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ABSTRACT

We explore the eccentricity measurement threshold of Laser Interferometer Space Antenna (LISA) for gravitational waves
radiated by massive black hole binaries (MBHBs) with redshifted BH masses M, in the range 10*°-107> M, at redshift z = 1.
The eccentricity can be an important tracer of the environment where MBHBs evolve to reach the merger phase. To consider
LISA’s motion and apply the time delay interferometry, we employ the LISABETA software and produce year-long eccentric
waveforms using the inspiral-only post-Newtonian model TavLorr2Ecc. We study the minimum measurable eccentricity (emin,
defined one year before the merger) analytically by computing matches and Fisher matrices, and numerically via Bayesian
inference by varying both intrinsic and extrinsic parameters. We find that e, strongly depends on M, and weakly on mass ratio
and extrinsic parameters. Match-based signal-to-noise ratio criterion suggest that LISA will be able to detect ey, ~ 1072 for
lighter systems (M, < 10°° Mg) and ~10~!* for heavier MBHBs with a 90 per cent confidence. Bayesian inference with Fisher
initialization and a zero noise realization pushes this limit to ey, ~ 107273 for lower-mass binaries, assuming a <50 per cent
relative error. Bayesian inference can recover injected eccentricities of 0.1 and 10727% for a 10° Mg, system with an ~1072
percent and an ~10 per cent relative errors, respectively. Stringent Bayesian odds criterion (In B > 8) provides nearly the same
inference. Both analytical and numerical methodologies provide almost consistent results for our systems of interest. LISA will

launch in a decade, making this study valuable and timely for unlocking the mysteries of the MBHB evolution.

Key words: black hole physics — gravitational waves —methods: data analysis —methods: statistical.

1 INTRODUCTION

The Laser Interferometer Space Antenna (LISA; Amaro-Seoane
et al. 2017; Barack et al. 2019) will be one of the first space-based
gravitational wave (GW) observatories that will launch in the 2030s,
along with TianQin (Wang et al. 2019) and Taiji (Gong et al. 2021).
It will be sensitive to observed frequencies of GWs in the range of
~107*-10~! Hz. The primary extragalactic sources for LISA are
mergers of massive black hole binaries (MBHBs) of 10*~10% My
and intermediate/extreme mass ratio inspirals (I/EMRIs; Babak et al.
2017; Amaro-Seoane 2018b) with primary-to-secondary BH mass
ratio ¢ greater than 103. LISA will be sensitive enough to detect
GWs from coalescing MBHBs with ¢ < 10.0 up to redshift z ~ 20
(Amaro-Seoane et al. 2017). Most MBHBs will have high signal-to-
noise ratios (SNRs; Amaro-Seoane et al. 2017) in the LISA band,
which will help to constrain their parameters with high accuracy.
MBHBs mainly form as by-products of galaxy mergers (Begel-
man, Blandford & Rees 1980). The process involved in shrinking the
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separation between MBHs from galactic scales to form a binary
in the post-merger nucleus takes millions to billions of years,
depending on the internal structure of the host galaxies and the
relative dominance of various astrophysical processes (see, e.g.
Amaro-Seoane et al. 2023). At sub-pc scales, the interaction of the
binary with gas and stars in its environment can drive the binary
to the coalescence phase in the LISA band within a Hubble time
(Milosavljevi¢ & Merritt 2003; Haiman, Kocsis & Menou 2009).
By the time a tight binary is formed, information on its dynamical
history, which reflects the nature of the properties of the host galactic
nucleus, is mostly lost. However, GW waveforms from these tight
systems can carry signatures of the source environment, either in
the form of modifications of the vacuum waveform, from phase
shifting (Barausse, Cardoso & Pani 2014; Derdzinski et al. 2019,
2021; Toubiana et al. 2021; Cardoso et al. 2022; Sberna et al.
2022) and amplitude modulation (D’Orazio & Loeb 2020) to the
injection of additional harmonics at higher frequency (Zwick et al.
2022), or via a direct relation with the binary parameters that
can be extracted from the analysis of the vacuum waveform. In
the latter case, the precise astrophysical environment an MBHB
evolves within from pc-scales to the near-merger stage may lead
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Measuring eccentricity from GWs of LISA MBHBs

to different system variables at the LISA entry for the same starting
binary.

One of the most sensitive binary parameters to the surrounding
environment is the orbital eccentricity. While most studies in the
literature assume that MBHBs will circularize by the time they enter
the LISA band (with entry eccentricity ey ;55 < 10~*) due to emission
of GWs (Peters & Mathews 1963; Peters 1964), some may retain
non-negligible eccentricity due to evolving in a suitable dynamical
environment, e.g. if MBHBs are embedded in gas (Armitage &
Natarajan 2005; Sesana et al. 2005; MacFadyen & Milosavljevié
2008; Cuadra et al. 2009; Roedig et al. 2011; Roedig & Sesana 2012;
Siwek, Weinberger & Hernquist 2023; Tiede & D’Orazio 2023), in
a star cluster (Matsubayashi, Makino & Ebisuzaki 2007; Lockmann
& Baumgardt 2008; Preto et al. 2009; Sesana 2010; Gualandris et al.
2022), in a tri-axial potential (Merritt & Vasiliev 2011; Khan et al.
2013), or if they interact with a third BH (Bonetti et al. 2016, 2018a,
b, 2019). Hence, eccentricity can be an important tracer to probe
these effects.

The eccentricity is a unique intrinsic binary parameter because
it decreases rapidly as the system approaches the merger. As a
result, in order to infer it from a waveform, we need to detect the
GW signal many cycles before the merger. Therefore, for now, the
ground-based LIGO-Virgo-KAGRA (LVK) collaboration does not
include eccentricity in their analysis of the stellar-mass (5100 Mg)
BH binaries (SmBHBs) due to the challenges in modelling late-
inspiral-merger with the presence of eccentricity and spins (see, e.g.
Ramos-Buades et al. 2022). However, LVK indeed does searches for
eccentric SmBHBs using un-modelled methods (Abbott et al. 2019;
Ramos-Buades et al. 2020). Given that we will observe GWs in the
early inspiral phase in the LISA band for most MBHBs, ignoring
eccentricity could lead to mismodelling of the GW waveform. Most
of the focus on eccentricity detection in the LISA frequency band
has been in the context of multi-band SmBHBs sources (Nishizawa
et al. 2016, 2017; Klein et al. 2022), with some attention on EMRIs.
Multi-band sources are seen in the LISA band a few years before
they merge in the LVK frequency band of ~10-10* Hz (Sesana
2016; Vitale 2016). The detection of eccentricity is proposed as
a way to distinguish whether SmBHBs are formed in the field
or via dynamical interaction such as in globular clusters, nuclear
clusters, or galactic nuclei (Breivik et al. 2016; Nishizawa et al.
2016; D’Orazio & Samsing 2018; Gondédn et al. 2018; Samsing
& D’Orazio 2018; Romero-Shaw, Lasky & Thrane 2019, 2022;
Romero-Shaw et al. 2020; Zevin et al. 2021). Also, eccentricity
can help in breaking parameter degeneracies by inducing higher
harmonics (Mikéczi et al. 2012; Yang et al. 2022; Xuan; Naoz &
Chen 2023) and it can improve parameter estimation accuracy (Sun
et al. 2015; Vitale 2016; Gondén et al. 2018; Gonddn & Kocsis
2019; Gupta et al. 2020). EMRIs are mostly expected to have a
significant entry eccentricity in the LISA band, ranging from ey sa
2 0.1-0.8 (Hopman & Alexander 2005; Amaro-Seoane 2018a),
which can be measured to high accuracy, barring data analysis
challenges (Babak et al. 2017; Berry et al. 2019; Chua & Cutler
2022).

This work considers eccentric binaries in vacuum of two near-
coalescence non-spinning MBHs. We are interested in determining
the minimum eccentricity that can be confidently measured by
LISA one year before the merger for a given MBHB source at
z = 1. Our analysis attempts to be as realistic as possible in the
data analysis which will be employed for LISA once the mission
is operational, i.e. we take into account the full LISA motion in
its orbit around the Sun, generate high-order post-Newtonian (PN)
waveforms, employ the time delay interferometry (TDI) technique
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to cancel the detector’s laser noise, and finally perform Bayesian
inference to recover injected parameters.

The measurability of eccentricity in the MBHB’s GW waveform
is a novel investigation. It is an important study because, similar
to multi-band sources, residual eccentricities can be a signature
of the environment in which MBHBs have evolved. For instance,
recent high-resolution hydrodynamical simulations by Zrake et al.
(2021) show that for equal-mass binaries hardening in prograde
circumbinary gas discs, we expect an eccentricity of ~1073 one
year before coalescence. The eccentricity evolution in the late stages
of hardening by a prograde accretion disc is further supported by
D’Orazio & Duffell (2021) and Siwek, Weinberger & Hernquist
(2023). Moreover, Tiede & D’Orazio (2023) show that we should
expect even higher eccentricity in the LISA band if the circumbi-
nary disc is retrograde instead of prograde. Therefore, eccentricity
detection by LISA could be a tracer of gas interaction. Simulations of
MBH binary evolution starting from realistic galaxy mergers (Capelo
et al. 2015), in which three-body encounters with stars dominate the
orbital decay at sub-pc separations, show that the eccentricity always
increases above the value that it has when the hardening phase begins,
reaching values as large as 0.9 (Khan et al. 2018). The residual value
of eccentricity around 50-100 Schwarzschild radii (about one year
before merger), when circularization via GW emission has already
started to act, is yet to be determined. However, recently Gualandris
et al. (2022) studied the evolution of eccentricity through the stellar
hardening phase and into the GW radiation regime, finding that the
residual value of the eccentricity at about 50 Schwarzschild radii for
a4 x 105 My, MBHB ranges from below 10~ to nearly 1073 (as
suggested by Elisa Bortolas in further communication). Interestingly,
the specific eccentricity here mainly depends upon the parameters at
large scale and positively correlates with the initial eccentricity of the
merging galaxies. Also, the lowest possible eccentricity detectable
by LISA for a given MBHB will tell us whether its neglect during
parameter estimation will lead to biases and degeneracies. The
consensus for entry eccentricity in the LISA band for MBHBs is
<1074, which justifies the circular assumption, but for e g5 > 1074,
it would be crucial to consider eccentricity during match filtering and
when constraining binary variables (Porter & Sesana 2010).

The paper is structured as follows: In Section 2, we describe
our waveform model and systems of interest. Section 3 studies
analytical constraints on eccentricity measurement using matches
and Fisher formalism. In Section 4, we detail our Bayesian setup to
find the minimum measurable eccentricity. We discuss the findings in
Section 5 and summarize the key takeaways of this work in Section 6.

2 WAVEFORM GENERATION, SYSTEM
PARAMETERS, LISA RESPONSE, AND TIME
DELAY INTERFEROMETRY

MBHBs are one of the most promising sources for LISA as they are
expected to be the loudest events and will spend a significant amount
of time (up to a few years) in LISA’s frequency band before merging.
Most of the time MBHBs spend in the LISA band is in the long-
inspiral phase where eccentricity (e) can still be non-negligible. The
inspiral part of the GW waveforms from eccentric BHB mergers has
been developed within the PN formalism both in time and frequency
domains (Damour, Gopakumar & Iyer 2004; Mishra et al. 2016). The
time-domain PN waveforms have the advantage of having a larger
region of validity in eccentricity, and they can probe eccentricities up
to 0.8, but they are slow to generate (Tanay, Haney & Gopakumar
2016; Tanay et al. 2019). The frequency-domain waveforms are
much faster to compute but are limited to the low-eccentricity
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Table 1. Source parameters in the L-frame.

Parameter Units

Total redshifted mass M, Mg
Mass ratio g Dimensionless
Eccentricity one year before coalescence ejy, Dimensionless
Luminosity distance Dy, Mpc

Phase at coalescence ¢ Radian
Inclination 1 Radian
Ecliptic latitude A Radian
Ecliptic longitude 8 Radian
Initial polarization angle Radian

approximation. For LISA data analysis, it is imperative to have
fast waveform computation as the evolution of the BHB occurs
over a large time-frequency volume. There exist a wide range of
frequency-domain eccentric BHB waveforms, namely TaAYLORF2ECC
(Moore et al. 2016), EccentricFD (Huerta et al. 2014), and EFPE
(Klein 2021), among others. For this study, we have employed the
TAYLORF2ECC inspiral-only waveform model with circular phasing
accurate up to 3.5PN order taken from another inspiral-only model
TAYLORF2 (Buonanno et al. 2009) and eccentricity corrections to
phasing up to 3PN and O(e?), making it valid for e < 0.1. However,
this model does not give a prescription for spinning BHs. We
choose TaylorF2Ecc as our fiducial model as astrophysically
we mostly do not expect higher eccentricities, as mentioned in the
introduction.

The parameter space we consider for MBHBs spans the range of
total redshifted masses M, between 10*> and 107> Mg, mass ratios.
q € [1.2, 8], and the initial eccentricity one year before the merger
(e1yr) between 107> and 0.1. We have not considered the individual
spins of the component BHs for this work. Unless otherwise stated,
we always quote the values at the detector frame (L-frame). This
leaves us with three intrinsic parameters® (first three rows of Table 1)
and six extrinsic parameters (last six rows of Table 1). We employ the
cosmological parameters from the Planck Collaboration VI (2020)
survey to compute the luminosity distance from redshift: Hubble
constant Hy = 67.77 km s~' Mpc~!, matter density parameter Q,,, =
0.30966, and dark-energy density parameter 24 = 0.69034.

We generate eccentric waveforms ﬁecc( f) for our systems of
interest using the TAYLORF2ECC template over these parameter grids
to optimally cover the intrinsic parameter space:

M, e {10*°,10°, 10°7, 10°, 10%%, 107, 10"} M, D
g e {1.2,2.0,4.0,8.0},
elyr = {]0—3.5’ 10—3‘25’ 10—3’ 10—2,75’ 10—25’ 10—2257
1072’ 1071,757 10715’ 10712570']}'

Additionally, we also generate quasicircular (e;y, = 0) waveforms
(heir). For extrinsic parameters, our fiducial values are z = 1 which
corresponds to D, = 6791.3 Mpc, and the angles are all set to 0.5
radians. We choose these parameters such that MBHBs spend at least
one year in the LISA band before coalescing.

In this work, we only work with Newtonian amplitudes and study
binaries until they reach their innermost stable circular orbit (ISCO),
i.e. at binary separation rigco = 3rs, where ry = 2GMz/c2 is the

14 = 1 system gives leads to Fisher initialization problems in Bayesian
inference, hence we choose ¢ = 1.2 as a representative value.

2While there are other eccentricity-related binary parameters, we only focus
on the magnitude of eccentricity.
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Figure 1. Characteristic strain s, compared to the LISA noise (solid grey;
in the top panel) and accumulated phase (in the bottom panel) for an M, =
10° Mg, g = 8.0, and eryr = 0.1 binary at z = 1 for waveform templates
IMRPhenomD (dashed red) and Tavrorr2ecc (dot—-dashed blue) between
fiyr and fisco. In the bottom panel, we also enlarge the initial phase to show
the difference between quasicircular and eccentric phasings.

Schwarzschild radius of the total mass BH,? at which point binaries
are expected to circularize.* We find the starting frequency (fiyr)
such that the system reaches the ISCO at frequency fisco in exactly
one year by using the Peters’ time-scale (Peters 1964). The reason
why we have chosen fy, as our reference frequency to initiate the
signal and not some fixed frequency as usually employed by the LVK
collaboration is that MBHB masses can vary by up to three orders of
magnitude, making any fixed frequency sufficient for some systems
and too short or long for others.

In Fig. 1, we show the characteristic strain h.(f) = 2fA(f), a
visual aid to represent how signal adds up in the detector, the LISA
noise curve S, (f) including a confusion noise due to galactic binaries
taken from Marsat, Baker & Canton (2021), and the accumulated
phase for an M, = 10° Mg, ¢ = 8.0, and ey, = 0.1 system at z =
1 for TavLorr2ECc and the quasicircular inspiral-merger-ringdown
waveform model IMRPhenomD (Husa et al. 2016; Khan et al.
2016). Since the inspiral part of the IMRPhenomD comes from the
TAYLORF2 template, phasings are almost identical until the system
is close to the ISCO. The initial phase difference is due to non-zero
eccentricity in TAYLORF2EcCC, and later deviations come from the
merger part of the IMRPhenomD, which are beyond the scope of the
inspiral-only model TayLoRF2ECC.

To account for LISA motion and to project the waveform into TDI
channels, namely A, E, and T, we modify the LISABETA software (see
Marsat, Baker & Canton 2021 for details and subsequent notations)

3G is the gravitational constant and ¢ is the speed of light in vacuum.
4We perform circularization test of TavLorF2ECC in Appendix A.
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Figure 2. SNR for our systems of interest for two limiting mass ratios of ¢
= 1.2 (top panel) and ¢ = 8.0 (bottom panel). In both panels, we vary M,
from 10*3 to 107 M, and z from 1 to 5, and set rest of the parameters to our
fiducial values. These SNRs take into account LISA motion and are calculated
by summing over three TDI channels A, E, and T. The low eccentricities we
consider here do not affect the SNR significantly.

by including support for Tavr.orr2Ecc. Therefore, a waveform A( f)
will have strain projections /15 g1(f) and noise power spectral
densities S*E'T corresponding to A, E, and T channels, respectively.

Now, we can write down the standard inner-product between two
waveforms as

fisco - a(f)b*(f)
(alb) =4 E Re/ df ——, 2)
AET flyr Sn(f)

where the pre-factor 4 comes from the one-sided spectral noise
density normalization. Hence, the SNR of the signal is /(A]h). In
Fig. 2, we show the dependence of the SNR at z = 1 as a function
of total mass and mass ratio for our parameter space in equation (1).
As expected, the SNR is higher for near-equal mass ratios than the
unequal ones and decreases as the redshift increases. Furthermore,
the SNR peaks at middle-range masses of ~10° My, known as golden
LISA sources.

In the following two sections, we find the minimum eccentricity
and errors on its recovery in the LISA data stream for a given source.
First, we approach this task analytically by using a match between
waveforms and computing Fisher information matrices. We then
perform Bayesian inference to numerically determine the posteriors.

3 ANALYTICAL MEASURABILITY OF
ECCENTRICITY

We first present a simple and commonly used estimate for the distin-
guishability of eccentric from quasicircular binaries in LISA using
a match-based SNR criterion defined in equation (5). Furthermore,
we employ the Fisher formalism to estimate how well-constrained
eccentricity will be for these sources. These computations provide a
theoretical benchmark that can be compared with Bayesian inference
presented later.
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Figure 3. SNRyi, required to distinguish between quasicircular and eccen-
tric waveforms for our parameter space. In the top panel, we fix ¢ = 1.2, and
vary M from 10*3 to 107> Mg and eqyr from 10733 to 10!, In the bottom
panel, we keep the mass ratio ¢ = 8.0 constant, and vary M and eyy, as in the
top panel. Both panels have a blue line showing the boundary of the LISA
non-detectability region at z = 1 (SNR; = | < SNRpy;n)-

3.1 Optimal match

‘We compute matches between k... and h;, waveforms with the same
M, and ¢, and find the minimum SNR (SNR.;,) for which LISA
can distinguish between these waveforms with more than 90 per cent
confidence. To compute SNR,;,, we use the criterion from Baird
et al. (2013):
2
SNRiqin — EM, 3)
2 (1 - %(hecm hcir))

where x2(1 — p) is the x? probability distribution function, 1 — p is
the significance level, & is the number of free binary parameters, and
M(Nece, heir) 1s a match between hg;, and fee:

(hcir|hecc)
M(heir, Neee) = max s
an e Ad \/(hcirlhcir)\/(hecclhecc)
which is maximized over phase shifts A¢. In our case, we have p =
0.9 and k = 3 as we vary only three binary parameters — M., g, and
e1yr. This transforms equation (3) into

SNR2 3.12

e (1 - '%(hcir(:v hecc)) ’
If the event’s SNR is less than SNR,,;;, then one cannot differentiate
between quasicircular and eccentric binaries, which in turn provides
a constraint on the minimum detectable eccentricity (em;,) assuming
the rest of the binary parameters are known. In Fig. 3, we show
SNR,ix for our systems of interest and compare it with the event’s
SNR at our fiducial z = 1 (SNR, ). It illustrates that ey;, ~
10723 for lower-mass MBHBs (M, < 10°3 Mgy) and ~10~' for
higher-mass systems. The strong dependence on the total mass can
be attributed to the fact that even though our considered binaries
spend one year in the LISA band, fi,, for heavier systems is much
lower than for the lighter binaries. This implies that the inspiral
part of the signal, where eccentricity is dominant, will fall within

“

(5
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Figure 4. For the same binary parameters as in Fig. 3, error estimates by
Fisher formalism (aeF isher) on eccentricities of our considered binaries.

the low sensitivity region of LISA, leading to systematically worse
constraints for heavier systems. Moreover, the weak dependence
on the mass ratio can be explained from our definition of ejy,.
Unsurprisingly, higher eccentricities are easily distinguishable from
lower ones.

One can use the SNR estimates in Fig. 2 for any MBHBs at higher
redshiftin the LISA band and use Fig. 3 to assess whether eccentricity
will be detectable for the given system since SNR;, is computed in
the L-frame. In the next section, we find the expected error bars on
the recovery of injected eccentricity using the Fisher formalism.

3.2 Fisher matrix

A standard parameter estimation technique in the LISA community
is to compute a Fisher matrix (Vallisneri 2008), which tells us how
well we can constrain a certain parameter assuming a Gaussian noise
and high SNR. We can define the Fisher matrix as

Tap = (0a/1[0b1) (6)

where 0,h = 0h/00, is the partial derivative of a waveform / with
respect to a parameter 6,.

The inverse of the Fisher matrix is the variance—covariance matrix,
whose diagonal elements are variances (o2) for each of the injected
parameters. The square-root of a variance provides the standard
deviation (o), which tell us the error estimate on a given parameter.

‘We again only vary intrinsic parameters: M_, g, and ey, and show
in Fig. 4 the Fisher-based error estimate on eccentricity (olhr)
for our parameters of interest in equation (1). Errors mainly vary
with total mass and less significantly with mass ratio, due to the
same reasons as explained for the match results in Section 3.1.
Fig. 4 suggests that for lighter systems, higher eccentricities are
constrained to error (relative error = 100 x o7*hr /e) ~1074 (~0.1
percent) whereas for lower ej, we find of" ~ 1073 (~1000
per cent). For heavier binaries, errors are ~10~3 (~1 percent) for
higher eccentricities and ~107! (10° per cent) for lower eyy,. This
suggests that lower eccentricities are completely unconstrained.

MNRAS 528, 4176-4187 (2024)

One can always scale these errors (~1/SNR) at a further luminosity
distance by using SNR values in Fig. 2 to get rough estimates. In the
next section, we perform Bayesian inference to find error estimates
on eccentricity recovery and the minimum measurable eccentricity.

4 MEASURABILITY OF ECCENTRICITY
USING BAYESIAN INFERENCE

The main goal of Bayesian inference is to construct posterior
distributions p(6|d) for the parameter space 6 to fit the observed data
d (see e.g. Thrane & Talbot 2019). p(6|d) represents the probability
distribution function of € given the data d and it is normalized
such that [df p(6|d) = 1. To compute the posterior, we use Bayes
theorem,

L(d|0)r (O
pota) = 40O, ™

where L£(d|0) is the likelihood function of the data d given the
parameters 6, w(0) is the prior on 0, and Z = fd@ﬁ(dl&)rr(@) is
the evidence. Since we are not selecting between different models,
we can treat Z as a normalization constant. Also, we only consider
uniform (flat) priors for all parameters.

For our stationary Gaussian noise SiET, we can write down the
log-likelihood with a zero-noise realization summed over A, E, and
T channels as (Marsat, Baker & Canton 2021):

InLoc Y (h = hisjlh — hin), ®)

AET

where 7 is the template signal, and &, is the simulated injected
signal. The zero-noise realization accelerates the likelihood com-
putation, improves upon the Fisher results by providing the shape
of posteriors, and helps understand parameter degeneracies and
detectability of certain effects (here eccentricity).

For sampling, we use the parallel tempering Markov chain Monte
Carlo (MCMC) code PTMCMC.’ To further speed up the likelihood
computation, we draw random samples from a multivariate Gaussian
with the mean given by the injected parameters and standard
deviations provided by the Fisher formalism® in Section 3.2.

We primarily sample only the intrinsic parameters and set a high-
frequency cutoff for the data at fisco of the injected binary.” We show
the posteriors for M., g, and e, in Fig. 5 for injected binary parame-
ters 10° M, 8.0, and 0.01. All parameters are well recovered, with the
injected values being extremely close to the median of their respec-
tive posterior. The chirp mass parameter M = M(q/(1 + q)*)*/°
is even better constrained to 24932.33777005% M« as expected
(see e.g. Cutler & Flanagan 1994) with the injected value being
24 932.3365 M. Moreover, Bayesian errors are similar to the errors
provided by the Fisher formalism, as expected due to the high SNR
and a zero-noise realization.

We also study the effect of including extrinsic parameters® (also
given in Table 1) on the measurability of the eccentricity in Fig. 6.
Here, we show the comparison of the posteriors of e}, in equation (1)
for fixed M, = 10° Mg, and g = 8.0 between the cases when sampling
only intrinsic parameters and when sampling over all parameters in
Table 1. Adding extrinsic parameters results in a slight broadening
of eccentricity posteriors and a narrow shift in the peak. This is

Shtps://github.com/JohnGBaker/ptmeme

Using a wider prior does not affect results as shown in Appendix D.
"Using an earlier cutoff than the ISCO does not significantly affect the
posteriors, as shown in Appendix C.

8We show the full posteriors in Fig. E2.
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—— ptmeme
--== Fisher

g, = ke pispioni i
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q = 80000155507

= 0.0100+505%

1y

Figure 5. Posterior distributions (solid black) for an injected binary with M
=10° Mg, g = 8.0, and e1yr = 0.01. The extrinsic parameters are fixed to our
fiducial values. The two extreme vertical dashed lines constrain the 90 per cent
credible interval, whereas the middle dash line represents the median of the
distribution. The blue lines mark the injected values, whereas the contours in
two-dimensional posteriors indicate 68, 95, and 99 per cent credible intervals.
We also indicate the Fisher results (dashed red) for comparison.

~1.0 - ==
M. =10°M,, q =80
-15 EEl Only intrinsic ——
[ All parameters e,
_op x  Injected E1yr
=

-35 -325 -30 -275 -25 -225 -20 -1.75 -15 -1.25 -1.0
logg(€152)

Figure 6. Posterior distributions (eccpost) for the eccentricity corresponding
to each injected e1y, for binaries with fixed M, = 10° Mg and g = 8.0. The
posteriors are constrained to the 90 per cent credible interval and are shown
in blue (left) if we only sample the intrinsic parameters and in orange (right)
if we vary all parameters. The injected values are marked with a red cross.

anticipated due to the increase in degrees of freedom, which do not
contribute to the measurement of eccentricity.” Unsurprisingly, the
higher the eccentricity, the better the recovery of the injected value,
i.e. the injected value is extremely close to the peak of the posterior.

9Eccentricity is not expected to be correlated to the extrinsic parameters.
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Figure 7. For the same binary parameters as in Fig. 3, relative error
percentage (ongc[%]) on the recovery of eccentricity in our Bayesian
inference. A dashed red line is drawn to separate the region with relative
error larger than 10 percent and a solid blue line is drawn to separate the
region with J%SIMC[%] > 50 percent. We have suppressed relative errors
above 100 per cent to enhance the informative results.

To measure how well injected eccentricities are recovered in our
Bayesian inference, we introduce a Bayesian relative error metric in
terms of the injected eccentricity e;,; and the standard deviation of

the corresponding eccentricity posterior o MMC:

UMCMC
oMMC9] = 100 x - ) )

e,rel
€inj

To survey the parameter space widely with Bayesian inference,
we have conducted a total of 7 x 4 x 8 runs by sampling over only
intrinsic parameters for seven values of the total mass, four values of
the mass ratio, and eight values of the eccentricity given in equation
(1). We present only the runs for the intrinsic parameters here, as we
have shown that including extrinsic parameters does not affect the
results significantly.

We present the findings of our Bayesian inference in terms of
oSMC[%] in Fig. 7. Systems with ejy, > 107" will mostly lead
to the measurement of eccentricity to a relative error of less than
1 per cent for lower-mass MBHBs and <10 per cent for higher-mass
binaries, independent of g. The lowest value of eccentricity (emin)
that LISA can measure with a less than 50 per cent relative error is
10727 for M, = 10*° M,

We set 50 per cent Bayesian relative error as a fiducial threshold
for the measurement of eccentricity.'” We summarize the results of
all our MCMC runs in terms of the minimum measurable eccentricity
(emin) by LISA as a function of total mass and mass ratio in Fig. 8. The
results are mostly independent of mass ratio, although we witness
some slight change for higher-mass ratios (¢ = 8). ey, for heavier
systems is around 10~!, whereas for lighter MBHBs the eccentricity
can be measured down to ~ 107273, The measurement of eccentricity
in this regime can have far-reaching astrophysical consequences
which we present in the discussion.

10See Appendix B for the minimum eccentricity based upon the Bayes factor.
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Figure 8. Minimum measurable eccentricities as a function of binary mass
and mass ratio based on whether nglMc[%] < 50 in equation (8).

5 DISCUSSION

The current detectability analysis of GWs from MBHBs mostly
assumes negligible eccentricity (<107*) once the binaries enter
the LISA frequency band. However, we know that environmental
interaction is necessary for binaries to reach the near-coalescence
phase within a Hubble time. Therefore, it is important to consider if
even residual eccentricities are measurable, which can be a tracer of
the binary’s environment. In this work, we remain agnostic about the
driver of the binary’s eccentricity. Instead, we have determined the
minimum measurable eccentricity for a range of binary parameters.
These limits can be compared with theoretical models of binary
evolution in order to determine which binary formation scenarios
lead to measurable eccentric signatures in the GW waveform. For
example, we can compare our results with eccentricities predicted by
binary evolution in circumbinary discs (D’Orazio & Duffell 2021;
Zrake et al. 2021; Siwek, Weinberger & Hernquist 2023), which
predict egy ~ 1073 for ~103-10° Mg, systems at z = 1. Based on
our results in Fig. 8, e ~ 1073 will be indeed detectable'! for binaries
within the mass range ~10*°-10°3 Mg, at z = 1. Considering that the
eccentricity evolution will depend on the accretion disc properties
(D’Orazio & Duffell 2021), precise detection of eccentricity in
GWs can help constrain the source’s environmental properties. The
interaction with stars can also excite non-negligible eccentricities in
the LISA band. Gualandris et al. (2022) suggest ey, ~ 10~4-1073 for
a4 x 10° My MBHB, a range of eccentricities not detectable for such
massive system as per Fig. 8. However, lower-mass binaries are not
yet explored in these models. It is possible that a better waveform
model which includes more physics concerning eccentricity, such
as the advance of periastron (Tiwari et al. 2019), could improve
eccentricity measurements, but we leave this to future work. Overall,
measuring specific eccentricities predicted by various environments
may help to distinguish between them. Furthermore, not including
eccentricity during parameter estimation could lead to significant
biases in the recovery of other binary parameters (see Appendix B).

In addition to measuring orbital properties of binaries in GWs,
informative measurements of environmental deviations in GW wave-
forms are also possible for certain systems. Suppose the influence
of scattered stars, surrounding gas, or a nearby third body causes
alterations in the orbital evolution (compared to the same binary in
vacuum). In that case, this interaction leads to a dephasing of the
detected GW signal (e.g. Garg et al. 2022; Zwick, Capelo & Mayer
2023), amplitude modulation due to Doppler boosting and lensing
(D’Orazio & Loeb 2020), and can excite harmonics at higher fre-
quencies (Zwick et al. 2022). For a complete characterization of the

!See Fig. El for ey = 107273 & 2 x 1073 posteriors.
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binary properties in astrophysical environments, it will be necessary
to consider how these deviations correlate with binary parameters.
Assuming one has a robust knowledge of the range of predicted
residual eccentricities in different scenarios for the background (e.g. a
gaseous environment versus stellar encounters) and, simultaneously,
of the expected waveform modulation due to various interactions,
it becomes possible to cross-correlate these parameters to enhance
the determination of environmental effects. We plan to quantify the
feasibility of these measurements in future work.

LISA and other space-based mHz GW detectors will be able
to observe the coalescence of MBHBs in the mass range 10*-
10% Mg, across the whole sky. We expect to detect at least a few
events per year, with the event rate dominated by lower-mass MBH
mergers at z < 2 (Amaro-Seoane et al. 2023). However, current
predictions by both post-processing of cosmological simulations and
semi-analytical models vary by orders of magnitude, as they depend
on intricate details of MBH seeding mechanisms and evolution in
their host galaxies (e.g. Ricarte & Natarajan 2018; Tremmel et al.
2018; Barausse et al. 2020; Volonteri et al. 2020; Valiante et al.
2021). While the literature is still evolving on the expected residual
eccentricity at LISA entry from different environments, being able
to measure the eccentricity might add important information to place
further constraints on astrophysical scenarios for binary evolution.
Furthermore, irrespective of that, we need to be able to extract all the
potential information from the waveform if we are going to use them
for fundamental physics tests, such as excluding alternative general
relativistic theories (there can be various hidden degeneracies we do
not know of at the moment).

The work presented here is not devoid of certain systematics
that are present in the GW waveform model that is employed.
As mentioned in Section 2, the GW model TAYLORF2ECC we use
only provides eccentric phase corrections up to 3PN and at O(e?),
which makes it reasonable to use in the low-eccentricity regime
but can still induce some inaccuracies. The higher-order eccentric
corrections — up to O(e®) — are known (Tiwari et al. 2019) but
are cumbersome to implement within the full Bayesian inference
infrastructure, and the comparison of result for the leading order in
eccentricity with respect to higher-order eccentric corrections are
left for future work. Additionally, TaylorF2Ecc does not include
the component spin effects, which can have positive and negative
consequences for the measurability of eccentricity. The spin—orbit
and spin—spin couplings, which enter at high PN orders in the
phasing, can affect the inspiral significantly (Kupi, Amaro-Seoane &
Spurzem 2006; Brem, Amaro-Seoane & Spurzem 2013; Sobolenko
et al. 2017). However, we would like to point out that LISA will
very well measure spin effects near the late inspiral-merger phase of
the MBH binary’s evolution, where the system will be quasicircular
for the eccentricities considered here, so any possible degeneracies
between spins and eccentricity will be broken. To summarize, for
low values of eccentricities, one can ignore the above-mentioned
GW modelling issues without drastically changing the final results.

In this work, we only consider eccentricity corrections to phase
and not to the amplitude. The eccentricity enters at O(e?) in phase
without having a O(e) term which could be more important for low
eccentricities. Amplitude corrections from higher harmonics induced
by eccentricity can include O(e) terms. Therefore, it needs to be
explored how much the inclusion of amplitude corrections due to
eccentricity would improve the eccentricity measurement. Lower-
mass MBHBs have a large number of GW cycles in the LISA band,
which magnifies the O(e?) terms in the cumulative phase, thereby
leading to possibly better measurement of eccentricity from phase
than from the amplitude for lighter binaries. Furthermore, Moore
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et al. (2016) states that for the small eccentricities we consider
here, eccentricity corrections to phase are more important than to
the amplitude.

6 CONCLUSION

In this work, we study LISA-detectable GW's from eccentric MBHBs
in vacuum to find the minimum measurable eccentricity (em;,) that
can be inferred from the GW waveform. We consider systems that
spend at least a year before merging in the LISA frequency band at
z = 1 with total redshifted mass M. in the range 10*3-107° Mg,
primary-to-secondary mass ratio g between 1.2 and 8, and initial
eccentricity ey, from 10733 to 10~'. These MBHBs have SNR ~
100-2500 (see Fig. 2), allowing us to infer their binary parameters
with high accuracy. To robustly estimate e,;,, we use the inspiral-
only post-Newtonian eccentric waveform template TAYLORF2ECC,
and consider LISA’s motion in its orbit around the Sun as well as
time delay interferometry to suppress the laser noise by employing
the LISABETA software. We approach this analytically via computing
matches and Fisher matrices, and numerically via Bayesian inference
to find ey, for optimally chosen parameter grids in equation (1) to
cover our systems of interest. We itemize our findings below.

(i) Considering only three free binary parameters — M, ¢, and ey,
— we find that all approaches suggest that e,,;, mainly depends upon
M, and weakly upon g (see Figs 3, 4, and 7).

(i) The optimal match-based SNR criterion, that distinguishes
eccentric and quasicircular waveforms with more than 90 per cent
confidence, suggests that e, is ~1072 for lower-mass MBHBs (M,
< 10°3 Mg and ~107' for higher-mass systems (see Section 3.1
and Fig. 3).

(iii) Relative errors on the recovery of eccentricity provided by
the Fisher formalism for lighter systems are ~0.1 per cent for high
eccentricities and ~1000 per cent for low ey,. For heavier MBHBs,
relative errors are ~1 percent for higher eccentricities and 103
per cent for lower ey, (see Section 3.2 and Fig. 4).

(iv) Bayesian inference can constrain ey, ~ 10713 to less than
10 per cent relative error for most MBHBs.

(v) Sampling also extrinsic parameters in Table 1 does not affect
the eccentricity posterior significantly (see Figs 6 and E2).

(vi) Assuming a Bayesian relative error of less than 50 per cent as a
threshold for ey, we find that the minimum measurable eccentricity
is ey = 107275 for 10*3 M MBHBs, independent of the mass ratio
(Fig. 8).
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Figure Al. Tidal mismatches for three systems: M, = 10° M, (solid red),
M, = 10® M, (dashed green), and M, = 107 Mg, (dot—dashed blue) for ¢
= 8.0 and ey, = 0.1 over 20 frequency bins. We also indicate fiy for each
respective binary with symbols o, ¢, and A.

APPENDIX A: CIRCULARIZATION TEST FOR
TAYLORF2ECC

To check that the TaylorF2Ecc template is well-behaved, i.e.
Pece converges to e as the system approaches the coalescence, we
compute tidal matches: we divide a signal into equal frequency bins
and compute the mismatch (i.e. 1 — A heir, heee)) With respect to
the cumulative frequency. In Fig. A1, we show the evolution of the
mismatch as a function of cumulative frequency for three total masses
-{10°, 10°, and 107} M, — with fixed ¢ = 8.0 and e}y, = 0.1 over
20 frequency bins between fiy, and fisco. The figure indeed shows
that the mismatch is decreasing as the MBHB approaches its ISCO,
showing that TayLorF2ECC is well-behaved.

APPENDIX B: BAYES FACTOR AND BIASES

Another way to quantify whether a certain eccentricity is well
recovered in our analysis is by computing the Bayes factor. For
this purpose, we need to compare two hypotheses which are trying
to explain the same eccentric signal. The Null hypothesis is that a
circular template (here TAYLORF2) is enough to accurately describe
this signal. The eccentric hypothesis states that you need to have
the eccentricity parameter in your template (here TAYLORF2ECC) to
properly explain this signal. We then need to take the ratio of their
evidence to compute the Bayes factor

Zecc
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Zl"lO ecc ( )
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Figure B1. Same as in Fig. 8, but now based on whether In B > 8.
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Figure B2. Biases induced in the estimation of M, and ¢ due to fitting a
circular template to an eccentric signal as a function of ey, for a system with
M, =10° Mg and g = 8.

If InB > 8 (Lower et al. 2018; Thrane & Talbot 2019), then we
have a strong evidence that the given signal comes from an eccentric
system rather than a circular one.

To do this we inject eccentric signals using TAYLORF2ECC and
recover them with TaylorF2 to compute Z,, e and TAYLORF2ECC
to compute Z... by sampling only intrinsic parameters. Since we are
in a zero noise limit and high SNR limit with only eccentricity
parameter different between two models, we can compute the
Savage-Dickey ratio (Dickey 1971) to approximately get B. We only
need to use the Fisher matrix I'j; from TaylorF2Ecc for a given
injected eccentricity ejy; :

|27 T 1 e,
B~ m(e) ?exp <2 Fe_el> (B2)

where I' and [Mare determinants of Fisher matrices of all parameters
and parameters except eccentricity, respectively, and I',,! is the value
of the covariance on eccentricity. Here 7(e) = 1/(0.2 — 107° ) due
to an uniform prior.

In Fig. B1, we show minimum measurable eccentricities if In B >
8 for a given M, and g. These results are almost consistent with
Fig. 8, although results slightly worsen due to a stricter criterion.

We can also compute the bias induced in the estimation of M,
and g when fitting circular template to an eccentric signal. For this
purpose, we compute the bias for a given parameter 6, normalized
by its standard deviation as

A A

|9no ecc 9&00'
9 i
ecc

80[c] = (B3)

where § denotes the highest likelihood point in the posterior distri-
bution for the given model, and o, is the standard deviation of the
eccentric model posterior of 6.

In Fig. B2, we show 80[c] for M, and g as a function of varying
eccentricity for a fixed M. = 10° My and ¢ = 8. Both biases are
almostidentical and as expected, grow rapidly as ey, becomes higher.
For ey, = 10732, the bias in both parameters is ~0.4 and for ey, =
0.1, 80[c] = 120. These results emphasize the need to included
eccentricity during parameter estimation.

4185

APPENDIX C: DEPENDENCE ON
HIGH-FREQUENCY CUTOFF

In Fig. C1, we compare posteriors between two signals, where the
high-frequency cutoff is at 10 ¢ and at our fiducial cutoff 3 r,. This
exercise is performed to ensure that near-merger artefacts, beyond the
scope of TAYLORF2ECC, do not bias our results. Almost overlapping
posteriors indeed illustrate that the cutoff near the merger does not
affect the recovery of parameters, especially eccentricity, which is
an early inspiral effect.
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Figure C1. Posterior distributions for the same binary parameters as in Fig. 5
with a high frequency cutoff at 10 r; (dashed red) binary separation compared
to our fiducial cutoff at ISCO or 3 ry separation (solid black).

APPENDIX D: DEPENDENCE ON FISHER
INITIALIZED PRIOR’S COVARIANCE

In Fig. D1, we make a comparison between two posteriors with
prior’s covariances either the same as our fiducial Fisher covariances
or twice the Fisher covariances. Almost identical posteriors clearly
illustrate that our Bayesian runs are giving informative results and
not merely giving back the Fisher priors we are using.
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Figure D1. Posterior distributions for the same binary parameters as in Fig. 5
with prior’s covariances (a&rior) (solid black) being our fiducial covariances
(alfisher) provided by the Fisher formalism compared to alzrior set to ZGinsher
(dashed red).

APPENDIX E: SOME INTERESTING
POSTERIORS

Fig. E1 shows posteriors for intrinsic parameters for injected MBHB
parameters M, = 10° Mg, ¢ = 8.0, and ey = 10727, a system
that is motivated astrophysically by the binary’s interaction with
its environment. While the mass and the mass ratio are still well-
measured as in Fig. 5 due to similar SNR, eccentricity posterior is
broad. Nonetheless, the peak of the eccentricity posterior is very
close to the injected value.
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Figure E1. Same as Fig. 5, but for an injected binary with M, = 10° Mg, ¢
= 8.0, and ey = 10727,

In Fig. E2, we show posteriors for all parameters given in Table 1
for an injected binary with M, = 10° M, g = 8.0, and e1yr =0.01and
the extrinsic parameters set to our fiducial values. Comparison with
posteriors when only varying intrinsic parameters suggest that while
M, and g are about order-of-magnitude less constrained, eccentricity
is almost not affected due to the inclusion of extrinsic parameters,
supporting inference from Fig. 6. As expected, there is a degeneracy
between the inclination (1) and the luminosity distance (Dy). The
phase at coalescence (¢) and the polarization angle () have multi-
modality due to periodic functions and hence their injected values
are not recovered robustly. The ecliptic latitude (1) and longitude (8)
exhibit slight degeneracies with Dy, but are well constrained.
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