+ ‖∇ × uh‖2Th

)

= 1

2
‖√Re (εr ) uh‖2Th

− Ch2s
(
‖h− 1

2 n × [[uh − ûh]]‖2∂Th
+ ‖∇ × uh‖2Th

)

≥ 1

2
‖√Re (εr ) uh‖2Th

− Ch2s |||σ h |||2h, (71)

where we used the definition of |||·||| in (28).

Finally, we take τ h = τ 1 + 2C4(1+κ2)‖εr‖L∞(�)

ε̄r
τ 

2. Then by (66), (71) and letting h be

small enough we get the desired result. ��
Our final lemma gives the desired error estimate:

Lemma 4.13 Letμr and εr satisfy Assumption 1. Suppose κ2 is not an eigenvalue of problem
(2). Let (q, u, p) ∈ H(curl;�)×H0(curl;�)×H1

0 (�) and σ h = (qh, uh, ûh, ph) ∈ �h =
Qh × Uh × Ûh × Ph be the solution of (7) and (15), respectively. Then for h small enough,
we have

‖q − qh‖Th + ‖u − uh‖Th + ‖∇(p − ph)‖Th

≤ C
(‖�o

mq − q‖Th + ‖J curl
h u − u‖Th + ‖J div

h (∇ × u) − ∇ × u‖Th

+‖∇(Ih p − p)‖Th

)
,
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where C depends on κ , �, εr and μr .

Proof First, let σ = (q, u, u, p) and Ihσ = (�o
mq,J curl

h u, n × J curl
h u × n, Ih p), where

�o
m and Ih denote the standard L2 projection and the Scott-Zhang interpolation, respectively.

Then

|||Ihσ − σ h |||h ≤ C sup
0 �=τ h∈�h

Re [B−
h (Ihσ − σ h; τ h)]

|||τ h |||h by (65)

= C sup
0 �=τ h∈�h

Re [B−
h (Ihσ − σ ; τ h)]

|||τ h |||h by (16)

≤ C
(‖�o

mq − q‖Th + ‖J curl
h u − u‖Th

+ ‖∇ × (J curl
h u − u)‖Th + ‖∇(Ih p − p)‖Th

)
by (31)

= C
(‖�o

mq − q‖Th + ‖J curl
h u − u‖Th

+ ‖J div
h (∇ × u) − ∇ × u‖Th + ‖∇(Ih p − p)‖Th

)
by (21).

By the definition of |||·|||h in (28) we have

‖�o
mq − qh‖Th + ‖J curl

h u − uh‖Th + ‖∇(Ih p − p)‖Th

≤ C
(‖�o

mq − q‖Th + ‖J curl
h u − u‖Th + ‖J div

h (∇ × u) − ∇ × u‖Th

+‖∇(Ih p − p)‖Th

)
.

Combined with the triangle inequality we get the desired result. ��

5 Numerical Experiments

In this section, we present two numerical tests of the HDG-CG method for Maxwell’s equa-
tions. The domain of the following two examples is the unit cube � = (0, 1) × (0, 1) ×
(0, 1).

Example 1 We first test the convergence rate of the method for Maxwell’s equations with
wave number κ = 1 when the coefficients are piecewise smooth but the solution is smooth.
More specifically, the data is chosen as

μr =
{
0.2 − 0.4i, x < 0.5,

0.25 − 0.25i, x ≥ 0.5,
εr =

{
1 + 2i, x < 0.5,

2 + 2i, x ≥ 0.5,

u = [u1, u2, u3]T, u1 = 1, u2 = (x − 0.5)2z, u3 = (x − 0.5)2y, p = 0.

The source term is chosen to match the exact solution of Eq.1 and the approximation errors
are listed in Table 2. In this case the duality approach would need to handle discontinuous
coefficients which limit the regularity of the dual solution to Hs with s < 1/2. Our anal-
ysis covers this case. Since the chosen true solution is smooth, we expect optimal order
convergence as is seen in Table 2.

Example 2 Next, we test the convergence rate of the method for the Maxwell’s equations
with wave number κ = 1, when both the coefficients and the exact solution are piecewise
smooth. More specifically, the data is chosen as
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Table 2 History of convergence for Example 1

k h√
3

‖q − qh‖L2(�)
/‖q‖L2(�)

‖u − uh‖L2(�)
/‖u‖L2(�)

Error Rate Error Rate

1 1/2 5.10E-01 3.05E-01

1/4 2.75E-01 0.89 8.74E-02 1.80

1/8 1.42E-01 0.95 2.32E-02 1.91

1/16 7.22E-02 0.98 6.02E-03 1.95

1/20 5.79E-02 0.99 3.88E-03 1.96

2 1/2 8.05E-02 2.45E-02

1/4 2.12E-02 1.93 3.05E-03 3.00

1/8 5.42E-03 1.96 3.84E-04 2.99

1/12 2.43E-03 1.98 1.14E-04 2.99

Table 3 History of convergence for Example 2

k h√
3

‖q − qh‖L2(�)
/‖q‖L2(�)

‖u − uh‖L2(�)
/‖u‖L2(�)

Error Rate Error Rate

1 2 5.10E-01 1.53E-01

4 2.75E-01 0.89 4.38E-02 1.80

8 1.42E-01 0.95 1.16E-02 1.91

16 7.22E-02 0.98 3.02E-03 1.95

20 5.79E-02 0.99 1.95E-03 1.96

2 2 8.05E-02 1.23E-02

4 2.12E-02 1.93 1.53E-03 3.00

8 5.42E-03 1.96 1.93E-04 2.99

12 2.43E-03 1.98 5.73E-05 2.99

μr =
{
0.2 − 0.4i, x < 0.5,

0.25 − 0.25i, x ≥ 0.5,
εr =

{
1 + 2i, x < 0.5,

2 + 2i, x ≥ 0.5,

u = [u1, u2, u3]T, u1 =
{
2 x < 0.5,

1, x ≥ 0.5,
, u2 = (x − 0.5)2z,

u3 = (x − 0.5)2y, p = 0.

and the source term is chosen to match the exact solution of Eq.1 and the approximation
errors are listed in Table 3. In this case the solution is piecewise analytic and the mesh is
chosen so that the surface of discontinuity x = 0.5 is a union of faces in the mesh. Thus
standard error estimates for polynmial interpolation applied tetrahedron by tetrahedron give
an optimal error estimate. This is confirmed in Table 3.
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6 Conclusion

We have proved that the HDG-CGmethod for the time harmonic Maxwell system converges
even in the presence of general piecewise smooth coefficients, as are usually encountered in
practical applications. Our numerical results (see [7]) suggest that the method is stable even
when κ = 0 so that the use of expanded HDG spaces for the Lagrange multiplier p is not
needed, and a CG space is sufficient.

Weexpect that themethodof proof given in our paperwill be useful for otherHDGmethods
which are intended for use on heterogeneous media. The dependence of the coefficients in
the estimates on the wave number κ was not traced, and this should be done in the future.
However the simple model problem used here would need to be revised to have Robin type
boundary conditions (or other boundary conditions) in which the dependency of the solution
of continuous problem on κ is known.
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