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A B S T R A C T 

We explore the eccentricity measurement threshold of Laser Interferometer Space Antenna (LISA) for gravitational waves 
radiated by massive black hole binaries (MBHBs) with redshifted BH masses M z in the range 10 

4.5 –10 
7.5 M � at redshift z = 1. 

The eccentricity can be an important tracer of the environment where MBHBs evolve to reach the merger phase. To consider 
LISA’s motion and apply the time delay interferometry, we employ the LISABETA software and produce year-long eccentric 
waveforms using the inspiral-only post-Newtonian model TAYLORF2ECC . We study the minimum measurable eccentricity ( e min , 
defined one year before the merger) analytically by computing matches and Fisher matrices, and numerically via Bayesian 

inference by varying both intrinsic and extrinsic parameters. We find that e min strongly depends on M z and weakly on mass ratio 

and extrinsic parameters. Match-based signal-to-noise ratio criterion suggest that LISA will be able to detect e min ∼ 10 
−2.5 for 

lighter systems ( M z � 10 
5.5 M �) and ∼10 

−1.5 for heavier MBHBs with a 90 per cent confidence. Bayesian inference with Fisher 
initialization and a zero noise realization pushes this limit to e min ∼ 10 

−2.75 for lower-mass binaries, assuming a < 50 per cent 
relative error. Bayesian inference can recover injected eccentricities of 0.1 and 10 

−2.75 for a 10 
5 M � system with an ∼10 

−2 

per cent and an ∼10 per cent relative errors, respectively. Stringent Bayesian odds criterion ( ln B > 8) provides nearly the same 
inference. Both analytical and numerical methodologies provide almost consistent results for our systems of interest. LISA will 
launch in a decade, making this study valuable and timely for unlocking the mysteries of the MBHB evolution. 

Key words: black hole physics – gra vitational wa ves – methods: data analysis – methods: statistical. 
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 INTRODUCTION  

he Laser Interferometer Space Antenna (LISA; Amaro-Seoane
t al. 2017 ; Barack et al. 2019 ) will be one of the first space-based
ra vitational wa ve (GW) observatories that will launch in the 2030s,
long with TianQin (Wang et al. 2019 ) and Taiji (Gong et al. 2021 ).
t will be sensitive to observed frequencies of GWs in the range of
10 −4 –10 −1 Hz. The primary extragalactic sources for LISA are
ergers of massive black hole binaries (MBHBs) of 10 4 –10 8 M �

nd intermediate/extreme mass ratio inspirals (I/EMRIs; Babak et al.
017 ; Amaro-Seoane 2018b ) with primary-to-secondary BH mass
atio q greater than 10 3 . LISA will be sensitive enough to detect
Ws from coalescing MBHBs with q � 10.0 up to redshift z ∼ 20

Amaro-Seoane et al. 2017 ). Most MBHBs will have high signal-to-
oise ratios (SNRs; Amaro-Seoane et al. 2017 ) in the LISA band,
hich will help to constrain their parameters with high accuracy. 
MBHBs mainly form as by-products of galaxy mergers (Begel-
an, Blandford & Rees 1980 ). The process involved in shrinking the
 E-mail: mudit.garg@ics.uzh.ch 
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eparation between MBHs from galactic scales to form a binary
n the post-merger nucleus takes millions to billions of years,
epending on the internal structure of the host galaxies and the
elative dominance of various astrophysical processes (see, e.g.
maro-Seoane et al. 2023 ). At sub-pc scales, the interaction of the
inary with gas and stars in its environment can drive the binary
o the coalescence phase in the LISA band within a Hubble time
Milosavljevi ́c & Merritt 2003 ; Haiman, Kocsis & Menou 2009 ).
y the time a tight binary is formed, information on its dynamical
istory, which reflects the nature of the properties of the host galactic
ucleus, is mostly lost. Ho we v er, GW wav eforms from these tight
ystems can carry signatures of the source environment, either in
he form of modifications of the vacuum waveform, from phase
hifting (Barausse, Cardoso & Pani 2014 ; Derdzinski et al. 2019 ,
021 ; Toubiana et al. 2021 ; Cardoso et al. 2022 ; Sberna et al.
022 ) and amplitude modulation (D’Orazio & Loeb 2020 ) to the
njection of additional harmonics at higher frequency (Zwick et al.
022 ), or via a direct relation with the binary parameters that
an be extracted from the analysis of the vacuum waveform. In
he latter case, the precise astrophysical environment an MBHB
volves within from pc-scales to the near-merger stage may lead
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o different system variables at the LISA entry for the same starting
inary. 
One of the most sensitive binary parameters to the surrounding 

nvironment is the orbital eccentricity. While most studies in the 
iterature assume that MBHBs will circularize by the time they enter 
he LISA band (with entry eccentricity e LISA � 10 −4 ) due to emission
f GWs (Peters & Mathews 1963 ; Peters 1964 ), some may retain
on-negligible eccentricity due to evolving in a suitable dynamical 
nvironment, e.g. if MBHBs are embedded in gas (Armitage & 

atarajan 2005 ; Sesana et al. 2005 ; MacFadyen & Milosavljevi ́c
008 ; Cuadra et al. 2009 ; Roedig et al. 2011 ; Roedig & Sesana 2012 ;
iwek, Weinberger & Hernquist 2023 ; Tiede & D’Orazio 2023 ), in
 star cluster (Matsubayashi, Makino & Ebisuzaki 2007 ; L ̈ockmann 
 Baumgardt 2008 ; Preto et al. 2009 ; Sesana 2010 ; Gualandris et al.

022 ), in a tri-axial potential (Merritt & Vasiliev 2011 ; Khan et al.
013 ), or if they interact with a third BH (Bonetti et al. 2016 , 2018a ,
 , 2019 ). Hence, eccentricity can be an important tracer to probe
hese effects. 

The eccentricity is a unique intrinsic binary parameter because 
t decreases rapidly as the system approaches the merger. As a 
esult, in order to infer it from a waveform, we need to detect the
W signal many cycles before the merger. Therefore, for now, the 
round-based LIGO-Virgo-KAGRA (LVK) collaboration does not 
nclude eccentricity in their analysis of the stellar-mass ( � 100 M �)
H binaries (SmBHBs) due to the challenges in modelling late- 

nspiral-merger with the presence of eccentricity and spins (see, e.g. 
amos-Buades et al. 2022 ). Ho we ver, LVK indeed does searches for
ccentric SmBHBs using un-modelled methods (Abbott et al. 2019 ; 
amos-Buades et al. 2020 ). Given that we will observe GWs in the
arly inspiral phase in the LISA band for most MBHBs, ignoring 
ccentricity could lead to mismodelling of the GW waveform. Most 
f the focus on eccentricity detection in the LISA frequency band 
as been in the context of multi-band SmBHBs sources (Nishizawa 
t al. 2016 , 2017 ; Klein et al. 2022 ), with some attention on EMRIs.
ulti-band sources are seen in the LISA band a few years before

hey merge in the LVK frequency band of ∼10–10 4 Hz (Sesana 
016 ; Vitale 2016 ). The detection of eccentricity is proposed as
 way to distinguish whether SmBHBs are formed in the field 
r via dynamical interaction such as in globular clusters, nuclear 
lusters, or galactic nuclei (Breivik et al. 2016 ; Nishizawa et al.
016 ; D’Orazio & Samsing 2018 ; Gond ́an et al. 2018 ; Samsing
 D’Orazio 2018 ; Romero-Sha w, Lask y & Thrane 2019 , 2022 ;
omero-Shaw et al. 2020 ; Zevin et al. 2021 ). Also, eccentricity
an help in breaking parameter degeneracies by inducing higher 
armonics (Mik ́oczi et al. 2012 ; Yang et al. 2022 ; Xuan; Naoz &
hen 2023 ) and it can impro v e parameter estimation accurac y (Sun
t al. 2015 ; Vitale 2016 ; Gond ́an et al. 2018 ; Gond ́an & Kocsis
019 ; Gupta et al. 2020 ). EMRIs are mostly expected to have a
ignificant entry eccentricity in the LISA band, ranging from e LISA 

 0.1–0.8 (Hopman & Alexander 2005 ; Amaro-Seoane 2018a ), 
hich can be measured to high accuracy, barring data analysis 

hallenges (Babak et al. 2017 ; Berry et al. 2019 ; Chua & Cutler
022 ). 
This work considers eccentric binaries in vacuum of two near- 

oalescence non-spinning MBHs. We are interested in determining 
he minimum eccentricity that can be confidently measured by 
ISA one year before the merger for a given MBHB source at
 = 1. Our analysis attempts to be as realistic as possible in the
ata analysis which will be employed for LISA once the mission
s operational, i.e. we take into account the full LISA motion in
ts orbit around the Sun, generate high-order post-Newtonian (PN) 
 aveforms, emplo y the time delay interferometry (TDI) technique 
o cancel the detector’s laser noise, and finally perform Bayesian 
nference to reco v er injected parameters. 

The measurability of eccentricity in the MBHB’s GW waveform 

s a no v el inv estigation. It is an important study because, similar
o multi-band sources, residual eccentricities can be a signature 
f the environment in which MBHBs have evolv ed. F or instance,
ecent high-resolution hydrodynamical simulations by Zrake et al. 
 2021 ) show that for equal-mass binaries hardening in prograde
ircumbinary gas discs, we expect an eccentricity of ∼10 −3 one 
ear before coalescence. The eccentricity evolution in the late stages 
f hardening by a prograde accretion disc is further supported by
’Orazio & Duffell ( 2021 ) and Siwek, Weinberger & Hernquist

 2023 ). Moreo v er, Tiede & D’Orazio ( 2023 ) show that we should
 xpect ev en higher eccentricity in the LISA band if the circumbi-
ary disc is retrograde instead of prograde. Therefore, eccentricity 
etection by LISA could be a tracer of gas interaction. Simulations of
BH binary evolution starting from realistic galaxy mergers (Capelo 

t al. 2015 ), in which three-body encounters with stars dominate the
rbital decay at sub-pc separations, show that the eccentricity al w ays
ncreases abo v e the value that it has when the hardening phase be gins,
eaching values as large as 0.9 (Khan et al. 2018 ). The residual value
f eccentricity around 50–100 Schwarzschild radii (about one year 
efore merger), when circularization via GW emission has already 
tarted to act, is yet to be determined. Ho we ver, recently Gualandris
t al. ( 2022 ) studied the evolution of eccentricity through the stellar
ardening phase and into the GW radiation regime, finding that the
esidual value of the eccentricity at about 50 Schwarzschild radii for
 4 × 10 6 M � MBHB ranges from below 10 −4 to nearly 10 −3 (as
uggested by Elisa Bortolas in further communication). Interestingly, 
he specific eccentricity here mainly depends upon the parameters at 
arge scale and positively correlates with the initial eccentricity of the

erging galaxies. Also, the lowest possible eccentricity detectable 
y LISA for a given MBHB will tell us whether its neglect during
arameter estimation will lead to biases and degeneracies. The 
onsensus for entry eccentricity in the LISA band for MBHBs is
 10 −4 , which justifies the circular assumption, but for e LISA > 10 −4 ,

t would be crucial to consider eccentricity during match filtering and
hen constraining binary variables (Porter & Sesana 2010 ). 
The paper is structured as follows: In Section 2 , we describe

ur waveform model and systems of interest. Section 3 studies 
nalytical constraints on eccentricity measurement using matches 
nd Fisher formalism. In Section 4 , we detail our Bayesian setup to
nd the minimum measurable eccentricity. We discuss the findings in 
ection 5 and summarize the key takeaways of this work in Section 6 .

 WAVEFORM  GENERATION,  SYSTEM  

ARAMETERS,  LISA  RESPONSE,  AND  TIME  

ELAY  INTERFEROMETRY  

BHBs are one of the most promising sources for LISA as they are
xpected to be the loudest events and will spend a significant amount
f time (up to a few years) in LISA’s frequency band before merging.
ost of the time MBHBs spend in the LISA band is in the long-

nspiral phase where eccentricity (e) can still be non-negligible. The 
nspiral part of the GW waveforms from eccentric BHB mergers has
een developed within the PN formalism both in time and frequency
omains (Damour, Gopakumar & Iyer 2004 ; Mishra et al. 2016 ). The
ime-domain PN waveforms have the advantage of having a larger 
egion of validity in eccentricity, and they can probe eccentricities up
o ≈0.8, but they are slow to generate (Tanay, Haney & Gopakumar
016 ; Tanay et al. 2019 ). The frequency-domain waveforms are
uch faster to compute but are limited to the low-eccentricity 
MNRAS 528, 4176–4187 (2024) 
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M

Table 1. Source parameters in the L-frame. 

Parameter Units 

Total redshifted mass M z M �
Mass ratio q Dimensionless 
Eccentricity one year before coalescence e 1yr Dimensionless 
Luminosity distance D L Mpc 
Phase at coalescence φ Radian 
Inclination ı Radian 
Ecliptic latitude λ Radian 
Ecliptic longitude β Radian 
Initial polarization angle ψ Radian 
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Figure 1. Characteristic strain h c compared to the LISA noise (solid grey; 
in the top panel) and accumulated phase (in the bottom panel) for an M z = 

10 5 M �, q = 8.0, and e 1yr = 0.1 binary at z = 1 for waveform templates 
IMRPhenomD (dashed red) and TAYLORF2ECC (dot–dashed blue) between 
f 1yr and f ISCO . In the bottom panel, we also enlarge the initial phase to show 

the difference between quasicircular and eccentric phasings. 
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pproximation. For LISA data analysis, it is imperative to have
 ast w a veform computation as the ev olution of the BHB occurs
 v er a large time-frequency volume. There exist a wide range of
requency-domain eccentric BHB waveforms, namely TAYLORF2ECC
Moore et al. 2016 ), EccentricFD (Huerta et al. 2014 ), and EFPE
Klein 2021 ), among others. For this study, we have employed the
AYLORF2ECC inspiral-only waveform model with circular phasing
ccurate up to 3.5PN order taken from another inspiral-only model
AYLORF2 (Buonanno et al. 2009 ) and eccentricity corrections to
hasing up to 3PN and O( e 2 ), making it valid for e � 0.1. However,
his model does not give a prescription for spinning BHs. We
hoose TaylorF2Ecc as our fiducial model as astrophysically
e mostly do not expect higher eccentricities, as mentioned in the

ntroduction. 
The parameter space we consider for MBHBs spans the range of

otal redshifted masses M z between 10 4.5 and 10 7.5 M �, mass ratios. 1 

 ∈ [1.2, 8], and the initial eccentricity one year before the merger
 e 1yr ) between 10 −3.5 and 0.1. We have not considered the individual
pins of the component BHs for this work. Unless otherwise stated,
e al w ays quote the values at the detector frame (L-frame). This

eaves us with three intrinsic parameters 2 (first three rows of Table 1 )
nd six extrinsic parameters (last six rows of Table 1 ). We employ the
osmological parameters from the Planck Collaboration VI ( 2020 )
urv e y to compute the luminosity distance from redshift: Hubble
onstant H 0 = 67.77 km s −1 Mpc −1 , matter density parameter �m =
.30966, and dark-energy density parameter �� = 0.69034. 
We generate eccentric waveforms ˜ h ecc ( f ) for our systems of

nterest using the TAYLORF2ECC template o v er these parameter grids
o optimally co v er the intrinsic parameter space: 

M z ∈ { 10 4 . 5 , 10 5 , 10 5 . 5 , 10 6 , 10 6 . 5 , 10 7 , 10 7 . 5 } M �, (1) 

q ∈ { 1 . 2 , 2 . 0 , 4 . 0 , 8 . 0 } , 
 1 yr ∈ { 10 −3 . 5 , 10 −3 . 25 , 10 −3 , 10 −2 . 75 , 10 −2 . 5 , 10 −2 . 25 , 

10 −2 , 10 −1 . 75 , 10 −1 . 5 , 10 −1 . 25 , 0 . 1 } . 
dditionally, we also generate quasicircular ( e 1yr = 0) waveforms

 ̃
 h cir ). F or e xtrinsic parameters, our fiducial values are z = 1 which

orresponds to D L = 6791.3 Mpc, and the angles are all set to 0.5
adians. We choose these parameters such that MBHBs spend at least
ne year in the LISA band before coalescing. 
In this work, we only work with Newtonian amplitudes and study

inaries until they reach their innermost stable circular orbit (ISCO),
.e. at binary separation r ISCO ≡ 3 r s , where r s ≡ 2 GM z / c 2 is the
NRAS 528, 4176–4187 (2024) 

 q = 1 system gives leads to Fisher initialization problems in Bayesian 
nference, hence we choose q = 1.2 as a representative value. 
 While there are other eccentricity-related binary parameters, we only focus 
n the magnitude of eccentricity. 

c  

M  

3

4

chwarzschild radius of the total mass BH, 3 at which point binaries
re expected to circularize. 4 We find the starting frequency ( f 1yr )
uch that the system reaches the ISCO at frequency f ISCO in exactly
ne year by using the Peters’ time-scale (Peters 1964 ). The reason
hy we have chosen f 1yr as our reference frequency to initiate the

ignal and not some fixed frequency as usually employed by the LVK
ollaboration is that MBHB masses can vary by up to three orders of
agnitude, making an y fix ed frequenc y sufficient for some systems

nd too short or long for others. 
In Fig. 1 , we show the characteristic strain h c ( f ) ≡ 2 f ̃  h ( f ), a

isual aid to represent how signal adds up in the detector, the LISA
oise curve S n ( f ) including a confusion noise due to galactic binaries
aken from Marsat, Baker & Canton ( 2021 ), and the accumulated
hase for an M z = 10 5 M �, q = 8.0, and e 1yr = 0.1 system at z =
 for TAYLORF2ECC and the quasicircular inspiral-merger-ringdown
aveform model IMRPhenomD (Husa et al. 2016 ; Khan et al.
016 ). Since the inspiral part of the IMRPhenomD comes from the
AYLORF2 template, phasings are almost identical until the system
s close to the ISCO. The initial phase difference is due to non-zero
ccentricity in TAYLORF2ECC , and later deviations come from the
erger part of the IMRPhenomD , which are beyond the scope of the

nspiral-only model TAYLORF2ECC . 
To account for LISA motion and to project the waveform into TDI

hannels, namely A, E, and T, we modify the LISABETA software (see
arsat, Baker & Canton 2021 for details and subsequent notations)
 G is the gravitational constant and c is the speed of light in vacuum. 
 We perform circularization test of TAYLORF2ECC in Appendix A . 
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Figure 2. SNR for our systems of interest for two limiting mass ratios of q 
= 1.2 (top panel) and q = 8.0 (bottom panel). In both panels, we vary M z 

from 10 4.5 to 10 7.5 M � and z from 1 to 5, and set rest of the parameters to our 
fiducial values. These SNRs take into account LISA motion and are calculated 
by summing o v er three TDI channels A, E, and T. The low eccentricities we 
consider here do not affect the SNR significantly. 
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panel, we keep the mass ratio q = 8.0 constant, and vary M z and e 1yr as in the 
top panel. Both panels have a blue line showing the boundary of the LISA 

non-detectability region at z = 1 (SNR z = 1 < SNR min ). 
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y including support for TAYLORF2ECC . Therefore, a waveform 
˜ h ( f )

ill have strain projections ˜ h A , E , T ( f ) and noise power spectral 
ensities S A , E , T n corresponding to A, E, and T channels, respectively. 
Now, we can write down the standard inner-product between two 

aveforms as 

 a| b) = 4 
∑ 

A , E , T 

Re 
∫ f ISCO 

f 1 yr 

d f 
˜ a ( f ) ̃  b ∗( f ) 

S n ( f ) 
, (2) 

here the pre-factor 4 comes from the one-sided spectral noise 
ensity normalization. Hence, the SNR of the signal is 

√ 

( h | h ) . In
ig. 2 , we show the dependence of the SNR at z = 1 as a function
f total mass and mass ratio for our parameter space in equation ( 1 ).
s expected, the SNR is higher for near-equal mass ratios than the
nequal ones and decreases as the redshift increases. Furthermore, 
he SNR peaks at middle-range masses of ∼10 6 M �, known as golden
ISA sources. 
In the following two sections, we find the minimum eccentricity 

nd errors on its reco v ery in the LISA data stream for a given source.
irst, we approach this task analytically by using a match between 
aveforms and computing Fisher information matrices. We then 
erform Bayesian inference to numerically determine the posteriors. 

 ANALYTICAL  MEASURABILITY  OF  

CCENTRICITY  

e first present a simple and commonly used estimate for the distin-
uishability of eccentric from quasicircular binaries in LISA using 
 match-based SNR criterion defined in equation ( 5 ). Furthermore, 
e employ the Fisher formalism to estimate how well-constrained 

ccentricity will be for these sources. These computations provide a 
heoretical benchmark that can be compared with Bayesian inference 
resented later. 
.1 Optimal match 

e compute matches between h ecc and h cir waveforms with the same
 z and q , and find the minimum SNR (SNR min ) for which LISA

an distinguish between these waveforms with more than 90 per cent
onfidence. To compute SNR min , we use the criterion from Baird
t al. ( 2013 ): 

NR 
2 
min = 

1 

2 

χ2 
k (1 − p) 

(1 − M ( h ecc , h cir )) 
, (3) 

here χ2 
k (1 − p) is the χ2 probability distribution function, 1 − p is

he significance level, k is the number of free binary parameters, and
 ( h ecc , h cir ) is a match between h cir and h ecc : 

 ( h cir , h ecc ) = max 

φ

( h cir | h ecc ) √ 

( h cir | h cir ) 
√ 

( h ecc | h ecc ) 
, (4) 

hich is maximized o v er phase shifts 
φ. In our case, we have p =
.9 and k = 3 as we vary only three binary parameters – M z , q , and
 1yr . This transforms equation ( 3 ) into 

NR 
2 
min = 

3 . 12 

(1 − M ( h circ , h ecc )) 
. (5) 

f the event’s SNR is less than SNR min then one cannot differentiate
etween quasicircular and eccentric binaries, which in turn provides 
 constraint on the minimum detectable eccentricity ( e min ) assuming
he rest of the binary parameters are known. In Fig. 3 , we show
NR min for our systems of interest and compare it with the event’s
NR at our fiducial z = 1 (SNR z = 1 ). It illustrates that e min ∼
0 −2.5 for lower-mass MBHBs ( M z � 10 5.5 M �) and ∼10 −1.5 for
igher-mass systems. The strong dependence on the total mass can 
e attributed to the fact that even though our considered binaries
pend one year in the LISA band, f 1yr for heavier systems is much
ower than for the lighter binaries. This implies that the inspiral
art of the signal, where eccentricity is dominant, will fall within
MNRAS 528, 4176–4187 (2024) 
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Figure 4. For the same binary parameters as in Fig. 3 , error estimates by 
Fisher formalism ( σ Fisher 

e ) on eccentricities of our considered binaries. 
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5 https://github.com/JohnGBaker/ptmcmc 
6 Using a wider prior does not affect results as shown in Appendix D . 
7 Using an earlier cutoff than the ISCO does not significantly affect the 
posteriors, as shown in Appendix C . 
8 We show the full posteriors in Fig. E2 . 
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he low sensitivity region of LISA, leading to systematically worse
onstraints for heavier systems. Moreo v er, the weak dependence
n the mass ratio can be explained from our definition of e 1yr .
nsurprisingly, higher eccentricities are easily distinguishable from

ower ones. 
One can use the SNR estimates in Fig. 2 for any MBHBs at higher

edshift in the LISA band and use Fig. 3 to assess whether eccentricity
ill be detectable for the given system since SNR min is computed in

he L-frame. In the next section, we find the expected error bars on
he reco v ery of injected eccentricity using the Fisher formalism. 

.2 Fisher matrix 

 standard parameter estimation technique in the LISA community
s to compute a Fisher matrix (Vallisneri 2008 ), which tells us how
ell we can constrain a certain parameter assuming a Gaussian noise

nd high SNR. We can define the Fisher matrix as 

 ab = ( ∂ a h | ∂ b h ) , (6) 

here ∂ a h ≡ ∂ h/ ∂ θa is the partial deri v ati ve of a waveform h with
espect to a parameter θ a . 

The inverse of the Fisher matrix is the v ariance–cov ariance matrix,
hose diagonal elements are variances ( σ 2 ) for each of the injected
arameters. The square-root of a variance provides the standard
eviation ( σ ), which tell us the error estimate on a given parameter. 
We again only vary intrinsic parameters: M z , q , and e 1yr , and show

n Fig. 4 the Fisher-based error estimate on eccentricity ( σ Fisher 
e )

or our parameters of interest in equation ( 1 ). Errors mainly vary
ith total mass and less significantly with mass ratio, due to the

ame reasons as explained for the match results in Section 3.1 .
ig. 4 suggests that for lighter systems, higher eccentricities are
onstrained to error (relative error ≡ 100 × σ Fisher 

e /e) ∼10 −4 ( ∼0.1
er cent) whereas for lower e 1yr we find σ Fisher 

e ∼ 10 −3 ( ∼1000
er cent). For heavier binaries, errors are ∼10 −3 ( ∼1 per cent) for
igher eccentricities and ∼10 −1 (10 5 per cent) for lower e 1yr . This
uggests that lower eccentricities are completely unconstrained. 
NRAS 528, 4176–4187 (2024) 
One can al w ays scale these errors ( ∼1/SNR) at a further luminosity
istance by using SNR values in Fig. 2 to get rough estimates. In the
ext section, we perform Bayesian inference to find error estimates
n eccentricity reco v ery and the minimum measurable eccentricity. 

 MEASURABILITY  OF  ECCENTRICITY  

SING  BAYESIAN  INFERENCE  

he main goal of Bayesian inference is to construct posterior
istributions p ( θ | d ) for the parameter space θ to fit the observed data
 (see e.g. Thrane & Talbot 2019 ). p ( θ | d ) represents the probability
istribution function of θ given the data d and it is normalized
uch that 

∫ 
d θ p ( θ | d ) = 1. To compute the posterior, we use Bayes

heorem, 

( θ | d ) = 

L ( d | θ ) π ( θ ) 

Z 

, (7) 

here L ( d| θ ) is the likelihood function of the data d given the
arameters θ , π ( θ ) is the prior on θ , and Z ≡ ∫ 

d θL ( d| θ ) π ( θ ) is
he evidence. Since we are not selecting between different models,
e can treat Z as a normalization constant. Also, we only consider
niform (flat) priors for all parameters. 
For our stationary Gaussian noise S A , E , T n , we can write down the

og-likelihood with a zero-noise realization summed o v er A, E, and
 channels as (Marsat, Baker & Canton 2021 ): 

ln L ∝ 

∑ 

A , E , T 

( h − h inj | h − h inj ) , (8) 

here ˜ h is the template signal, and ˜ h inj is the simulated injected
ignal. The zero-noise realization accelerates the likelihood com-
utation, impro v es upon the Fisher results by providing the shape
f posteriors, and helps understand parameter degeneracies and
etectability of certain effects (here eccentricity). 
For sampling, we use the parallel tempering Markov chain Monte

arlo (MCMC) code PTMCMC . 5 To further speed up the likelihood
omputation, we draw random samples from a multi v ariate Gaussian
ith the mean given by the injected parameters and standard
eviations provided by the Fisher formalism 

6 in Section 3.2 . 
We primarily sample only the intrinsic parameters and set a high-

requency cutoff for the data at f ISCO of the injected binary. 7 We show
he posteriors for M z , q , and e 1yr in Fig. 5 for injected binary parame-
ers 10 5 M �, 8.0, and 0.01. All parameters are well reco v ered, with the
njected values being extremely close to the median of their respec-
ive posterior. The chirp mass parameter M ≡ M( q/ (1 + q) 2 ) 3 / 5 

s even better constrained to 24932 . 3377 + 0 . 0808 
−0 . 0815 M � as expected

see e.g. Cutler & Flanagan 1994 ) with the injected value being
4 932.3365 M �. Moreo v er, Bayesian errors are similar to the errors
rovided by the Fisher formalism, as expected due to the high SNR
nd a zero-noise realization. 

We also study the effect of including extrinsic parameters 8 (also
iven in Table 1 ) on the measurability of the eccentricity in Fig. 6 .
ere, we show the comparison of the posteriors of e 1yr in equation ( 1 )

or fixed M z = 10 5 M � and q = 8.0 between the cases when sampling
nly intrinsic parameters and when sampling o v er all parameters in
able 1 . Adding extrinsic parameters results in a slight broadening
f eccentricity posteriors and a narrow shift in the peak. This is
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Figure 5. Posterior distributions (solid black) for an injected binary with M z 

= 10 5 M �, q = 8.0, and e 1yr = 0.01. The extrinsic parameters are fixed to our 
fiducial values. The two e xtreme v ertical dashed lines constrain the 90 per cent 
credible interval, whereas the middle dash line represents the median of the 
distribution. The blue lines mark the injected values, whereas the contours in 
two-dimensional posteriors indicate 68, 95, and 99 per cent credible intervals. 
We also indicate the Fisher results (dashed red) for comparison. 

Figure 6. Posterior distributions (eccpost) for the eccentricity corresponding 
to each injected e 1yr for binaries with fixed M z = 10 5 M � and q = 8.0. The 
posteriors are constrained to the 90 per cent credible interval and are shown 
in blue (left) if we only sample the intrinsic parameters and in orange (right) 
if we vary all parameters. The injected values are marked with a red cross. 
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9

Figure 7. For the same binary parameters as in Fig. 3 , relative error 
percentage ( σMCMC 

e, rel [%]) on the reco v ery of eccentricity in our Bayesian 
inference. A dashed red line is drawn to separate the region with relative 
error larger than 10 per cent and a solid blue line is drawn to separate the 
region with σMCMC 

e, rel [%] > 50 per cent. We hav e suppressed relativ e errors 
abo v e 100 per cent to enhance the informative results. 
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nticipated due to the increase in degrees of freedom, which do not
ontribute to the measurement of eccentricity. 9 Unsurprisingly, the 
igher the eccentricity, the better the reco v ery of the injected value,
.e. the injected value is extremely close to the peak of the posterior.
 Eccentricity is not expected to be correlated to the extrinsic parameters. 

w

1

To measure how well injected eccentricities are reco v ered in our
ayesian inference, we introduce a Bayesian relative error metric in 

erms of the injected eccentricity e inj and the standard deviation of
he corresponding eccentricity posterior σ MCMC 

e : 

MCMC 
e, rel [%] = 100 × σ MCMC 

e 

e inj 
. (9) 

To surv e y the parameter space widely with Bayesian inference,
e have conducted a total of 7 × 4 × 8 runs by sampling o v er only

ntrinsic parameters for se ven v alues of the total mass, four values of
he mass ratio, and eight values of the eccentricity given in equation
 1 ). We present only the runs for the intrinsic parameters here, as we
ave shown that including extrinsic parameters does not affect the 
esults significantly. 

We present the findings of our Bayesian inference in terms of
MCMC 
e, rel [%] in Fig. 7 . Systems with e 1yr � 10 −1.5 will mostly lead

o the measurement of eccentricity to a relative error of less than
 per cent for lower-mass MBHBs and � 10 per cent for higher-mass
inaries, independent of q . The lowest value of eccentricity ( e min )
hat LISA can measure with a less than 50 per cent relative error is
0 −2.75 for M z = 10 4.5 M �. 
We set 50 per cent Bayesian relative error as a fiducial threshold

or the measurement of eccentricity. 10 We summarize the results of 
ll our MCMC runs in terms of the minimum measurable eccentricity
 e min ) by LISA as a function of total mass and mass ratio in Fig. 8 . The
esults are mostly independent of mass ratio, although we witness 
ome slight change for higher-mass ratios ( q = 8). e min for heavier
ystems is around 10 −1.5 , whereas for lighter MBHBs the eccentricity
an be measured down to ∼10 −2.75 . The measurement of eccentricity
n this regime can have far-reaching astrophysical consequences 
hich we present in the discussion. 
MNRAS 528, 4176–4187 (2024) 

0 See Appendix B for the minimum eccentricity based upon the Bayes factor. 
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Figure 8. Minimum measurable eccentricities as a function of binary mass 
and mass ratio based on whether σMCMC 

e, rel [%] < 50 in equation ( 8 ). 
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 DISCUSSION  

he current detectability analysis of GWs from MBHBs mostly
ssumes negligible eccentricity ( � 10 −4 ) once the binaries enter
he LISA frequency band. Ho we ver, we kno w that environmental
nteraction is necessary for binaries to reach the near-coalescence
hase within a Hubble time. Therefore, it is important to consider if
ven residual eccentricities are measurable, which can be a tracer of
he binary’s environment. In this work, we remain agnostic about the
river of the binary’s eccentricity. Instead, we have determined the
inimum measurable eccentricity for a range of binary parameters.
hese limits can be compared with theoretical models of binary
volution in order to determine which binary formation scenarios
ead to measurable eccentric signatures in the GW wav eform. F or
xample, we can compare our results with eccentricities predicted by
inary evolution in circumbinary discs (D’Orazio & Duffell 2021 ;
rake et al. 2021 ; Siwek, Weinberger & Hernquist 2023 ), which
redict e 1yr ∼ 10 −3 for ∼10 3 –10 5 M � systems at z = 1. Based on
ur results in Fig. 8 , e ∼ 10 −3 will be indeed detectable 11 for binaries
ithin the mass range ∼10 4.5 –10 5.5 M � at z = 1. Considering that the

ccentricity evolution will depend on the accretion disc properties
D’Orazio & Duffell 2021 ), precise detection of eccentricity in
Ws can help constrain the source’s environmental properties. The

nteraction with stars can also excite non-negligible eccentricities in
he LISA band. Gualandris et al. ( 2022 ) suggest e 1yr ∼ 10 −4 –10 −3 for
 4 × 10 6 M � MBHB, a range of eccentricities not detectable for such
assive system as per Fig. 8 . Ho we ver, lo wer-mass binaries are not

et explored in these models. It is possible that a better waveform
odel which includes more physics concerning eccentricity, such

s the advance of periastron (Tiwari et al. 2019 ), could impro v e
ccentricity measurements, but we leave this to future work. Overall,
easuring specific eccentricities predicted by various environments
ay help to distinguish between them. Furthermore, not including

ccentricity during parameter estimation could lead to significant
iases in the reco v ery of other binary parameters (see Appendix B ). 
In addition to measuring orbital properties of binaries in GWs,

nformative measurements of environmental deviations in GW wave-
orms are also possible for certain systems. Suppose the influence
f scattered stars, surrounding gas, or a nearby third body causes
lterations in the orbital evolution (compared to the same binary in
acuum). In that case, this interaction leads to a dephasing of the
etected GW signal (e.g. Garg et al. 2022 ; Zwick, Capelo & Mayer
023 ), amplitude modulation due to Doppler boosting and lensing
D’Orazio & Loeb 2020 ), and can excite harmonics at higher fre-
uencies (Zwick et al. 2022 ). For a complete characterization of the
NRAS 528, 4176–4187 (2024) 

1 See Fig. E1 for e 1yr = 10 −2 . 75 ≈ 2 × 10 −3 posteriors. 

w  

l  

t  
inary properties in astrophysical environments, it will be necessary
o consider how these deviations correlate with binary parameters.
ssuming one has a robust knowledge of the range of predicted

esidual eccentricities in different scenarios for the background (e.g. a
aseous environment versus stellar encounters) and, simultaneously,
f the expected waveform modulation due to various interactions,
t becomes possible to cross-correlate these parameters to enhance
he determination of environmental effects. We plan to quantify the
easibility of these measurements in future work. 

LISA and other space-based mHz GW detectors will be able
o observe the coalescence of MBHBs in the mass range 10 4 –
0 8 M � across the whole sky. We expect to detect at least a few
vents per year, with the event rate dominated by lower-mass MBH
ergers at z � 2 (Amaro-Seoane et al. 2023 ). Ho we ver, current

redictions by both post-processing of cosmological simulations and
emi-analytical models vary by orders of magnitude, as they depend
n intricate details of MBH seeding mechanisms and evolution in
heir host galaxies (e.g. Ricarte & Natarajan 2018 ; Tremmel et al.
018 ; Barausse et al. 2020 ; Volonteri et al. 2020 ; Valiante et al.
021 ). While the literature is still evolving on the expected residual
ccentricity at LISA entry from different environments, being able
o measure the eccentricity might add important information to place
urther constraints on astrophysical scenarios for binary evolution.
urthermore, irrespective of that, we need to be able to extract all the
otential information from the waveform if we are going to use them
or fundamental physics tests, such as e xcluding alternativ e general
elativistic theories (there can be various hidden degeneracies we do
ot know of at the moment). 
The work presented here is not devoid of certain systematics

hat are present in the GW waveform model that is employed.
s mentioned in Section 2 , the GW model TAYLORF2ECC we use
nly provides eccentric phase corrections up to 3PN and at O( e 2 ),
hich makes it reasonable to use in the low-eccentricity regime
ut can still induce some inaccuracies. The higher-order eccentric
orrections – up to O( e 6 ) – are known (Tiwari et al. 2019 ) but
re cumbersome to implement within the full Bayesian inference
nfrastructure, and the comparison of result for the leading order in
ccentricity with respect to higher-order eccentric corrections are
eft for future work. Additionally, TaylorF2Ecc does not include
he component spin effects, which can have positive and negative
onsequences for the measurability of eccentricity. The spin–orbit
nd spin–spin couplings, which enter at high PN orders in the
hasing, can affect the inspiral significantly (Kupi, Amaro-Seoane &
purzem 2006 ; Brem, Amaro-Seoane & Spurzem 2013 ; Sobolenko
t al. 2017 ). Ho we ver, we w ould lik e to point out that LISA will
ery well measure spin effects near the late inspiral-merger phase of
he MBH binary’s evolution, where the system will be quasicircular
or the eccentricities considered here, so any possible degeneracies
etween spins and eccentricity will be broken. To summarize, for
o w v alues of eccentricities, one can ignore the abo v e-mentioned
W modelling issues without drastically changing the final results. 
In this work, we only consider eccentricity corrections to phase

nd not to the amplitude. The eccentricity enters at O( e 2 ) in phase
ithout having a O( e) term which could be more important for low

ccentricities. Amplitude corrections from higher harmonics induced
y eccentricity can include O( e) terms. Therefore, it needs to be
xplored how much the inclusion of amplitude corrections due to
ccentricity would impro v e the eccentricity measurement. Lower-
ass MBHBs have a large number of GW cycles in the LISA band,
hich magnifies the O( e 2 ) terms in the cumulative phase, thereby

eading to possibly better measurement of eccentricity from phase
han from the amplitude for lighter binaries. Furthermore, Moore
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t al. ( 2016 ) states that for the small eccentricities we consider
ere, eccentricity corrections to phase are more important than to 
he amplitude. 

 CONCLUSION  

n this work, we study LISA-detectable GWs from eccentric MBHBs 
n vacuum to find the minimum measurable eccentricity ( e min ) that
an be inferred from the GW waveform. We consider systems that 
pend at least a year before merging in the LISA frequency band at
 = 1 with total redshifted mass M z in the range 10 4.5 –10 7.5 M �,
rimary-to-secondary mass ratio q between 1.2 and 8, and initial 
ccentricity e 1yr from 10 −3.5 to 10 −1 . These MBHBs have SNR ∼
00–2500 (see Fig. 2 ), allowing us to infer their binary parameters
ith high accuracy. To robustly estimate e min , we use the inspiral-
nly post-Newtonian eccentric waveform template TAYLORF2ECC , 
nd consider LISA’s motion in its orbit around the Sun as well as
ime delay interferometry to suppress the laser noise by employing 
he LISABETA software. We approach this analytically via computing 
atches and Fisher matrices, and numerically via Bayesian inference 

o find e min for optimally chosen parameter grids in equation ( 1 ) to
o v er our systems of interest. We itemize our findings below. 

(i) Considering only three free binary parameters – M z , q , and e 1yr 

we find that all approaches suggest that e min mainly depends upon 
 z and weakly upon q (see Figs 3 , 4 , and 7 ). 
(ii) The optimal match-based SNR criterion, that distinguishes 

ccentric and quasicircular waveforms with more than 90 per cent 
onfidence, suggests that e min is ∼10 −2.5 for lower-mass MBHBs ( M z 

 10 5.5 M � and ∼10 −1.5 for higher-mass systems (see Section 3.1 
nd Fig. 3 ). 

(iii) Relative errors on the recovery of eccentricity provided by 
he Fisher formalism for lighter systems are ∼0.1 per cent for high
ccentricities and ∼1000 per cent for low e 1yr . For heavier MBHBs,
elative errors are ∼1 per cent for higher eccentricities and 10 5 

er cent for lower e 1yr (see Section 3.2 and Fig. 4 ). 
(iv) Bayesian inference can constrain e 1yr ∼ 10 −1.5 to less than 

0 per cent relative error for most MBHBs. 
(v) Sampling also extrinsic parameters in Table 1 does not affect 

he eccentricity posterior significantly (see Figs 6 and E2 ). 
(vi) Assuming a Bayesian relative error of less than 50 per cent as a

hreshold for e min , we find that the minimum measurable eccentricity 
s e min = 10 −2.75 for 10 4.5 M � MBHBs, independent of the mass ratio
Fig. 8 ). 

CKNOWLEDGEMENTS  

D, MG, and LM acknowledge support from the Swiss National 
cience Foundation (SNSF) under the grant 200020 192092. ST was 
upported by the SNSF Ambizione Grant Number: PZ00P2-202204. 
e acknowledge Stanislav Babak, Pedro R. Capelo, and Jonathan 
air for insightful discussions. We also thank Riccardo Buscicchio, 
aniel D’Orazio, Lorenzo Speri, and Jakob Stegmann for useful 

omments on the manuscript. The authors also acknowledge use of 
he MA THEMA TICA software (Wolfram Research Inc. 2021 ), NUMPY 

Harris et al. 2020 ), and inspiration drawn from the GWFAST package
Iaco v elli et al. 2022 ) regarding the python implementation of
aylorF2Ecc . 
ATA  AVAILABILITY  

he data underlying this article will be shared on reasonable request
o the authors. 

EFERENCES  

bbott B. P. et al., 2019, ApJ , 883, 149 
maro-Seoane P. et al., 2017, preprint ( arXiv:1702.00786 ) 
maro-Seoane P. et al., 2023, Living Rev. Relativ. , 26, 2 
maro-Seoane P. , 2018a, Living Rev. Relativ. , 21, 4 
maro-Seoane P. , 2018b, Phys. Rev. D , 98, 063018 
rmitage P. J. , Natarajan P., 2005, ApJ , 634, 921 
abak S. et al., 2017, Phys. Rev. D , 95, 103012 
aird E. , Fairhurst S., Hannam M., Murphy P., 2013, Phys. Rev. D , 87, 024035
arack L. et al., 2019, Class. Quantum Gravity , 36, 143001 
arausse E. , Cardoso V., Pani P., 2014, Phys. Rev. D , 89, 104059 
arausse E. , Dvorkin I., Tremmel M., Volonteri M., Bonetti M., 2020, ApJ ,

904, 16 
egelman M. C. , Blandford R. D., Rees M. J., 1980, Nature , 287, 307 
erry C. et al., 2019, BAAS , 51, 42 
onetti M. , Haardt F., Sesana A., Barausse E., 2016, MNRAS , 461, 4419 
onetti M. , Haardt F., Sesana A., Barausse E., 2018b, MNRAS , 477, 3910 
onetti M. , Sesana A., Barausse E., Haardt F., 2018a, MNRAS , 477, 2599 
onetti M. , Sesana A., Haardt F., Barausse E., Colpi M., 2019, MNRAS , 486,

4044 
reivik K. , Rodriguez C. L., Larson S. L., Kalogera V., Rasio F. A., 2016,

ApJ , 830, L18 
rem P. , Amaro-Seoane P., Spurzem R., 2013, MNRAS , 434, 2999 
uonanno A. , Iyer B. R., Ochsner E., Pan Y., Sathyaprakash B. S., 2009,

Phys. Rev. D , 80, 084043 
apelo P. R. , Volonteri M., Dotti M., Bellovary J. M., Mayer L., Go v ernato

F., 2015, MNRAS , 447, 2123 
ardoso V. , Destounis K., Duque F., Macedo R. P., Maselli A., 2022, Phys.

Rev. Lett. , 129, 241103 
hua A. J. K. , Cutler C. J., 2022, Phys. Rev. D , 106, 124046 
uadra J. , Armitage P. J., Alexander R. D., Begelman M. C., 2009, MNRAS ,

393, 1423 
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PPENDIX  A:  CIRCULARIZATION  TEST  FOR  

AYLORF2ECC 

o check that the TaylorF2Ecc template is well-behaved, i.e.
˜ 
 ecc converges to ˜ h cir as the system approaches the coalescence, we
ompute tidal matches: we divide a signal into equal frequency bins
nd compute the mismatch (i.e. 1 − M ( h cir , h ecc )) with respect to
he cumulativ e frequenc y. In Fig. A1 , we sho w the e volution of the

ismatch as a function of cumulative frequency for three total masses
{ 10 5 , 10 6 , and 10 7 } M � – with fixed q = 8.0 and e 1yr = 0.1 o v er

0 frequency bins between f 1yr and f ISCO . The figure indeed shows
hat the mismatch is decreasing as the MBHB approaches its ISCO,
howing that TAYLORF2ECC is well-behaved. 

PPENDIX  B:  BAYES  FACTOR  AND  BIASES  

nother way to quantify whether a certain eccentricity is well
eco v ered in our analysis is by computing the Bayes factor. For
his purpose, we need to compare two hypotheses which are trying
o explain the same eccentric signal. The Null hypothesis is that a
ircular template (here TAYLORF2 ) is enough to accurately describe
his signal. The eccentric hypothesis states that you need to have
he eccentricity parameter in your template (here TAYLORF2ECC ) to
roperly explain this signal. We then need to take the ratio of their
vidence to compute the Bayes factor 

 = 

Z ecc 

Z 

. (B1) 
Figure B1. Same as in Fig. 8 , but now based on whether ln B > 8. 
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Figure B2. Biases induced in the estimation of M z and q due to fitting a 
circular template to an eccentric signal as a function of e 1yr for a system with 
M z = 10 5 M � and q = 8. 
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f ln B > 8 (Lower et al. 2018 ; Thrane & Talbot 2019 ), then we
ave a strong evidence that the given signal comes from an eccentric
ystem rather than a circular one. 

To do this we inject eccentric signals using TAYLORF2ECC and 
eco v er them with TaylorF2 to compute Z no ecc and TAYLORF2ECC 
o compute Z ecc by sampling only intrinsic parameters. Since we are 
n a zero noise limit and high SNR limit with only eccentricity
arameter different between two models, we can compute the 
avage-Dick ey ratio (Dick ey 1971 ) to approximately get B. We only
eed to use the Fisher matrix � ij from TaylorF2Ecc for a given
njected eccentricity e inj : 

 ≈ π ( e) 

√ 

2 π�̄ 

� 

exp 

( 

1 

2 

e 2 inj 

� 
−1 
ee 

) 

(B2) 

here � and �̄ are determinants of Fisher matrices of all parameters 
nd parameters except eccentricity , respectively , and � 

−1 
ee is the value

f the covariance on eccentricity. Here π (e) = 1/(0.2 − 10 −6 ) due
o an uniform prior. 

In Fig. B1 , we show minimum measurable eccentricities if ln B >

 for a given M z and q . These results are almost consistent with
ig. 8 , although results slightly worsen due to a stricter criterion. 
We can also compute the bias induced in the estimation of M z 

nd q when fitting circular template to an eccentric signal. For this
urpose, we compute the bias for a given parameter θ , normalized 
y its standard deviation as 

θ [ σ ] = 

| ̂  θno ecc − ˆ θecc | 
σ θ

ecc 

, (B3) 

here ˆ θ denotes the highest likelihood point in the posterior distri- 
ution for the given model, and σ θ

ecc is the standard deviation of the
ccentric model posterior of θ . 

In Fig. B2 , we show δθ [ σ ] for M z and q as a function of varying
ccentricity for a fixed M z = 10 5 M � and q = 8. Both biases are
lmost identical and as expected, grow rapidly as e 1yr becomes higher. 
or e 1yr = 10 −3 . 5 , the bias in both parameters is ≈0.4 and for e 1yr =
 . 1, δθ [ σ ] = 120. These results emphasize the need to included
ccentricity during parameter estimation. 
PPENDIX  C:  DEPENDENCE  ON  

IGH-FREQUENCY  CUTOFF  

n Fig. C1 , we compare posteriors between two signals, where the
igh-frequency cutoff is at 10 r s and at our fiducial cutoff 3 r s . This
 x ercise is performed to ensure that near-merger artefacts, beyond the
cope of TAYLORF2ECC , do not bias our results. Almost o v erlapping
osteriors indeed illustrate that the cutoff near the merger does not
ffect the reco v ery of parameters, especially eccentricity, which is
n early inspiral effect. 

igure C1. Posterior distributions for the same binary parameters as in Fig. 5
ith a high frequency cutoff at 10 r s (dashed red) binary separation compared

o our fiducial cutoff at ISCO or 3 r s separation (solid black). 

PPENDIX  D:  DEPENDENCE  ON  FISHER  

NITIALIZED  PRIOR’S  COVARIANCE  

n Fig. D1 , we make a comparison between two posteriors with
rior’s covariances either the same as our fiducial Fisher covariances 
r twice the Fisher covariances. Almost identical posteriors clearly 
llustrate that our Bayesian runs are giving informative results and 
ot merely giving back the Fisher priors we are using. 
MNRAS 528, 4176–4187 (2024) 
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M

Figure D1. Posterior distributions for the same binary parameters as in Fig. 5 
with prior’s covariances ( σ 2 

Prior ) (solid black) being our fiducial covariances 
( σ 2 

Fisher ) provided by the Fisher formalism compared to σ 2 
Prior set to 2 σ 2 

Fisher 
(dashed red). 
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Figure E1. Same as Fig. 5 , but for an injected binary with M z = 10 5 M �, q 
= 8.0, and e 1yr = 10 −2.75 . 
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PPENDIX  E:  SOME  INTERESTING  

OSTERIORS  

ig. E1 shows posteriors for intrinsic parameters for injected MBHB
arameters M z = 10 5 M �, q = 8.0, and e 1yr = 10 −2.75 , a system
hat is moti v ated astrophysically by the binary’s interaction with
ts environment. While the mass and the mass ratio are still well-
easured as in Fig. 5 due to similar SNR, eccentricity posterior is

road. Nonetheless, the peak of the eccentricity posterior is very
lose to the injected value. 
NRAS 528, 4176–4187 (2024) 
In Fig. E2 , we show posteriors for all parameters given in Table 1
or an injected binary with M z = 10 5 M �, q = 8.0, and e 1yr = 0.01 and
he extrinsic parameters set to our fiducial values. Comparison with
osteriors when only varying intrinsic parameters suggest that while
 z and q are about order-of-magnitude less constrained, eccentricity

s almost not affected due to the inclusion of extrinsic parameters,
upporting inference from Fig. 6 . As expected, there is a de generac y
etween the inclination (ı) and the luminosity distance ( D L ). The
hase at coalescence ( φ) and the polarization angle ( ψ) have multi-
odality due to periodic functions and hence their injected values

re not reco v ered robustly. The ecliptic latitude ( λ) and longitude ( β)
xhibit slight degeneracies with D L but are well constrained. 
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Figure E2. Posteriors (solid black) for the same intrinsic binary parameters as in Fig. 5 with sampling included for the extrinsic parameters. We also include 
posteriors (dashed red) when only sampling intrinsic parameters for comparison. 
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