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Comparative studies suggest remarkable similarities among food
webs across habitats, including systematic changes in their structure
with diversity and complexity (scale-dependence). However, historic
aboveground terrestrial food webs (ATFWs) have coarsely grouped plants
and insects such that these webs are generally small, and herbivory is
disproportionately under-represented compared to vertebrate predator–
prey interactions. Furthermore, terrestrial herbivory is thought to be
structured by unique processes compared to size-structured feeding in
other systems. Here, we present the richest ATFW to date, including
approximately 580 000 feeding links among approximately 3800 taxonomic
species, sourced from approximately 27 000 expert-vetted interaction
records annotated as feeding upon one of six different resource types:
leaves, flowers, seeds, wood, prey and carrion. By comparison to historical
ATFWs and null ecological hypotheses, we show that our temperate
forest web displays a potentially unique structure characterized by two
properties: (i) a large fraction of carnivory interactions dominated by a
small number of hyper-generalist, opportunistic bird and bat predators;
and (ii) a smaller fraction of herbivory interactions dominated by a
hyper-rich community of insects with variably sized but highly specific
diets. We attribute our findings to the large-scale, even resolution of
vertebrate, insect and plant guilds in our food web.

This article is part of the theme issue ‘Connected interactions: enriching
food web research by spatial and social interactions’.

1. Introduction
Ecosystems contain immense biological complexity. Food webs represent
part of this complexity by documenting the feeding interactions (links)
between taxa (nodes). Comparative studies of food webs across habitats
have revealed robust and non-random patterns suggestive of an underlying
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architecture of life [1–7]. For example, the structure of food webs changes systematically with diversity and complexity
(termed ‘scale-dependence’) but maintains hierarchy, demonstrated in aquatic and belowground food webs through modular,
size-structured pathways of larger consumers feeding on smaller resources [8–13]. Aboveground terrestrial food webs (ATFWs)
also exhibit size-structure in predator–prey interactions, but different mechanisms (e.g. chemical composition, trait matching)
probably underlie the specialized feeding of insect herbivores on often-larger terrestrial plant resources [14]. However, there
are few published ATFWs and even fewer that include high-resolution data for both plant–herbivore and predator–prey
interactions across broad taxonomic groups (table 1). Therefore, whether and how the structure of ATFWs may fundamentally
differ from those of other habitats remains unclear [32]. As a step towards answering this question, we construct the most
extensive ATFW to date and study the mechanisms by which its increased taxonomic and trophic resolution lead to a unique
structure relative to the scale-dependent pattern observed in previous webs.

Constructing food webs is fraught with methodological difficulties [33,34]. Observations of species and interactions depend
on the boundaries of the system, the specific spatial (vertical versus horizontal transects, microhabitats) and temporal (seasonal,
diurnal and duration) scales of sampling, as well as the taxonomic expertise of the investigators (including ability to detect
and identify both consumer and resource species). Many organisms regularly cross ecosystem boundaries as part of their life
cycles; for example some insect species spend larval stages underground or underwater, then move to aboveground habitats
after maturation, after which they may migrate to a completely different region for breeding [35]. Species also exhibit adaptive
foraging and defensive behaviours, effectively ‘rewiring’ interactions in response to changing biotic and abiotic conditions
[14,36,37]. One approach to these problems is to construct an expert-vetted ‘cumulative’ or ‘meta’ food web that pools all
species and interactions recorded across time and/or similar habitats [38]. This reduces the likelihood of missing cryptic or
rare species and provides a more comprehensive accounting of all potential feeding interactions in the system. Additionally, as
human activities alter species’ distributions and habitats, ‘rare’ and novel interactions are increasing in frequency [36], making
cumulative webs even more important.

Even cumulative food webs rely heavily on expertise and long-term and/or regional sampling. Perhaps for this reason,
previous high-quality ATFWs have tended to focus either on taxonomic breadth or depth. Webs with taxonomic breadth
(table 1, marked with asterisks) tend to resolve vertebrates most highly, while aggregating invertebrates and plants into coarse
taxonomic or functional groups (e.g. into insect orders or plant tissue categories). This ‘lumping’ strategy sensu Briand [39] seeks
to describe broad system-level behaviour but is largely a result of the technical difficulties associated with documenting and
representing the pure volume of plant–insect associations [27]. Nevertheless, classic breadth webs—Coachella Valley [20], St
Martin Island [21] and El Verde Rainforest [27]—have proved highly influential and remain perhaps our best description of
ATFWs because they used cumulative approaches with known species lists from long-term fields sites. Indeed, these webs, with
the Little Rock Lake web of Martinez [40], contributed to overturning ‘empirical generalizations’ (such as scale-invariance, low
omnivory, etc.) derived from a catalogue of less-resolved webs [15,41,42].

By contrast, webs with greater depth of resolution tend to have narrower scope (table 1). These webs generally focus only
on a single taxonomic group (e.g. only tetrapods) or on a single energetic pathway (e.g. ‘source’ or ‘sink’ webs) [38]. In the
same vein, the explosion of ecological networks research in the last two decades has tended to focus on highly specific single
interaction types such as frugivory or scavenging, demonstrating the unique structure and importance of these subnetworks
for ecosystem dynamics and function [43–46]. However, different subnetworks are rarely recorded in the same system, and
as such, it is unknown how they may connect with each other or to their broader food web [43]. An exception is the
few ‘multiplex’ networks that report high-resolution interactions of different types (i.e. feeding on different resources or
with different interaction outcomes) among non-disjoint sets of species [47,48]. These studies bring together interactions that
otherwise rarely co-occur in food webs [44–46], especially mutualisms, such as pollination or seed dispersal, which can have a
feeding component via consumption of nectar and pollen or seeds and fruits, with other forms of ‘antagonistic’ herbivory such
as phloem-feeding by aphids [28,29,49].

Comparative studies attempt to standardize these diverse approaches to constructing food webs in three ways [38,50]. First,
they aggregate empirical webs to ‘trophic species’ webs, where taxa with the same set of consumers and resources are grouped
into the same node [41]. This reduces methodological biases within and between webs by retaining only functionally distinct
units with unique trophic niches [2]. Second, they compare the properties of trophic species webs to null expectations provided
by the well-known ‘niche model’ of Williams & Martinez [8], which embodies specific ecological hypotheses for the mechanisms
structuring food webs [51]. This approach provides scale-dependent expectations for food web properties (i.e. given their
richness and complexity), and deviations from null expectations (sometimes called ‘errors’) can be interpreted as rejecting the
underlying hypotheses. However, errors are also scale-dependent, meaning that the properties of empirical webs increasingly
deviate from niche model expectations with increasing richness [50]. Therefore, third, comparative studies extrapolate from
scale-dependent errors to assess whether a focal web exhibits unique properties compared to other webs, given its scale [30,50].

In this study, we used more than a century of research at a biological research station to build the Michigan Temperate Forest
(MTF) food web, the richest ATFW to date. We used a cumulative approach, incorporating public records and occurrence data,
supplemented and vetted by experts for local plausibility given species’ traits and behaviours. This resulted in approximately
580 000 feeding links among approximately 3800 taxonomic species, represented in a multiplex network according to feeding
on different resource types (‘prey’, ‘carrion’, ‘leaves’, ‘flowers’, ‘seeds’, or ‘wood’). Using comparative food web methods, we
(i) characterized the properties of the MTF, (ii) studied whether the increased taxonomic and trophic resolution leads to unique
structure, given its scale, compared to previous ATFWs, and, if so, (iii) identified potential mechanisms underlying the structure
of more or less-resolved webs.
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Table 1. Properties of ATFWs. (A collection of classic and more recent food webs used for comparison to our new Michigan Temperate Forest web for the University
of Michigan Biological Station (UMBS). We include classic webs (published prior to 2000) traditionally considered ‘highly resolved’; this excludes the many historical
webs in the ECoWeB catalogue of low richness and variable resolution [15]. We exclude modern webs in ‘container habitats’ (e.g. under a log, in a tree hole) as well as
newer parasitoid–host webs [6,16]. The High Arctic web was assembled from data in Appendix S2 of Wirta et al. [17], originally from Roslin et al. and Rasmussen et
al. [18,19]. Column definitions: web, traditional name and reference; richness, number of ‘species’ in original publication (but see extent); S, number of trophic species;
C, directed connectance; L, number of links; B, fraction of basal trophic species (with no consumers); taxonomic groups, taxa and resolution in the food web; basal
nodes, types of trophic species or functional groups at the base of the food web; types of consumers, types of feeding interactions included in the food web; extent,
notes on the space and time of food web construction. Unless otherwise noted, webs are cumulative metawebs, built from records pooled across time (including
published literature) and similar habitats (usually contiguous field sites). Other definitions: ‘lumped by taxa’, grouped to order or family except potentially for key
species; source-web, web recording the food chain(s) up from a set of resources; sink-web, web recording the food chain(s) down from a set of consumers; ‘breadth’
webs (marked with asterisk), webs including multiple taxonomic groups and energy pathways but with lower resolution; ‘depth’ webs, higher resolution webs missing
key structural components, including some non-traditional food webs like the Pocock Farm multiplex network. Abbreviations: spp., species; incl., including.)

web rich-ness S C L B taxonomic groups basal nodes types of consumers extent

Coachella
Valley *
[20]

30 29 0.312 262 0.103 vertebrates, arthropods,
other invertebrates,
microbes lumped by
taxa, size and trophic
role

plants and plant
products; detritus;
carrion

predators,
parasitoids,
detritivores,
scavengers

lumps 138
vertebrate, 55
arach-nid, 174
vascular plant,
and approx. 2–
3000 insect
spp.

St Martin
Island* [21]

44 42 0.116 205 0.143 vertebrates resolved to
spp.; fungi,
arthropods, other
invertebrates, lumped
by taxa and lifestage

fruits and seeds;
nectar and floral;
leaves; roots;
wood; detritus

predators,
parasites,
detritivores,
herbivores (incl.
nectar and fruit
feeders)

‘Anolis-centred’

UK Grassland
[22]

87 67 0.027 119 0.149 grasses and wasps
resolved to spp.

grass spp. herbivores,
parasitoids

source-web; direct
observation

Scotch Broom
[23]

154 83 0.032 220 0.012 broom, insects, fungi,
bacteria, and
arachnids resolved to
spp.

broom (Cytisus
scoparius)

predators,
parasites,
parasitoids,
herbivores (incl.
seed, sap and
root feeders)

source-web; single
field site

Serengeti – de
Visser* [24]

350 85 0.075 545 0.071 vertebrates resolved to
spp.; invertebrates
incl. insects,
gastropods, etc.
lumped by taxa and
size

detritus; plant juices;
fruits and nectar;
grains and seeds;
grass and herbs;
trees and shrubs

predators,
scavengers,
herbivores (incl.
seed, nectar
and fruit
feeders)

lumps > 322
vertebrate spp.,
28 invertebrate
orders, 7
resource groups

Serengeti –
Baskerville
[25]

161 105 0.042 463 0.695 plants and mammals
resolved to spp.

plant spp. predators
(carnivores),
herbivores

Shortgrass
Prairie *
[26]

133 105 0.034 379 0.657 plants and vertebrates
resolved to spp.;
arthropods lumped by
taxa

plant spp.; un-
identified seeds

predators,
herbivores (incl.
seed feeders)

sampling over 2
years at two
sites

El Verde Rain-
forest* [27]

156 155 0.063 1509 0.181 vertebrates and some
invertebrates incl.
insects, gastropods,
etc. resolved to spp.;
other invertebrates,
lumped by taxa and
lifestage

resource categories,
e.g. leaves; dead
wood; roots;
bacteria; algae;
slime molds; basal
prey taxa

predators,
parasites,
scavengers,
detritivores,
herbivores (incl.
leaf, seed, fruit,
nectar, pollen,
flower, wood,
lichen, root and
sap feeders),
fungivores

lumps > 2601
known
heterotroph
and >214
autotroph
plant spp.

(Continued.)
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2. Methods
(a) Site, species list and feeding records
The University of Michigan Biological Station (UMBS) was established in 1909 on approximately 10 000 acres of logged and
burned land in northern lower Michigan, USA (45°35.5′ N, 84°43′ W) and represents a strongly seasonal system with historically
cold, snowy winters and hot, humid summers. The site has, in recent years, been restored to predominantly dry-mesic, northern
hardwood forests with patches of wooded wetlands (hardwood conifer swamp) [52]. A full description of the UMBS site and
extended methods are available in the electronic supplementary material [53].

Briefly, experts (generally, the authors) vetted and approved species lists of mammals, amphibians, reptiles, vascular plants,
birds, insects and non-insect arthropods from UMBS records. These were accumulated from resident biologists’ personal
observations, student projects, museum and herbarium specimens and semi-regular BioBlitz events, in which teams of
biologists roamed the site and identified as many organisms as possible. Hereafter, we refer to all approved taxa as ‘species’,
though a small fraction (4.5%) are genera.

The same experts vetted and annotated a list of potential feeding interactions, sourced from region-specific field guides
and online databases [54]. Each focal taxon was resolved to species-level, but their interaction partners could be recorded at
any taxonomic level (e.g. species x eats family y). We included all records of direct interactions among species in our system
with a bioenergetic flow (i.e. one species consuming another), regardless of lifestage or potential ecological effects (i.e. whether
potentially ‘mutualistic’ or ‘antagonistic’ [14]). Experts approved recorded interactions between species as plausible if the
species co-occur (with respect to phenology, activity patterns and microhabitat usage) and have no trait incompatibilities (with
respect to acquisition, ingestion and assimilation). If a partner in a potential interaction was recorded at a coarser taxonomic

Table 1. (Continued.)

web rich-ness S C L B taxonomic groups basal nodes types of consumers extent

High Arctic
[17–19]

214 161 0.025 646 0.348 plants, spiders, insects,
other invertebrates
and birds resolved to
spp.

plant and basal prey
spp.

predators,
parasitoids,
herbivores,
pollinators
(nectar and
pollen feeders)

Zackenberg Valley;
source-webs
coupled to
sink-web
following [28]

Norwood Farm
[29]

560 327 0.011 1199 0.297 plants, insects, fleas,
ticks, birds, rodents
resolved to spp.

plant spp. parasitoids,
herbivores,
flower visitors
(nectar and
pollen feeders),
seed feeders,
ectoparasites

source-web;
recorded as
multiplex
network;
sampled over 2
years at a 125
ha farm

Messel Forest*
[30]

700 646 0.014 5758 0.307 plants, microbes, fungi,
arth-ropods, vert-
ebrates, other
invertebrates; >50%
resolved to genus or
spp.

detritus, carrion,
plant spp.

predators,
herbivores (incl.
seed, wood,
root, pollen and
leaf feeders)

taxa deposited in a
lake basin
during the
Eocene

European
Tetrapods
[31]

1152 1054 0.043 47
5
1
0

0.763 vertebrates resolved to
spp.

basal prey spp. predators
(carnivores)

European
continent; not
all spp. co-
occur locally;
17 diet
categories
provided as
traits

Michigan
Temperate
Forest*

3802 2597 0.054 366
38
5

0.245 vertebrates, plants,
insects and other
invertebrates resolved
to spp.

plant and basal prey
spp.

predators,
parasitoids,
ectoparasites,
scavengers,
herbivores (incl.
leaf; seed and
fruit; nectar and
pollen; and
wood feeders)

UMBS field station;
recorded as
multiplex
network
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level than species, the record was approved only if these conditions could also plausibly hold for all local species in that
taxonomic unit.

Finally, experts categorized records by their focal resource type as animal tissues, either: (i) live tissues and as prey or (ii)
scavenged as carrion, carcasses or other decaying animal remains, or as plant tissues, grouped as (iii) leaves and stems, (iv)
flowers, nectar, pollen, etc., (v) seeds, fruits, etc., or (vi) wood and bark. Hereafter, we refer to these resource types simply as
‘prey’, ‘carrion’, ‘leaves’, ‘flowers’, ‘seeds’ and ‘wood’, respectively.

(b) Network representation
To translate our list of feeding records into a food web, we began with a ‘multiplex network’ approach (figure 1a) in which
feeding on different resource types is represented by different types of links between the same set of nodes (taxonomic species).
This allowed us to distinguish between the niches of animals feeding on different resources while also accounting for the fact
that such resources are coupled together in the same organism. Specifically, we defined a node for each focal species i in our
list. Then, we defined a directed link of type l between nodes i, j if i consumes tissue type l of j or tissue type l of a broader
taxonomic group including j. Links are binary, indicating the presence or absence of potential feeding, not its frequency,
probability, rate or strength. We retained only unique links, but tracked the most resolved taxonomic level from which each link
was sourced. We characterized the complexity of the multiplex network by counting the number of links (Ll), consumer species
(Al) and resource species (Pl) involved in feeding of type l, and the fraction of the maximum possible links that were realized
as either bipartite connectance = Ll/ AlPl  for feeding on plant tissues (leaves, flowers, seeds or wood) or unipartite connectance

= Ll/ Al + Pl 2 for feeding on animal tissues (prey or carrion).
As a direct comparison to previously published food webs (table 1), we used the conventional food web approach, where a

binary link occurs between nodes i, j if i consumes j in the multiplex network (i.e. consumes any resource type of species j).
Following convention, we aggregated all webs into ‘trophic species’ versions, wherein taxa with the same sets of consumer and
resource species are grouped together (figure 1b(iii)).

To study the contribution of resolving feeding on different resource types to food web structure, we aggregated our
multiplex network to a ‘trophic species multiplex network’ (figure 1b(i–ii)), wherein all taxa with the same set of consumers and
resources, both in terms of taxonomic species and resource types, are grouped into a single node. The difference in resulting
richness between this trophic species multiplex network (figure 1b(ii)) and that of our trophic species food web (figure 1b(iii))
indicates how many taxonomic species’ trophic niches are differentiated only by feeding on specific resource types (e.g. on the
leaves versus the flowers or the live prey versus the carrion of the same resource species).

Hereafter, we discuss the structure of a ‘food web’ as the trophic-species food web with richness denoted as S, number of
links denoted as L and directed connectance (the fraction of observed links out of the maximum possible, L/S2) denoted as C
[40].

(c) Food web structure
To provide null expectations for the scale-dependent structure of food webs, we used the niche model of Williams & Martinez
[8] to simulate n = 1000 matching webs using the S and C of our food web and each of the previous webs (table 1). Traditionally,
the model assumes that all nodes are unique trophic species and webs that include nodes with the same consumer and resource
set (i.e. duplicate trophic species) are rejected. For webs with low connectance, we relaxed that assumption and allowed niche
model webs to be seeded with a slightly higher initial richness as long as (following another trophic species aggregation) S and
C matched the empirical trophic-species web.

We calculated a suite of properties to characterize the composition, hierarchy and degree distribution of the empirical food
webs [8,50,55–57]. See the electronic supplementary material, table S1 for a full list of properties and definitions. For each
structural property, we assessed the significance of deviations from null expectations using normalized model errors (NMEs)
[55,58]. NMEs are calculated as the difference between the median model and empirical values normalized by either the
difference between the median model value and the 97.5 percentile of the model distribution if the empirical value is greater
than the model median, or, if the empirical value is less than the model median, by the difference between the 2.5 percentile of
the model distribution and the model median. Values greater than 1, or 1 or less indicate that the empirical value is significantly
higher or lower, respectively, than the null expectation at the 95% confidence level. For the purposes of discussion, we follow
previous works to summarize these as a composite mean |NME|, though the individual properties are not independent (see the
electronic supplementary material, Supplementary Methods) [50].

To characterize species composition, we calculated the fraction of trophic species in each of the following categories: basal
(B): with consumers but no resources; intermediate (I): with both consumers and resources; top (T): with resources but no
consumers; Herbiv (TL2): eat only basal species (are strict herbivores, i.e. trophic level [TL] = 2); Carniv: eat only other consumers
(strict carnivores); Omniv: eat both basal and consumer species (omnivores); Cannib: eat members of their own species (canni-
bals).

To characterize link composition, we calculated HerbLink, the fraction of total feeding links that are herbivorous (i.e. are on
basal resources), and TL2Link, the fraction of feeding links from TL2 herbivores.

To characterize hierarchy, we calculated meanTL and maxTL, the mean and maximum short-weighted trophic level of
consumers [57], and meanTLTop, the mean trophic level of top consumers.
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Degree describes the number of resources (in-degree) and consumers (out-degree) of a species. To characterize degree
distribution, we calculated meanGen, the mean in-degree of consumers (i.e. their ‘generality’), GenSD, the normalized variability
of generality, meanVul, the mean out-degree of resources (i.e. their ‘vulnerability’), and VulSD, the normalized variability of
vulnerability. We also calculated these properties for specific subgroups of species to characterize their respective contribution
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Figure 1. Representations of the MTF food web. (a) Simplified visualization of the multiplex food web. Each node represents a taxonomic order (labelled by its first
three letters), with width scaled to the number of local species, ranging from one (e.g. order Gaviiformes, represented only by the common loon) to >1000 (order
Lepidoptera). Each link is a feeding interaction between orders, with width scaled to the total number of feeding interactions between species in each order. Links
are coloured by the resource type consumed as follows: tan, live prey and animal tissues; brown, scavenged carrion; dark green, leaves and stems; green, floral
resources; light green, seeds and fruits; and beige, wood and bark. Self-links indicate feeding among species within the order, including cannibalism. Nodes are
ordered horizontally by their number of consumers (in-degree), increasing from left to right, and vertically by increasing trophic level (TL) from basal resources on the
bottom (TL = 1) to carnivores at the top. Three carnivorous/parasitic plant orders were assigned TL = 1.75 and four basal animal orders were assigned TL = 1.25 for
visualization. The 85 orders shown here represent 3082 taxonomic species. (b) Illustrated effect of aggregating the multiplex network into ‘trophic species’—species
with same set of consumers and resources. Numbers indicate how many nodes were aggregated. Here, one generalist predator feeds on four herbivores of the same
plant species, with its different tissue types (wood, seeds, flowers and leaves) illustrated as different nodes for clarity (colours follow panel (a)). There are six taxonomic
multiplex species total in this example. The ‘multiplex network’ representation (i) can differentiate among the trophic niches of herbivores feeding on different plant
tissues. Aggregating into a ‘trophic-species multiplex network’ (ii) groups the two herbivores that feed on the same plant tissues into one trophic species, resulting
in five multiplex trophic species total. Further aggregating all four herbivores into one trophic species feeding on the plant species (white node), results in three
trophic species total. This is the traditional representation of ‘trophic-species food webs’ (iii), where only taxonomic identity differentiates species’ trophic niches. (c)
Illustration of the disproportionate effect of herbivory on trophic species resolution in the MTF web. The generality of predators (especially birds and bats) in the MTF
web (iv) means that prey species (especially insect herbivores) tend to be aggregated into fewer trophic species when considering carnivory interactions alone (v). The
specificity of herbivores in the MTF web results in more trophic species resolved when considering herbivory interactions alone (vi). This leads to a pattern of numerous
generalized carnivory interactions and fewer but more specific herbivory interactions among the more numerous plant and herbivore species (vii).
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to deviations observed from null expectations. Finally, we used two-sample Kolmogorov–Smirnov tests to directly test the null
hypothesis that the observed and expected degree distributions were sampled from the same underlying distribution [58]. Full
results are reported in the electronic supplementary material, table S2.

We observed that the niche model tended to generate webs with low B at high S, which may drive substantial NMEs simply
owing to underlying differences in species composition. We directly tested whether this may be the case by simulating n = 1000
niche model webs with matching S, C, B values to our empirical food web, called the ‘basal-matched’ treatment. We seeded the
niche model with S = 2896, C = 0.057, and set the 927 lowest niche-value species to have feeding ranges of zero (thus forcing
them to be basal).

All data cleaning and network analyses were performed in MATLAB R2021b [59].

3. Results
(a) Species list and feeding records
Our final species list includes 3802 local species, representing 2073 genera in 451 families of 85 orders (figure 1a). Insects
(2669 spp.) and vascular plants (781 spp.) numerically dominate the community, accounting for approximately 90% of the
taxa, compared to vertebrates (313 spp.) and non-insect arthropods (39 spp.). The richest orders are insects, especially the
Lepidoptera (butterflies and moths, 1168 spp.), Coleoptera (beetles, 512 spp.), Diptera (flies, 390 spp.), Hymenoptera (bees,
wasps and ants, 265 spp.) and Hemiptera (true bugs, 211 spp.). Worldwide, there are more than twice as many named species
of Coleoptera as Lepidoptera [60]; therefore, Lepidopterans are probably substantially over-represented in our list. Vascular
plants represent the most taxonomically diverse group on our list, with 38 orders; however, most of these species belong either
to Poales (grasses, sedges and rushes, 149 spp.) or Asterales (composite flowers, 96 spp.). Vertebrate species include birds (226
spp., including 127 passeriform birds), mammals (52 spp., including seven bats), amphibians (18 spp.) and reptiles (17 spp.).
Finally, non-insect arthropods primarily include spiders and mites, but overall, this group is significantly under-represented in
our list, both in terms of richness and taxonomic diversity.

In summary, we recorded 2541 species of consumers (including four carnivorous or parasitic plants) and 3782 species
of resources. Approximately, two-thirds of species (69.7%) included in the records are resolved to taxonomic species level,
while 13.7%, 13.1% and 3.0% of species (primarily insects) have records from genus-, family- or order-level records at best,
respectively. We have no feeding records for 19 plants (0.5% of local species), including most of the Lycopodiales (clubmosses,
five of six spp.) and the Polypodiales (ferns, 11 of 19 spp.), which represent two of the major groups of non-seed plants in our
system. Additionally, our records include no diet information for 485 species of insects (16.3% of local animals), primarily from
the richest orders (183 Lepidopterans, 145 Dipterans, 109 Coleopterans), but also including all Blattodea (cockroaches, two spp.),
Plecoptera (stoneflies, two spp.), Mecoptera (scorpionflies, four spp.) and Zygentoma (silverfish, one spp.). Some of these do
not feed in aboveground terrestrial habits (or at all) during a certain life stage or feed entirely upon resources we excluded
(fungi, detritus, lichens, etc.), limiting their potential diet in our food web. However, these gaps in our dataset may also indicate
broader gaps in our expertise or the available natural history information for these species.

We constructed our multiplex network from 26 728 approved records of local taxa feeding on prey, carcass, leaf, flower, seed
or wood resources, totalling 588 416 unique feeding interactions (links) between local species. These links primarily consist of
feeding on prey (89.2%), especially insect prey, with the remaining links consisting of scavenging carcasses (0.54%) or feeding on
plant leaves (6.7%), flowers (2.2%), seeds (1.2%) or wood (0.17%). Though numerous, these interactions are only a small fraction
of the possible links. Separating feeding on each type of resource, we calculate that only 5.8% of the interactions are realized
among the 3023 predator and prey species in our carnivory subnetwork, with similarly low connectances for scavenging (0.2%
among 1357 spp.) and the different types of herbivory (leaves: 3.1% among 2458 spp., flowers: 2.2% among 1533 spp., seeds:
5.1% among 796 spp., wood: 9.8% among 200 spp.).

Carnivory is the most numerically dominant interaction in our food web, but only approximately one-third (35.9%) of
consumers feed on prey. In fact, the 120 most generalist species in our food web (4.7% of consumers) contribute over half
(51.5%) of the unique carnivory links in our network, sourced from only 950 (3.6%) records of focal birds and bats thought to
feed opportunistically upon entire insect orders. Records of feeding on insect orders by any taxon contribute 87.1% of unique
carnivory links overall, meaning that they are not otherwise included by records at lower taxonomic levels. In comparison,
feeding between vertebrates accounts for only 1.3% of carnivory links.

Herbivory interactions are less numerous than carnivory, but most consumers (85.4%) in our food web feed on plants, with
nearly half (46.0%) feeding on a single plant tissue. These are primarily insects, dominated by lepidopterans eating leaves
(as caterpillars), but also including hymenopterans and dipterans eating floral resources. Over half of herbivory interactions
(52.4%) stem from records of feeding between insects and plants at the genus- and species-level, with only 4.1% of unique
herbivory interactions contributed by order-level records across all taxonomic groups. Therefore, in contrast to carnivory, our
herbivory records at coarser taxonomic levels do not include or are redundant to interactions from more taxonomically resolved
records.

Over one-third of consumers (39.6%) feed upon more than one type of resource. Around half of these feed on leaves and
flowers (18.9% of consumers, primarily lepidopterans and coleopterans). A smaller fraction (11.6%) feed on more than two types
of resources, but these represent a more diverse set of insects, mammals and birds feeding on prey, leaves and flowers or seeds,
or, less frequently, leaves, flowers and wood. Ants (Formicidae, 48 spp.) uniquely feed on prey, leaves, flowers and carrion.
Among consumers feeding on multiple resource types, we observed significant positive correlations between diet breadths
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when feeding on prey and plant leaves (Pearson correlation: r = 0.26, p = 2.7 × 10−6, n = 319), prey and seeds (r = 0.14, p =
0.044, n = 202), leaves and seeds (r = 0.42, p = 7.2 × 10−9, n = 178), and leaves and wood (r = 0.24, p = 0.017, n = 98; electronic
supplementary material, S1). In other words, generalists on one resource type also tend to be generalists on others. In contrast
to the tissue specialization by most animals, most plants (91.3% of 781 species) support consumers on more than one of their
tissues, with a small set of diverse plants (81 species in 13 orders) sustaining feeding on all four recorded tissue types (electronic
supplementary material, fignure S2).

(b) Trophic species composition
Our final food web consists of S = 2595 trophic species and L = 365 951 links. An additional 29 trophic species and 8462
links would be distinguished by feeding only on different types of plant tissues (figure 1b). Nearly, all (92.3%, 2394) of the
trophic species nodes correspond to taxonomic species, including all vertebrates, nearly all non-insect arthropods (94.9%),
over two-thirds of plants (70.2%), and over half of insects (55.0%) in our species list. The remaining trophic species are each
composed of taxonomic species from a single order. This is probably because entire insect orders, the primary resources in the
food web, share the same opportunistic/generalist predators and are therefore only distinguished by their diets (figure 1c). Over
half of these taxonomic species (54.1%, 761) are represented in only 27 trophic species groups; these comprise most (83.1%) of
the 485 animal species without diet information (i.e. the species most likely lacking resolution).

Feeding on leaves contributed to distinguishing the most trophic species in our food web (924 trophic species), followed by
feeding on prey, flowers, seeds, wood and then carrion (417, 322, 13, 5 and 0 respective additional trophic species relative to
versions of the food web built with feeding only on the other resource types). Therefore, herbivory interactions, and particularly
leaf herbivory, provide the key component for distinguishing species’ trophic niches in our system.

(c) Scale-dependence of food web structure
The structure of our food web deviates significantly from the null expectation provided by the niche model in almost every
metric. Beginning with trophic species composition (figure 2a–e), approximately one-tquarter of trophic species in our web are
basal (Bobs = 0.245) and the remaining three-quarters are intermediate (Iobs = 0.755). Nearly half of trophic species are herbivores
that eat only basal trophic species (i.e. are trophic level 2, TL2TL2obs = 0.483), and nearly one-quarter are omnivores that eat both
basal and consumer trophic species (OmnivOmnivobs = 0.235), while <5% are carnivores that feed strictly on other consumers
(CarnivCarnivobs = 0.038). This is in stark contrast to the null expectation that <2% of species are basal (Bnull = 0.018), and the
remaining are intermediate (Inull = 0.977) with <1% TL2 herbivores (TL2TL2null = 0.006). Moreover, the null model predicts
one-third of species as carnivores (Carnivnull = 0.315), and the remaining two-thirds as omnivores (Omnivnull = 0.662). However,
our observation of almost no top consumers was not significantly different from the null expectation of the niche model (Tobs =
3.85 × 10−4, Tnull = 0.006), and the fraction of cannibals was also similar to the null expectation (Cannibobs = 0.0312, Cannibnull =
0.058).

Our web contains a higher fraction of herbivorous links (HerbLinkobs = 0.135, HerbLinknull = 0.018)—especially a higher
fraction by TL2 herbivores—than expected (TL2Linkobs = 0.071, TL2Linknull = 4.87 × 10−5; figure 2f) and tends to be shorter in
terms of mean and max trophic level (meanTLobs = 2.22, meanTLnull = 4.37; maxTLobs = 4.62, maxTLnull = 6.17). Additionally,
the mean trophic level of top species in our web is two (i.e. herbivores), significantly lower than expected (meanTLTopobs =
2.0, meanTLTopnull = 4.81). This may be a limitation of the dataset rather than a true signal; our temperate forest system does
not have megaherbivores, and we expect most insect herbivores to experience parasitoidy or natural enemies in aboveground
terrestrial habitats.

Our web exhibits a higher average generality among consumers (meanGenobs = 186.7, meanGennull = 143.5; figure 2h) and
a greater variability in generality overall (GenSDobs = 2.82, GenSDnull = 1.19; figure 2j). Indeed, the distributions of generality
between our web and the simulated niche models are significantly different, both visually (figure 3b) and statistically according
to Kolmogorov–Smirnov tests (see the electronic supplementary material, table S2). These deviations can be attributed to two
properties: first, a small core of hyper-generalist omnivores (meanGenOmnivobs = 481.3, meanGenOmnivnull = 144.4; GenSDOm‐
nivobs = 1.35, GenSDOmnivnull = 1.17); second, a long tail of TL2 herbivores with greater generality and variability of generality
than expected by the niche model (meanGenTL2obs = 20.8, meanGenTL2null = 1.42, figure 2i; GenSDTL2obs = 1.30, GenSDTL2null =
0.40; figure 2k). However, the TL2 herbivores produced by the niche model are far more specialized than the average consumers
in our web (compare meanGenTL2null to meanGenobs).

Our web does not exhibit significant deviations in average vulnerability (meanVulobs = 141.1, meanVulnull = 141.1) or varia-
bility of vulnerability (VulSDobs = 0.583, VulSDnull = 0.583; figure 2l) compared to the null expectation, despite significantly
different degree distributions (figure 3c). However, our web specifically has a lower vulnerability of basal trophic species
than expected (meanVulBasalobs = 77.6, meanVulBasalnull = 139.7; figure 2m) and a higher variability of such vulnerability
(VulSDBasalobs = 1.052, VulSDBasalnull = 0.580; figure 2n).

To investigate the extent to which deviations in the structure of our food web from both previous webs and null expectations
can be attributed simply to differences in species composition, we also compared our web to an ensemble of niche models with
a matched fraction of basal trophic species, B (figure 2a, hollow triangle). This correction automatically fixes I (figure 2b) and
meanGen (figure 2h) by restricting the available links to the correct number of consumers (figure 3b), thereby improving Omniv,
TL2 and TL2Links (figure 2d–g, j). However, this causes a compensatory overestimation of total herbivorous links, TL2 generality
and basal vulnerability (HerbLinknullB = 0.344; meanGenTL2nullB = 105.1; figure 2i; meanVulBasalnullB = 200.0; figure 2m), as well

8

royalsocietypublishing.org/journal/rstb 
Phil. Trans. R. Soc. B 379: 20230180

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 Ju

ly
 2

02
4 



as a further underestimation of the variabilities of TL2 generality and basal vulnerability (GenSDTL2nullB = 0.92; figure 2k;
VulSDBasalnullB = 0.31; figure 2n). We also tested whether the higher B and herbivory interactions in our original trophic-species
web were attributable to the presence of basal animals. After removing these species and links, we recovered similar properties
to the original web (BobsA = 0.232, IobsA = 0.768, TL2obsA = 0.491, HerbLinkobsA = 0.117).

This finding clarifies why our web deviates from niche model predictions (figure 3d). The strict hierarchy of the niche model
causes decreasing B and T with increasing S and therefore becomes very unlikely to generate TL2 herbivores. However, even if
forced to generate larger B, TL2 herbivores remain rare, with low variability in generality. This is because TL2 herbivores must
have feeding ranges that only include basal species, which is most likely with narrow ranges (and therefore low niche values).
By contrast, the TL2 herbivores in our web are numerous, have diets on average wider and more variable in size than those
produced by the niche model, and their trophic species niches are distinguished by highly specific herbivory interactions rather
than by their predator interactions.

4. Discussion
The food web for the MTF presented here is, to our knowledge, the largest yet published (table 1, [6,10]) and begins to shine
light on the remarkable richness of feeding interactions between plants and animals in aboveground terrestrial systems. Our
cumulative approach allowed us to evenly resolve the diets of both vertebrate and insect feeding guilds, revealing a clear
pattern among herbivory and carnivory interactions. Herbivory interactions are far rarer (<15% of trophic links) than carnivory
interactions, but the former were primarily sourced from the largest guild in the web (approx. 50% of trophic species)—the
strict (i.e. trophic-level two) insect herbivores with variably sized but highly specific diets, both taxonomically and in terms of
plant tissue types. In addition, carnivory interactions dominate the web (>85% of trophic links) but were primarily sourced from
a small fraction of trophic species (<4.6%)—hyper-generalist birds and bats thought to feed opportunistically on entire insect
orders. The combination of these two properties in our food web leads to a structure that qualitatively deviates from previous
ATFWs of lower taxonomic and trophic resolution, as well as the scale-dependent null expectations of the niche model.

Given the richness and complexity of our trophic web, the niche model predicted an even larger fraction of carnivory
interactions (>98%), stemming from the minimal fraction of basal trophic species with no consumers (B <2%) and herbivores
(TL2 <1%), ultimately resulting in an overall NME far greater than for any previous webs studied here (MTF mean |NME| =
28.9; figure 3e). ATFWs using the classic ‘lumping’ approach (Coachella Valley, St Martin Island, El Verde Rainforest, Serengeti
de Visser [24]) are generally small, with low B and TL2 (owing to extremely coarse representation of plants and insects) and
high fractions of carnivory links (owing to the disproportionate resolution of vertebrate predators). These properties align with
the predictions of the niche model, as quantified by NMEs (0.42 < mean |NME| < 1.88; figure 3e). High-resolution source
and sink ATFWs (Scotch Broom [23], UK Grassland [22,61], High Arctic [17–19,28,62], Norwood Farm [29]) record primarily
parasitoids and parasites as the higher trophic-level consumers but generally include herbivory links on multiple plant tissues.
The relative lack of generalist or opportunistic predators leads to high fractions of top species and very low omnivory, both in
contrast to our web and the expectations of the niche model (0.97 < mean |NME|< 6.21). Most comparable to the MTF in terms
of size and resolution is perhaps Messel Forest [30], though it is from the early Eocene and contains many now-extinct species.

60 5 8 100 2 800 2

0

−2

−4

−6

−8

600

400

200

0

−200

0

−2

−4

−6

−8

80

60

40

20

0

100

80

60

m
ea
n
G
en

m
ea
n
G
en
T
L
2

G
en
S
D

G
en
S
D
T
L
2

V
u
lS
D

40

20

0

30

20

10

00

−10

−20

40 10 15

10

5

0

−5

m
ea
n
V
u
lB
a
sa
l

V
u
lS
D
B
a
sa
l

30 20

15

10

5

0

−5

20

10

0

−10

8

6

4

2

0

30

20

10

0

−10

6

4

2

0

−2

0

−5

−10

−15

−20

40

20

B

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

I T

T
L
2

O
m
n
iv

T
L
2
L
in
k

m
ea
n
T
L

0

10
2

10
4

10
2

10
4

10
2

10
4

10
2

10
4

10
2

10
4

10
2

10
4

10
2

10
4

S

10
2

10
4

S

10
2

10
4

S

10
2

10
4

S

10
2

10
4

S

10
2

10
4

S

10
2

10
4

S

10
2

10
4

Figure 2. Structural properties of the MTF web deviate from previous ATFWs and null model expectations. Points are NMEs calculated for empirical food webs
compared to null expectations from an ensemble of n = 1000 niche model food webs simulated with matched trophic species richness (S) and directed connectance
(C). NMEs >0 or <0 indicate that observed properties are greater or less than expected, respectively. |NMEs| >1 (outside of the grey box) are significantly different
from null expectations at the 95% confidence level. Blue dots represent previously published food webs (table 1). Red triangles are the MTF food web compared to
the niche model with matched S, C (filled) or matched S, C and B, the fraction of species with no resources (i.e. basal species, achieved by setting species’ feeding
ranges to zero, hollow). Plots show that NMEs broadly scale with S, but the magnitudes of deviation associated with our web are greater than previously observed.
See §2 for full definitions of food web properties. Fraction of (a) basal, (b) intermediate, (c) top, (d) strict herbivore (i.e. trophic level = 2) and (e) omnivorous species.
(f) Fraction of feeding links by TL2 herbivores. (g) Average trophic level. Average generality of (h) consumers and (i) TL2 herbivores. Normalized standard deviation
of generality of (j) consumer species and (k) TL2 herbivores. Normalized standard deviation of vulnerability of (l) resource species and (n) basal species. (m) Average
vulnerability of basal species.
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While the MTF has greater TL2, omnivores and carnivory links, as well as a lower fraction of herbivory links, the significantly
different distributions of generality are probably the greatest contrast (electronic supplementary material, table S2). Messel
Forest has fewer TL2 herbivores with narrower and less variable diets (deviating less from niche model predictions) and does
not show an inflection in its (log) degree distribution caused by a group of hyper-generalists. As a result, the Messel Forest web
shows an overall better correspondence to null expectations of the niche model (mean |NME| = 5.28), despite a substantially
greater richness than classic webs.

The niche model is considered to successfully reiterate the properties of natural food webs and is even used to simulate
network structures for studies of food web dynamics, though it is known to underestimate TL2 and overestimate average
trophic level [38,55]. This success can broadly be attributed to two mathematical properties, shared by other generating models
of food web structure [1,3,63–65]: first, that species can be strictly ordered along a one-dimensional axis by their niche values
(n1 < n2 < …nS), and second, that species’ feeding ranges (ri) are exponentially distributed, with a decaying probability of feeding
on species of lower niche values. The superior performance of the niche model (given its simplicity) is explained by its third
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Figure 3. The MTF food web structure deviates from null expectations of the niche model owing to problems of niche packing at high richness. (a) We use Williams &
Martinez’ [8]) niche model to simulate an ensemble of null-model food webs with trophic species richness (S) and directed connectance (C) matched to the empirical
food web. For each species i, the model randomly draws a niche value from a uniform distribution (ni U 0,1 ) and assigns i a feeding range along the niche axis
(ri = nix, where x is β-distributed with E x = 2C) centered at a value (ci) below its niche value (ci ∈ ri/2, min ni, 1 − ri/2 ). In this way, the higher the
niche value of a species, the wider its feeding range. Then, i feeds on all species j with niche values in that range or is considered a basal species if the range is
empty. Only trophic species with a unique set of consumers and resources are permitted. To guarantee a basal species, the feeding range of the species with the
lowest niche value is set to zero (ri: = 0). (b) The observed in-degree distributions for the MTF web (red triangles) compared to in-degree distributions from n = 1000
simulated niche model webs with matched S, C (black circles) or matched S, C, and fraction of basal species, B, achieved by setting more species’ feeding ranges
to zero, blue circles). Degree is on a log scale (y-axis), with species (x-axis) ordered by decreasing degree. In-degree is generality, the richness of diet. The empirical
web has a core of high-degree generalists (birds and bats) and a long tail of lower-degree trophic-level 2 (TL2) herbivores (insects), which leads to a significantly
different distribution of generality than predicted by the niche model. (c) Observed and simulated out-degree distributions. Out-degree is vulnerability, the richness
of predators. (d) The strict one-dimensional hierarchy of the niche model does not accommodate the rich community of TL2 herbivores observed in the empirical
food web. As S increases, the niche axis becomes increasingly and uniformly packed with species, represented here as triangles. Horizontal bars represent the feeding
ranges of each coloured species. At high S, the chance that species will have empty feeding ranges decreases, decreasing B (e.g. the green species). The fraction of TL2
herbivores also decreases with S because herbivores’ feeding ranges must be perfectly placed to include a rare basal species but exclude any consumers. For example,
the blue species feeds only on the green basal species but becomes a carnivore when the green species is switched to a consumer at high S. The fraction of top species
(i.e. without predators, T) also decreases with S because the broad feeding ranges and tendency to cannibalism of high niche-value species increasingly cover the niche
axis with predators and excludes those species from being top (e.g. the grey species). (e) Mean absolute NMEs across all traditional niche model properties. Formatting
follows figure 2 but absolute rather than signed errors are shown, and points are on a log-log scale.
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property [8]: it generates ‘interval’ webs, because species feed on all resources within intervals of the niche axis (i.e. they have
contiguous diets). These properties are also ecological hypotheses for mechanisms that structure food webs [51]. For the MTF,
the largest magnitudes of deviations (|NME| > 95) were in terms of species composition, which we attribute to issues with
niche packing (figure 3d, but see [66]). This suggests that the MTF does not satisfy the first or third properties, since allowing
more herbivores on a packed niche axis would require allowing an additional axis of food selection among herbivores of the
same niche value or breaks in their diet contiguity. In fact, the MTF, like many others, is not strictly interval. As such, the more
pertinent question is the level of intervality of the MTF relative to other webs of its scale and whether this could cause the
large magnitude of deviations we observed. Unfortunately, this is combinatorically intractable for us to assess using current
methods [3,67]. Finally, the MTF does not satisfy the second property of exponentially distributed feeding ranges (figure 3b–c).
We hypothesize that for the niche model to better reproduce MTF properties, links would need to be preferentially allocated to
a small group of generalist species and another axis associated with eating plants would need to be introduced to allow for rich
communities of herbivores with variably sized diets [7].

Whether the structural patterns for the MTF could be general among aboveground terrestrial ecosystems remains to be
tested. We observed an overall increase in NMEs with richness (figure 3e; figure 2), such that we cannot confidently reject
the null hypothesis that our observed structure is attributable to scale-dependent errors associated with the niche model.
However, the MTF appears to exhibit a qualitatively different structure than previous works, including a potentially novel
degree distribution. Kolmogorov–Smirnov tests rejected the hypothesis that degree distributions of generality and vulnerability
for our web were sampled from the same underlying process as the distributions of each of the other ATFWs studied here
(p < 1.0 × 10−5 in all cases, electronic supplementary material, table S2). This could imply that terrestrial food webs do have
unique structure—potentially driven by the opportunism of predators and a lack of hierarchy among strict herbivores—which
may only be observed in the context of high taxonomic and trophic resolution among a rich community of plants, insects and
vertebrates, such as in our temperate forest system.

As always, there are caveats to these conclusions, primarily associated with our methodological approach and general data
limitations. It is possible that the critical hyper-generality of bats and birds in the MTF can be attributed simply to lack of
taxonomic resolution regarding their specific foraging preferences (e.g. microlepidopterans, a paraphyletic group with <20 mm
wingspans, may be too small to be eaten by vertebrate predators). Yet, studies examining species-specific diets of bats and birds
have supported hyper-generalism (e.g. [68]), even to the extent that molecular identification of species in bat guano presents a
roughly equivalent snapshot of insect biodiversity as traditional blacklight sampling of insects [69]. We also know that many
plant and insect species are missing interactions because we were not able to find or verify species-specific data (owing to
taxonomic or other data limitations) or because records were too vague (e.g. ‘eating seeds’ without further specificity). It is
therefore possible that herbivory links were under-represented relative to carnivory in our observations. Interactions could be
more thoroughly refined to account for species’ traits and ecological habits, which would probably convert some links currently
considered plausible to effectively ‘forbidden links’ sensu Jordano et al. [70,71]. Nevertheless, opportunistic carnivory links
would still dominate the web and additional herbivory links would probably be taxonomically specific and trophically distinct,
which may even serve to increase trophic species richness by distinguishing plants’ or herbivores’ trophic niches. In short, a
further refinement of feeding interactions would most likely align with the food web structure described here.

Compiling taxonomic and feeding records for diverse groups into cumulative food webs potentially introduces diverse
and compounding sampling biases, making it difficult to quantify overall uncertainty [33]. In the MTF, for example, the
relative representation of some groups can be assessed directly through rarefaction curves over field seasons (e.g. lepidopteran
leafminers), while some groups (e.g. non-insect arthropods) include diversity for which we were not able to source even
regional lists as reference points (e.g. acariform mites). Likewise, feeding on some types of resources, especially by specific
taxonomic groups, is more readily observed or charismatic than others, and therefore better documented. As food web research
moves towards synthesizing bigger and more diverse data, an important theoretical question for future work is to develop
quantitative methods for characterizing how uncertainty may affect observed network structure (see [33,72] for promising
methods).

Like previous researchers, we chose to limit our scope to the aboveground portion of our food web. However, we recognize
that all ATFWs are intimately and inextricably coupled with belowground soil food webs. A substantial fraction of plant
biomass may exist belowground [73], creating habitat structure and providing food for organisms that consume roots, exudates
and detritus. Decomposers return nutrients generated from aboveground waste to the soil for reuptake by plants, often
facilitated by mutualistic symbionts (e.g. mycorrhizae) [74]. Moreover, many consumer species (including some in the MTF)
live or feed belowground during certain lifestages or times of year. As such, complex food web dynamics belowground
have considerable impacts on food web dynamics aboveground, and interactions between these two habitats can significantly
influence ecosystem-level processes [75,76]. While this fact has long been recognized as a bias in ATFW research, rarely are
above- and belowground food webs recorded in the same system (probably owing to the logistical challenges of sampling
belowground). Doing so represents a critical research frontier for terrestrial food webs as we seek to understand their structure,
dynamics and emergent ecosystem functions.

This study is only our first step towards documenting the immense taxonomic diversity and trophic complexity in the
temperate forests of UMBS. Ecological networks have historically been published and analysed as static structures, encapsu-
lating the biases and practical limitations of their collection. As such, publication in online databases and consistent re-use
in meta-analyses by ecologists and network scientists can perpetuate errors [34,77]. Our ability to create a large, highly
resolved, expert-vetted ATFW was made possible through decades of research and observations at the UMBS and highlights
the importance of local knowledge, taxon-specific expertise and collaboration among scientists, students and members of the
public. As insights about the organisms present at UMBS will undoubtedly continue to grow, we consider the MTF web to be a
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living dataset that can be revised and expanded through time. To that end, our database is publicly available [54], and we are
soliciting revisions, corrections and additions that will allow its continual improvement.
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