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Pulsar timing arrays perform Bayesian posterior inference with expensive Markov chain Monte Carlo
(MCMC) methods. Given a dataset of ~10-100 pulsars and O(10%) timing residuals each, producing a
posterior distribution for the stochastic gravitational wave background (SGWB) can take days to a week.
The computational bottleneck arises because the likelihood evaluation required for MCMC is extremely
costly when considering the dimensionality of the search space. Fortunately, generating simulated data is
fast, so modern simulation-based inference techniques can be brought to bear on the problem. In this Letter,
we demonstrate how conditional normalizing flows trained on simulated data can be used for extremely fast
and accurate estimation of the SGWB posteriors, reducing the sampling time from weeks to a matter of

seconds.
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Introduction.—Pulsar timing array (PTA) experiments
have recently announced evidence for an all-sky back-
ground of gravitational waves (GWs) in a frequency
window of ~1-100 nHz [1-4]. These experiments leverage
the exceptional timing regularity of millisecond pulsars to
search for quadrupolarlike correlated arrival-time devia-
tions of radio pulses, thereby signaling the presence of
GWs. The origin of these GWs is still uncertain, but a
known source in this frequency range is from a population
of subparsec-separated supermassive black-hole binaries
whose individual GW signals superpose incoherently to
produce a stochastic background (see, e.g., [5,6], and
references therein). Additionally, there could be gravita-
tional waves arising from new physics in the early Universe
[7]. The origin of this signal, and the underlying astro-
physics and cosmology leading to it, will become better
understood as existing pulsars are timed longer and more
pulsars are added to arrays [8]. Yet this will lead to existing
PTA inference strategies becoming ever more taxed, length-
ening analysis times and reducing the scope of studies that
can be tackled with available computational resources.
There are ongoing efforts to resolve this problem, including
techniques that refit on intermediate analysis products and
condense them into sufficient statistics [9]. However, these
efforts have yet to employ deep learning methods, which
hold great potential to accelerate and improve the sensi-
tivity of PTA GW inference. Deep learning has already
shown great promise in ground-based GW data analysis
(e.g., [10-15]).

One of the essential aims of PTA inference is to learn the
posterior density p(6@|r) in parameter space [e.g., the
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amplitude and power-law slope of the stochastic gravita-
tional wave background (SGWB) signal] given the data r.
The standard approach to deriving this posterior density is
Markov chain Monte Carlo (MCMC) sampling of the true
likelihood p(r|@), which is modeled as a Gaussian dis-
tribution over the data. The covariance for individual
pulsars is determined by red and white noise processes,
while the interpulsar covariance is based on the Hellings-
Down curve [16] of the SGWB. To evaluate this likelihood,
one must invert a large covariance matrix (with dimensions
of the product of the number of pulsars and twice the
number of GW frequencies searched) for each parameter
vector visited in an MCMC chain. Deriving a single
posterior density for the NANOGrav 12.5 year dataset
[17] requires Z5 days of computation to explore a
Hellings-Downs-correlated model of the SGWB, while
simultaneously sampling the intrinsic pulsar red noise
processes. (Likelihood evaluation times on this dataset
for a Hellings—Downs-correlated model can be ~0.1-1 s.
At least 10° likelihood iterations are usually performed in
an MCMC exploration of the model space, resulting in
~5 days of computational wall time.)

Although the PTA likelihood p(r|@) is slow to evaluate,
it is extremely fast to sample from, since the time series
have diagonal covariance in Fourier space, and the Fourier
transform is fast to evaluate. This is an ideal situation for
simulation-based inference (SBI) (see, e.g., [18] for a
review). By generating a large training dataset consisting
of pairs of parameters and time series (@, r) (the dataset is
distributed according to the prior on 0), the SBI technique
known as neural posterior estimation [19-21] can then be
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used to learn a fast-sampling posterior density p(6|r) from
the samples. Since this learned posterior is conditioned on
the data r, it can be used to quickly analyze any new data
that is covered by the training dataset. (There are many
other SBI techniques for learning the posterior or likelihood
from samples, e.g., neural likelihood estimation or neural
ratio estimation. We refer to the reader to [18] for more
details.) Neural posterior estimation has already proven to
be highly successful across a wide range of domains (see
[22,23] for curated and continuously updated bibliogra-
phies). Here, we demonstrate for the first time the power of
using neural posterior estimation to analyze pulsar tim-
ing data.

In order to learn the posterior from samples, we will use
the method of normalizing flows (NFs). Normalizing flows
are a powerful method for density estimation and gener-
ative modeling (see [24,25] for reviews and original
references). Using highly expressive neural networks, they
aim to learn an invertible transformation with tractable
Jacobian between any data distribution to a latent space
following a simple prespecified distribution (such as
Gaussian or uniform). By running this transformation in
one direction, one can estimate the probability density of
any point in the dataset; running it in the other direction,
one can generate more samples that follow the same
distribution as the data.

Data.—Following the recent PTA literature [26,27],
pulsar timing observations are modeled with a leading
contribution due to a timing ephemeris, which upon fitting
and subtracting from the observations leaves a set of timing
residuals. In SGWB searches—i.e., ignoring possible
deterministic GW signals—these residuals are modeled
as random Gaussian processes, fully characterized by their
power spectra in frequency space. The relevant parameters
of the different random Gaussian components are white
noise; individual “red noise” for each pulsar / with Agl) and

y(rl> describing, respectively, the amplitude and exponent of
a power-law model in frequency space; and the SGWB
which is common to all pulsars, with amplitude Agy and
yYGw, again for a power-law spectral model in frequency
space. If supermassive black-hole mergers are the dominant
source of gravitational waves in the nanohertz range, then it
is expected that pulsar timing will observe ygw ~ 13/3
[28]. We will keep it as a free parameter in this study and
seek to infer it from the data.

Our goal is to build mock pulsar timing datasets that
model the key sources of signal and noise. Although
common software frameworks exist for pulsar timing
analysis (most notably LIBSTEMPO [29] and PINT [30]),
we choose to generate our training data using our own code
for greater simulation efficiency, control over the data, and
understanding of the results. (For details of our methods,
see Supplemental Material [31].) Using our own frame-
work, we generate one million mock PTA residual time
series for N, = 10 pulsars with observation times drawn

TABLE I. The ten pulsars used in this analysis, their number of
residuals, and best-fit red noise parameters A, and y,.

Name No. residuals  Best-fit log;g A,  Best-fit y,
J1909 — 3744 408 —15.08 1.73
J2317 + 1439 447 —17.08 3.20
J2043 4- 1711 302 -16.39 2.94
J1600 — 3053 236 —13.54 0.61
J1918 — 0642 262 —16.38 2.68
JO613 — 0200 278 —14.46 2.16
11944 + 0907 136 —-16.51 3.06
J1744 — 1134 268 —13.62 2.45
J1910 + 1256 170 —-16.70 3.25
JO030 + 0451 463 —15.08 4.89

from the epoch-averaged NANOGrav 12.5 year dataset
[17]. We use the ten pulsars which were found to contribute
the most evidence toward an (isotropic) SGWB signal in
the NANOGrav analysis of their dataset [35]. Table I
describes these ten pulsars and their best-fit red noise
parameters. The white noise is fixed to 100 ns for all
pulsars; red noise is sampled independently for each pulsar,
from a uniform distribution, logloAgl) e[-19,-13], yg') IS
[1,7]; and the SGWB is sampled uniformly from
logloAGw S [—18, —13], Yow € [1, 7] Red noise and
SGWB contributions to the residuals are generated in
frequency space and then Fourier transformed to the time
domain; see Supplemental Material [31] for details. We
include a minimal pulsar timing model for each pulsar
which accounts for a time offset, the pulsar period, and the
rate of change of the pulsar period. To remove the
dependence on the Fourier transform base frequency and
the pulsar timing model, we apply the G-matrix projection,
following [36]; this projects the timing residuals into the
null space of the timing-model design matrix, which is
equivalent to marginalizing over linear deviations to the
timing-model parameters [37]. After the G-matrix projec-
tion, there are a total of 2940 projected residuals across the
ten pulsars. Of the 10 generated time series, we reserve
90% for training the normalizing flow (to be described in
the next section) and 10% for validation (model selection).

It was a challenge to preprocess the residuals into a form
that enabled the flow to learn effectively. They spanned an
enormous range—nearly 14 orders of magnitude—due to
the wide log-uniform priors taken for the red noise and
SGWB amplitudes. However, a simple log-transform of the
residuals was not possible, since they could take either sign.
Instead, we found that rescaling the residuals, r — 107 x r,
followed by a clipping 1000, worked well to make the
inputs of the neural network O(1). This focuses on the part
of the parameter space of greatest interest (the weakly
detectable SGWB regime) and might lose sensitivity to the
part of parameter space of less interest (a huge SGWB
signal, which is anyways incompatible with current obser-
vations). Finally, each time series r € R?** is paired with
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TABLE II. The neural network architectures that define our
embedding and our posterior density models.

E; network LSTM Num_layers = 2
Hidden_size = 100
Output_dim = 400

E; network MLP Hidden_size = 200,100
Output_dim = 20

F network MLP Hidden_size = 100,100
Output_dim = 50
N MADE — 8

Posterior network MAF Hidden_size = 200,200

Base: uniform
Transform: RQS (8 bins)

the set of parameters which characterize the stochastic
noise, @ € R??; these parameters are

(1)

1 1 10) (10
0= (IOgIOAGWJ/GW’lOgIOAg)’Vr ,---710g10A<r )’J’(r ))-

(1)

Since the training data are generated with a uniform
distribution, we preprocess € with a simple shift and
rescaling so 0 € [-1, 1]*2.

Maximum likelihood (ML) setup.—We fit a conditional
normalizing flow to samples (6, r) using the maximum
likelihood loss objective in order to estimate the posterior
density p(@|r). We use masked autoregressive flows
(MAFs) [38] with rational quadratic spline (RQS) trans-
formations [39,40]; for the details of the hyperparameter
choices, see Table II. We note that our choice of base
distribution was motivated by the uniformly sampled
training data; in early tests, we found the flow performed
better this way compared to using a Gaussian base
distribution.

Rather than feeding all 2940 residuals directly to the NF,
we first pass them through an auxiliary embedding net-
work. This is a popular trick for improving the performance
of neural posterior estimation (see, e.g., [15,41])—by
compressing the inputs down to a more informative feature
vector, the embedding network mitigates the curse of
dimensionality.

We found the following multistage architecture worked
well:

¥ = F(E{(r)). Ex(r2). ... E1o(r10)). (2)

Here, each E; takes the (preprocessed) residuals of pulsar /
and returns a per-pulsar embedding; then, F' takes the
concatenation of these embeddings and returns an overall
embedding. Each E; consists of a two-layer long short-term
memory (LSTM) network [42] followed by an multi-layer
perceptron (MLP). (The MLP takes as input the concat-
enation of the hidden and cell states from each LSTM
layer.) Meanwhile, F' is just a simple two-layer MLP that

takes as input the concatenation of the per-pulsar embed-
dings and outputs a final 50-dimensional embedding
vector. For details of the architecture, we again refer the
reader to Table II. We found that using an LSTM in the E;
instead of just an MLP improved the performance of the
network significantly. So did using a two-stage per-pulsar
structure instead of feeding all 2940 residuals to a single
LSTM or MLP.

To implement our normalizing flow and embedding
network, we use the NFLOWS package [43] and pyTorch
[44]. The entire setup (NF plus embedding network) is
trained concurrently using the log-likelihood objective and
the RAdam optimizer [45] with default parameters and a
batch size of 256. The networks are trained for up to 100
epochs, and the epoch with the best validation loss is
chosen for the final demonstration. The training took
15 min per epoch (totalling 25 h for 100 epochs) on three
Nvidia P100 GPUs, while sampling the flow to produce the
posteriors takes approximately 5.6 s per 100 000 samples.
Meanwhile, sampling the equivalent number of posterior
draws using the traditional MCMC pipeline takes approx-
imately 5.5 h on an Apple M3 Pro chip. Although the flow
may take longer to train than a single run of the MCMC, it
can be reused to quickly generate posteriors for as many
datasets as needed. For the purposes of large-scale simu-
lation studies on a PTA with fixed design, this will be
enormously beneficial.

Results.—We first show in Fig. 1 the posteriors re-
covered by our normalizing flow for a 2 x2 grid of
(logioAgw,YGw) values. For each parameter choice, a
single instance of pulsar residuals is generated and fed
as conditional labels to the trained flow, and 100 000
samples in parameter space are generated from the flow.
(In this example and all the subsequent ones, we fix the
injected red noise values to their nominal best-fit values
shown in Table I.) We use CHAIN_CONSUMER [46] to plot
the posteriors from the samples. In Fig. 1, we also show
posteriors obtained from the exact PTA likelihood, using
pulsar dataset simulations passed through the ENTERPRISE
[47] PTA data analysis pipeline, and sampled using
MCMC. We can see that the flow-generated posteriors
are already quite accurate, matching the true MCMC
posteriors reasonably well across the parameter space. In
particular, the flow posteriors more or less cover the
MCMC ones and correctly indicate when the SGWB
parameters can be recovered vs when the amplitude or
the slope are too small and the posterior corresponds to
only an upper limit. [Indeed, the flow correctly reports that
the posterior in these cases carries no information below an
approximately diagonal line in log,y(Agw) VS yGw- This is
expected from the nature of the PTA, whereby the bulk of
the constraint on the SGWB comes from the lowest
frequencies, and there one can trade off amplitude for
slope as indicated in the third panel in Fig. 1.]

Next, we drill down to the case of nominal SGWB values
of ygw = 13/3 and Agw = 10715, We can repeatedly
generate timing residuals with these SGWB parameters
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FIG. 1.

A comparison of the flow-estimated posteriors and the MCMC-derived ground truth posteriors, for a grid of four different pairs

of SGWB parameters: (ygw,log0Agw) = (2.5,—14.5), (4.5, —14.5),(2.5,-15.5), (4.5, —15.5) from left to right, respectively.

and see the variation in posteriors that result. Four instances
are shown in Fig. 2. We again observe qualitatively good
coverage of the true (MCMC) posterior. We quantify the
agreement with the true posteriors using the Hellinger
distance [48]. This is a distance measure between proba-
bility distributions which becomes tractable when the
distributions are Gaussian—an approximation that empiri-
cally describes our two-dimensional posteriors quite well.
We find that the mean and standard deviation in Hellinger
distances between flow and true posteriors calculated
across ten instances is 0.33 £ 0.04.

Finally, the flow-generated samples can be made more
precise by reweighting them with the true likelihoods. This
reweighting technique has been explored previously in the
PTA literature by Hourihane et al. [49], who studied the
efficacy of reweighting an approximate posterior obtained
by ignoring cross-correlations between pulsars. (See also
[50], which explored a very similar reweighting technique
starting from flow-based posteriors, in the context of
gravitational wave interferometry.) Given a parameter point
0, ~ DPiiow(0|r) sampled from the flow, we can calculate the
true likelihood of these parameter points p.(r|6,). Up to
an overall normalization (the Bayesian evidence), this can
be used to determine the weights required to turn the flow
samples into samples following the true posterior:

_ Pue(710.)p(04)
Pﬂow(ealr) .

(3)

a

(Furthermore, the average of the weights provides an
estimate for the Bayesian evidence. This can be used as
a metric to compare two different models; if the importance
sampling with a given N does not accurately approximate
the integral over the true posterior, the estimated evidence
will be biased to lower values [50].)

The reweighted flow posteriors are shown in Fig. 3
compared with the MCMC posteriors for a single instance
of timing residuals generated from the nominal SGWB
parameters. We see the reweighted posteriors are significantly
improved over the posteriors sampled from the uncorrected
flow, basically in perfect agreement with the MCMC.

With the reweighted posteriors, the Hellinger distances
(again, calculated over ten instances) improve to 0.22 =+ 0.15.
This can be benchmarked against the Hellinger distances
between the posteriors obtained through MCMC with differ-
ent random seeds; evaluating 100 additional random realiza-
tions of the MCMC against the one that we have been using
here as the point of comparison, we find 0.01 4 0.01.

Meanwhile, another common measure of the quality of
importance sampling (used, e.g., in [49,50]) is the weight-
ing efficiency (which is closely related to the effective
sample size [51])

1 (Zla\;l Wa)2

e === °
N Zgzlwg

-- Normalizing flow
—— True posterior (MCMC)

log10(AGw)

FIG. 2. A comparison of the flow-estimated posteriors and the MCMC-derived ground truth posteriors, for four time series sampled
from a single choice of SGWB parameters, (ygw,log0Agw) = (13/3,—15).
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FIG. 3. Posteriors from the raw normalizing flow (red line), the

reweighted normalizing flow (orange line), and the MCMC-derived
ground truth (blue line), for a single realization of the PTA residuals
with the same nominal SGWB parameters as in Fig. 2.

This is a statistical measure of the fraction of unweighted
samples that would be required to match the variance of the
weighted sample. The weighting efficiency is estimated
(using N = 10° samples) to be log;(¢) = —3.2 £0.7.

Clearly, both of these metrics indicate that there could be
room for further improvement of the neural posterior
estimation quality. This is entirely to be expected, since
we did not extensively optimize the hyperparameters for
this first proof-of-concept work.

Although reweighting the flow posteriors also requires
evaluating the true likelihoods, it is an interesting alter-
native to the MCMC, for several reasons. First, these calls
are fully uncorrelated and, hence, fully parallelizable,
whereas the MCMC samples always suffer from some
correlation and need to be evaluated (at least to some
degree) sequentially. Second, the specific numbers and
comparisons presented here are not set in stone—the
quality of the flow can likely be improved systematically
with additional improvements to the neural network archi-
tecture. This will reduce the number of likelihood evalu-
ations required for the reweighting, further improving the
comparison with the MCMC (which is a stable, mature
technique).

Conclusions.—We have shown, using simulations that
capture some of the challenging aspects of analyzing real
PTA datasets—e.g., uneven cadence, different noise prop-
erties, and timing models in each pulsar—that normalizing
flows offer enormous potential to vastly accelerate PTA
data analysis and parameter inference with almost no loss in
accuracy or sensitivity. Going forward, we expect these
techniques enabled by modern machine learning to revo-
lutionize the PTA field, complement the traditional

MCMC-based techniques, and, with the influx of high-
cadence data and new pulsars from forthcoming flagship
radio facilities, ultimately replace the status quo pipelines.
Machine-learning techniques, like the one we have studied
here, will safeguard the future tractability and scalability of
nanohertz-frequency GW analyses, ushering in a new era of
discovery with PTA data.

There is much that can be improved in our pilot study.
On the purely ML side, the specific architecture taken here
(MAF-RQS normalizing flow with LSTM-based embed-
ding) was not heavily optimized for performance, and it is
likely that, with a more dedicated hyperparameter scan, the
performance of the flow-based posterior estimation could
be greatly improved. It would also be fruitful to explore
different architectures, e.g., embeddings based on trans-
formers, or more expressive alternatives to ordinary nor-
malizing flows such as diffusion models [52-56] or
continuous normalizing flows [57]. We should also point
out that posteriors obtained via simulation-based inference
are not guaranteed to be conservative [58] (which has
implications for the effectiveness of importance sampling),
and it is an interesting future direction to explore improved
techniques such as [59] that guarantee more conservative
posteriors. In any event, the results shown here should not
be taken as the ultimate limit of what modern ML
techniques can achieve but just the starting point.

Pulsar timing data are highly heterogeneous in quality
and regularity, as the limitations of legacy data are joined
with the ever-improving sensitivity of modern data.
Furthermore, there are many processes associated with
the propagation of radio pulses in the ionized interstellar
medium that leave their imprint on pulsar timing data, and it
is known that a one-size-fits-all approach to modeling these
effects in pulsars is not appropriate. Machine-learning
strategies must be able to accommodate the rich variety
of noise processes with which pulsar timing data must
contend and be able to do so on a per-pulsar basis.
Additionally, GW signals in the PTA band are a combi-
nation of stochastic (e.g., the GW background) and
deterministic (e.g., individually resolvable binary signals,
or bursts), and machine-learning pipelines need to be able
to model these with the same or better flexibility as current
likelihood-centered approaches. Perhaps the most impor-
tant improvement that must be made is the fact that the
datasets are continually growing. Ideally, a neural network
would not need to be completely retrained to incorporate
the extension of existing datasets or, indeed, their expan-
sion with additional pulsars.

Out of the improvements we have identified, there also
lie opportunities. Simultaneous characterization of a GW
background and a (perhaps variable) number of single
resolvable GW signals remains challenging for current
pipelines. Iterative refinement of pulsar noise models is also
time consuming and somewhat ad hoc, in that it may
depend on the assumed base model from which iteration is
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begun, and it currently does not take place at the level of the
full array but rather independently in each pulsar. Deep
learning, while not a panacea, could be well placed to tackle
such complicated, high-dimensional decisions. If so, the
discovery potential of PTAs will continue to grow, belying
the long-timescale nature of the experiment to offer regular
GW, pulsar, and interstellar-medium breakthroughs.
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