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A Reduced-complexity Trajectory
Generation Algorithm for Three-body Regimes
with Minimum Predefined Data

Brian Baker-McEvilly, Hansaka Aluvihare, Sirani M. Perera, and David Canales

Abstract—Computational limitations and big data analysis
pose challenges in seeking efficient techniques to predict tra-
jectories in three-body dynamics. Thus, a reduced-complexity
classical algorithm is proposed utilizing predefined spacecraft’s
position and velocity data to achieve precise and accurate orbital
trajectories of the spacecraft within three-body dynamics. The
proposed algorithm seamlessly solves polynomial interpolation
along with the boundary and interior conditions without the
need for the spacecraft’s acceleration data. Once the algorithm
is derived, it will be tested across a diverse variety of periodic
trajectories in the Earth-Moon system. Moreover, a comparative
analysis is performed to evaluate the time complexity of the pro-
posed algorithm compared with conventional orbit propagators.
Finally, the proposed algorithm will be utilized and extended to
learn and update distant retrograde orbits (DRO) while training
a neural network with several initial conditions composing
minimum predefined data. After the training is done, the neural
network is used to accurately predict DRO trajectories for a
given initial condition, demonstrating the exceptional accuracy
and effectiveness of the proposed learning process.

Index Terms—Cislunar, CR3BP, Orbital Trajectories, Sparse
Matrices, Complexity and Performance of Algorithms, Minimum
Predefined Data, Machine Learning, Neural Networks.
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I. INTRODUCTION

The Cislunar region (Fig. 1) is anticipated to see rapid
growth over the next decade, with over thirty missions con-
firmed to travel into the region before 2030 with many more in
planning [1], [2]. This is the result of the renewed interest in
large Lunar programs, the commercial space industry breaking
into Lunar space, and many new space-faring countries send-
ing out Lunar missions. Large-scale programs, such as the
United States’ Artemis program, China’s Chang’E program,
and Russia’s Luna program, all are multi-stage programs
whose aim is to establish long-term Lunar bases on the Moon
[3]. The commercial sector is increasingly drawn to lunar mis-
sions, spurred by initiatives like NASA’s Commercial Lunar
Payload Services (CLPS) which offers contracts to private
companies for payload deliveries [4]. Independent ventures
are also evident, exemplified by Hakuto-R’s commercial lunar
landing attempt in late 2023. Concurrently, new national play-
ers like India and South Korea are making strides in Cislunar
space, with India’s Chandrayaan-3 landing and South Korea’s
KPLO mission [5]. The growing engagement in Cislunar space
underscores its strategic importance and commercial potential.

Complex motion in the Cislunar region, influenced by
the Earth’s and Moon’s gravity, is often modeled using the
circular restricted three-body problem (CR3BP) [6]. It is a
highly nonlinear and sensitive system in which no closed-
form solution has yet been derived. Thus, to design and
analyze spacecraft trajectories in the CR3BP model, numer-
ical methods are required. Differential corrections are of-
ten utilized, formulated as targeting schemes, seeking out
trajectories with specific traits [7]-[9]. Novel computational
techniques satisfy these desired traits with free variables
and constraints implemented into differential correction tech-
niques. In order to propagate orbits within nonlinear dynamical
systems, well-applied numerical techniques including Gauss-
Legendre, Dormand-Prince, Chebyshev-Picard [10], Gragg-
Bulirsch-Stoer [11], and Adams-Bashforth [12] have been
studied. Every method has advantages and disadvantages,
but these numerical methods are usually computationally ex-
pensive. These typically tax the computational bandwidth of
systems; bandwidth that could be allocated to other tasks. For
instance, small spacecraft like KPLO and CubeSats, which
have limited computational resources, greatly benefit from
algorithms that optimize computational efficiency. Therefore,
it is important to seek algorithms that reduce the complexity of
the problem while still providing accurate trajectory solutions.
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Fig. 1: Cislunar region of the Earth-Moon system depicted
with the Earth radius scaled x4 and Moon radius scaled %6,
and where L1, Lo, --- , L5 are Lagrange points.

Research in astrodynamics aims to progress the efficiency of
trajectory propagation and generation through the use of poly-
nomial interpolation and machine learning (ML) approaches.
Studies show that polynomial interpolation effectively predicts
positions between ephemerides for navigational satellites near
Earth, achieving meter-level accuracy with 15-minute mea-
surement intervals [13]. Karepova [14] completes an insightful
summary on the formulation of polynomial interpolation for
the purpose of trajectory generation and on the accuracy
of different order solutions. Recent studies, such as those
by Jacco Geul [15] and Parrish [16], explore polynomial
interpolation in spacecraft trajectory calculations. Geul’s work
examines Hermite polynomial interpolation, Householder, and
bisection methods in the perturbed two-body problem, finding
that these methods approximate time similarly with increased
sampling, although Hermite interpolation shows the least posi-
tion error. Parrish’s research explores polynomial interpolation
to optimize low-thrust transfers within the CR3BP, integrating
dynamical constraints for enhanced accuracy. The study identi-
fies various low-thrust transfer families, from single to multi-
revolution solutions, and notes decreased accuracy near the
Moon, where the polynomial models struggle with sensitive
dynamics. Developments regarding ML techniques for orbit
propagation, models based on deep learning, neural network
(NN), and support vector machines (SVM), are presented in
the literature [17]-[22]. These implement SVM to improve
satellite orbit prediction accuracy [18], [19]. Their results
showed that SVM-based ML algorithms greatly increase the
accuracy of orbit prediction, especially for resident space
objects (RSO). It is important to note that the accuracy and
precision of SVM-based methods strongly depend on the
volume of available data [17]. To mitigate orbit propagation
model flaws, an orbit propagation approach based on long
short-term memory (LSTM) has been presented [17], [23].
Presently, the use of NN to solve the three-body problem

is numerically integrated with the initial values. The pro-
posed trajectory generation approach is based on initial and
boundary conditions to obtain the trajectory. Thus, a reduced
low-complexity algorithm (RLCA) is proposed that utilizes
position and velocity data at boundary and interior conditions
to derive a piecewise continuous polynomial describing a
trajectory within the specified boundary. The RLCA is used
to find these polynomials based on the structure of the system
and the decomposition of the coefficient matrix into tridiagonal
and bidiagonal matrices. The results show that the algorithm
reduces computation time over 70% for every demonstrated
case, with a sacrifice in accuracy that varies based on the sim-
ulated orbits. Furthermore, the algorithm acts independently of
a dynamical model, being applicable to the N-body problem.
The algorithm is tested across numerous periodic trajectories
in the CR3BP, analyzing the time and computation efficiency
of the proposed method while comparing it with numerical
integration techniques. Once the algorithm is validated, it
will be used for an initial value problem using machine
learning algorithms. Therefore, this manuscript includes the
initial endeavors of using a NN to approximate spacecraft
trajectories in the CR3BP framework, utilizing the RLCA to
train, learn, and update DRO trajectories, and hence accurately
predict trajectories with a low-complexity ML algorithm. The
RLCA-based NN demonstrates faster learning and updates on
the trained trajectories compared to the conventional numerical
integration-based ML model. Finally, this research demon-
strates that the RLCA-based ML model, when compared to
the numerical integration-based ML model, exhibit lower error
rates in generating future trajectories within an orbital period.
This paper provides a thorough explanation of the proposed
RLCA, Earth-Moon dynamical model, computational analysis,
and RLCA-based low-complexity ML algorithm to determine
trajectories. The CR3BP and 2BP dynamical models are de-
scribed in section II. Next, section III summarizes the author’s
previous work on a low-complexity algorithm, derives the new
reduced low-complexity algorithm to determine trajectories,
and provides the theory for a NN model trained by the RLCA
to determine trajectories in the CR3BP. Then, section IV
completes an analysis of the application of the RLCA across
different orbital trajectories and the proposed RCLA-based
low-complexity NN. Finally, section V concludes the paper.
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II. DYNAMICAL MODELS
A. The Two-Body Problem

In Cislunar space, spacecraft are subject to the influence of
both the Earth and the Moon, requiring the incorporation of
three-body dynamics. However, for spacecraft in close vicinity
of a gravitational body, the influence of the third body may
be neglected. In this instance, the two-body problem (2BP)
is presented. The 2BP implements a primary body and a
spacecraft of negligible mass. The dimensional position and
velocity of the spacecraft are defined using r = [z,v, 2]T and
7 = [@,7, 2]T respectively, defined in a reference frame cen-
tered at the primary body, where the superscript T represents
the transpose of a vector and dots denote the derivative with
respect to time. The resulting motion of the spacecraft in the
2BP is represented by:

_:u'Earthr
sl

where pq-¢n 1S the gravitational parameter of the Earth and
[|Ir|| is the magnitude of the spacecraft’s position vector [27].
For trajectories close to either the Earth or the Moon, the two-
body problem is sufficient. However, when trajectories are not
close to the Earth or Moon, the influence of both bodies must
be considered.

i:

6]

B. The Three-Body Problem

The CR3BP is a well-accepted method of modeling the
Earth-Moon system [6], [27], [28]. The system is comprised
of three bodies: a large and a small primary (Earth and
Moon, respectively), and a spacecraft of negligible mass. The
following derivation is completed in the non-dimensional,
Earth-Moon rotating frame. The origin of the Earth-Moon
rotating frame is located at the barycenter of the system,
the z-axis points towards the Moon, the Z-axis points out of
the Earth-Moon orbital plane, and the y-axis completes the
right-handed system. The CR3BP is non-dimensional using
characteristic quantities: characteristic length is defined as the
distance between the two primaries, characteristic time is the
period of the Earth-Moon system, and characteristic mass is
the total mass of the Earth and Moon. It is assumed that the
primaries orbit the system’s barycenter in circular orbits. The
mass parameter is found via py = %, where the mg
and mj,; are the mass of the Earth and Moon respectively
[27]. The states of the spacecraft are defined by the position
r = [z,y, z]T and velocity 7 = [, 7, 2T, where the superscript
T represents the transpose of a vector and dots denote the
derivative with respect to time. The CR3BP is governed by
the following non-dimensional equations:

ou* ou* ou*
. i i s _ )
z y+7ax, (] x+78y’ = (2
in which U* is the pseudo-potential function of the system:
1-— 1
HﬂE—s/cH ||ZJV[—S/CH 2

where rp_ /. is the position vector from the Earth to the
spacecraft, r,,_,,. is the position vector from the Moon
to the spacecraft, and the double bars on each side of the

vectors denotes magnitudes [1]. In the CR3BP, five points of
equilibrium exist, referred to as libration point (Lq, ---, Ls).
A schematic of the Earth-Moon CR3BP is shown in Fig. 2.
Finally, a constant of integration directly related to the energy
of a trajectory, the Jacobi constant (JC), exists in the CR3BP:

JC =2U* — (&2 + % + 22). 4)

where (2U™) describes the spacecraft’s potential energy, and
the latter term, (-2 + 5j> + 22) the spacecraft’s kinetic energy.
Such a parameter is often used to describe a specific orbit in
its respective orbit family.
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Fig. 2: CR3BP schematic in the Earth-Moon rotating frame,
where r is the position vector of the spacecraft, rp_,,. and
T'p—s)c are the position vectors from the Earth and Moon to
the spacecraft respectively, and p is the mass parameter.

III. A REDUCED LOW-COMPLEXITY ALGORITHM (RLCA)
A. Previous work on a LCA [29]

A low-complexity algorithm (LCA) has been proposed by
the authors to determine orbital trajectories utilizing polyno-
mial interpolation with boundary conditions [29]. The algo-
rithm takes into account the position, velocity, and acceleration
of a spacecraft at two distinct times, acting as boundary condi-
tions. The LCA then constructs a polynomial that interpolates
the trajectory between these boundaries. The polynomial is
the fifth order and the LCA has been derived through a
sparse bidiagonal and upper triangular matrix factorization
of a coefficient matrix corresponding to the system. This
algorithm successfully reproduces entire orbits within the
CR3BP, while reducing the computation time by more than
50% in comparison to ODE45. Overall, the LCA is capable
of reproducing trajectories with sufficient measurements across
Cislunar space for different types of orbits and families [29].

Implementation of the LCA requires extensive knowledge
of a spacecraft state, in particular, additional information on
the acceleration. Many spacecraft initial state determination
methods (i.e. Gibbs Method, Gauss Method, Laplace Method)
accurately determine the position and velocity states of a
spacecraft from observations. Acceleration data is often cal-
culated using knowledge of the dynamical system, or through
additional observations. The previous LCA calculates the
acceleration using the position and velocity inputted into a
known dynamical system. This approach requires additional
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knowledge on a reasonable assumption of the spacecraft’s
dynamical system. Furthermore, in nonlinear sensitive sys-
tems, inaccuracies in position and velocity measurements
will significantly perturb the acceleration determined by the
dynamical model, diminishing the accuracy of the predicted
solution. Thus, it is necessary to develop an algorithm that
applies to more realistic implications, operating on position
and velocity information that is attainable through spacecraft
observations. Learning from previous work on the LCA, a
reduced low-complexity algorithm (RLCA) with minimum
predefined data to determine orbital trajectories is introduced.
While the LCA necessitates position, velocity, and acceleration
information at two distinct boundaries, the new algorithm
simplifies the process by only requiring position and velocity
data at two boundaries and an interior point for constructing
the approximate trajectory. Furthermore, the RLCA has been
utilized to lay the groundwork for a low-complexity NN in
predicting orbital trajectories.

B. Proposed RLCA

A reduced low-complexity algorithm is proposed, satisfy-
ing the position (r(t;) = [z(t;),y(t;), 2(t;)]T) and velocity
((t;) = [@(t;), y(t:), 2(t;)]7) data of the spacecraft in space
of R?® at known distinct times ¢;, where ¢ = 0,1,--- ,n and
to < t1 < --- < t,. The trajectories of the spacecraft over
n + 1 position and velocity data points are described via
piecewise functions defined on each interval I}, = [tg, tgt2],
where k£ = 0,2, --- ,n—2. Thus, the algorithm first starts with,
the vectors r(t;),7(t;) € R3 in a dimensionless quantities s.t.
z(t), z(t) € R, and executes the algorithm in each dimension
[29]-[31]. Following the fundamental theorem of Lagrange
interpolation and the author’s previous work [29], a fifth-
degree polynomial is presented that fulfills only position and
velocity data at the boundary, as well as interior conditions
at each time interval. Thus, for a single dimension, the
spacecraft’s trajectory on the interval [ is determined via

Hy(z(t)) = hox + hi gt + hogt? + hy kt® + hy gt* + hs . t°

(&)
and the corresponding velocity functions of the spacecraft on
interval [j, is denoted via,

Hk(.%'(t)) = hyp + 2ho it + 3h3’kt2 + 4h4,kt3 + 5h5’kt4 (6)

where t, <t < tgyo, and ho g, b1k, , hsk are quantities
dependent on the position and velocity of the spacecraft at
the time interval [;. To determine the coefficients of the
polynomials or trajectories, the known vectors at the time ¢y,
ti+1 and tx4o are utilized, serving as the boundary and interior
conditions of the interval Ij. These are expressed as:

Hy(x(tr)) = x(tr), Hy(x(te)) = &(te),
Hy(2(th1)) = 2(tisr), Hi(@(te)) = #(thga),
Hy(x(teg2)) = o(thya), Hi(z(trio)) = 2(teg2),  (7)

where x(t) and #(ty) are position and velocity quantities,
respectively. The set of equations corresponding to Eqs. (5-7)
are rewritten as a matrix equation in the interval Ij s.t.

Arhy =g, )

where Ay, is the coefficient matrix, h;, is the vector consist-
ing of the coefficients to the polynomials, and 9y is the vector
of boundary and interior conditions described by,

1ty t? t3 t} t?
Lt ti+1 tk+1 tk+1 tk+1
Ay = L try2 tz+2 tk+2 tk-52 k+2
0 1 2ty 3t2 43, 5th |
0 1 2tp 3tk+1 4t§+1 5th .y
0 1 2o 3th,, 43, 5lh.,
by, = [hokh1k,hok hsk, hag, hs k], and
9, = [2(tr), x(thpr), w(tera), #(tk), E(thr), & (trra)]-

Note here that the coefficient matrix in Eq. (8) is different
from that in [29], where the latter requires knowledge of
position, velocity, and acceleration data and the former only
requires position and velocity data. By solving the system of
Egs. (8), the polynomials that determine orbital trajectories
based on the boundary and interior conditions are obtained.
Fundamentally, the proposed approach differs from numerical
methods in the manner of framing the trajectory generation
problem. Traditional numerical methods typically employ an
initial value with a set of differential equations, which is then
numerically integrated. The proposed method approaches the
solution through a polynomial interpolation problem using
known conditions, circumnavigating the need for integration.
Using the proposed approach offers different avenues of solv-
ing, many of which are computationally inexpensive relative to
numerical integration. The proposed method will not replace
traditional numerical methods, but offer alternative avenues for
prediction in a low-complexity form.

The explicit calculations of coefficients are achieved by
taking the explicit inverse (brute force approach) of Aj and
multiplying it by the vector g . Therefore, to obtain trajectories
from ¢ to ¢,,, the process must be repeated for each subsequent
interval Ij,. This brute force method requires the arithmetic
complexity of O(n?) operations, as there are 6 L%J equations,
where [%J is the greatest integer less than or equal to
2, resulting O(n®) operations. However, the explicit inverse
of a dense matrix is rarely computed [32]. To reduce the
arithmetic complexity, the Ay in Egs. (8) is decomposed into
a product of highly sparse matrices and an upper triangular
matrix. These non-singular sparse matrices are converted into
lower-tridiagonal (almost bidiagonal) matrices, denoted by
L. The system is then solved with the tridiagonal matrix-
vector product of (Hr 1 L, k)gk = L5 ke Ly k9 followed
by backward substitution into the matrix U Resulting in the
reduced computational burden of solving the system from

O(n?) to O(n?) via

5
Urhy, = §,, where g, = (H Lk> g, 9)
r=1

where g, is the transformed boundary and interior condition

vector. The matrices L, € R6%6 r =12 .,
given via

5 and Uy are
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where empty spaces represent zero elements and the entries

of the matrices are given by:

- 1
a= thyr =t
dy, = ;7
lh+o — tk
- 1
= thgo — th1
2d;, — ey,
o= edy,
1
bk - 2dk — €k ’
fik =ty +te,
for = t%+1 + g1ty + tz»
far = (tesr +t) (thpy +17),
fak = iy it Tty 4t ty + 6,

i1k = teyo + gt + Tk,

Qo = thyo +tipalepr + By + b (bege + tepr) + 87,
Qs = (thao +tes1) (G +thr) + te(thss
Hthpotesr + toyr) + 6 (o + tigr) + 1,
Jik thto + thy1 + 21k,
Jok = 2o 2tpioty 4+ 3tE 4 thgr (brpo + 2tk) + 124,
le = tpyo+ 2t + 2t (11)

Note here that tg, t;t1, and tx o are distinct time values, so
division by zeros in calculating ag, by, ci, di and e are not
encountered. The pseudocode of the proposed RLCA for a
closed-loop trajectory is denoted through Algorithm 1.

Algorithm 1 RLCA pseudocode for closed-loop trajectories

1: Collect n known state measurements

2: Break n measurements to k£ = n — 2 intervals, each con-
taining an interior condition and two boundary conditions
shared with neighboring intervals

3: for k intervals do

4 for Each dimension of the conditions do

5 Pre-compute li.,k and U, matrix entries

6 Store entries into ik and U} matrices

7: Compute tridiagonal matrix-vector product, i.e., § .

8 Solve for h;, using backward substitution

9 end for

10: end for

Unlike the well-known LU decomposition of a matrix
for solving a system of equations using full lower and up-
per triangular matrices, the derivation obtained is based on
sparse lower tridiagonal matrices and subsequent backward
substitution, thereby reducing the complexity. For all time
intervals Iy, the computation of the lower tridiagonal and
upper triangular matrix entries costs only O(n) operations as it
is an update of the predefined data. After computing the matrix
entries, the tridiagonal matrix-vector product (Hle ir, k) 9y
to compute g, , costs O(n) operations due to the sparse tridi-
agonal nature of each f)r,k matrices. Finally, the backwards
substitution in Eq. (9), and hence computing the coefficients
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hoky Pk, -, hs g, yield the cost of O(nQ) operations. Thus,
the overall complexity of RLCA costs O(n?) as opposed to
the explicit brute-force method with the complexity of O(n?3).

By interpolating a trajectory in this manner, the dynamical
system of the spacecraft is independent of the RLCA. The
dynamics of the spacecraft are intrinsically considered within
the boundary and interior conditions provided to the algorithm.
This scalability enables the algorithm to accommodate an N-
body system or any other perturbed model that the spacecraft
operates within. This includes trajectories that are subjected
to low thrust or perturbation forces, as those forces natu-
rally evolve the position and velocity of the spacecraft. The
position and velocity then influences the RLCA through the
boundary and interior conditions. In the instance of uncer-
tainties in the boundary and interior conditions that perturb
the measured state of a spacecraft from its true state, the
algorithm may behave differently. These uncertainties may
arise from imperfect measurements of a spacecraft’s position
and velocity, causing a drift in the prediction. This effect
is also present in previous work on the LCA [29], but is
further exasperated by the inclusion of acceleration. Initial
investigation demonstrates the RLCA is stable when subjected
to uncertainties, but future work will explore how the RLCA-
based piecewise-defined functions will be perturbed based on
the uncertainties. Typically, the knowledge of dynamics aids
in the accuracy of a trajectory generation method, placing the
proposed RLCA at a disadvantage to numerical techniques that
specifically incorporate dynamical models in calculations. The
absence of a dynamical model causes the algorithm to become
highly dependent on the boundary and interior conditions. If
conditions are spread over long periods of time during which
system dynamics change quickly, the algorithm’s accuracy
may decrease, necessitating the use of other techniques to
increase fidelity. Thus, the effectiveness is practically limited
by the availability of frequent spacecraft trajectory data. In a
scenario in which adequate and numerous measurements are
taken, the algorithm improves in accuracy and the complexity
reduction may be fully taken advantage of. For example, the
RLCA is a strong live target tracking algorithm in which a
target may be locked onto and constantly observed. Live track-
ing with the RLCA produces a trajectory at sufficient accuracy
through the availability of continuous tracking updates and at
a low computational cost, freeing up computational resources
for other onboard operations.

An inherent benefit of the RLCA is the expression of a
trajectory in the form of a continuous polynomial. Numerical
integration techniques require an iteration process to generate
trajectories from its initial condition across a desired time
interval. Conversely, the RLCA may be utilized to obtain the
position of the spacecraft at any time without the need to
rebuild the trajectory up to that point. Furthermore, to present
an entire trajectory using numerical integration, the trajectory
at every time step across an interval must be stored, which
may become cumbersome. The RLCA requires only eighteen
coefficients (six coefficients in each dimension) to express
a trajectory, further highlighting its computational resource
efficiency. Overall, the RLCA offers a low-complexity, i.e.,
computationally efficient, and alternate method of trajectory

generation at potentially lower accuracy. The RLCA’s ability
to predict orbital trajectories at lower complexity enables it to
be used for swift training of machine learning algorithms.

C. Implementation of RLCA into a Neural Network

The primary objective of this section is to learn, update, and
predict orbital trajectories in the three-body regime using a
NN and the proposed RLCA. Predicting position and velocity
typically involves solving a system of differential equations
using numerical integration to determine the motion of a
dynamical system. Alternatively, the proposed RLCA gener-
ates trajectories faster by solving an interpolation problem
using boundary and initial conditions. Here, a novel algorithm
transferring RLCA into a NN to predict trajectories even when
minimal data is proposed. The result is an algorithm that may
be utilized for applications involving initial value problems
to determine trajectories. The RLCA is first used to learn and
train a NN for trajectory generation. Once the NN learns these
trajectories, it is utilized to predict future trajectories within
a three standard deviation (30) margin from the mean, at any
given initial condition. As this work is a preliminary view of
the RLCA integrated into an ML model, the NN is trained
using a DRO. Other orbits will be studied in future work.

A NN is introduced, integrating RLCA into a ML model,
for trajectory generation that learns, generates, and updates
position (r = [x,y, 2]T) and velocity (i = [&, 5, £]T) at initial
time ¢; to the next time instance ¢;,;. Given the non-linear
nature of the CR3BP, to accurately advance the trajectory in
time, non-linear transfer functions are implemented through
the NN. The NN architecture is structured with fully connected
nodes in each layer, ensuring that all nodes in a layer are
connected to those in the subsequent layer. The input and
output layers of the NN posses six nodes each, corresponding
to three position and velocity states. Three hidden layers are
utilized, each consisting of 30, 25, and 25 nodes respectively,
that capture the non-linear mapping between input and output
of the NN. In the first two hidden layers, two logsig (Sigmoid)
activation functions are incorporated. In the final hidden layer,
one radbas (Radial basis) activation function is incorporated.

In this paper, two ML models are trained and their learning
convergence is compared. These two NN are trained using
the Levenberg-Marquardt algorithm, a default optimization
algorithm in MATLAB for shallow neural networks. In the
Levenberg-Marquardt optimization algorithm, at each itera-
tion, updates to the weights are computed using the Jacobian
matrix, the residuals, and the damping factor [33]. Employing
this adaptive learning strategy aids the model in navigating
towards the global minimum, preventing confinement to local
minima. The first model is based on ODE45 integrated into a
ML model (Model 1) and the second model is based on the
proposed RLCA integrated into a ML model (Model 2). The
two ML models are trained using the following datasets:

1) Dataset 1 - Position and velocity data are obtained
directly by leveraging the numerical propagation of the
CR3BP for 50 trajectories using ODE45. The initial
position and velocity of these trajectories are obtained
randomly from a Gaussian distribution whose mean is
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the true position and velocity values of the trajectory
that is being predicted. The ODE45 integrator then uses
these initial conditions to produce the trajectories that
are utilized for training.

2) Dataset 2 - Position and velocity data are obtained by
leveraging the RLCA for 50 trajectories. The initial
position and velocity of these trajectories are obtained
randomly from the same Gaussian distribution as before,
whose mean is the true position and velocity values of
the trajectory that is being predicted. Then for each orbit,
10 boundary and interior conditions (six RLCA arcs),
each containing position and velocity, are provided to the
RLCA. The RLCA then uses these boundary conditions
to produce the trajectories that are utilized for training.

In the datasets provided above, the training process is initi-
ated using position and velocity data only, without incorporat-
ing acceleration information. By relying solely on position and
velocity data, the algorithm is able to accurately predict DRO
trajectories, even with minimal predefined data. The com-
pelling results are detailed in section IV-B, demonstrating that
the proposed network successfully predicts DRO trajectories
with remarkable accuracy, as depicted in Figure 10 and Figure
11. Notably, the mean squared error (MSE) of 25.457 km?
was achieved at 50 epochs, further assuring the performance
of the network in predicting DRO trajectories. In the learning
process, the position and velocity data are extracted at time
t; (.e. [r(t;),7(t;)]) and set as the input of the network to
learn the output position and velocity vectors at time ¢;1 (i.e.
[r(tit1),7(ti+1)]), to learn the non-linear mapping between
[r(t;),7(¢;)] and [r(t;+1),7(ti+1)]. The MSE function serves
as the loss function, guiding the updates of the NN weights
with the Levenberg-Marquardt optimization algorithm via:

N
1 Z N
=0

17 (tig1) — 5 (tir)] 7,

where N is the number of samples in the dataset, ﬁj(ti_i'_l) and
fj (ti+1) are the predicted positiE)n and velocity respectively
of the j-th sample, tj(tiJrl) and ij(tiﬂ) are the true position
and velocity respectively for the j-th sample, and double bars
denotes magnitude of a vector. The root MSE (RMSE) is
defined:

RMSE = VMSE. (12)

When comparing the testing performance of both ML models
in the numerical results section IV-B, RMSE is used. Through
the integration of the RLCA into a NN, the ML algorithm is
now capable of solving the initial value problem, as opposed
to the initial and boundary value problem in which it is
formulated.

IV. NUMERICAL RESULTS FOR THE RLCA AND RLCA
NEURAL NETWORK

To analyze the accuracy of the RLCA in recreating tra-
jectories, a high tolerance (10~'?), fifth-order Runge-Kutta
integrator (ODEA45) is used to create the reference periodic tra-
jectory that the RLCA is interpolating. This method is selected
to produce the reference trajectory as it is an accurate and
well-accepted method of propagating motion in the CR3BP.
The proposed RLCA neural network is also compared with
a ML model based on a high tolerance ODE45 integrator.
Numerical integrators are typically more precise [34] than the
RLCA, prompting an accuracy analysis focused exclusively on
the RLCA. Otherwise, the accuracy analysis on the numerical
integrator will be on a more precise scale and not offer
much insight into the RLCA itself. The RLCA simulates
boundary and interior conditions (position and velocity) as
if they are measurements from a spacecraft’s reference tra-
jectory. In practical applications, real data may be inserted.
An assortment of periodic trajectories are analyzed using
the RLCA. The trajectories are selected such that, through
each example, the geometry and dynamics generally become
more challenging as to fully flesh out the capabilities of the
RLCA. The initial conditions of these trajectories are obtained
through differential corrections and continuation schemes in
the CR3BP that search for families of periodic trajectories [6].
For precise identification of an orbit in its respective family,
the Jacobi constant for each orbit is identified. It is assumed
the measurements of the reference trajectory contain no noise,
the reference trajectory follows the dynamics associated with
the CR3BP, and a measurement of the spacecraft’s state is
always available to the RLCA. For this initial analysis, a
trajectory for a single orbital period is analyzed. This trajectory
is broken into five continuous arcs, equally spaced in time.
The RLCA is executed for these five arcs separately, pulling
in the boundary and interior condition of the arc. In this
analysis, the boundaries are shared between two arcs, and the
interior condition is taken at the midpoint of a respective arc.
Following this process, the five arcs require ten measurements
to be predicted using the RLCA, as the trajectory is continuous
and a closed loop.

A. Numerical Results for the Orbital Trajectories using RLCA

To begin the analysis, a simple low-lunar 2BP elliptical orbit
is studied to acquire a gauge of the algorithm’s performance
in a simpler dynamical system than the CR3BP. This example
also highlights the algorithm’s capabilities to be applied across
dynamical models. Next, three CR3BP trajectories are selected
to test the RLCA: an Ly Lyapunov orbit, an L4 axial orbit,
and a near-rectilinear halo orbit (NRHO). Note that each of the
simulated orbits are sampled from a respective orbit family in
the CR3BP [6]. The Ly Lyapunov is selected to demonstrate
the algorithm’s ability to reproduce a simple planar trajectory
in the CR3BP, while the L, axial orbit is chosen to test the
algorithm’s capabilities to generate a unique 3D trajectory.
Finally, the NRHO is selected due to its relevance to Cislunar
space as well as its extreme dynamical environment around
perilune. The NRHO is a pivotal trajectory in Cislunar space
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as it is the current location of the Capstone orbiter and is the
selected orbit for the long-term Lunar station, Gateway [35].

The algorithm requires that first, the position and velocity
measurements of a trajectory are acquired. For an initial
analysis, a trajectory is broken into five distinct arcs that form
the complete periodic trajectory. Recall, that each arc requires
three measurements to be defined by RLCA. Therefore, for five
arcs whose boundaries are continuous, a total of ten unique
measurements are needed. These ten measurements are spaced
equally through time on a tested trajectory. The proposed
algorithm is executed in dimensionless form and repeats the
process for each dimension at time intervals I to produce a
complete 3D trajectory. With the polynomials of an arc solved
for, the trajectory of the arc is computed and compared to the
reference trajectory. Lastly, the computation time of Runge-
Kutta methods, Adams-Bashforth method, and the proposed
algorithm is then compared.

First, the low-lunar 2BP elliptical orbit (LLO) is simulated
as it offers a simple geometry and dynamical model for an
initial test. The resulting orbit is shown in Fig. 3a, with the
associated error between ODE45 and the algorithm repre-
sented in Fig. 3b. In Fig. 3a, and subsequent similar figures,
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End of RLCA Arc
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-1000
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(a) ODE45 and RLCA trajectory for a Lunar orbit (LLO).

the triangles indicate an RLCA arc boundary, or how the
trajectory is broken into the five distinct arcs. Furthermore, the
circle marks the orbit’s starting point and the division between
initial and final RLCA arcs, the solid colored line depicts the
RLCA propagated trajectory, the black dotted line represents
the ODE45 propagated trajectory, and the solid black arrow
signifies the orbit’s direction. In this example trajectory, the
algorithm is capable of reproducing the trajectory to a de-
cent extent as the ODE45 and RLCA paths are difficult to
distinguish from one another in Fig. 3a. Thus, for a refined
comparison between the reference and RLCA trajectory, Fig.
3b is introduced. In Fig. 3b, the error is defined as the
magnitude of the difference between the ODE45 and RLCA
propagated trajectory at a given instance in time. Through this
comparison, it is seen that the maximum error demonstrated
is about 12 km. Notably, the RLCA sections that are near
perilune possess higher errors. However, the error being quite
below half a kilometer for significant portions of the orbit
shows promising results for the accuracy of the algorithm.

Moving onto the CR3BP, the L5 Lyapunov orbit is simulated
first as it offers planar motion with a unique geometry. The
resulting orbit is shown in Fig. 4a, with the associated error
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(b) Error between ODE45 and RLCA throughout 1 period.
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Fig. 3: Accuracy analysis of RLCA on a sample Lunar elliptical orbit with a period of 8.8 hours.

x 10%
— 1 = RLCA
£ = = Reference Trajectory
— O Initial Condition
w 0 A End of RLCA Arc
=
P
N
-1
3
2
! 0
Y-axis [km] 1 x 10°
2 =
x10t Waxis
X-axis [km]

(a) ODE45 and RLCA trajectory of an Lo Lyapunov orbit.
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Fig. 4: Accuracy analysis of RLCA on a sample Ly Lyapunov orbit with a period of 14.7 days (JC = 3.1622).
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between ODE45 and the algorithm represented in Fig. 4b.
This analysis further supports the accuracy of the RLCA to
reproduce the reference trajectory, as the maximum error is
about 2.5 km. This is a reasonable result for an orbit that spans
around 40, 000 km in the y-direction and 20,000 km in the -
direction. In Fig. 4b, a key property of the RLCA algorithm is
demonstrated: the utilized measurements are always satisfied
by the polynomial, denoted by the instances in which the
error between RLCA and ODEA45 is null. This causes slow
deviations in the RLCA from the reference with time before
converging back to the next measurement since the following
condition must be satisfied. The magnitude of deviation from
the reference depends on the corresponding portion of the tra-
jectory and is investigated later. The symmetry in the error plot
stems from the L, Lyapunov orbit’s symmetry, symmetrical
initial conditions, and evenly spaced time measurements. The
analysis highlights the RLCA’s accuracy for the Ly Lyapunov
orbit, though it represents just a minor planar orbit example.
This example also confirms an important trait of the proposed
algorithm in that it may operate across dynamical models, as
shown by successful trajectory reproduction in the 2BP and
CR3BP without changing the algorithm itself.

Next, the L, axial orbit is simulated to test the algorithm’s
ability to recreate a large complex orbit with significant out-of-
plane motion. Using the described simulation process, the orbit
is split into five distinct arcs and the RLCA is simulated. The
resulting orbit, as well as the reference trajectory propagated
using ODEA45, is presented in Fig. 5a. Figure 5b represents
the error between these two trajectories. In comparison to the
reference trajectory, the RLCA does possess areas of higher
error; in particular, the first arc of the trajectory spanning the
first fifth of the orbit. However, when this large error is placed
in perspective compared to the vast size of the L, axial orbit,
the error becomes less significant. The L, axial orbit as a
whole spans about 500,000 km in the z-direction, with the
first arc spanning 200,000 km on its own. All measurements
are spaced equally in time across the period of a respective
orbit, but since the period of the L, axial orbit is much larger
than the previous Ly Lyapunov example, the time between
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(a) ODE45 and RLCA trajectory for an L4 axial orbit.

measurements is also higher. This increase in time between
measurements is another factor weighing into the higher error
results, allowing a larger time span for the RLCA to deviate
before needing to converge back to satisfy the measurement.
Additionally, the axial orbit is traversing a significant portion
of space, requiring instances of rapid change. The RLCA
interpolates from existing measurements based on boundary
and interior conditions to predict trajectories, but its accuracy
declines in rapidly changing orbit segments without fresh data
to update the polynomials. Consequently, the unique motion
of the L, axial orbit impacts the algorithm’s precision without
adequate measurements. Regardless, for the remaining section
of the trajectory, the error is reasonable and shows potential
in the RLCA’s ability to reproduce complex trajectories.

Finally, the NRHO is simulated using the same method as
the previous trajectories, yet it presents a significant challenge
to the RLCA. For the first time out of the simulated trajec-
tories, the RLCA is clearly visible compared to the ODE45
trajectory (Fig. 6a). The first four arcs of the trajectory are
accurate, but the arcs close to perilune struggle significantly to
match the ODE45 results as the error stretches above 10, 000
km (Fig. 6b). The significant error is a direct result of the
NRHO trajectory lacking measurements for the RLCA during
points of rapid change, in particular the NRHO’s perilune. The
NRHO?’s perilune is a dynamically extreme portion of the orbit
as the trajectory undergoes rapid acceleration passing close to
the Moon. In this simulation, the perilune is measured right
before and after the passage of the Moon. These measurements
are points on the orbit that are approaching the region of rapid
change near perilune. Thus, the interpolated RLCA trajectory
does not accurately capture the perilune of the NRHO, as the
measurements are not adequate to portray the behavior of the
entire portion of the orbit. The resulting error quickly deviates
as the mildly changing RLCA trajectory poorly presents the
extreme reference trajectory. This behavior corresponds to the
L, axial trajectory in that the sections of an orbit undergoing
rapid change cause significant deviation of the RLCA from
the reference. A remedy to the significant error is elaborated
upon in further sections.
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(b) Error between ODE45 and RLCA throughout 1 period.

Fig. 5: Accuracy analysis of RLCA on a sample L, axial orbit with a period of 27.3 days (JC = 2.0941).
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Fig. 6: Accuracy analysis of RLCA on a sample NRHO with a period of 6.6 days (JC' = 3.0455).

The motivation for the creation of the proposed RLCA
is to reduce the computational time required for methods
for trajectory determination. The arithmetic complexity of
the RCLA is O(n?), which is typically proportional to the
computational time of the algorithm. To get a full gauge of
the time complexity of the algorithm, an analysis measuring
the computational time is completed. The computational time
of an algorithm depends deeply on the computational system
itself and the methodology of code writing. Therefore, steps
are taken to ensure a fair comparison of computation time
between numerical integrators and the RLCA. First, the only
numerical integrators used are built-in MATLAB functions
such that they consistently follow the same standards set by
MATLAB [36]. This fact limits possible variations in com-
putation time from different methodologies of code writing
as they are held to the same standard. Next, the number of
time steps in which the numerical integrator iterates through
directly increases or decreases the computation time. Thus
the numerical integrators are allowed to shift step size using
MATLAB’s built in adaptive step size control. This will allow
the numerical integrators to determine the number of iterations
through a consistent process without an artificially inflated or
deflated number of steps. As a final precaution, simulations
are conducted on identical systems and averaged over 1,000
iterations of each algorithm to minimize the impact of potential
outlier computation times.

The computation time of four algorithms will be com-
pared: the RLCA, Adams-Bashfourth (ODE113), fourth-order
Runge-Kutta (ODE45), and a seventh-order Runge-Kutta
(ODE78). The time computation of the RLCA is computed
for the analysis seen above. Specifically, the time it takes
the algorithm to output the polynomial coefficients needed
to describe a trajectory that has been broken into five arcs.
For numerical integrators, the chosen tolerance significantly
impacts their convergence time. In models like the 2BP, a
default tolerance of 10~% generally suffices. However, for
the more numerically sensitive CR3BP, a tighter tolerance of

10~ '3 is used. Thus, this analysis incorporates an example
with the fourth-order Runge-Kutta numerical integrator at the
stricter tolerance for CR3BP periodic orbits. The computation
time analysis, averaged over 1,000 runs, is provided in Fig. 7.
Figure 7 shows that the algorithm is consistently faster than
the analyzed numerical integration techniques.

In this simulation, the RLCA performs 94.8% faster in
LLO case against ODE78, 80.1% faster in L; Lyapunov case
against ODE78, 87.1% faster in L4 Axial case against ODE78,
and 92.0% faster in NRHO case against the lower tolerance
ODEA45. Further summary on the improvement in computation
time the RLCA provides over the numerical methods is shown
in Table I. The RLCA'’s efficiency derives from its ability to
quickly generate a complete trajectory polynomial, accessible
at any desired time step, using just eighteen coefficients
for a three-dimensional trajectory from three measurements.
This contrasts with numerical methods that require iterative
integration to a set tolerance and step-by-step calculations for

6
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Fig. 7: Computational time of numerical integration methods
and the RLCA averaged over 1000 runs (System: Intel i7-
12700H 2.3 GHz, 16.0 GB memory).
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TABLE I: Comparison of the time complexities of the proposed RLCA and other trajectory generation algorithms.

% Decrease in RLCA Computation Time over Respective Numerical Method

Orbit RLCA Time [ms] 5pas (Tol 10-8)  ODE78 (Tol 10-%) ODEI13 (Tol 10-%)  ODE4S (Tol 10~13)
LLO 0.06256 96.1 % 948 % 949 % -
Ly Lyapunov 0.06050 82.3 % 80.1 % 87.1 % 97.7 %
Ly Axial 0.06001 91.7 % 87.1 % 91.6 % 99.0 %
NRHO 0.06005 92.0 % 92.4 % 95.6 % 99.0 %

specific times. However, while the RLCA improves speed, it
sometimes sacrifices accuracy, as demonstrated in trajectory
recreations. Finally, it is important to note that the scaling
of this analysis is at milliseconds. Although this appears as a
minuscule amount of time, the speed improvements relative to
the scale of the problem is significant. The scale of numerical
time saved will further alter depending on the system or com-
putational resources available, but the relationship showing
improved computational capabilities will persist in a similar
simulation.

To reduce error in the NRHO, it is crucial to optimize
the RLCA’s dependency on accurate boundary and interior
conditions. The RLCA’s accuracy hinges on the frequency
and placement of measurements; while specific locations are
often limited by factors like observer location and visibility
[37], increasing the measurement frequency is more practical.
More frequent trajectory segments for interpolation enhance
the RLCA’s precision, especially effective in rapidly changing
orbits, as demonstrated by improved results at the NRHO’s
perilune through denser sampling. To simulate this, the NRHO
is now broken into 20 arcs spaced apart equally in time
(Fig. 8a). Along with the increase in the total number of
arcs, the initial condition of the orbit is shifted in order
to adequately sample the NRHO’s perilune. Previously this
section was described by a single arc and is now described
by three arcs. In the 20 arc simulation, the perilune of the
NRHO occurs around the middle of the orbital period and
demonstrates a maximum error of below 800 km (Fig. 8b).
An 800 km error is a significant improvement from the single
arc perilune simulation, where the error is found to be 10, 000
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(a) ODE45 and RLCA trajectory for an NRHO using 20 RLCA
arcs.

km. The remainder of the 20 arc simulation is found to have
an error of less than 10 km. Focusing on the perilune of the
NRHO, the addition of two new arcs requires only 4 more
measurements and drops the error by thousands of kilometers.
Further improvement of sampling frequency and location in
the perilune of the NRHO may further bring down the error
across perilune, but this analysis demonstrates the significant
reduction in error with only a few additional measurements
This NRHO case is further explored by analyzing the
relationship between number of RLCA arcs in a trajectory
and the computation time and accuracy. This is completed by
breaking the NRHO into a set number of arcs, and calculat-
ing the average computation time of the RLCA over 1,000
iterations, in the same manner as before. Furthermore, the
average maximum absolute error found across the trajectory
over 1,000 iterations is also analyzed. This process is then
repeated for a range of RLCA arcs the NRHO is broken down
into. The resulting average computation time and average
maximum absolute error for each simulation is shown in Fig.
9. Generally, the algorithm takes a longer time for increasing
the number of arcs, as the algorithm runs a greater number of
times as a whole. The analysis highlights the trade off between
accuracy and computation time in the RLCA. As the RLCA is
given more measurements to break a trajectory down, it will
become more accurate, but it must generate more polynomials
to completely describe the trajectory and thus takes longer to
run. Through denser sampling of the NRHO across perilune,
a more accurate representation of the orbit is produced by the
RLCA. Consequently, it is generally concluded that denser
sampling in areas of rapid change yields more precise results.

800

600

400 ¢

200

Absolute Error [km]

0 0.2 0.4 0.6 0.8 1.0
Time [Orbit Period]

(b) Error between ODE45 and RLCA trajectory throughout 1
period using 20 RLCA arcs.

Fig. 8: Accuracy analysis of RLCA on a sample NRHO broken into 20 arcs (Period = 6.6 days).
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0.7 ‘ ‘ ‘ 50X 10* where all presented values are non-dimensional. This initial
I Max Absolute Error 18 =z condition for a DRO trajectory is found via differential cor-

N Computation Time . . ey - .-
0.6¢ ] rection methods in the CR3BP [6]. Utilizing the conditions
sl iy g stated in Eq. 13, the two datasets for training Model 1 and
T3 Model 2 are generated following the methods described in
= oal 12 > section ITI-C. The generated datasets, shown in Fig. 10 and
-% 11.0 § denoted as Dataset 1 and Dataset 2, comprise 16,000 location
E 03f 10.8 % coordinates to represent 50 trajectories (each with 320-time
= 02l 06 T steps), spanning the 13.91 day period of the reference DRO.
oa A split for each dataset is completed, allocating 70% for
01f 55 ? training, 15% for testing, and 15% for validation. The two
= models are trained using the datasets provided, an initial damp-
% 10 20 30 20 o 0 ing factor of 0.001 in the Levenberg-Marquardt optimization

Number of Arcs

Fig. 9: Average computation time and maximum absolute error
of the RLCA to reproduce an NRHO, averaged over 1,000
runs, dependent on number of arcs (System: Intel i7-12700H
2.3 GHz, 16.0 GB memory).

General conclusions on the RLCA’s limitations may be
drawn from the analysis of the NRHO case. For example, the
RLCA struggls to accurately predict regions undergoing rapid
dynamical change. This outlines a limitation of the RLCA in
its ability to sufficiently predict dynamically sensitive regions
when the region is not properly sampled. Therefore when
attempting to predict these regions, extra attention to the sam-
pling of boundary and interior conditions is required. Another
limitation that presents itself is the increase in computation
time that arises when a trajectory is discretized into a large
number of arcs. Since the algorithm runs for each arc, con-
tinuously increasing the number of arcs will linearly increase
computation time, eventually causing the RLCA to take longer
to run than a numerical method. However, this is unlikely
to occur as it requires an unnecessary number of RLCA
arcs for a given trajectory. Overall, the RLCA’s performance
faces limitations in its accuracy of predicting trajectories in
extremely sensitive dynamical regions and limitations in its
computation time for trajectories that are overly discretized.
These short-comings present themselves in specific cases, and
proper sampling of boundary and interior conditions shall help
remedy such limitations.

B. Numerical Results of the RLCA Neural Network

Now that the explicit use of the RLCA to predict trajectories
is investigated, the RLCA is embedded into an ML model
to generate DRO trajectories. The planar DRO family covers
extensive areas of Cislunar space, offers favorable stability
properties, and features geometrically simple motion. These
traits make it an ideal candidate family to initially test on. The
JC, initial condition ([r, 7:y]), and the standard deviation of the
Gaussian distribution for position and velocity are provided:

JC = 2.9339,
[ro, 7o) = [1.17, 0, 0, 0, —0.489780292125578, 0],
o = [2.6042, 2.6042, 0, 0, 1.3021, 0] - 103 (13)

algorithm, and the NN architecture is described in section
III-C. The weights are initialized between all layers using the
Nguyen-Widrow layer initialization function in MATLAB. The
MSE of the NN predictions on the training set, validation set,
and testing set for both ML models are illustrated in Fig. 11.
Specifically, the first model reaches an MSE of 28.555 km?
at 200 epochs (iterations), while the second model reaches an
MSE of 25.457 km? at 50 epochs (iterations). The learned
and updated results indicate that the ML model trained on
the dataset derived from the RLCA converges faster than that
of the ODE45. Furthermore, the MSE convergence of the
ML model is stable, exhibiting a consistent decrease without
fluctuations. This difference can be attributed to the inherent
strength of neural networks, which lies in their ability to
effectively learn, update, and represent highly non-linear rela-
tionships of CR3BP [38]. This analysis further demonstrates
the computational efficiency of the RLCA as seen by the fast
convergence of the RLCA NN to learn and update trajectories.

During the testing phase, i.e., after the neural network is
trained, a new DRO trajectory is generated starting from an
arbitrary initial condition that is close to the trained data.
This random initial condition is generated from within the
same Gaussian distributions that are used for generating the
Datasets. In DRO trajectory prediction, the output of the
current state is subsequently fed as the input to predict the next
state trajectories, i.e. moving from ¢; to t;4+1. The NN’s pre-
dicted results indicate slight deviations in the DRO trajectory
prediction compared to the ODE45 embedded ML model. To
verify the long-term deviations, the three DRO trajectories are
propagated throughout 10 orbital periods, i.e., 139.1 days. The
trajectories are plotted (Fig. 12) while considering the RMSE,
which is calculated as the error between the RLCA-based
and the ODE45-based ML models. This analysis is presented
to provide a clearer understanding of the error of both NN
models. Note here that ODE45 gives an approximate solution
for orbital propagation that accumulates error over time, thus
using it for long periods as a reference for an ML model
causes errors and deviations. Therefore, during the testing
phase, the performance of each model is assessed based on the
RMSE of position data. As shown in Fig. 12, on average, the
prediction error of NN trained on the RLCA dataset is close
to the prediction error of NN trained on the ODE45 dataset
up to two orbital periods. In the first two orbital periods, the
two models are similar to one another. Then, the RLCA ML
Model possesses a higher error than the ODE45 ML Model.
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(a) Dataset 1 (High tolerance, ODE45 propagator).

(b) Dataset 2 (RLCA).

Fig. 10: Dataset 1 and Dataset 2 are used for the learning and updating of ML Model 1 and Model 2 respectively, following
the process described in section III-C and using the conditions in Eq. 13.
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(a) Model 1 learning and updating process for the DROs based
on Dataset 1 (embedding ODE4S5 into ML model).
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(b) Model 2 learning and updating process for the DROs based
on Dataset 2 (embedding RLCA into ML model).

Fig. 11: Training and testing performance of DRO trajectories for the described Models.

Even small disturbances to a spacecraft’s orbital path may have
long-term effects, such as after 4 months. Furthermore, it is
observed that while predicting the position and velocity for
more than one orbital period using only one initial condition,
the error of the NN of RLCA becomes significantly higher
than the NN of ODE45. More importantly, ODE45 gives an
approximate solution for orbital propagation that diminishes
with time, and using it as a reference for an ML model shows
deviations in error at these later points in time. Therefore, after
several orbital period propagations, the NN of ODE45 gives a
lower error compared to the NN of RLCA. In Fig. 12, the true
reference DRO, as well as two random DROs with perturbed
initial conditions, are propagated significantly past a single
orbital period using both ML Models, and the propagation
error is presented. Notably, if the spacecraft is propagated
precisely on the actual DRO, it perfectly aligns with the RLCA
dataset, yielding an error comparable to the trained ODE45
NN but with faster training convergence.. This suggests that
the proposed NN method is more suitable for generating

trajectories near true DRO throughout two orbital periods.
In future work, ML models will be proposed to generate
positions and velocities with low RMSE per multiple periods.
Furthermore, in future development, it is considered that these
periodic trajectories are part of a continuous family in the
CR3BP that extend from one another. A small perturbation
in initial conditions may place these trajectories in a slightly
different orbit that the NN must account for. Due to the
nonlinear behavior of the CR3BP, this slight perturbation may
result in a significantly different orbit, or a very similar one.
The DRO selected for this analysis is extremely similar to
its nearby counterparts, and thus this scenario is not a huge
concern in this analysis, but for other trajectories, this may not
be the case and must be considered. The difference between
the ODE45-based NN and the predicted RLCA NN is not quite
significant compared to the 100,000 km the DRO stretches.
This shows the high accuracy of the DRO trajectory prediction
through an ML model except at 20% of the DRO period.
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(a) A DRO with random perturbed initial
conditions, falling in the standards of Eq.
13 and close to mean (true) DRO.

Orbital Periods
(c) The mean (true) DRO.
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(b) A second DRO with random perturbed
initial conditions, falling in the standards
of Eq. 13 and close to mean (true) DRO.

Fig. 12: The RMSE variation of NN predictions across extended periods, for randomly perturbed DROs and the mean DRO.

V. CONCLUSION

Trajectory design and prediction in the complex three-body
dynamics of the Earth-Moon system requires computationally
inexpensive methods. Numerical integration techniques like
Gauss-Legendre, Dormand-Prince, and Adams-Bashforth al-
gorithms are commonly used to solve trajectory generation as
an initial value problem by integrating differential equations
that describe system dynamics. However, these methods tend
to be computationally expensive. In this work, the RLCA ap-
proaches the trajectory generation problem as a boundary value
problem, in which a polynomial describing spacecraft trajec-
tory is determined using boundary and interior conditions.
Using the boundary and interior conditions, the algorithm
formulates a unique system where the coefficient matrix is
decomposed into tridiagonal matrices and an upper triangular
matrix. By doing so, polynomial trajectories are computed
with O(n?) arithmetic complexity, offering an improvement
over the brute force calculation with O(n3) complexity. The
RLCA further improves upon the authors’ previous work [29]
by only requiring position and velocity at the boundary and
interior conditions as opposed to needing position, velocity,
and acceleration [29]. By removing the need for acceleration,
the algorithm is capable of operating on conditions that are
often available through observation techniques (i.e., position
and velocity). The RLCA is demonstrated across an assortment
of orbital trajectories. In the CR3BP, the algorithm is used to
recreate an Lo Lyapunov orbit, L, axial orbit, and NRHO
by breaking each orbit into five continuous arcs. In addition
to the CR3BP simulations, a low-Lunar elliptical orbit in the
2BP is presented to show the algorithm’s capability to scale to
any dynamical framework. The RLCA recreated the CR3BP
trajectories with reasonable accuracy, except in the case of
the NRHO in which more measurements were required to
reach an acceptable accuracy. The NRHO case highlighted
the fact that poor measurements around rapidly changing
portions of trajectories diminish the algorithm’s ability to
produce accurate results and by increasing measurements
in these regions, accuracy is improved. In comparison to
the numerical methods shown, the RLCA showed significant
improvement in computation time, beating out the numerical

methods in the five arc simulation by at least 70%. Overall,
the computational efficiency and accuracy of the algorithm
demonstrate the potential of the algorithm to be used as an
alternative low-complexity tool to supplement computationally
expensive numerical techniques in certain scenarios.

In traditional trajectory generation algorithms, solving the
set of differential equations with a specific initial condition
puts the RLCA at a disadvantage in its current form. Thus,
the RLCA is embedded into an ML model and predicted DRO
trajectories at given initial conditions. Given the non-linear
nature of the CR3BP, the NN architecture is designed with
six nodes in the input and output layers and three hidden
layers. These hidden layers operate with different activation
functions and quantities of nodes. This NN architecture is
trained and tested on a DRO. Two NN are trained, one with
DRO trajectories using ODE45 and another with the RLCA.
The training of these NN found the RLCA Model converged
faster and smoother with less MSE than the ODE45 model.
Furthermore, the RLCA NN predicted the DRO with signifi-
cantly less error than the ODE45-based NN in a single orbital
period. Alternatively, outside an orbital period, the RLCA-
based NN shows a higher error compared with ODE45-based
NN. Note here that ODE45 gives an approximate solution that
deviates over significant periods for orbital propagation, and
using it as a reference for an ML model shows deviations
in error. Using the exact initial conditions, the RLCA-based
NN accurately predicts future DRO trajectories better than an
ODE-based NN, resulting in less RMSE. Future work aims
to enhance the RLCA-based NN across multiple periods and
orbital trajectories.
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