Efficient Eigen-Decomposition for Low-Rank
Symmetric Matrices in Graph Signal Processing:
An Incremental Approach

Qinwen Deng*, Member, IEEE, Yangwen Zhang*, Mo Li, Songyang Zhang, Member, IEEE and Zhi
Ding, Fellow, IEEE

Abstract—Graph spectral analysis has emerged as an impor-
tant tool to extract underlying structures among data sam-
ples. Central to graph signal processing (GSP) and graph
neural networks (GNN), graph spectrum is often derived
via eigen-decomposition (ED) of graph representation (adja-
cency/Laplacian) matrix. Many real-world applications feature
dynamic graphs whose representation matrix size varies over
time. Such evolving graph usually shares part of the same
structures with the previous graphs. We consider efficient ways
to estimate the K dominant eigenvectors of the graph repre-
sentation matrix. We focus on an iterative ED algorithm for
low-rank symmetric matrices to update the top K eigen-pairs
of the representation matrix for a graph with increasing node
size. To accommodate the growing graph size, we propose two
Incremental ED algorithms for Low Rank symmetric matrices
(ILRED) based on an iterative eigen-updating strategy. We also
provide analysis on the resulting error performance, computa-
tional complexity and memory usage to showcase the efficiency
of ILRED. The experimental results in both synthetic and real-
world datasets with the context of spectral clustering and graph
filtering validate the power of the proposed ILRED algorithms.

Index Terms—eigen-decomposition, eigen-updating, graph sig-
nal processing, graph spectral analysis

I. INTRODUCTION

RAPH spectral analysis has recently become an im-
Gportant tool for structural data analysis in graph signal
processing (GSP) and graph neural networks (GNN). This
surge in interest is driven by the wide-ranging application
in diverse domains, such as the Internet-of-Things (IoT),
social networks, financial data, traffic patterns, and biological
systems [I]-[3]]. All these network-structured data can be
naturally modeled by graphs, which highlights the significance
of employing graph-based methods for signal processing. In
GSP, the graph spectrum, also known as graph Fourier basis is
derived from eigen-decomposition (ED) of the representation
matrix (adjacency/Laplacian) of the graph, based on which the
graph spectral approaches, such as graph spectral analysis and
filtering [4]], [S]l, can be designed for data analysis. To derive

*These authors contributed equally to this work.

Qinwen Deng and Zhi Ding are with Department of Electrical and Com-
puter Engineering, University of California at Davis, Davis, CA 95616 (E-
mail: decdengginwen@gmail.com; zding @ucdavis.edu).

Yangwen Zhang and Mo Li are with Department of Mathematics, Uni-
versity of Louisiana at Lafayette, Lafayette, LA, 70504 (E-mail: yang-
wen.zhang @louisiana.edu; mo.li@louisiana.edu).

Songyang Zhang is with Department of Electrical and Computer Engi-
neering, University of Louisiana at Lafayette, Lafayette, LA, 70504 (E-mail:
songyang.zhang @louisiana.edu).

a0

Fig. 1. Example of an incrementally-updated graph at time ¢ and time ¢ + 1.
The additional vertices and edges at time ¢ + 1 are labeled in orange and
orange dash lines, respectively.

the graph Fourier space for efficient structural data processing,
a fast and accurate ED has become prevalent within GSP.
The pursuit of efficient ED algorithms with low computa-
tional complexity has attracted intensive investigation in GSP.
The high computational complexity and heavy peak memory
utilization of ED lead to significant bottleneck in graph spec-
tral analysis for large-sized datasets. Despite the achievements
of many existing works on efficient approximation of eigen-
pairs for all scales of matrices [6]], most algorithms focus on
static graphs. However, in many realistic applications, such
as dynamic point clouds and social networks, the graph size
keeps changing over time. When new data samples come, the
node size increases and the graph structure partially updates.
For example, as shown in Fig. [} there is one additional
vertex at time ¢ + 1, which increases the dimension of the
corresponding representation matrix. Then, the eigen-pairs
need to be re-computed for GSP spectral analysis. In these dy-
namic scenarios, the re-computation of eigen-pairs upon each
alteration in the graph presents a significant computational
burden. This demand for continual re-computation highlights
the need to develop ED algorithms that can effectively handle
the evolving nature of dynamic graphs. In this work, we focus
on the updating problem to upon the largest K eigenvalues
and the corresponding eigenvectors of symmetric adjacency
matrices for undirected graphs as the graph size increases
(incrementally-updated graph). The estimated top K eigen-
pairs have broad applications for graph spectral analysis,
including spectral clustering [[7]-[9]] and graph filtering.
Many existing eigen-updating works focus on the rank-one
or rank-k£ ED update [[10]—[12]]. However, these approaches can
not be directly applied in real-world graph spectral analysis,
since there is no guarantee that each change of the graph will
lead to a rank-one or rank-%£ matrix. Only a few studies focus

on such issues. The authors in [13]], [[14]] proposed an eigen-
pair updating algorithm based on the perturbation of matrices
in a generalized eigenvalue system. This method needs to
calculate the matrix inverse whenever updating the eigenvec-
tors, which is computationally costly. An incremental eigen-
approximation algorithm was proposed in [15]. However,
compared with the general decomposition expression of the
updated matrix given by [16], the proposed algorithm ignores
the residual elements to further simplify the decomposition
expression, which results in large approximation errors. This
assumption also implies that the top K eigen-pairs of the
original matrix shall maintain their relative order to be in
the top K in the updated matrix, which may not hold in
general cases. Another kind of fast eigen-function tracking
algorithm was proposed in [[17], where the changes of the
adjacency matrices are viewed as perturbations. Based on
the matrix perturbation theory in [[18], the authors proposed
the first-order and higher-order eigen-pair tracking algorithms,
named TRIP-BASIC and TRIP, respectively. However, the
approximation error of the TRIP-BASIC algorithm is large
while the computational complexity of the TRIP is high.

To efficiently solve the eigen-updating problem in
incrementally-updated graphs, where several additional nodes
are added to the original graph, we propose an Incremental ED
algorithm for Low Rank symmetric matrices, namely ILRED.
More specifically, we propose two versions of ILRED, i.e.,
ILRED-BASIC and ILRED-FAST. Our approaches update top
k eigen-pairs by iteratively increasing the matrix size one by
one instead of updating the increase of multiple dimensions
at once. This strategy provides us with two advantages.
First, we have more control over the approximation errors
in each iteration. Compared with the proposed algorithm in
[15], we design a novel error correction branch whenever the
approximation error exceeds the tolerance in each iteration.
Second, the intermediate variables of our proposed algorithm
have a smaller size, which reduces the peak memory usage.
Consequently, our method exhibits smaller approximation er-
rors and less peak memory usage while maintaining the same
order of computational complexity. Our theoretical analysis
of error performance, computational complexity, and memory
cost demonstrate the accuracy and efficiency of the proposed
ILRED. The experimental results further validate the robust-
ness of ILRED in both synthetic and realistic datasets with
applications to spectral clustering and graph filtering.

We summarize our contributions as follows:

o We propose two versions of ILRED, i.e., ILRED-BASIC
and ILRED-FAST for graph spectrum calculation of in-
crementally updated graphs in GSP. To reduce the approx-
imation errors, we design a novel error correction branch
whenever the approximation error exceeds the tolerance
in each iteration. To the best of our knowledge, we are
the first to introduce such error correction algorithm in
ED approximation.

e To gain more flexibility in error control and reduce
the memory cost, we adopt an iterative eigen-updating
strategy for our ILRED algorithms. In each iteration, we
increase the size of the matrix by one and update the
tracking eigen-pairs.

o To demonstrate the accuracy and efficiency of our pro-
posed ILRED algorithms, we provide the theoretical
analysis of the error performance and computational
complexity.

o Beyond the theoretical analysis, we implement the
ILRED algorithms for graph spectral analysis, such as
spectral clustering and graph filtering in both synthetic
and real-world datasets.

We organize the rest of the paper as follows. Following the
introduction of preliminaries of graph spectral analysis and
the overview of related works in Section we present the
details of ILRED algorithms in Section We then analyze
the error performance, computational complexity, and memory
usage of our proposed ILRED algorithms in Section We
also present the experimental results of the proposed methods
in both synthetic and real-world datasets in Section [V} before
summarizing our work in Section

II. PRELIMINARY AND RELATED WORKS

In this section, we first briefly introduce the preliminaries of
graph spectral analysis and then overview the related works.

A. Notations

For convenience, the symbols used in this work are sum-
marized in Table. [as follows.

TABLE I
SYMBOLS USED IN THE PAPER.

Symbol Definition and Description
G=0,¢) undirected graph
1% set of vertices in graph
& set of edges in graph
v; the ¢-th vertex in graph
G representation matrix of graph
A adjacency matrix of graph
L Laplacian matrix of graph
s graph signal of length IV
Q orthonormal matrix whose columns are the eigenvectors
> diagonal matrix with the eigenvalues on the diagonal
Mg initial matrix with known eigen-decomposition result
Miew final matrix with eigen-decomposition result to be updated

B. Graph Spectral Analysis

Graph signal processing (GSP) has recently emerged as an
important tool for structural data analysis due to its power in
capturing underlying data correlations [1f]. Consider an undi-
rected graph G = (V, &) with N vertices, where V' denotes
the set of vertices, i.e., ¥V = {vy,--- ,on}, and € € V X V
represents the edges. A representation matrix G € RV*V
can be used to describe the geometric structure of the graph
G. Commonly used representation matrices include adjacency
matrix A or Laplacian matrix L, which are symmetric for
undirected graphs and usually sparse in large datasets. Graph
signals are the attributes of vertices, which can be written as
vector s = [s1, 82, -+ ,sn] | € RV,

Real-world datasets, such as point clouds, sensor data, and
images, can be naturally represented by graphs. Given the
data points, the construction of the representation matrices

of graphs plays a pivotal role in capturing the underlying
topology of the dataset [2]. Among the various methods for
graph construction, a notable approach is model-based graph
construction. This technique leverages domain knowledge to
construct graphs using models, such as e-neighborhood graph,
tailored to the dataset at hand. In an e-neighborhood graph,
two vertices are connected by edge if their Euclidean distance
is smaller than a given threshold. In this work, we build the
e-neighborhood graph based on the intrinsic resolution d, of
the dataset and the Gaussian kernel. The edge weight between
the i-th and j-th vertex is

2
_lxi—xg

T xi—xP<e

A, ;=1° (IL.1)
0

otherwise

where x; is the vector of data attributes for the i-th vertex.
The intrinsic resolution d, of the dataset is defined as the
mean of the smallest distance from each vertex to all other
vertices in the dataset, i.e., for a dataset with IV vertices, d, =
* Zil,i;ﬁj min; [[x; — x;.

The graph spectral space, also referred to as the graph
Fourier space, is defined based on the eigenspace of the
representing matrix G. Suppose that the eigen-decomposition
of G is G = QAQ™!. Here, Q € RV*N denotes the
orthonormal matrix whose columns are the eigenvectors of
G, and A € RV*N s a diagonal matrix with the eigenvalues
of G on the diagonal, i.e., A = diag(\1, -+, An). Then the
graph Fourier transform (GFT) is defined as

S = Qfls,

whereas the inverse GFT is given by s = QS.

From the definitions of GFT, the concept of graph spec-
tral analysis was developed as an important tool for signal
processing and data analysis. Graph frequency analysis and
graph Fourier filter design were introduced in [4], [S]]. The
basic non-trivial filter defined on the graph G is called the
graph shift, which is defined as

(IL2)

S = As. (IL.3)

Additionally, the linear, shift-invariant graph filters can be
expressed as the polynomials of the adjacency matrix A,
which can be written as

h(A) = hol + hgA + --- + hp AL, (IL.4)
The output signal can be expressed as
S =H(s) = h(A)s. (IL.5)

By using GFT, the Fourier transform coefficients of the
filtered signal s can be written as

Q's = Q 'h(A)Qs

h(As) (IL6)

I
>

h(An)

which indicates the design of the graph spectral filter.

There are two kinds of commonly used graph filters: ideal
graph filter and Haar-like graph filter. The expression of h(A)
for ideal graph filter is

h(A) = diag(1,---,1,0,--- ,0). (IL7)

The number of ones for ideal graph filter can be determined
by the threshold of the eigenvalues. On the other hand, the
h(A) for Haar-like graph filter can be written as

h(A)=1-Anorm, (IL.8)
where I represents the identity matrix of size N by N and
A, orm 1s the normalized eigenvalue matrix by normalizing
the largest eigenvalue of A to 1.

Graph frequency analysis has been applied to many practical
applications. The ideal low-pass and high-pass graph Fourier
filters were used in [19] in the anomaly detection algo-
rithms for wireless sensor networks. The authors in [20] used
graph frequency analysis to identify anatomy-aligned function
signals in the brain and uncover an integrated structure-
function relation of human behavior. More potentials of graph
frequency analysis and graph Fourier filtering in structure-
informed study of functional brain dynamics were revealed in
[21]. Another example is the spectral clustering methods based
on low-frequency eigenvectors of the Laplacian matrix [22],
which was widely used as a benchmark clustering method.

Within the scope of updating the spectral clustering results
for dynamic graphs, existing works can be divided into two
categories. The first approach is to iteratively update the ED
result, then update the clustering result based on the approx-
imated eigenvectors, which will be reviewed in Section
The second approach is to estimate the clustering result based
on the representative sets, such as the method proposed in [23]].
This method instantly assigns cluster labels to newly added
nodes based on the representative reliability of every node in
each cluster. After that, the eigenvalues are also updated to
estimate the number of clusters. However, when the estimated
number of clusters changes, this method needs to re-initialize
the algorithm by clustering based on the ED of the new graph,
which increases the computational complexity.

C. Fast Matrix Decomposition

Many existing works of ED updating focus on rank-one or
rank-k£ ED update problems [10]-[12]. These approaches can
not be directly applied in real-world graph based applications
since there is no guarantee that each change of the graph has
to be limited to rank-one or rank-k. Only a few studies are
focused on such issues. The authors in [13]], [14] considered
a generalized eigenvalue system such that Bx = ACx, where
both B € RV*N and C € RV*VN are symmetric, and \
and x are the eigenvalue and corresponding eigenvector that
needs to be determined. They proposed the eigen-pair updating
algorithm based on finding the perturbation of eigenvalue and
eigenvectors according to the perturbation of matrices B and
C. However, this method needs to calculate the matrix inverse
whenever updating the eigenvectors, which is computationally
costly. An efficient incremental eigen-approximation algorithm

was proposed in [[15]]. This algorithm assumes that the updated
matrix Mpe, € RIVTDX(N+1) can be written in the form that
Myw=[B ¢|"B ¢

[BTB BTc} (I1.9)

¢c'B c'c

where My = B"B € RV*¥ is the original matrix before the
size change, B € RX*¥ is the decomposition matrix of Mg,
c € REX1 jg the difference between the decomposition matrix
of M.y and Mg, and K is the highest rank of Mgy and
M,..w. However, this decomposition expression is incomplete.
The general expression for the decomposition of the updated
matrix, given by [16]], should be

B C1 T B Cq1

0 Co 0 Co

[BTB BT
ClTB ClTC1 +022 ’

Mnew =
(IL.10)

where ¢; € REX! and ¢; € R. Compare Eq. and
Eq. the former decomposition expression drops the resid-
ual element of co2, which increases the approximation error.
Additionally, the former decomposition expression overlooks
the existence of additional rows in the decomposition matrix.
These rows could correspond to the new top K eigen-pairs
of the updated matrix M.y, and be kept in the final result.
Therefore, the approximation errors of the proposed algorithm
is enlarged.

Other kinds of fast eigen-function tracking algorithms were
proposed in [[17], where the changes of the adjacency matrices
are viewed as the perturbation. Based on the matrix perturba-
tion theory in [[18]], the authors proposed first order and higher
order eigen-pairs tracking algorithms, named TRIP-BASIC
and TRIP, respectively. However, the approximation error of
the TRIP-BASIC algorithm is in the order of the norm of
the perturbation of adjacency matrix. The approximation error
will be high when the norm of perturbation is large and there
is no control on that. On the other hand, the computational
complexity of the TRIP is O(K*?) for each iteration, where K
is the number of eigenvalues that are tracked. Such complexity
is very high for a large K.

III. METHOD AND ANALYSIS

In this section, we introduce our incremental ED algorithm
for low-rank symmetric matrices (ILRED). In many big data
analysis, the graph is sparse and the representation matrix are
usually low-rank. We assume that the input matrix of the algo-
rithm is low-rank and positive semi-definite in this section for
better understanding while keeping the mathematical integrity
of the expression.

A. Basic Incremental Eigen-Decomposition

We first introduce one iteration of our basic version of
ILRED algorithm, i.e., ILRED-BASIC, which only increases
the matrix size by one and updates the eigen-pairs. In practical
applications where we need to increase the matrix size by /¢
from time ¢ to time ¢+ 1, we could run the following iteration

Fig. 2. Example of iterative update of our ILRED algorithm. Mgy is the
original low-rank symmetric matrix whose ED matrices are known. In each
iteration of the ILRED algorithm, one new pair of c; and d; are used as the
inputs of the algorithm to update the ED result.

by ¢ times, as shown in Fig. 2] In each iteration, one new pair
of a; and d; are used as the inputs of the algorithm to update
the ED result. In this way, we will have better control on the
approximation errors in each iteration and lower peak memory
usage.

Assuming we already have the truncated -eigen-
decomposition of rank k for the matrix Mgy € R”»*"
as follows:

Mya = QEQ’, (IIL.1)

where 3 € R*** is a diagonal matrix with the k ordered eigen
values of Mg on the diagonal, i.e., X = diag(A1,- -, Ag),
Q € R™** is the matrix of the corresponding k eigenvectors
of Mgy € R™*"™, with QTQ = I,

Our goal is to update eigen-decomposition results by only
employing Q € R™*¥, additional non-diagonal vector o €
R™, and additional diagonal element d € R for the following
incrementally-updated graph representation matrix My, i.€.,

Moa e } . (I.2)

Mnew = |: aT d

We compute the residual vector e of o € R™ by projecting it
onto the subspace spanned by the columns of Q € R"*¥, ..,

e=a-QQ a. (IIL.3)

The norm of the residual vector e is corresponding to the
approximation error of the final result. Therefore, we want
to correct the errors when it is too large. On the other hand,
when the approximation error is small, there is no need to
make such a correction with additional complexity cost. In
our algorithm, we use a predefined tolerance ¢ to determine
whether the approximation error is small or not.

1) When the norm of the residual vector is small: If the
norm of the residual vector is small, i.e., p = ||e|]| < ¢, then
we perform the p-truncation by

a~QQ a, (I11.4)

so that the matrix M, can be approximated by

N M, QQ"
Mnew ~ I aTQgT d :|
_[Q o ¥ QallqQ 0]
L0 1] a'Q d 0 1 (IIL5)
Y,
- T
= %2 (1] } QxiQ [(§ (i)] .

Here Q;%,Q is the ED of the middle matrix Y;. Q; and
3, can be computed by standard ED algorithm. Given that
the size of Y; is (k+ 1) x (k+ 1) and k¥ < n, we can
greatly reduce the computational cost compared with direct
recomputing the ED of M.

To further reduce the computational complexity as well as
the memory cost, we can perform truncation by ignoring the
smallest eigenvalue of Y; when it is small. In our algorithm,
we use another predefined threshold ey to determine if the
eigenvalue is small. A typical value of €y is 0.1e. If the small-
est eigenvalue of Y is small, then we perform eigenvalue
truncation and this suggests the following update:

Q%[(g ?}Ql(;l:kz),

Y 3(1:k,1:k).

Otherwise, we consider the following full-dimension update

e | § Ve

E(—El.

The updated Q and ¥ will be the input of the next iteration
of the ILRED algorithm as the approximated ED of M,y .

2) When the norm of the residual vector is large: If the
norm of the residual vector is large, i.e., p = ||e|| > €, we shall
not use the p-truncation. Instead, we have the fundamental
theorem as follows.

(I1L.6)

(IIL.7)

Theorem 1. Let € = e/p € R™. The updated matrix M,
can be expressed by the identity

)) T
Q & 0 0 Qealrg 5077
Muw =1 g 0 1 L 0 0 1
L 11 a™Q »p d
Yo
- ~ 1 ~ T
1 Q e 0 1 Q e 0
1o 01_(‘:3222(‘22 0 0 1
(1I1.8)
Proof. Please see Appendix A for the proof. O

It is easy to see that 0 must be an eigenvalue of Yo,
hence the last column of Q2 represents an unused subspace
dimension and should be suppressed. Similar to the case when
the norm of the residual vector is small, when the second
smallest eigenvalue of Y is small, the eigenvalue truncation
update is

Q e 0 1.
Q<—[q @ 1]Qz(-,1-k), -
Y31k 1: k).

Calculate residual vector
€;

f smallest
eigenvalue
<g?

f smallest
eigenvalue
<g?

No

Update Q and £
Eq. (I11.7)

Update Q and £
Eq. (I11.9)

Update Q and £
Eq. (11.10)

Update Q and £
Eq. (11L.6)

Fig. 3. Flow diagram of one iteration in algorithm 1.

Algorithm 1 Basic Incremental Eigen-Decomposition Algo-
rithm (ILRED-BASIC)
Input: Decomposition matrix Qn;;, diagonal eigenvalue ma-
trix iy, additional vectors {ay,i € 1,--- , ¢}, additional
singular values {d;,i € 1,---, ¢} tolerance ¢ for residual
vector and threshold €, for eigenvalue;
1. Set Q and X as Qjni; and Xy respectively;
for i from 1 to ¢ do
2. Calculate the residual vector e; and its norm using Eq.
(L11.3));
if p = ||e|| < e then
3. Calculate the ED of Y; defined in Eq. (IL3));
if the smallest eigenvalue of Y; is smaller than ¢
then
4. Update Q and X using Eq. (IL6);
else
5. Update Q and X using Eq. (IL7);
end if
else
6. Calculate the ED of Y, defined in (IIL3);
if the second smallest eigenvalue of Y5 is smaller than

€ then
7. Update Q and X using Eq. (IL.9);
else
8. Update Q and X using Eq. (III.10);
end if
end if
end for

Output: Decomposition matrix Q and diagonal eigenvalue
matrix X as the approximated ED of Mgy,

Otherwise, we perform the full-dimensional update as follows.

Q%{% g (1):|Q2(Z,12k+1),

S (1 k+1,1:k+1).

(IIL.10)

The flow diagram of one update iterations is shown in Fig. [3]
For the case of multiple dimension increase, we will update
the ED result by multiple iterations using the introduced
algorithm. Assuming we have the ED matrices Qjnie € R™**
and iy € R¥** for the rank k initial matrix M, € R**",
the final matrix Mgy € ROHOX(+0 where ¢ > 1, we
summarize our proposed basic ILRED algorithm in Alg. [I}

B. Fast Incremental Eigen-Decomposition

To reduce the computational complexity of the basic ILRED
algorithm, we introduce ILRED-FAST in this section. To
do this, we adopt a new decomposition model. Instead of
performing rotations on the large eigenvector matrices, we
maintain the eigen-decomposition of Eq. in the form
of matrix product

Moa = QQ3Q'Q", (IL11)
where Q € R™* and Q_ € R*** such that the product of
these two matrices Q = QQ is orthonormal. The expansive
outer matrices Q and QT solely capture the eigen subspace’s
span. They are extended by adding rows to Q when the rank
of the update matrix remains the same, and by appending
both new rows and columns when the rank of the update
matrix increases. The transforms of these subspace bases
to make 3 diagonal are maintained in a much smaller Q
matrix, whose size only extends when the rank of the update
matrix increases. This makes the update much faster and
eliminates the numerical error that would accumulate if the
bases specified by the tall Q matrix were rotated on each
update.

With the new expression of the decomposition form in Eq.
(TTL.TT)), we update the process of our ILRED algorithm.

1) When the norm of the residual vector is small: If the
norm of the residual vector is small, i.e., p = ||e|| < &, based
on the preceding discussion in Section. [[TI-A] it is imperative
to ensure that the product Q = QQ remains orthogonal.
Referring to equations and ([II.7), we can deduce that
the right-side update must adhere to the following form

Qrew Quew = { Qs Q"l‘i 0 } X, (ITL.12)

1

where Qold andAQold correspond to the original matrix Mg,
and Qew and Qpey correspond to the updated matrix My,
X is a variable matrix that takes different entry values in
different cases. When the smallest eigenvalue of Y is small,
as in the scenario of Eq. (IL.6), X = Q(:, 1 : k). In this case,
the rank of the updated matrix does not increase. When the
smallest eigenvalue of Y is significant and cannot be ignored,
we set X = Qg, corresponding to the scenario of Eq. ([IL7).
In this case, the rank of the updated matrix increases.

We can reduce the computational complexity of Eq. @E})
by keeping on updating a small pseudo-inverse matrix QOld
When the rank does not increase, we can further reduce the
complexity by splitting Q1 (:, 1 : k) € R*+1DXF into the form

kxk
WeR } , (IL.13)

Ql(:71:k): |: WERle

where submatrix W is a linear transform that will be applied
to Q4> and row-vector w is the subspace projection of the

new data vector. By substituting Eq. into Eq. (IL.12),
we have
5 6 [QuQua 0 |[W
Qnew Qnew = Q ldOQ 14 1 :l |: w :|

_ | Qo Qoa W } (II1.14)

Noting sizes of matrices Quq¢ W € RF** and matrix

Qold n+1)xk O -0
Ww+(§$d € RDXE e Jet Quew = Qoa W and
Qnew = l %"d . Then the resulting right-side update
w new
becomes

Qnew < Qold w
+OT . -
Qnew —~ W Qold’
C’zold
WQneW

Y 3(1:k1: k).

Qrew

] (I11.15)

Conveniently, the pseudo-inverse W can be computed
in O (kz)—time using only matrix-vector and vector-vector
products via the identity

WT
1—[lw]]?

When the update is rank-increasing, Eq. (III.12) can be
decomposed as

Qnew Qnew — [QoldOQOId 0 :| Ql

WH=wT+ (wWT). (II1.16)

1

[Qua 0] Qua ©
_[01d 1“ 01d 1}Q1

The right-side update in Eq. (II.12) can be replaced by

(111.17)

~ [O 0]
Qnew di 1 Qu;
/\+ -
QL. < Qf [Q(‘;ld (1) } ; (IIL.18)
~ [~0 0 T
QneW <_ I Qold 1] .

2) When the norm of the residual vector is large: If the
norm of the residual vector is large, ie., p = |e|| > e.

Referring to equations (III.9) and (IIL.10), the update must
satisfy

Quew Quew = | Qo Qo€ 0 gy o)
0 0 1

where X is a variable matrix that takes different values in

different cases. When the rank remains unchanged, set X =

(k+1)xk
Q2(:,1 : k) and split X = [WeR

w € RIxk } In cases

Calculate residual vector
€;

Calculate ED of Y; Calculate ED of Y,
Eq. (I11.5) Eq. (I1L.8)
1
Calculate
Yes f smallest No
eigenvalue Wand W*
<g? l
T—— Update Q, Q, Q*
Calculate Update Q, Q, Q* P a;(?EQ Q
Wand W and X Eq. (I121)
Eq. (11113, I11.16) Eq. (I11.18) —
!
Update @, Q, Q*
and £
Eq. (IIL.15)

Fig. 4. Flow diagram of one iteration in algorithm 2.

where the rank increases, we let X = Qy(:,1 : £+ 1) and

W € R(k+1)><(k+1)

split it into X = { w € RIX(k+1)

]. Now we have

Quew Q [Qua Qoa € \%
e =[S][V]
= [QuuQoa & } W
L \%%
[Que EHQOM o]w
- 1
L w
i { Qold € } N
= O Qold 0
| ww Qg 0 [01 w
L 0 1
(I11.20)
The update is simply
0 Qold 0)
Qnew < |: 0 1 W,
r—;w — W+ |: QE))ld 1 :| : (IIIZI)
Quew { Qus © } '
wQiw

The flow diagram of one update iterations is shown in Fig. {

For the case of multiple dimension increase, we will update
the ED result by multiple iterations using the introduced
algorithm. Assuming we have the ED matrices Qjnit € Rnxk
and iy € RF** for the rank % initial matrix My, € R™*™,
the final matrix Mgy € ROFTOX(+0 where ¢ > 1, we
summarized our proposed fast ILRED algorithm for multiple
dimension increase case in Alg. [2]

IV. ANALYSIS

In this section, we perform an error analysis and complexity
analysis of the incremental algorithms.

Algorithm 2 Fast Incremental Eigen-Decomposition Algo-
rithm (ILRED-FAST)
Input: Decomposition matrices Qjni, diagonal eigenvalue
matrix X, additional vectors {a;,i € 1,---,¢}, addi-
tional singular values {d;,i € 1,---,£}, tolerance ¢ for
residual vector and threshold e, for eigenvalue;
& Set QA and X as Qi and Xy, respectively, and set both
Q and Q" as identity matrix I;
for i from 1 to ¢ do
2. Calculate the residual vector e; and its norm using Eq.
(111.3));
if p = |le]| < ¢ then
3. Calculate the ED of Y defined in Eq. ([IL3);
if the smallest eigenvalue of Y; is smaller than ¢

then
4. Calculate W and W™ based on Qi using Eq.
and Eq, (ILT6):
5. Update Q, Q, Q" and X using Eq. ([ILT3);
else
6. Update Q, Q, Q* and X using Eq. (ITT8);
end if
else

6. Calculate the ED of Y, defined in Eq. (IL8);

7. Calculate W and W based on Qs;

8. Update Q, Q, Q" and X using Eq. (IL21);

end if

end for _ N
9. Calculate Q using Q and Q;
Output: Decomposition matrix Q and diagonal eigenvalue
matrix X as the approximated ED of Mgy,

A. Error Analysis

In a typical application of the eigen-updating algorithm,
many new columns and rows of data are added so that the
incremental ED is updated many times. We assume that we
are at one step of this procedure where the rank of the initial
matrix My is k, and we have an existing error bound. We
prove that Alg. [T] produces a correct update of the error bound.

Theorem 2. Let QXQ' represent the eigen approxima-
tion of matrix Mgyq. Define p as | — QQ' «l|, and let
QuewZnewQ,L,, be the eigen approximation of the matrix

L M
Mew, Where My, is given by T

a

« d
incremental Eigen-decomposition (ILRED) algorithm. Then,
the Frobenius norm of the difference between M., and

(gnewZ:new(QnTeW is given by:

, using the

A, + V2p, if p < e and NET,
A A, +V2p+ A1, if p<e and ET,
Mier = Moia s if p>e€ and NET,
Ang, T+ A2, if p > ¢ and ET,
where Ang,, = ||Moa—QXQT |, represents the differ-

ences between matrix M,y and its eigen approximation,
and Anp,, = ||MneW — QnewznernTewH F is the differences
between matrix M, and its eigen approximation. ET stands

for ‘eigenvalue truncation is applied’ and NET stands for ‘no
eigenvalue truncation is applied’.

Proof. Please see Appendix B for the proof. O

The result above explains the update of the error bound in
one step of Alg. [l Now we assume the ILRED algorithm
is initialized exactly when k£ = 1, and then the algorithm is
applied for a sequence of added columns and rows, the final
estimation error is given as follows.

Theorem 3. Let the thresholds ¢ and €, be fixed positive
constants. If 7}, represents the total number of times p-
truncation is applied and 7T} represents the total number of
times the eigenvalue truncation is applied, then

[Maa — QEQT ||, < V2Tpe + Thex
Proof. Please see Appendix C for the proof. [

B. Complexity Analysis

In this subsection, we conduct a detailed analysis of
the computational complexity associated with our proposed
algorithms. The evaluation of computational complexity is
measured in terms of the order of multiplication operations
required. This metric provides a basis for assessing the ef-
ficiency and scalability of our proposed algorithms. In the
following analysis, we assume the rank of the initial matrix
Mg € R™*™ is k, and the size of the final matrix Mg, is
(n+20)-by-(n+4£), i.e., we have / iterations in our algorithms.
We start by analyzing the first iteration of our proposed
algorithms.

1) Complexity Analysis of the ILRED-BASIC Algorithm:
First, the complexity order for calculating the residual vector
e; defined in Eq. is O(nk), since the complexity of the
product between matrix Q' € R**" and vector & € R™*!
is O(nk), and the complexity of the product between Q €
R™** and (Q") € R¥*! is also O(nk). The complexity of
calculating the norm of e; € R"*! is O(n).

Then, the complexity order of calculating the ED of either
Y, € R(k+1)x(k+1) and Y, € R(k+2)><(k+2) is O(kb’)
Finally, the complexity order of updating Q and ¥ is O(nk?),
with the worst-case scenario outlined by ([IL.I0). This scenario
has the multiplication between matrix

Q e 0

[0 0 1

and matrix Qa(:,1 : k + 1) € R*+2)x(k+1) Therefore, the

complexity order for the first iteration of the ILRED-BASIC

algorithm is O(nk? + k3). Because we have / iterations in our

algorithm, the overall complexity order for the ILRED-BASIC
algorithm is given as follows.

} e RM+Dx(k+2)

Theorem 4. Let Mgy € R™ ™ be the initial matrix with
rank k and Mipy € R(FOX(+0 be the final matrix, then
the overall complexity order of ILRED-BASIC algorithm is
O(k03 + K20 + K30 + knt? + k*nl + nf3 + (1)

Proof. Please see Appendix D for the proof. [

By this theorem, when the number of iterations ¢ is rel-
atively small, the complexity order of the ILRED-BASIC

algorithm is dominated by the terms (nk? + k3)¢, which is
increased approximated linearly with the number of iterations.
When 7 is close to the value of n, the complexity order is
dominated by the terms (k + n)¢3 + ¢4, which increases fast.

2) Complexity Analysis of the ILRED-FAST Algorithm:
Similarly, the complexity order for calculating the residual
vector e; is O(nk), and the complexity of calculating the norm
of e; is O(n). Then, the complexity order of calculating the
ED of either Y; € RETDX(E+D) apd Y, € RE+2)x(k+2) g
O(k3). Next, the matrix W is taken by splitting either Q
or Qo and it take the complexity of O(1). The complexity
of getting pseudo-inverse W™ given by is O(k?), be-
cause the complexity of the product between vector w € R1**
and matrix W T is O(k?), and the complexity of the product
between the vector == and vector (WWT) is also O(k?).

Finally, the complexity of updating Q, Q, Q* and ¥ is
O(k?), with the worst scenario is given by (IIL2T). The update
of either Quew and Q;f;,, has the complexity of O(k?) with the
product between two matrices, while the update of Q has the
complexity of O(k?) with the product between a vector and a
matrix. In summary, the complexity order for the first iteration
of the ILRED-FAST algorithm is O(nk+k?), considering that
the value of k? may be close to the value of n. Since we have
¢ iterations in our algorithm, the overall complexity order for
the ILRED-FAST algorithm is given as follows.

Theorem 5. Let Mgy € R™ ™ be the initial matrix with
rank k& and Mgp, € R TOX(n+0 pe the final matrix, then
the overall complexity order of ILRED-FAST algorithm is
O(k? + k202 + k30 + 1* + nl? + knd)

Proof. Please see Appendix E for the proof. O

When the number of iterations ¢ is relatively small, the
complexity order of the ILRED-FAST algorithm is dominated
by the terms (kn + k)¢, which is increased approximated
linearly with the number of iterations and smaller than ILRED-
BASIC. When / is close to the value of n, the complexity order
is dominated by the terms k¢ + ¢*, which is also smaller than
ILRED-BASIC algorithm.

V. EXPERIMENTS

We now present the experimental results of the proposed
fast ILRED algorithm, comparing its performance in both
synthetic and real datasets against existing ED approxima-
tion approaches. Specifically, we evaluate our ILRED-FAST
algorithm alongside other state-of-the-art methods, including
efficient eigen-updating (EEU) algorithm presented in [[15], the
TRIP-BASIC and TRIP algorithm outlined in [17]], as well as
the conventional eigen-decomposition (EIG) algorithm.

A. Synthetic Dataset

In this part, we evaluate the error performance and runtime
of our proposed ILRED algorithms using positive definite
symmetric matrices. The reason for selecting such matrices
is to demonstrate the algorithm’s versatility across different
matrix sizes. We generate these random symmetric matrices as
follows: we first generate an n-by-n size random matrix whose

d
3

E
(<]
o
o 8r
=]
=
3
Q2
o
w75k
5 —— ILRED-FAST
w —©—ILRED-BASIC
7r EEU
—B&—TRIP-BASIC
—5—TRIP
65 ‘ ‘ ‘ . I
0 0.5 1 15 2 25 3
Matrix Size x10*

(@)

—+—ILRED-FAST
I |[—e—ILRED-BASIC
EEU

- |—8—TRIP-BASIC
—6—TRIP

Error (L, norm)
N
o

0 05 1 15 2 25 3
Matrix Size x10*

(b)

Fig. 5. Estimation errors of the ED algorithm on synthetic dataset. (a) Average estimation errors of eigenvector matrix QQ, measured by Frobenius norm. (b)

Average estimation errors of eigenvalue matrix 3, measured by L2 norm.

elements are randomly sampled from a uniform distribution
from O to 1. Sequentially, we calculate the mean of this random
matrix and its transpose to form a symmetric matrix. We then
calculate the ED matrices Q and ¥ of the symmetric matrix
using conventional EIG algorithm. Next, we set the elements
of 3 to its absolute value. Finally, we use Q and updated 3
to generate a positive definite symmetric matrix.

Throughout our experiments, we set the final matrix of all
ED algorithms to an n-by-n size, while the initial matrix My
is configured as the top left submatrix of size 0.9n-by-0.9n.
We focus on updating top K eigen-pairs to match the task in
Section V-B. The focus is to truncate the input decomposition
matrices Qiny and iy by keeping the top K eigen-pairs,
which correspond to the eigenvalues of the initial matrix My
with the largest magnitudes. After getting the estimation result
of the ED algorithm, we truncate the output matrices Q and
3 in the same way and compare them with the ground truth
result given by EIG algorithm on the final matrix. To reduce
the impact of the randomness, we conduct 100 Monte Carlo
runs for each matrix size and use the average estimation error
as the metric. To measure the estimation errors on eigenvector
matrix Q, we first reorder the columns in Q to find the best
match with the ground truth. We then calculate the Frobenius
norm of the difference between the reordered matrix and the
ground truth. In this way, we can avoid the order mismatch
of the eigenvectors caused by the small turbulence on the
estimation of eigenvalues. On the other hand, we use the Lo
norm to measure the difference of eigenvalues with the ground
truth. The average estimation errors of all ED algorithms are
shown in Fig. 5] Our proposed ILRED-BASIC and ILRED-
FAST similarly have the lowest estimation errors on all matrix
sizes ranging from 1,000 to 30,000, which demonstrates the
accuracy of our proposed algorithms. Considering the fact
that the main difference between the EEU algorithm and
our proposed ILRED-FAST algorithm is the error correction
branch, this performance improvement demonstrates the effect
of the error correction branch in our proposed algorithm.
Also, the TRIP and the TRIP-BASIC algorithms perform
badly compared with other algorithms, showing that these two
algorithms are not suitable for ED updating problems when the

10%

o
R

O_

Runtime/s

10°¢ —+—ILRED-FAST |

—O—ILRED-BASIC
EEU

107 —HE—TRIP-BASIC

~O—TRIP

EIG

0 05 1 15 2 25 3
Matrix Size x10*

Fig. 6. Average runtime of the ED algorithm on synthetic dataset.

size of the matrix is increasing.

We also collect the average runtime of all ED algorithms
for different matrix sizes. All the algorithms are implemented
in MATLAB and executed on the same computer equipped
with i5-9600K CPU at 3.7 GHz. As shown in Fig. [6] all
ED algorithms are much faster than the conventional EIG
algorithm, which re-computes the eigen-decomposition each
time the matrix size is increased by one. The runtime of
ILRED-BASIC algorithm is larger than that of the ILRED-
FAST algorithm, which is consistent with the findings from the
complexity analysis presented in Section The runtime
of both of our proposed ILRED algorithms are smaller than
TRIP-BASIC, but larger than TRIP and EEU algorithms.
Such higher runtime of our proposed algorithms is partially
caused by the high number of loops in the implementation.
Considering both TRIP and EEU are updating the matrix
changes in one step, they have a lower number of loops than
our proposed ILRED-FAST algorithm.

B. Real Datasets

In this subsection, we assess the error performance and
runtime of our proposed ILRED algorithms in real multime-
dia datasets. Specifically, we subject the ED algorithms on
dynamic point clouds, wireframe datasets, and hyperspectral

images as examples for graph-based applications, including
spectral clustering and low-pass filtering. Despite the adja-
cency matrices for graphs built on real datasets are typically
high rank, our focus lies on updating top K eigen-pairs, con-
sidering the fact that the top K eigen-pairs are commonly used
in spectral clustering and low-pass graph filtering algorithms.
For other GSP applications using Laplacian matrices instead
of adjacency matrices, we can take the pseudoinverse of the
Laplacian matrix [33], [34] to convert the smallest eigenvalues
to the largest ones before applying our algorithm on the top
K eigenpairs. To ensure a fair comparison, we standardize the
comparison process by truncating the output matrices Q and
3 of our proposed ILRED-FAST algorithm by selecting the
first K column vectors and diagonal elements, respectively.

In our experiments on all three datasets, we begin by
constructing the adjacency matrix based on the attribute simi-
larities, using it as the final matrix for all ED algorithms. Sub-
sequently, we randomly drop some nodes of the data, resulting
in a truncated adjacency matrix with the corresponding rows
and columns removed. We then compute the top K eigen-
pairs of this truncated adjacency matrix using conventional
EIG algorithm as the input of all ED algorithms. Finally, we
use the output of these ED algorithms for spectral clustering
and low-pass filtering to assess their error performance.

For experiments on spectral clustering, we employ the
approximated ED results Q to cluster the data, comparing
the results with the cluster outcomes using the conventional
EIG algorithm. The number of clustering errors serves as the
metric to assess error performance. Since spectral clustering
algorithm only uses the estimated eigenvectors, these results
reflect the accuracy of the estimated eigenvectors.

In low-pass filtering experiments, we use both ideal graph-
based filter and Haar-like graph-based filter based on the
approximated top K eigen-pairs of ED algorithms to process
the graph signal based on the vector of the first attribute on
all nodes. The ideal filter uses all K estimated eigenvectors,
while the Haar-like filter also uses the corresponding estimated
eigenvalues. The ground truth for the filtered spatial domain
signal is generated using eigen-pairs from the conventional
EIG algorithm, and the Lo norm of the difference between the
filtered spatial domain signal using ED algorithms and ground
truth as the metrics to assess error performance. The results
of ideal graph-based filters reflect the accuracy of estimating
eigenvectors of ED algorithms, while the results of Haar-
like graph-based filters reflect the accuracy of estimating both
eigenvectors and the exact value of all eigenvalues.

1) Dynamic Point Clouds: Dynamic point clouds have
various applications in autonomous driving [24], virtual reality
[25] and medical imaging [26]. An example of dynamic point
cloud with additional nodes in successive frames is shown in
Fig. [/} In this example, the points on the right foot are not
captured by the sensors in the first frame. These additional
points in the second frame result in the addition of nodes and
edges in the new graph, which corresponds to the additional
rows and columns in the new adjacency matrix. As shown in
the Fig. [7(b), dynamic graph is a natural method to capture the
underlying relationship of points in dynamic point cloud. As
a result, graph-based analyzing and processing methods, such

10

(b)

Fig. 7. Example of dynamic point cloud with additional nodes in successive
frames. (a) Example of dynamic point cloud, the points on the right foot are
not captured by the sensors in the first frame. (b) Example of the graphs
built on the dynamic point cloud, the additional points in the second frame
resulting in the addition of nodes and edges in the new graph, corresponding
to the additional rows and columns in the new adjacency matrix.

as spectral clustering and graph-based filtering, are popular
ways of processing dynamic point clouds. The authors in [35]]
utilize spectral clustering to separate the motion flows in their
proposed object detection and extraction framework on mobile
lidar data. A robust dynamic point cloud segmentation routine
is proposed in [36], where the spectral clustering is used
to generate the initial segmentation. A graph-based low-pass
filtering method is proposed in [37] for point cloud denoising.

In this paper, we only focus on the cases when the size of
the point cloud increases. Therefore, we use the static point
clouds in the Mythological Creatures database [27], [28] to
simulate a dynamic point cloud with the addition of nodes in
successive frames. We conduct 10 Monte Carlo runs on each
point cloud. In each round we first build the e-neighborhood
graph on the point cloud with the radius of neighborhood e
as three times of the intrinsic distance d, as Eq. (IL.I). The
distance between two points is measured by the Lo norm
of the difference on attributes of these two points. Then we
calculate the adjacency matrix of the constructed graph using
the Gaussian kernel. This adjacency matrix is the final matrix
of all ED algorithms. Next, we randomly drop 1% of the nodes
in the point cloud, and remove its corresponding rows and
columns in the adjacency matrix. We then calculate the top K
eigen-pairs of this truncated adjacency matrix Ajy; to generate
the input decomposition matrix Qi and ;. In our test the
number of tracking eigen-pairs K is set to 100. We summarize
this ED updating algorithm in Alg.

After getting the approximated ED results Q and X of the
final matrix, we use them to do spectral clustering, Haar-like
low-pass filtering and ideal low-pass filtering compare them
with the ground truth results using the top K eigen-pairs of the

Add points
® Cluster1
® Cluster2

Cluster 3
® Cluster4
Cluster 5

140 -

120 +

100

80

60

40 ~

20

50 T

T
-100-40 -20 0

140 -
Cluster 1

Cluster 2
Cluster 3
Cluster 4
100 Cluster 5

120 +

ity

190 ————————
® Cluster 1

® Cluster2
Cluster 3
® Cluster4

100 ® Cluster5

120

pixs

SR s
’C‘?.;é’;':} %
o 4 ,;."'_ .
5

80 +

60

40

R?
3

..._‘
£

20 -

2A%
e

e b

-20 ~——

0 OY\V\Vfiififfffff'iiiﬁ

140 -
® Cluster1

® Cluster2
Cluster 3

® Cluster4

® Cluster5

© Cluster Error

120 +

100 +

80

60

40 -

20 -

(d)

Fig. 8. Example of spectral clustering result in our experiments. (a) Clustering result of the original point cloud using the ground truth ED result, updated
points are labeled in red. (b) Clustering result of the updated point cloud using ground truth. (c) Clustering result of the updated point cloud using estimated
ED results from ILRED-FAST algorithm, clustering errors are marked in pink. (d) Clustering result of the updated point cloud using estimated ED results

from ILRED-BASIC algorithm, clustering errors are marked in pink.

Algorithm 3 Fast Incremental Eigen-Decomposition Updating
Algorithm for Dynamic Point Cloud

Input: Coordinates of the updated points P,, adjacency
matrix of the point cloud at the current frame Aj;, number
of tracking eigen-pairs K, intrinsic resolution d,;

Output: Decomposition matrix Q and diagonal eigenvalue
matrix ¥ as the approximated ED of the adjacency matrix
of the updated matrix Afp,;

1. For each updated point whose coordinates are in P,,
calculate the additional vector c; as Eq. (ILI), set all
singular values {d;} as 1;

2. Calculate Qi and 33;,; containing the top K eigen-pairs
of Aj,; using conventional EIG algorithm;

3. Use Alg. [T or Alg. 2] to calculate the approximated ED
results Q and ¥ for the updated frame;

4. Trim Q and X by keeping the top K eigen-pairs.

full-sized adjacency matrix. For spectral clustering results, the
error performance is measured by the number of points that are
incorrectly clustered. For low-pass filtering results, the error
performance is measured by the L, norm between the filtered
signals using approximated results and ground truth.

The average result is shown in Table. [l Our proposed
ILRED-BASIC algorithm has the lowest error in Ly norms,
while the ILRED-FAST algorithm has the lowest error in
terms of clustering errors, which demonstrates the accuracy of
our proposed algorithms on both eigenvalues and eigenvectors

TABLE I
AVERAGE CLUSTERING ERRORS AND LOW-PASS FILTER ERRORS ON
DYNAMIC POINT CLOUDS

ILRED- ILRED- TRIP-

FAST Basic PEU pagic TRIP
Number of
Clustering 310270 31.0676 413378 1017568 101.2838
Errors
L2 (Haar) 51.6431 516416 604235 111.5380 111.2226
L2 (Ideal) 68.1637 68.1631 84.0457 1873133 186.9413

in dynamic point clouds. ILRED-FAST also has a superior
performance over the existing approaches. Compared with
the EEU algorithm, our proposed ILRED algorithms have
significant performance improvement. Considering the fact
that the main difference between the EEU algorithm and our
proposed ILRED algorithms is the error correction branch,
this performance improvement demonstrates the effect of the
error correction branch in our proposed algorithm on dynamic
point clouds. One example of the spectral result using ILRED
algorithms is shown in Fig. [§] where the cluster error points are
labeled in pink. As shown in Fig. [fc) and (d), our proposed
ILRED algorithms can keep the majority of the clustering
results to be the same as the ground truth.

2) Large-scale Point Cloud: In real-world applications,
point clouds may contain millions of points [30]. Traditional
ED algorithms need an enormous amount of memory to
process such a large-scale matrix directly, which makes the

@

Fig. 9. Boxer point cloud in 8i Voxelized Surface Light Field (8iVSLF)
Dataset.

25 x10° ‘ ;
——EIG
—O—ILRED-FAST L
) ILRED-BASIC

i)
2
(]
o 1. J
3]
['4
>
s
<
g]
4
5]
(]
o

™ \ £ L £ L o

AN G
100 150 200 250 300 350 400

Number of tracking eigenpairs

Fig. 10. Peak memory usage of the ED algorithms on Boxer point cloud.

process of estimating its eigen-pairs very difficult. However,
our proposed ILRED algorithms only require a small amount
of memory, which provides a solution for these problems.
In this experiment, we test a simple algorithm on estimating
the top K eigen-pairs of the adjacency matrix of a large-
scale point cloud. We first select a part of the large-scale
point cloud containing Ny points. Subsequently, we build the
adjacency matrix on this part based on its intrinsic distance
with the Gaussian kernel. Then we calculate the top K
eigenpairs of this adjacency matrix as the input of the ILRED-
FAST algorithm. Next, we add one point in the original
point cloud each time to the existing part, while using the
same intrinsic distance value to calculate the corresponding
additional column vector o and d in the updated adjacency
matrix. o« and d are used in the ILRED-FAST algorithm
to update the approximation of the top K eigenpairs. To
demonstrate the memory efficiency of our proposed algorithm,
we test it on the Boxer point cloud in 8i Voxelized Surface
Light Field (8iVSLF) Dataset [29]], which contains about 3.49
million nodes, as shown in Fig. [0] We measure the peak
memory usage by using the built-in profiler in Matlab. The
peak memory usage result is shown in Fig. [[0] Compared
with the conventional EIG algorithm, our proposed ILRED-
FAST has much lower peak memory usage, since we can free
the memory of the adjacency matrix once initial eigenpairs are
calculated.

Fig. 11. Example of motion capture data.

3) Motion Capture Data: Human motion analysis has re-
cently emerged as an active research field, stemming from
its broad applications in many areas, ranging from human-
robot interaction to autonomous driving [31]. Motion capture
data contains a sequence of data frames captured by sensors
mounted on the human body, as shown in Fig. If we
consider the attributes of all nodes in one frame as the signal
on one vertex, we can build a temporal correlation matrix
on motion capture data. With the number of data frames
increasing throughout time, the size of the temporal correlation
matrix increases as well, which provides a background for ED
algorithms. One attractive problem on motion capture data
is motion segmentation, which aims to separate the motion
capture sequence into segments, each corresponding to one
kind of motion. Of all existing works on motion segmentation,
spectral clustering is one of the basic methods. The authors in
[38] used spectral clustering as the basic comparison in their
experiments. On the other hand, many works develop new
clustering methods based on spectral clustering. The authors
in [39] employed two methods of spectral clustering, t-nearest
neighbors and the Nystrom method, to cluster motion capture
data for getting behavioral segmentation. Spectral clustering
was also used in [40]] as a part of the proposed framework
of sparse subspace clustering based on Riemannian manifold
structure. Graph filters are also used in motion data analysis.
Irregular-aware graph filters and graph Fourier transform were
proposed in [41] by considering the irregular relationships
between the data points on applications like motion capture
data.

In this part, we test the ED algorithms on trails 01 to 14
of subject 86 in CMU graphics lab motion capture databaseﬂ
Similar to Section we conduct 10 Monte Carlo runs on
each trail. In each run, the temporal correlation matrix is based
by the Lo distance between all data values of two frames, and
uses a Gaussian kernel to calculate the correlation value. This
correlation matrix is the final matrix of all ED algorithms.
Next, we randomly drop 1% of the frames in the wireframe
sequence and remove its corresponding rows and columns in
the correlation matrix. We then calculate the top K eigen-
pairs of this truncated correlation matrix to generate the input
decomposition matrix Qjn; and ;. In our test, K is still set
to 100. After getting the approximated ED results Q and ¥ of
the final matrix, we use them to do spectral clustering, Haar-

Uhttp://mocap.cs.cmu.edu/

Algorithm 4 Fast Incremental Eigen-Decomposition Updating
Algorithm for Motion Capture Data

Algorithm 5 Fast Incremental Eigen-Decomposition Updating
Algorithm for Hyperspectral Image

Input: Attributes of the updated frames A,, adjacency
matrix of the point cloud at the current frame Aj,;, number
of tracking eigen-pairs K, intrinsic resolution d,.;

Output: Decomposition matrix Q and diagonal eigenvalue
matrix ¥ as the approximated ED of the adjacency matrix
of the updated matrix A fpa;

1. For each updated frame whose attributes are in A,,
calculate the additional vector «; as Eq. (ILI)), set all
singular values {d;} as 1;

2. Calculate Qi and 3,5 containing the top K eigen-pairs
of Ajy using conventional EIG algorithm;

3. Use Alg. [T or Alg. 2] to calculate the approximated ED
results Q and X for the updated frame;

4. Trim Q and X by keeping the top K eigen-pairs.

Input: Attributes of the updated columns C,, adjacency
matrix of the point cloud at the current frame Aj,;, number
of tracking eigen-pairs K, intrinsic resolution d,;

Output: Decomposition matrix Q and diagonal eigenvalue
matrix ¥ as the approximated ED of the adjacency matrix
of the updated matrix A fpa;

1. For each updated point whose attributes are in C,,
calculate the additional vector «; as Eq. ([.I), set all
singular values {d;} as 1;

2. Calculate Qi and 3;p; containing the top K eigen-pairs
of Ajy using conventional EIG algorithm;

3. Use Alg. [T or Alg. 2] to calculate the approximated ED
results Q and 3 for the updated point;

4. Trim Q and X by keeping the top K eigen-pairs.

TABLE III
AVERAGE CLUSTERING ERRORS AND LOW-PASS FILTER ERRORS ON
MOTION CAPTURE DATA

ILRED- ILRED- TRIP-

FAST BASIC EEU BASIC TRIP
Number of
Clustering ~ 8.2143 8.3571 22.1429 65.1244 63.1054
Errors
L2 (Haar) 0.4568 0.4566 0.5810 0.8157 0.7982
L2 (Ideal) 0.4569 0.4567 0.5812 0.8136 0.8065

like low-pass filtering and ideal low-pass filtering compare
them with the ground truth results using the top K eigen-
pairs of the full-sized correlation matrix. We summarize this
ED updating algorithm in Alg.]

The average result is shown in Table. Our proposed
ILRED algorithms have the lowest error in all three metrics,
which demonstrates the accuracy of our proposed algorithm
on motion capture data.

4) Hyperspectral Image: Hyperspectral image has been
widely used in applications like earth observation and in-
dustrial scanning [32]. Hyperspectral image contains images
of multiple spectral bands on the same object. The pixels
in hyperspectral image can be viewed as the vertices of a
graph, while the values of all bandwidth form attributes on the
vertices. One common sensor of capturing the hyperspectral
image is called pushbroom hyperspectral imager, which scans
a line at each moment in time. Therefore, the size of the
hyperspectral image is increasing over time, and this scenario
is suitable for the ED algorithms. Spectral clustering and
graph-based filters are widely used on hyperspectral images. A
fast spectral clustering was proposed in [42] for unsupervised
hyperspectral image classification. The authors in [43]] pro-
posed a spatial-spectral clustering with anchor graph for HSI
data clustering. On the other hand, the authors in [44] designed
a linear function to combine the different graph filters in their
proposed framework so that the graph filter can be adaptively
determined by training different weight matrices.

In this part, we test the ED algorithms on the Indian Pines
data [45]]. We follow a similar workflow as Section and
Section The major difference of our experiment for

TABLE IV
AVERAGE CLUSTERING ERRORS AND LOW-PASS FILTER ERRORS ON
HYPERSPECTRAL IMAGES

ILRED- ILRED- TRIP-

FAST Basic PEU pagic TRIP
Number of
Clustering 70.5 70.5 71.5 1529.5 1875.6
Errors
L2 (Haar) 13820 13780 13918 55670 62845
L2 (Ideal) 14756 14670 14872 75525 84772

hyperspectral image is that we drop the last 5% columns of
the original hyperspectral image to simulate the real situation
of using a pushbroom hyperspectral imager. We first build
the e-neighborhood graph on the hyperspectral image with
the radius of neighborhood as three times of the intrinsic
distance, where the intrinsic distance is defined as the mean
of the distances between all pixels and its nearest neighbor.
The distance between two pixels is measured by the Ly norm
of the difference on attributes of these two pixels. Then we
calculate the adjacency matrix of the constructed graph using
the Gaussian kernel. This adjacency matrix is the final matrix
of all ED algorithms. Next, we drop the last 5% columns of
the original hyperspectral image, and remove its corresponding
rows and columns in the adjacency matrix. We then calculate
the top K eigen-pairs of this truncated adjacency matrix to
generate the input decomposition matrix Qjn; and i In
our test, K is set to 100. We summarize this ED updating
algorithm in Alg. [5]

After getting the approximated ED results Q and ¥ of the
final matrix, we use them for spectral clustering, Haar-like
low-pass filtering and ideal low-pass filtering compare them
with the ground truth results using the top K eigen-pairs of the
full-sized adjacency matrix. For spectral clustering results, the
error performance is measured by the number of pixels that are
incorrectly clustered. For low-pass filtering results, the error
performance is measured by the Lo norm between the filtered
signals using approximated results and ground truth.

The average result is shown in Table. Our proposed
ILRED algorithms have the lowest error in all three metrics,
which demonstrates the accuracy of our proposed algorithm

on hyperspectral images.

VI. CONCLUSION

This work studies the ED approximation algorithms for
low-rank matrices in GSP with incrementally-updated graph
structure. Specially, we develop a basic ILRED algorithm with
the error correction branch to improve the estimation accuracy.
We also proposed a faster ILRED-FAST by introducing a
product decomposition form. Our proposed methods are easier
to implement, and show robustness across both synthetic and
real-world datasets. Our experimental results demonstrated the
efficacy on runtime and memory, as well as the accuracy
of eigenvalue calculation. This work establishes ILRED as
an efficient tool to approximate low-rank ED on dynamic
point clouds, motion capture data and hyperspectral images.
In future works, we plan to extend this algorithm to process
shrinking (decremental) graphs and high-order tensors in high-
dimensional graph signal processing [46], [47]]. We also view
the fast ED algorithm on sparse symmetric matrices with
higher rank as another promising direction for exploration.

REFERENCES

[1] A. Ortega, P. Frossard, J. Kovacevi¢, J. M. F. Moura and P. Vandergheynst,
“Graph Signal Processing: Overview, Challenges, and Applications,”
Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828, May 2018.

[2] W. Hu, J. Pang, X. Liu, D. Tian, C. -W. Lin and A. Vetro, “Graph Signal
Processing for Geometric Data and Beyond: Theory and Applications,”
IEEE Transactions on Multimedia, vol. 24, pp. 3961-3977, 2022.

[3] R.Lietal., “Graph Signal Processing, Graph Neural Network and Graph
Learning on Biological Data: A Systematic Review,” IEEE Reviews in
Biomedical Engineering, vol. 16, pp. 109-135, 2023.

[4] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs:
frequency analysis,” IEEE Transactions on Signal Processing, vol. 62, no.
12, pp. 3042-3054, Jun., 2014.

[S] A. Sandryhaila, and J. M. F. Moura, “Discrete signal processing on
graphs: graph filters,” in Proceedings of 2013 IEEE ICASSP, Vancouver,
Canada, May 2013, pp. 6163-6166.

[6] Q. Zhang, Y. Tian, T. Wang, F. Yuan and Q. Xu, “ApproxEigen: An
approximate computing technique for large-scale eigen-decomposition,”
in 2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Austin, TX, USA, 2015, pp. 824-830.

[7]1 U. Von Luxburg, "A tutorial on spectral clustering”, Stat. Comput., vol.
17, no. 4, pp. 395-416, 2007.

[8] J. Liu, C. Wang, M. Danilevsky and J. Han, “Large-scale spectral
clustering on graphs”, Proc. Int. Joint Conf. Artif. Intell., pp. 1486-1492,
2013.

[9] H. Yin, W. Hu, Z. Zhang, J. Lou and M. Miao, “Incremental multi-view
spectral clustering with sparse and connected graph learning”, Neural
Netw., vol. 144, pp. 260-270, Dec. 2021.

[10] K. . -B. Yu, “Recursive updating the eigenvalue decomposition of a
covariance matrix,” IEEE Transactions on Signal Processing, vol. 39, no.
S, pp. 1136-1145, May 1991.

[11] R.D. DeGroat and R. A. Roberts, “Efficient, numerically stabilized rank-
one eigenstructure updating (signal processing),” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 38, no. 2, pp. 301-316,
Feb. 1990.

[12] R. Bru, R. Canto, and A. M. Urbano, “Eigenstructure of rank one
updated matrices,” Linear Algebra and its Applications, vol. 485, pp.
372-391, 2015.

[13] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. Huang, “Incremental spectral
clustering with application to monitoring evolving blog communities,” in
SIAM International Conference on Data Mining, Citeseer, 2007.

[14] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. S. Huang, “Incremental spectral
clustering by efficiently updating the eigen-system,” Pattern Recognit.,
vol. 43, no. 1, pp. 113-127, 2010.

[15] C. Dhanjal, R. Gaudel, and S. Clémencon, “Efficient eigen-updating for
spectral graph clustering,” Neurocomputing, vol. 131, pp. 440-452, May
2014.

[16] J. T. Kwok and H. Zhao, “Incremental eigen decomposition,” in Proc.
ICANN, Istanbul, Turkey, Jun. 2003, pp. 270-273.

[17] C. Chen and H. Tong, “Fast eigen-functions tracking on dynamic
graphs,” in Proc. SIAM Int. Conf. Data Mining, 2015, pp. 559-567.

[18] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory. Boston, MA,
USA: Academic, 1990.

[19] H. E. Egilmez and A. Ortega, “Spectral anomaly detection using graph-
based filtering for wireless sensor networks,” in Proceedings of 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Florence, Italy, 2014, pp. 1085-1089.

[20] J.D. Medaglia, W. Huang, E.A. Karuza, et al., “Functional alignment
with anatomical networks is associated with cognitive flexibility,” Nature
Human Behaviour, vol. 2, pp. 156-164, 2018.

[21] W. Huang, T. A. W. Bolton, J. D. Medaglia, D. S. Bassett, A. Ribeiro and
D. Van De Ville, “A Graph Signal Processing Perspective on Functional
Brain Imaging,” Proceedings of the IEEE, vol. 106, no. 5, pp. 868-885,
May 2018.

[22] U. von Luxburg, “A tutorial on spectral clustering,” Stat. Comput., vol.
17, no. 4, pp. 395-416, 2007.

[23] T. Kong, Y. Tian and H. Shen, “A Fast Incremental Spectral Clustering
for Large Data Sets,” in 2011 12th International Conference on Parallel
and Distributed Computing, Applications and Technologies, Gwangju,
Korea (South), 2011, pp. 1-5.

[24] S. Chen, B. Liu, C. Feng, C. Vallespi-Gonzalez and C. Wellington, “3D
Point Cloud Processing and Learning for Autonomous Driving: Impacting
Map Creation, Localization, and Perception,” IEEE Signal Processing
Magazine, vol. 38, no. 1, pp. 68-86, Jan. 2021.

[25] W. Zhu, Z. Ma, Y. Xu, L. Li and Z. Li, “View-Dependent Dynamic
Point Cloud Compression,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 31, no. 2, pp. 765-781, Feb. 2021.

[26] D. Rempe, T. Birdal, Y. Zhao, Z. Gojcic, S. Sridhar, and L. J. Guibas,
“CaSPR: Learning canonical spatiotemporal point cloud representations,”
in Proc. Conf. Neural Inf. Process. Syst., 2020, pp. 13688-13701.

[27] A. M. Bronstein, M. M. Bronstein, and R. Kimmel, “Numerical geom-
etry of non-rigid shapes,” Springer, 2008.

[28] A. M. Bronstein, M. M. Bronstein, A. M. Bruckstein, and R. Kimmel,
“Analysis of two-dimensional non-rigid shapes,” Intl. J. Computer Vision
(1JCV), vol. 78, no. 1, pp. 67-88, June 2008.

[29] M. Krivokuéa, P. A. Chou, and P. Savill, “8i Voxelized Surface Light
Field (8iVSLF) Dataset,” ISO/IEC JTC1/SC29 WG11 (MPEG) input
document m42914, Ljubljana, July 2018.

[30] Q. Deng, S. Zhang and Z. Ding, “An Efficient Hypergraph Approach
to Robust Point Cloud Resampling,” in IEEE Transactions on Image
Processing, vol. 31, pp. 1924-1937, 2022.

[31] Y. Desmarais, D. Mottet, P. Slangen and P. Montesinos, “A review of
3d human pose estimation algorithms for markerless motion capture,”
Computer Vision and Image Understanding, vol. 212, Nov. 2021.

[32] V. Lodhi, D. Chakravarty, and P. Mitra, “Hyperspectral imaging system:
Development aspects and recent trends,” Sensing and Imaging, vol. 20,
pp. 1-24, 2019.

[33] G. Ranjan, Z. L. Zhang, and D. Boley, “Incremental computation of
pseudo-inverse of laplacian,” in International Conference on Combi-
natorial Optimization and Applications, Cham: Springer International
Publishing, Nov. 2014, pp. 729-749.

[34] G. Bravo-Hermsdorff and L. M. Gunderson. “A unifying framework
for spectrum-preserving graph sparsification and coarsening,” Neural
Information Processing Systems (NeurIPS), vol. 32, 2019.

[35] C.Jiang, D. P. Paudel, D. Fofi, Y. Fougerolle and C. Demonceaux, “Mov-
ing Object Detection by 3D Flow Field Analysis,” IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 4, pp. 1950-1963, April
2021.

[36] D. Wang et al., “Separating tree photosynthetic and non-photosynthetic
components from point cloud data using dynamic segment merging,”
Forests, vol. 9, no. 5, p. 252, 2018.

[37] R. Watanabe, K. Nonaka, E. Pavez, T. Kobayashi and A. Ortega,
“Graph-Based Point Cloud Color Denoising with 3-Dimensional Patch-
Based Similarity,” in ICASSP 2023 - 2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island,
Greece, 2023, pp. 1-5.

[38] F. Zhou, F. De la Torre and J. K. Hodgins, “Hierarchical Aligned Cluster
Analysis for Temporal Clustering of Human Motion,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 3, pp. 582-596,
Mar. 2013.

[39] X. Yu, W. Liu, and W. Xing, “Behavioral segmentation for human
motion capture data based on graph cut method,” J. Vis. Lang. Comput.,
vol. 43, pp. 50-59, Dec. 2017.

[40] G. Xia, H. Sun, L. Feng, G. Zhang and Y. Liu, “Human Motion
Segmentation via Robust Kernel Sparse Subspace Clustering,” [EEE
Transactions on Image Processing, vol. 27, no. 1, pp. 135-150, Jan. 2018.

[41] B. Girault, A. Ortega and S. S. Narayanan, “Irregularity-Aware Graph
Fourier Transforms,” IEEE Transactions on Signal Processing, vol. 66,
no. 21, pp. 5746-5761, 1 Nov.1, 2018.

[42] Y. Zhao, Y. Yuan, and Q. Wang, “Fast spectral clustering for unsuper-
vised hyperspectral image classification,” Remote Sens., vol. 11, no. 4,
pp. 399, Feb. 2019.

[43] Q. Wang, Y. Miao, M. Chen and Y. Yuan, “Spatial-Spectral Clustering
With Anchor Graph for Hyperspectral Image,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 60, pp. 1-13, 2022.

[44] Y. Ding et al., “AF2GNN: Graph convolution with adaptive filters and
aggregator fusion for hyperspectral image classification,” Inf. Sci., vol.
602, pp. 201-219, Jul. 2022.

[45] M. F. Baumgardner, L. L. Biehl, and D. A. Landgrebe, “220 Band
AVIRIS Hyperspectral Image Data Set: June 12, 1992 Indian Pine Test
Site 3,” Purdue University Research Repository, 2015.

[46] S. Zhang, Z. Ding and S. Cui, “Introducing Hypergraph Signal Process-
ing: Theoretical Foundation and Practical Applications,” in IEEE Internet
of Things Journal, vol. 7, no. 1, pp. 639-660, Jan. 2020.

[47] S. Zhang, Q. Deng and Z. Ding, "Signal Processing Over Multilayer
Graphs: Theoretical Foundations and Practical Applications,” in IEEE
Internet of Things Journal, vol. 11, no. 2, pp. 2453-2471, 15 Jan.15,
2024.

APPENDIX
A. Proof of Theorem 1
The right-hand side of Eq. can be written as

.
Q & 0 0 Qealrg 5017
0 0 1 0 0 »p 0 0 1
a'Q p d
-
QY 0 QQTa+ep]| & VY
= aTQ P d e O
0 1
_ QxQ’ QQ'a+e]
T [a™QQT +e’ d
- (A.1)
Substitute Eq. into Eq. (A1), we have
S
Q & 0 0 Qeaelrg 5077
0 0 1 0 0 »p 0 0 1
aTQ P d
_[Q=Q" «
o al d
:MHCW7
(A.2)

which completes the proof.

B. Proof of Theorem 2
vl QEQ" «a
Let Mnew = aT d
the following two cases:

Case 1: p < e. Recall that Y; = {

] and we split the proof into

b Q'
a’Q d] and
let Q134 QI be the eigen-decomposition of Y, let \; be the
smallest eigenvalue of Y.

(1) If Ay > ey, then from the Alg. [T] we will not apply
eigenvalue truncation, i.e,

0

Qnew = [(g 1 :| Ql; Enew = El-

Direct computation gives

+ _[Q2QT QQ'a

QneWEneWQnew - |: aTQQT d] '
Therefore,

Mnew - QnewxneWQ[—;w
. Mold « QEQT QQTa
Tl a’ d| | a™QQT d
_[Maa-Q2QT «-QQ'e
= aT . aTQQT 0 .

This implies

HMneW - QnewznernTewHi‘
= [Moa — Q2QT[;, + 2l — QQ"
= |Maa — QEQTJ7. + 2"
Hence,
||Mnew - Qmwznerr—LwHF < HMO]d - QEQTHF + \/§p'

(2) If A1 < gy, then from Alg. [I we have the eigenvalue

truncation as

Quew = { %2 (1) }Ql(:,lzk), PYhew = 21(1: k,1: k).
Assuming that q is the eigenvector of 1\//1:;, which corre-
sponds to the eigenvalue \;. Then we have

+_[Q=Q" QQ'a] , -
Qnewznernew - |: aTQQT d Mg
Therefore,

Mnew - QnewzneWQr—Lw

Moy « Q' Ta
[ol d][o?TQ%T -]quqT

Mys - QEQ' o« -QQ'
[N T 2 v

This implies
||Mnew - Qnewzner;szF
< IMoa — QEQ ||, + V2 — QQ " | + Amin
= [[Moa — QEQ |, + V2p + A1

Case 2: p > e. Recall that

3 0 Q'
Y, = 0 0 »p)
aTQ p d

where € = e/p and Q232Q4 is the eigen-decomposition of
Yo, let Ay be the smallest eigenvalue of Y.

(1) If X\ > ¢, then from Alg. [T| we have
Q e 0

QneW:|:O 0 1

:| Q27 Enew = 227

Direct computation gives

» T
Qnewznerr—lreW = |: Q 9 @ :| .

« d

Therefore,

Mnew - QnewzneWQl—qrew
T)
= T - T

« d « d
_ | Mo — QxXQ" o
0 0|

This implies

||Mnew - Qnewzner;wHF = HMold - QEQTHF .

(2) If X2 < gy, then from Alg. [T] we have

(;znew|:%2 g (;:|Q2(:al:k)a

Direct computation gives

QEQ' «
b,

T _
QneWEHCWQnew - |: o d

] — Xoqq’,

q is the eigenvector of M., which corresponding to the
eigenvalue \o. Therefore,

T
Mnew - Qnewznew Qnew

.
:|:Mold a}_[Qig ‘;]+/\2qu

a' d
Mys—Q=Q" 0
_ { Id OQ Q 0 } +hqq

This implies

||Mnew - QHCWEDeWQnTCWHF
< Mo — QEQ" || + [X2aq " || »
< Mo — QEQT || + Ao

C. Proof of Theorem 3

From Theorem [2] we know that when p < ¢, the p-
truncation is applied and the eigen approximation error is
increased by no larger than \/ip. Since p < e, such eigen
approximation error increase is also no larger than v/2¢. On
the other hand, when the eigenvalue truncation is applied, the
eigen approximation error is increased by no larger than \; or
Ag. Given that both A\; and A5 are no larger than ¢, in this case,
eigen approximation error increase is no larger than €, when
the eigenvalue truncation is applied. Suppose 7T}, represents the
total number of times p-truncation is applied and T\ represents
the total number of times the eigenvalue truncation is applied,
then the total accumulated eigen approximation error

Mo — QEQ ||, < V2Tpe + Then.

Shew = 22(1: k,1: k)

D. Proof of Theorem 4

From the analysis in Section [[V-BT] the complexity order of
the iteration in updating the initial matrix Mgy € R™*™ with
rank k to My, € ROFDX(HD) is O(nk? + k3). In the worst
scenario, all ¢ iterations of updating will always increase the
rank of the updated matrix. Therefore, the overall complexity
of ILRED-BASIC algorithm is bounded by the order of

-1
> (n+i)k+i)?+ (k+i)
=0

5 1 5 o) 5o a1
= - — —_ —2 — —_ =
6k€+6n£ 21<;e k€+3kz€ + k3¢ 2n€

1 . 1 1
+§n£3+§€2f£3+§€4+2k2€2+kn£2+k2n£—kn€

(A.3)
By ignoring the constant factors and lower order terms, the
overall complexity of ILRED-BASIC algorithm is O(k¢® +
k202 4+ k30 + knt? + k*nl + nt3 + 04).

E. Proof of Theorem 5

From the analysis in Section the complexity order of
the iteration in updating the initial matrix Mgy € R™*™ with
rank k to My, € RHDX(D) s O(nk + k3). In the worst
scenario, all ¢ iterations of updating will always increase the
rank of the updated matrix. Therefore, the overall complexity
of ILRED-FAST algorithm is bounded by the order of

~
—

(n+i)(k+1) + (k+14)®

Il
=)

i

fl 71 _ 27%2 3 3 1 2712
f6e 2n€ ke 2k£+k€ +k€+2n€ 413
1 1 3
e Ay R N Y
6 4 2

(A4)

By ignoring the constant factors and lower order terms, the
overall complexity of ILRED-BASIC algorithm is O(k¢3 +
K202 + k30 + 0% + nl? + knt).

	Introduction
	Preliminary and Related Works
	Notations
	Graph Spectral Analysis
	Fast Matrix Decomposition

	Method and Analysis
	Basic Incremental Eigen-Decomposition
	When the norm of the residual vector is small
	When the norm of the residual vector is large

	Fast Incremental Eigen-Decomposition
	When the norm of the residual vector is small
	When the norm of the residual vector is large

	Analysis
	Error Analysis
	Complexity Analysis
	Complexity Analysis of the ILRED-BASIC Algorithm
	Complexity Analysis of the ILRED-FAST Algorithm

	Experiments
	Synthetic Dataset
	Real Datasets
	Dynamic Point Clouds
	Large-scale Point Cloud
	Motion Capture Data
	Hyperspectral Image

	Conclusion
	References
	Appendix
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

