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The diel disconnect between
cell growth and division in
Aureococcus is interrupted by
giant virus infection

Alexander R. Truchon', Emily E. Chase', Ashton R. Stark and
Steven W. Wilhelm*

Department of Microbiology, University of Tennessee, Knoxville, TN, United States

Viruses of eukaryotic algae have become an important research focus due to
their role(s) in nutrient cycling and top-down control of algal blooms. Omics-
based studies have identified a boom of genomic and transcriptional potential
among the Nucleocytoviricota, a phylum of large dsDNA viruses which have been
shown to infect algal and non-algal eukaryotes. However, little is understood
regarding the infection cycle of these viruses, particularly in how they take over a
metabolically active host and convert it into a virocell state. Of particular interest
are the roles light and the diel cycle play in virocell development. Yet despite
such a large proportion of Nucleocytoviricota infecting phototrophs, little
work has been done to tie infection dynamics to the presence, and absence,
of light. Here, we examined the role of the diel cycle on the physiological and
transcriptional state of the pelagophyte Aureococcus anophagefferens while
undergoing infection by Kratosvirus quantuckense strain AaV through flow
cytometry and differential expression analyses. Our observations demonstrate
how infection by the virus interrupts the diel growth and division of this cell
strain, and that infection further complicates the system by enhancing export
of cell biomass. Furthermore, these analyses reinforce the expectation that viral
activity is heavily associated with the diel cycle.
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Introduction

Diel patterns in phytoplankton are common. Specific factors known to cycle on a diel basis
(i.e., diel periodicity) among phytoplankton include population density, biomass, community
species composition, intracellular metabolism, resources (e.g., nutrients, organic constituents,
DNA concentration), enzymatic activity, and primary production (Prezelin, 1992). Early field-
based studies acknowledged these diel cycles, and began investigating the influence that time-
of-collection for sampling might have on aquatic plankton research (Maxwell and Mikihiko,
1957; Yentsch and Ryther, 1957; Shimada, 1958; Doty, 1959). By the 1960s, green algae,
dinoflagellates, and diatoms had all been observed to have diel patterns in vitro (Holmes and
Haxo, 1958; Hastings et al., 1961). Generally, this diel cycle of phytoplankton has been thought
to be decoupled from ambient light (Harding et al., 1981; Yoshikawa and Furuya, 2006). Still,
higher resolution of this cycle in various algal systems during experimentation enhances the
reproducibility of results. In a cell division periodicity study of 26 clonal cultures of marine algal
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cultures (representing 13 species), it was found that intraspecific
variation does occur, and that different algal species can exhibit diel
periodicity with division occurring at night or during the day (Nelson
and Brand, 1979). For example, it was found that in phytoplankton
collected from Sagami Bay (Japan), photosynthetic maxima
(normalized absorption; mol C m™> h™') were highest at noon, and
lower at dawn and dusk, with end-of-day timepoints being significantly
variable (Yoshikawa and Furuya, 2006). Thus, photosynthetic variations
were thought to be endogenously regulated (Behrenfeld et al., 2004).
In the polymorphic haptophyte Phaeocystis pouchetii, it has been
shown that synchronized cell division occurs midway through the dark
cycle (on a 12/12 light: dark cycle), and that at higher light intensities
or longer light cycles, cells could experience a division rate of greater
than once per day (Jacobsen and Veldhuis, 2005).

Recent examinations of diel periodicity have focused on the
functional roles and dynamics of important marine microbes, which
has been given further context through new methods including
metatranscriptomics and flow cytometry (Aylward et al., 2015; Hu
etal., 2018; Henderikx Freitas et al., 2020). Many studies have explored
the implications of diel periodicity in Bacteria, Eukaryota, and
Archaea in important coastal and open ocean systems (Ottesen et al.,
2014; Groussman et al., 2021; Muratore et al., 2022). In the North
Pacific Subtropical Gyre, autotrophic metabolism was heightened
during the day, and authors found that diel cycles in bacteria (e.g.,
Synechococcus and Prochlorococcus) included an increase in cell-size
during the day, and cell division around dusk (Hu et al., 2018). Other
studies have shown that picocyanobacterial gene expression is tied to
diel periodicity (Zinser et al., 2009). However, picocyanobacterial cell
counts remained stable in the gyre, as their diel metabolic activity was
linked with the diel activity of dinoflagellates, haptophytes, ciliates,
and marine stramenopiles which would graze on the newly divided
cells around dusk. Furthermore, diel periodicity of dominant
photoautotrophs (e.g., Ostreococcus and Prochlorococcus) has been
shown to shape community dynamics via light-based carbon
acquisition at the base of the food web (Poretsky et al., 2009; Aylward
etal.,, 2015). However, there have been few studies exploring important
bloom producing algae, nor how viral infection of algae and the
formation of a virocell (a cell actively undergoing viral infection and
thus with altered metabolic function) are affected by diel cycling.
Although viruses were not explored in these studies, it is logical that
they would also be influenced by their hosts’ reaction to the diel cycle.

In theory, the dominant algae within a system can change during
blooms, establishing a new community dynamic still potentially
coupled to diel cycles. Such effects could include shifts in populations
grazing on a phytoplankton, shifts in primary productivity, and/or
changes in light penetration of the water system. Viruses have been
demonstrated to be important factors in bloom dynamics and are
specifically implicated in bloom termination (Jacquet et al., 2002;
Brussaard et al., 2005; Steffen et al., 2017). Their role also has
implications for biogeochemical cycling, including open ocean
impacts on carbon cycling (i.e., the viral shunt; Wilhelm and Suttle,
1999) and carbon export (i.e., the viral shuttle; Sullivan et al., 2017).
Indeed, a recent mesocosm study of carbon release showed viruses
drove a 2-to 4-fold increase in extracellular carbon during bloom
termination (Vincent et al., 2023). Thus, the effects of bloom events
and bloom termination in the context of diel periodicity are important,
especially given the diversity of life cycle strategies used by the
causative agents of blooms and their viruses.
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For the past two decades the brown tide bloom agent Aureococcus
anophagefferens and “giant virus” Kratosvirus quantuckense (family
Schizomimiviridae) have been studied in detail (Sieburth et al., 1988;
Rowe et al, 2008; Truchon et al, 2023). The pelagophyte
A. anophagefferens was characterized in 1985 (Sieburth et al., 1988)
and has continued to produce blooms along the East Coast of the
United States (Narragansett Bay, Barnegat Bay, Long Island bays)
(Bricelj and Lonsdale, 1997), off the coast of China (near
Qinhuangdao; Bohai Sea) (Zhang et al., 2012) and a bay on the
southwest coast of South Africa (Saldanha Bay) (Probyn et al.,, 2010).
Brown tides are designated as harmful algal blooms (HABs) because
of their economic and ecological detriment (Gobler et al., 2005). The
virus K. quantuckense has been implicated as a regulator of
A. anophagefferens brown tide bloom termination via population-wide
cell mortality (Gastrich et al., 2004). Notably, irradiance levels have
previously been tied to viral burst size in an in vitro setting,
demonstrating that virus particles produced during an infection cycle
are dependent on the availability of light (Gann et al., 2020a). If light
is important to infection, then it is possible that stages of the viral life
cycle as well as virocell gene expression are tied to the diel cycle as
well. Given the need to better understand the physiological ecology
and energetics of brown tides, we monitored the diel periodicity of
this brown tide agent alone and during viral infection in lab studies to
determine how viral infection can affect the alga’s response to light.
We observed a strict partitioning of physiological and metabolic
processes by A. anophagefferens in relation to diel periodicity that was
interrupted by viral infection.

Methods and materials
Culture conditions

Three non-axenic isolates of Aureococcus anophagefferens were
studied, including two that are resistant (strains CCMP1850 and
CCMP1707) and a third (strain CCMP1984) susceptible to lytic
infection by Kratosvirus quantuckense strain AaV (Aureococcus
anophagefferens Virus) (Rowe et al., 2008). Cultures were maintained
at 19° C under a 12:12 light dark cycle in ASP,,A growth media (Gann,
2016). Light levels for maintenance and experimental cultures
were ~70 pmol photons m™ s, Shading experiments were conducted
by wrapping one or two layers of neutral density screening around
individual culture tubes that reduced irradiance to 40 and 20 pmol
photons m™2s7', respectfully. Prior to experimentation under reduced
light conditions, cultures were moved and acclimated to the specific
light treatment for at least 72h. The concentration of cells in
A. anophagefferens cultures was determined using a CytoFLEX flow
cytometer (Beckman Coulter, Brea, CA) (Chase et al, 2022).
Abundance in samples for gated cellular populations was quantified via
violet side scatter (V-SSc) versus peridinin-chlorophyll fluorescence
(absorption 488 nm, emission 690 nm) (Chase et al., 2022).

Cell diameter estimates

Individual cell diameters determined based on

measurements from a FlowCam 8000 (Fluid Imaging Technologies,

were

Scarborough, ME). Briefly, culture samples were diluted to
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approximately 1 x 10° cells ml™" and then imaged using the FlowCam’s
20X objective. Ten thousand individual cellular images were used to
calculate average cell diameter and volume as well as for verification
of cell concentration (using VisualSpreadsheet 2). FlowCam
measurements for average diameter were compared to flow cytometry
measurements taken on the V-SSc channel using a 405 nm violet laser
(CytoFLEX C07821), an approach which has previously been utilized
for estimating cell size in algae and small particles (Chioccioli et al.,
2014; McVey et al, 2018). A. anophagefferens CCMP1984 was
compared on both devices over the course of 24 h after either being
infected (see below) or treated with filtered viral lysate. To determine
the relation between these measurements, a Pearson’s coefficient was
calculated. A. anophagefferens CCMP1984 cell diameter determined
from the FlowCam 8000 was correlated strongly with the V-SSc
measurements (p <0.001; R* =0.9413) (Supplementary Figure S1).
This correlation was consistent for both virus-infected and uninfected
A. anophagefferens cells through different stages of the growth and
infection cycle. For this reason, V-SSc was used as a proxy for average
cell diameter for the remainder of the experimentation.

Infection with Kratosvirus quantuckense

The AaV strain of K. quantuckense has been maintained in culture
since its isolation in 2008 (Rowe et al., 2008). Fresh AaV particles were
generated by infection of 1L of a 7d-old culture of A. anophagefferens
CCMP1984 grown in ASP;,A medium as above. After allowing the
population to lyse (14 d), lysate was filtered sequentially through 1-pm
and 0.45-pm pore-size, 47-mm diameter low protein binding
Durapore (PVDF) membrane filters (MilliporeSigma; Burlington,
MA). Viruses in the filtered lysate were concentrated via tangential
flow filtration through a 30kDa Pelicon XL (MilliporeSigma;
Burlington MA) filter to an approximate volume of 50mL as
previously described (Coy and Wilhelm, 2020). Following
concentration of viruses from lysate, contaminating bacteria were
removed via centrifugation (3,500 x g, 10 min). Viral particles were
enumerated via flow cytometry (Chase et al., 2023). Briefly, lysate was
fixed with 1% glutaraldehyde solution in the dark at 4° C for at least
1 h. Lysate was then stained with SYBR Gold (Invitrogen; Waltham,
MA) at a final concentration 0.5X at 80° C for 10 min. Virus particles
were enumerated using the violet laser on a CytoFLEX flow cytometer
(C07821) (Beckman Coulter; Brea, CA) (Chase et al., 2023; Zhao
etal., 2023).

For experiments, infection of A. anophagefferens was performed
on cells in exponential growth stage diluted to 1 x 10° cells ml™" in
fresh ASP,A medium. Viral lysate was added to diluted
A. anophagefferens cells at a multiplicity of infection (MOI) of ~100
viral particles per A. anophagefferens cell (unless otherwise specified)
to approach uniform infection (Gann et al., 2020a). To control for
non-viral effects lysate may have on algal cells, lysate was sterilized
through a 0.02-pm Anotop 25 syringe filter (Whatman; Maidstone,
United Kingdom) for all control infection cultures. Cell concentrations
during infection were determined via flow cytometry (Chase et al.,
2022). Following lysis of samples, aliquots were fixed using 1%
glutaraldehyde for further enumeration of released viral particles.
When infecting at lower MOIs, cell diameter measurements were
determined via flow cytometry 23h following infection before the

Frontiers in Microbiology

10.3389/fmicb.2024.1426193

initiation of the light cycle. This allowed for measurements of cell size
before cell lysis without the input of any additional light.

Transcriptome analyses of Aureococcus
anophagefferens infection by AaV

We took advantage of an existing transcriptomics data set
(Moniruzzaman et al., 2018) to query the progression of infection at
the molecular level. Trimmed reads of infected and uninfected cultures
of A. anophagefferens were mapped to the reference genome
(GCF_000186865.1) using default parameters in CLC Genomics
Workbench (v. 21.0.4) and read counts were analyzed for differential
expression using DESeq2 (v. 1.42.0) in R 4.3.2 (Love et al., 2014).
Control (uninfected) samples were compared to identify shifts in
transcript abundance throughout the diel cycle. Control time points
were divided into four periods based on when samples were collected
during the original transcriptome. These samples were defined as early
day, taken between 2 and 3 h after the initiation of the light cycle, late
day, taken 8 h after the initiation of the light cycle, early night, taken
approximately 30 min after the initiation of the dark cycle, and late
night, taken 9 h after the initiation of the dark cycle. Individual genes
with a log,-fold change of at least 2 and a p-value of <0.05 for at least
two of the four periods were defined as differentially expressed. The
same parameters were applied to identify differentially expressed genes
between control and infected treatments, though due to a limited
number of identifiable genes at this level a log,-fold change of >1.5 and
a p-value <0.05 was used to identify other potentially altered expression
levels. To identify other genes of interest that may be up or
downregulated at a specific timepoint at a lower significance level, a
log,-fold change of 0.58 (a fold change of >1.5; p-value <0.05) was also
examined. As a caveat, downregulation and upregulation will be used
to equate proportional representation of mapped reads between
treatments throughout this paper. Likewise, references to “differential
expression” will be referred to in place of significantly altered transcript
abundance levels.

To examine infection-driven inhibition of cell division,
differentially expressed genes were filtered to only those associated
with the cell cycle based on functional annotation in the Kyoto
Encyclopedia of Genes and Genomes (KEGG Release 105.0) pathways
map04110 (Cell cycle), map04111(Cell cycle - yeast), map04210
(Apoptosis), map04115 (P53 signaling pathway), and map04218
(Cellular senescence). Read abundance calculations for individual
gene transcription trends and for incorporations into heatmaps were
performed using the transcripts-per-million (TPM) method
(Wagner et al.,, 2012). Heatmaps were constructed using Heatmapper.
ca (Babicki et al, 2016) with genes clustered via single
linkage clustering.

Determination of vertical transport rates

To assess the sinking rate of A. anophagefferens CCMP1984, cells
in logarithmic growth were inoculated into a vertical settling column
(Supplementary Figure S2; diameter=3.81cm, height=25.4cm,
volume =290 mL) containing 225mL ASP,,A and allowed to settle.
After 2h the bottom 50 mL of the column was drained through the
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collection tube and agitated to homogenize the cells to a uniform
concentration. This process was repeated for the remaining 200 mL of
media. Cell concentrations and diameters were calculated via flow
cytometry. To determine the sinking rate of infected cells,
A. anophagefferens CCMP1984 was infected with AaV at an MOI of
100 either 2h (early infection) or 16 h prior (late infection) to sinking
rate assessment. Sinking velocity (') was calculated using the
following formula:

wo B!

% —

BT

In which fs is total exported cells, Bt is total cells in the column,
[ is distance traveled in meters, and 7" is time in hours (Bienfang, 1981;
Mao et al., 2021).
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FIGURE 1
Cell concentration (A) and average cell diameter as measured via
violet side-scatter (B) of A. anophagefferens CCMP1984 over the
course of 72 h with samples taken every four hours during the light
cycle. Periods of light are indicated in white, and periods of dark are
indicated in gray (n =5).
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Statistical analyses

Population growth rate (r) was calculated using the following
formula on cultures in exponential growth phase:

r=In N *1
No) t

Where ¢ is time in days, N, is the cell concentration at the time in
days, and N, is the initial cell concentration.

Statistics were performed using Prism 9.1.0. Differences between
population growth rates, cell sizes, and sinking rates were determined
using a one-way ANOVA followed by Tukey’s post hoc testing using a
standard significance level of p <0.05 unless otherwise noted.
Correlation coefficients were determined using a simple linear
regression. Non-metric multidimensional scaling (nMDS) and
hierarchical clustering analysis of host transcriptional shifts in the
uninfected reference transcriptome was performed in PRIMER v7.0
(Clarke, 2015) using a Bray—Curtis dissimilarity matrix.

Results

Diel partitioning of cellular growth and
division

A. anophagefferens CCMP1984 cultures grown under a 12:12
light:dark cycle were observed every 4h during the light period to
determine cell concentration and relative fluorescence measurements
throughout the light cycle. During light periods, A. anophagefferens
CCMP1984 cell densities were generally constant (Figure 1A).
However, after the dark period, cell abundance increased, consistent
with a diel association with cellular division. V-SSc relative
fluorescence indicated a similar pattern between the light and the dark
cycle, with average cell diameter (Supplementary Figure S2) and V-SSc
fluorescence (Figure 1B) increasing throughout the day and reducing
during the night. Population-wide increases in cell size were not
linear, with the rate of cell diameter growth increasing along with the
length of exposure to light. While other strains of A. anophagefferens
differed in specific population growth rate and percent change in cell
size over light and dark periods, all strains we tested followed the
pattern of division in the dark, impeded division during the day, and
cyclical cell-size changes (Table 1). A significant increase in cell
density occurred within eight hours of the dark period for CCMP1984
(p =0.024) and within 12h of the dark period for CCMP1850
(p =0.051) (Supplementary Figure S3).

TABLE 1 Mean population growth rate and changes in cell diameter through either light or dark periods of three different strains of A. anophagefferens.

CCMP1850

CCMP1984 CCMP1707

Total growth rate (D™")

0.373 (£ 0.06)

0.386 (+ 0.05)

0.251 (£ 0.04)

Day growth rate (D™")

0.089 (+ 0.07)

0.023 (+ 0.05)

0.026 (+ 0.05)

Night growth rate (D)

0.657 (£ 0.13)

0.749 (£ 0.12)

0.475 (£ 0.06)

Day change in cell diameter (%)

23.44 (£2.58)

35.54 (£2.79)

15.15 (+ 1.36)

Night change in cell diameter (%)

—26.25 (+3.03)

—30.35 (+ 3.68)

—18.96 (+ 1.25)

Standard deviation is denoted in parentheses.
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Given A. anophagefferens CCMP1984 has been maintained in our
laboratory for an extended period (over 10years) and thus these light
settings may have selected for specific growth patterns, circadian
rhythms could not be ruled out as a factor in diel-associated cellular
growth and cell division. To test this possibility, A. anophagefferens
CCMP1984 cultures were exposed to reduced light levels. While no
discernable growth differences were detected between medium and
high light levels (40 and 70 pmols photons m™ s™', respectively;
p-value=0.213), cell diameters in cultures maintained at 20 pmols
photons m™s™" had significantly (p-value <0.0001) reduced diameters
(~ 2.4pm), as compared to high light treatments (2.9 pm) after 12h of
light exposure. Cells in low light cultures increased in diameter by
38.3%, while full irradiance cultures increased in diameter by 114.8%
(Figures 2A-C). Population growth was also significantly impeded in
low light cultures over 72h (Figure 2D). Entraining cultures on a
12:12 light:dark cycle only to leave the lights off after 12 h of darkness
showed that A. anophagefferens did not in these instances display any
characteristics of a free-running clock (Supplementary Figure 54).
Furthermore, A. anophagefferens had population growth rates of
approximately zero or lower when exposed to 24 h light or 24 h dark
(Supplementary Table S1). In 24 h light, cells continuously increased
in size over the course of 48 h, while cells continuously decreased in

10.3389/fmicb.2024.1426193

size in 24 h darkness (Supplementary Table S1). While increasing the
length of the light period did lead to continued increases in cell size,
longer light periods did not have much effect on net population
growth rate.

Infected cells increase in diameter while
division is inhibited

A. anophagefferens CCMP1984 was infected with AaV to observe
the effects of viral infection on the diel growth cycle. During the first
12h of infection, (during the light cycle) no differences were observed
between infected and control samples treated with filtered lysate
(Figure 3). However, during the night cycle, infected cultures did not
divide and stayed at the same cell concentration (Figure 3A) and cell
diameter observed at the termination of the light cycle (Figure 3B).
Following the first 24 h, average cell diameter increased again, up to
an additional 21% increase from the first light cycle (Figure 4C). It is
unclear if the cells that continued to increase in size were the same
group of infected cells or were instead previously uninfected cells that
continued to skew the average size higher as they continued to grow.
To determine whether size shifts between infected and uninfected cells

A B
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FIGURE 2
Physiological parameters for cultures kept at three different irradiance levels (high: red, ~70 pmol m=2 s™; medium: yellow, ~40 pmol m=2s7; low: grey,
~20 umol m=2s7). (A) Change in average A. anophagefferens CCMP1984 cell diameter as measured via violet side-scatter over the course of a single
12-h light period. (B) Final average cell diameter at the termination of the light period. (C) Proportional change in cell size over the course of the light
cycle. (D) Population growth rate of A. anophagefferens CCMP1984 over the course of 72 h under the three irradiance levels. p values are represented
above separate irradiance levels compared via two-way ANOVA and post-hoc multiple comparisons adjusted with Tukey's HSD (n=3).
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Cell concentration (A) and average cell diameter as measured via
violet side-scatter (B) of A. anophagefferens CCMP1984 over the
course of 24 h in the presence of AaV. Samples treated with viral
lysate are indicated in red and control samples are indicated in black.
Light periods are indicated by a white background while dark periods
are indicated with a grey background (n = 3). Infected samples were
treated with pre-enumerated lysate at an MOI of 100 viral particles
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were evident in a single culture, size was measured at lower MOIs
approximately 23h following infection. A higher MOI led to an
increased average diameter of infected cultures following the night
cycle, with cultures infected at an MOI of 100 displaying a 30%
increase in average V-SSc as compared to those infected at an MOI of
10 (Table 2; Supplementary Figure S5). A negative correlation
(R*>=0.9427, slope =—0.372) between MOI and percent similarity in
size of infected cultures to control cultures was found
(Supplementary Figure S6A).

A. anophagefferens strain CCMP1850 which displays a resistant
phenotype to viral infection by AaV was tested for its physiological
response to viral exposure over the course of several days. Additional
increases in cell diameter following the initial 24-h period in infected
strains was evident in CCMP1984, before average cell diameter
diminished coinciding with the total lysis of the culture around 48h
(Figure 4). CCMP1850 also appeared to be inhibited in cell division
(Figure 4B) but maintained normal cell size cycling throughout the

light: dark period as compared to uninfected cells (Figure 4D).

Separate cell cycle transcriptomic activity
between day and night

We returned to a transcriptome from a previous infection study
(Moniruzzaman et al., 2018) to identify cell division genes
differentially expressed between the light and dark periods. Samples
were subdivided into four categories: the early day (n =9, 2 to 3 h into
the light period), late day (n =3, 8 h into the light period), early night

Cell Concentration (mL™ * 10°%)

Relative Cell Size
(V-SSc RFU * 1075)

FIGURE 4

-8 Control -O- Infected

s 1 T

0 24 48
Hours Post Infection

72

Growth of different A. anophagefferens strains CCMP1984 (A,C) and CCMP1850 (B,D) in the presence and absence of viral lysate over the course of
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TABLE 2 Growth and division characteristics of A. anophagefferens CCMP1984 23 h following viral infection with AaV at variable MOls.

Control

Growth rate (D7) 0.535 (+0.16)

MOI 10

0.191 (+ 0.20)

MOI 50

0.100 (+ 0.17)

MOI 100

—0.379 (+ 0.16)

Cell size after night cycle (V-SSc
*#107°)

7.352 (£ 0.091)

7.981 (+0.121)

9.545 (£ 0.569)

10.410 (+ 0.639)

Percent decrease in cell size (%) 38.87 (+ 4.19)

29.41 (+ 4.47)

22.13 (£ 2.08)

20.48 (+ 1.52)

Cell size following the night cycle was recorded prior to the initiation of light cycle. Percent change in cell size was determined based on the peak cell size at the initiation of the dark cycle and

the final size at the end of the dark cycle. Standard deviation is denoted in parentheses.

(n =3, ~30 min into the dark period), and late night (n =3, 9h into the
dark period). Cluster analyses revealed an almost cyclical relationship
among uninfected samples with similarity between categories
strongest for neighboring groups (e.g., late day was most like early day
and early night) (Supplementary Figure S7). Gene set enrichment
analysis revealed enrichment of cell cycle-associated transcripts
between time points, most evidently when comparing the early night
time point to all other time points (normalized enrichment
score=1.80, p-value=0.0) (Supplementary Table S2). Although
we will focus on homologs of cell cycle-associated genes, in total 1,823
genes were identified as differentially expressed between at least two
of the time periods analyzed under our highly conservative parameters
(Supplementary Table S3).

A clear partition in cell cycle gene read counts throughout different
stages of the day was evident (Figure 5). Periods that differed most
notably from one another were the early day/early night
(22 differentially expressed genes; Supplementary Figure S8) and
the late day/late night (13 differentially expressed genes;
Supplementary Figure S9). Cohesin subunit homologs (sccl, scc2, scc3,
smcl, and smc3) were differentially expressed between early morning
and early night (Figure 5; Supplementary Figure S8) with a consistent
drop off in expression during the late night and markedly low expression
throughout the day (Figure 5; Supplementary Figure S9). Condensin
subunit-like genes smc4 and ycs4 were overexpressed during the late-
night timepoint as compared to the day, with steady down regulation of
yes4 in the early night (Figure 5; Supplementary Figures S8, S9).

Regarding cyclin associated homologs and their expression
throughout the cell cycle, ccnb2 (Cyclin B) was expressed significantly
more at night as compared to the day (log, fold change=2.47,
P <0.001), though one homolog (ccnb2i; 12473) was under expressed
in the early night as compared to the morning. A cdc20 and a cdkl
homolog were expressed late at night, but not earlier. Cdc45 was also
expressed early in the night and not present late at night.

A homolog for tumor (i.e., cell division) suppressor gene p53 is
not encoded by A. anophagefferens. Still, certain homologs of genes
associated with p53 do display changes in expression. In the early
day mdm2 was highly expressed, while it was downregulated in the
early night. It was also highly expressed late at night and barely
expressed mid-day. A homolog of tumor suppressor rbl was
differentially expressed in the late day/early night period from the
morning. Cell cycle regulation genes tp53i3 (tumor protein p53
inducible protein 3), hradl (Radl checkpoint protein homolog),
atm (serine/threonine kinase), erk (extracellular signal-regulated
kinase), and rrm2 (ribonucleoside reductase regulatory subunit
M2), many of which are expressed downstream of p53, also followed
this pattern (Figure 5).
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DNA damage and p53-associated genes
respond to AaV infection

Given cell division appears inhibited when A. anophagefferens is
infected with AaV, we sought to identify associated genes that might
be targeted by the virus for regulation. When comparing the infection
transcriptome to the control, only 11 cell cycle associated genes were
identified at a log,-fold change of >1.5 (Table 3). While most of these
genes were in the late night time point of the infection cycle, three
genes were identified 12 h following infection (early night) and one at
the 6h mark (late day). Interestingly, all three genes identified at the
12 h timepoint were homologs of the mdm2 gene, two of which were
down-regulated in the infected samples with the other highly
up-regulated. While all these transcripts increased in abundance as
the night continued, their role in infected samples in the early night
may also be relevant.

At the 21-h timepoint, seven cell cycle genes were differentially
expressed between control and infected samples, including four
SMC-like genes. Two cohesin-associated genes were up-regulated
(smcl and smc3), one condensin-associated gene was up-regulated
with the other down-regulated (smc2 and smc4, respectively)
(Supplementary Figure S10). The cell cycle regulatory genes skpI and
pcna were also upregulated at this time point, while another regulator
of the cell cycle, mytl/weel was downregulated.

Using a less conservative method for defining differential
expression [i.e., the 1.5-fold change described in Moniruzzaman et al.
(2018)] an additional 64 cell cycle genes were differentially expressed
between all infected and control samples (Figure 65
Supplementary Table S4). Among these genes, seven were consistently
upregulated in infected samples, 19 were consistently downregulated,
and five alternated between upregulated and downregulated. Multiple
inhibitors of cell cycle regulation genes (myt1/weel) were consistently
upregulated, including a protein arginine methyltransferase (prmt5)
and rbxI. Also upregulated was a ubiquitin-protein lyase homolog
(siahl).

Of the consistently down-regulated genes, many are associated
with DNA replication and checkpoints for DNA damage repair.
Regarding initiation of replication, two mini-chromosome
maintenance (MCM) subunits and one origin recognition complex
(ORC) subunit were downregulated in infected samples. Likewise,
downregulated DNA damage response genes include rrm2, prkdc,
ddb2, and mytl/weel (Supplementary Figure S10). Condensin and
separase (espl) transcripts decreased in abundance as well. Outside of
genes associated with DNA replication and repair are various other
downstream effectors of the conventional p53 pathway. Negative
feedback regulators including the previously mentioned three mdm2
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homologs and the ppm1d protein phosphatase were downregulated
throughout the infection cycle.

In addition to shifts in transcript abundance across all time points,
genes differentially expressed at single time points may provide insight
into how viral infection impacts the cell cycle of A. anophagefferens.
For instance, while several condensin-associated genes were
downregulated at the 12 h time point, they became upregulated at the
21 h time point. The rb1 homolog was also upregulated at the 21 h
time point. Interestingly, while a cyclin B homolog was downregulated
at the 21 h time point, cyclin D and cyclin H were upregulated at 12
and 21 hours post infection, respectively (Supplementary Table S4).
Cyclin-dependent kinases also acted contrarily, with some (cdc28,
cdc6, cdc5, cdcl5 and cdk1) downregulated at certain time points and
other (cdc7 and cdk7) upregulated (Supplementary Table S4).

Infection alters host cell sinking rate

To assess biophysical consequences of diel shifts in cell size/
composition in the presence and absence of AaV, sinking rates of
A. anophagefferens were measured. A. anophagefferens sinks in the water
column in vitro and accumulates at the bottom of the given culture flask.
The sinking velocity of uninfected A. anophagefferens cells varied
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independently of time of day or cell size (Supplementary Figure S11).
Within 2 h of infection of A. anophagefferens by AaV, the alga sinking
rate increased compared to control (uninfected) cells (Figure 7A). A
similar trend was noted 16 h after infection, showing cells in the early and
late stages of the virocell state were exported from the water column at
the same rate (Figure 7A). When comparing cell diameter or volume for
uninfected cells at the bottom of the settling column to cells at the top,
there were no significant differences (Figures 7B,C).

Discussion

In the past, studies of marine algal growth patterns have generally
been conducted with daily sampling at consistent time points (relative
to light: dark cycles) (Tang, 2003; Shirai et al., 2008; Perrin et al., 20165
Gann et al., 2020b, 2022). While this method increases comparability
over long-term sampling schemes, it excludes physiological changes
that occur in response to prolonged exposure to light or the absence
of light. Thus, other time points (e.g., 6 daylight hours, 12 daylight
hours, etc.) likely need to be considered as they potentially offer other
physiological states. Furthermore, studies that have focused on hourly
changes in algal growth dynamics often have not considered the
growth cycle, physiology, and metabolism of virocells which may
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TABLE 3 Aureococcus anophagefferens cell cycle-associated genes that are differentially expressed (p-value <0.05, log,fold change >1.5 or<-1.5) at
either the 6 h, 12 h, or 21 h timepoints between infected and uninfected samples.

Gene ID # Gene Time Direction Fold change (log,)  Notes
name
32157 cdcl5 6 Down —1.51 Protein kinase; cell division control protein
12504 mdm2 12 Up 2.79 E3 ubiquitin-protein ligase; p53 regulation
24297 mdm2 12 Down -1.72 E3 ubiquitin-protein ligase; p53 regulation
3154 mdm2 12 Down —-1.51 E3 ubiquitin-protein ligase; p53 regulation
36910 smc2 21 Up 1.84 Structural maintenance of chromosome; Condensin subunit
58667 skpl 21 Up 1.82 S-phase kinase-associated protein 1; Myt regulator
70503 smcl 21 Up 1.81 Structural maintenance of chromosome; Cohesin subunit
70163 pena 21 Up 1.77 Proliferating cell nuclear antigen
72635 smc3 21 Up 1.55 Structural maintenance of chromosome; Cohesin subunit
72516 mytl 21 Down -1.75 Mitosis inhibitor protein kinase
72033 smcd 21 Down -15 Structural maintenance of chromosome; Condensin subunit

make up a significant portion of the natural community (Brussaard
et al,, 1996; Vincent et al,, 2021). Indeed at least some algal viruses
rely on light during infection (Derelle et al., 2018; Gann et al., 2020a)
with certain giant viruses even encoding rhodopsins (Needham et al.,
2019). Collectively this implicates the diel cycle as a potential
modulator of virus activity in phototrophs. We examined
physiological shifts of infected and uninfected A. anophagefferens in
the context of diel periodicity. We also explored transcriptomic data
to understand shifts in transcript abundance in infected and
uninfected cells.

Cellular and population growth of
Aureococcus anophagefferens is
constrained by the diel cycle

A. anophagefferens cell diameter gradually increased during the light
period, with cell division (i.e., size reduction and cell density increase)
almost exclusively occurring during the dark period. While this
separation of growth and division has been observed in phytoplankton,
rarely has the distinction been so clear, as cellular growth is often seen
during both dark and light periods (Harding et al., 1981; Goto and
Johnson, 1995; Jacobsen and Veldhuis, 2005; Moulager et al., 2007).
Moreover, we observed no change in cell concentrations during the light
period, with occasional (yet statistically insignificant) decreases in cell
count when the light period is increased (Supplementary Table S1).
Attempts to disrupt the diel cycle by extension of light or dark periods
or incident light reduction revealed that the growth periods observed
under normal conditions were primarily associated with the diel cycle,
and not a result of circadian rhythms. A. anophagefferens does encode a
homolog of an animal-like cryptochrome containing a photolyase
domain, meaning circadian responses to light are not necessarily absent
in this system (Petersen et al., 2021). While circadian control of the cell
cycle has only been studied in a few model species (Chlamydomonas
reinhardtii, Ostreococcus tauri, Phaeodactylum tricornutum), it is possible
that specific expression levels of cell cycle-associated genes are
constrained to a circadian clock in A. anophagefferens, without strict
constraint of carbon fixation and cell growth-associated genes (Coesel
et al., 2009; Heijde et al., 2010; Beel et al., 2012; Petersen et al., 2021).
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This necessitates further analyses of transcriptomic and proteomic
profiles of A. anophagefferens under a free-running clock to draw any
further conclusions.

Pelagophytes like A. anophagefferens exist in open oceans at the deep
chlorophyll maximum, spatially deeper than cyanobacteria and
dinoflagellates (Latasa et al., 2017). Given a preference for decreased light
and increased nutrient availability, it is possible that these cells are highly
susceptible to photooxidative stress and DNA damage when unshaded
(Latasa et al., 2017). If light stresses are a factor, cells may benefit from
cell division and DNA synthesis occurring during dark periods. G1 to S
phase likely requires a DNA damage checkpoint to be met, though the
genes regulating this transition are not well defined in A. anophagefferens
(Hlavova et al., 2011). It is possible that to proceed to the downstream
transcriptional effects of the cell cycle, a photoreceptor-like trigger must
first be deactivated, akin to the red/far-red phytochrome receptor in
plants (Mawphlang and Kharshiing, 2017). This is supported by our
work showing that A. anophagefferens cannot grow in 24-h light.

Virocells display arrested division
phenotypes but continue to respond to
light exposure

Infection of A. anophagefferens by AaV inhibited cell division
during the dark period of the diel cycle. The virocells maintained the
same size overnight, as opposed to the uninfected cells which
decreased in average diameter in parallel with division. Virocells also
did not divide (Figure 3). One explanation for the inability to divide
may be diversion of host energy away from the cell cycle to stress
response mechanisms, as has been observed in response to other
stressors (Terhorst et al., 2023). However, large DNA viruses, as well
as retro and RNA viruses, have been noted for their ability to disrupt
the cell cycle by blocking entry into S phase or causing cells to
accumulate in G2 phase (Emmett et al., 2005). This active disruption
may benefit viral propagation as increased volume of the cell and
reduced host usage of cell cycle resources may drive increased virion
production (Flemington, 2001). It is possible that the cells were
unable to enter mitosis either through degradation of the host
genome by viral endonucleases or an increase in the density of
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Clustered heatmap containing all cell cycle genes that were differentially expressed between infected and uninfected A. anophagefferens at one or
more timepoints (LD: late day; EN: early night; LN: late night). Early morning timepoints were not included due to high variability in transcript
abundance among infected samples at this period. Infected samples are indicated by a V and control samples are indicated by a C. Rows were
clustered through Pearson correlation as indicated by the cladogram and z-scored based on TPM values. The sum of transcripts across all treatments

LN

early-stage viral particles. Likewise, virus-induced physiological
changes to structures important for cell cycle progression, like
repurposing the nucleolus (Emmett et al., 2005; Matthews et al,,
2011) and reorganization of host microtubules (Naghavi and Walsh,
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2017) could feasibly prevent the cell cycle from progressing. However,
viral particle formation and the degradation of most organelles does
not occur until later in the infection cycle. This leads to the possibility
that transcription under viral infection prevents the cell cycle from
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Sinking rate of A. anophagefferens CCMP1984 cells as it relates to
the length of infection (A), relative fluorescence as a proxy for cell
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calculated via one-way ANOVA (A) and paired t-test (B,C) are
denoted.

progressing and locks the infected cells into a prolonged G2 phase
before the cell can enter mitosis. This is notably not the only outcome
of virus-host interaction, as infecting the partially resistant
CCMP1850 with AaV reveals inhibition of division but consistent
cycling of cell size (Gobler et al., 2007). This may imply that whatever
stress viral presence places on this strain, it is unrelated to diel cycling
and the cell cycle.

Another element of the infection dynamics of A. anophagefferens
and AaV is the similar growth during the light cycle between infected
and uninfected samples. As previous studies have shown, light is an
important constraint on the burst size of AaV (Gann et al., 2020a).
Combined with the fact that viral production approaches zero under
very low light conditions (< 5pmol photons m™ s™') (Gann et al.,
2020a), successful infection of a host may require a prolonged
irradiance period. While transcription of viral genes begins within the
first five minutes of infection, the cellular growth during light periods
remains the same, meaning this portion of the growth cycle is perhaps
relevant to the virus’s propagation. While we may define this period
as nutritional stockpiling by an uninfected host to prepare for DNA
synthesis and cell division, in the case of viral infection the same
stockpiling must occur, only to be used in production of viral particles
(Gann et al,, 2020b). In considering what metabolic processes the
virus alters for its own benefit, we also must consider which processes
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are left unaltered and how these too may serve a purpose in
viral infection.

Aureococcus anophagefferens’ cell cycle is
transcriptionally constrained to diel effects

Analysis of the viral infection transcriptome revealed that cell
cycle arrest and regulation genes were changed during viral infection,
but also that transcription of many cell cycle-associated genes in
uninfected cells is constrained to a diel cycle. Notably, a significant
contingent of cell cycle genes are enriched at the early night time
point, implicating a shift in gene expression following the termination
of the light cycle (Supplementary Table S2). One of the most consistent
observations of diel-driven differential expression within this dataset
was the expression of cohesin and condensin genes. The cohesin
complex, which binds sister chromatids together following DNA
replication and prior to anaphase, acts as an important intermediate
complex before sister chromatids are segregated to opposite ends of
the cell (Peters et al., 2008). The condensin complex begins functioning
typically after the nuclear envelope has broken down from prophase
to anaphase (Hirano, 2012; Leonard et al., 2015). Further research has
shown that in C. reinhardtii, condensin subunits are likely involved in
proper formation of the mitotic spindle (Breker et al., 2018). The
expression patterns of these subunits in A. anophagefferens, cohesin
homologs upregulated in the early night and condensin homologs
upregulated in the late night, suggest that cells were progressing
through mitosis at these time points. Thus, DNA replication likely
occurred either soon before or after the dark period began. Likewise,
we have shown that cell division primarily occurs after 6-7h in the
dark (Supplementary Figure S3), meaning condensin should
be heavily expressed at this time point (Skibbens, 2019).

Further evidence for the temporal partitioning of cell cycle
pathway genes is shown by the expression pattern of pcna (Liu et al.,
2005). In the red alga Cyanidioschyzon merolae, pcna was used as a
marker of cell cycle progression and peaked in fluorescence mid
S-phase, before dissipating throughout the remainder of the cell cycle
(Sumiya et al., 2014). A similar expression was observed in the
A. anophagefferens control transcriptomic dataset, with the pcna
homolog exclusively peaking in expression in the early night. This
indicates DNA synthesis may occur around the transition from light
to dark. Along with pcna, several other A. anophagefferens genes
including cyclin B (ccnb2ii), cdc45 [which has been tied to replication
fork initiation (Sanchez-Pulido and Ponting, 2011)], cdc5, five cohesin
subunits, and the DNA damage repair gene rrm2 show this pattern
(Figure 5). We hypothesize that these genes are largely associated with
DNA synthesis. Several genes expressed heavily in the early night are
also detected at increased levels in the late day (¢p53i3, hradl, atm, and
erk). Such genes could be attributed to acting as a catalyst for DNA
damage repair and preventing cellular division with damaged or
incompletely replicated DNA. Likewise, a close homolog to the yeast
gene cdc28, which is active late in G1 phase (Mendenhall and Hodge,
1998), was upregulated in the early hours of the night, as well as
mid-day, identifying a possible early trigger to encourage DNA
synthesis in A. anophagefferens. This gene is notably not expressed in
the late night, signaling that many cells may have progressed past the
early stages of the cell cycle.
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Among the A. anophagefferens genes expressed differentially in
the late night were the p53 inhibiting mdm2 homologs, cdc20,
monopolar spindle 1 kinase (mps1), and two condensin subunits, of
which A. anophagefferens only encodes three (Figure 5). Based on the
presence of genes like cdc20, mdm2 and mps1 which actively either
drive or regulate mitotic cell division (Mendoza et al., 2014; Pecani
etal., 2022), it seems evident that the cells at the late time point were
actively in the process of mitosis. Their abundance in these contexts
indicates cell division may be heavily down-regulated late in the day
but encouraged after several hours in the night cycle. However, due to
the nature of this study, the turnover of RNA throughout the day is
uncertain, and increases in transcript counts may be a result of
accumulation throughout the entire day.

AaV infection drives transcriptional shifts in
cell cycle regulation

Viral infection of A. anophagefferens revealed heavy regulation of
genes associated with DNA replication. Several cohesin subunits and the
pcna gene were upregulated late in the infection cycle (late night) after
their transcript levels had decreased in the control samples (Figure 6).
These genes may be utilized in replication of the viral genome, which
would justify such an elevated expression level. Host cohesin genes have
specifically been identified as important factors in the infection cycle for
other DNA viruses (Li et al., 2021). Notably, many genes associated with
cell cycle arrest based on DNA damage have altered expression levels
during viral infection (Figure 8). Three homologs of myt1/weel, which
can induce cell cycle delay (Détain et al., 2021), were downregulated in
A. anophagefferens under infecting conditions, one of which was
downregulated at all three latter time points. WEEL is typically
considered a tumor suppressing protein and is often involved in the
prevention of mitosis when DNA is damaged by way of phosphorylating
CDK1 (Hlavova et al., 2011; Luserna et al., 2020). In accordance with
this downshift in expression, four negative regulators of weel (cull, skp1,
rbx1, and prmt5) (Watanabe et al., 2004; Jia et al., 2011; Beketova et al.,
2022; Zhang et al., 2023), were frequently upregulated during infection
while three more genes associated with suppressing the cell cycle due to
DNA damage (rrm2, prkdc, and ddb2) were downregulated (Chen
L.etal,2021; Chen S.etal., 2021; Zuo et al,, 2024). DNA damage repair
has previously been found to limit the cytotoxicity of adenoviruses
(Connell et al., 2011), thus downregulation of these genes could promote
untethered viral genome replication. To further associate the DNA
damage with viral genome replication, ubiquitination of PCNA by
certain checkpoint proteins may lead to stalling of replication (Moldovan
etal,, 2007), thus it is possible an upregulation of this gene as well as a
down-regulation of damage associated genes would allow for viral DNA
synthesis to proceed. The role of these genes has gone understudied in
algae and the Nucleocytoviricota alike and further analysis is warranted.

From this concept there arises a conflicting dichotomy in the viral
transcriptome in which genes that both lead to and prevent cell cycle
arrest are regulated. While these DNA damage checkpoint genes may
be downregulated, p53 inhibitors, which would naturally promote the
cell cycle, are downregulated as well (Figure 8). We see a very complex
expression pattern in which some homologs of the downstream
effectors of p53 like the apoptotic pathway, siahl (Frew et al., 2002),
and b1 are promoted under viral expression, while others that relate
back to DNA damage control which might halt the cell cycle during
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S-phase are blocked in expression. Other DNA viruses, including
papilloma viruses and adenoviruses, encode genes which can induce
apoptosis to aid in viral dissemination (Gupta et al., 2015). Another
perspective is that certain promoters of cell cycle progression are not
altered by viral infection. While a total of 175 A. anophagefferens genes
were functionally categorized as cell cycle genes, only 74 of them
appeared in our differentially expressed dataset, meaning over 60%
were statistically unchanged by viral infection. For example,
A. anophagefferens encodes for 10 anaphase promoting complex gene
homologs, only one subunit was downregulated at one time point.
While this does not confirm that these processes were not at all
affected by the invading virus, it does suggest that continued activation
of some of these pathways has at the very least a net neutral effect on
viral particle production. A highly specialized virus must be able to
streamline the infection process, and the host processes that are
neutral, beneficial, or essential must remain active while anything
deleterious be targeted for downregulation. For this reason, we believe
that if the virus prevents the host cell from entering mitosis, the
natural progression of the cell cycle may be important for the
culmination of the infection cycle.

Though these possibilities are intriguing, our interpretations are
limited by the lack of a complete cell cycle model in A. anophagefferens.
Not only are most of the genes described herein attributed to putative
functions through sequence homology, but many common genes also
appear to be completely missing. For example, there are zero homologs
to conventional CDK inhibitors encoded in any sequenced
A. anophagefferens genome. Likewise, though we reference the
p53-associated pathway for growth suppression often, there is no
known homolog for p53 encoded by A. anophagefferens or any other
plant or algal lineage. However, with such a robust representation of
associated genes, including the direct downstream gene of p53i3 and
the high abundance of mdm?2-like p53 regulators, the presence of a
functional p53 equivalent in A. anophagefferens, as well as other algae,
is likely (Nedelcu, 2006).

Export from the water column is enhanced
by viral infection

Settling rate assessment of uninfected and infected
A. anophagefferens helped link ecological relevance to physiological
changes. While increases in cell size did not affect sinking velocity,
viral infection increased vertical transport and suggests an
increased rate of export from the water column. Notably, this was
not the result of aggregation of cells through production of any
extracellular polysaccharide complexes according to FlowCam
measurements. An interesting question that arises from the export
of virally infected cells is whether the behavior is a result of viral
activity inside the virocell or is instead host driven. One possibility
is the increased production of high density viral proteins (Fischer
et al,, 2004; Liu et al., 2022) increases density within the virocell,
expediting sinking. Yet there was no significant increase in sinking
velocity during later stages of infection (when virus proteins are
more abundant within the cell) relative to the early (2h) stage. A
contrasting hypothesis is that infected A. anophagefferens cells are
exported from the water column through metabolic shifts following
infection. This would create a separation between uninfected cells

and new viruses released into the water column (an innate defense
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FIGURE 8

A simplified p53/cell cycle checkpoint pathway based on differential transcription of A. anophagefferens genes during viral infection. Genes present in
the A. anophagefferens genome are indicated in boxes with solid outlines. Other genes not known to be encoded by A. anophagefferens or
downstream effects of a certain pathway are in boxes with dashed outlines. Upregulation in samples is indicated by red boxes and downregulation is
indicated by blue boxes, with the three boxes above each respective gene corresponding to their expression versus control samples during the late
day, early night, and late night. Promotion of a gene/pathway is indicated by an arrow while inhibition is indicated by blunt arrows. Pathway is based on
KEGG pathways map04110 and map04115.

against community infection). Moreover, given the reduced  propagation (Ma et al., 2020). It is yet unclear if entering this resting
efficiency of AaV infection on A. anophagefferens in the dark (Gann  stage has such an effect or if the lytic cycle continues once the cell
et al., 2020a), the expediated sinking could foster an opportunity  is metabolically active again. This manifestation of the “virus
for survival against infection, giving cellular mechanisms a chance  shuttle” (Sullivan et al., 2017) provides a selective mechanism for

>

to purge the virus or enter a cyst-like state and prevent viral  reinforcement at evolutionary scales. Likewise, A. anophagefferens
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predilection for growth at low light may be an evolutionary
adaptation to growth in the presence of viral particles (MacIntyre
et al., 2004). Thus, export of virocells into the microphytobenthos
may bolster a bloom in the pelagic zone where upwelling is low and
residence time is high (MacIntyre et al., 2004).

Considerations for environmental sampling
and diel cycles

This study illustrates the importance of sampling phototrophs
throughout the solar day. Clear physiological and transcriptional
differences were evident among A. anophagefferens cells depending
on light history. Moreover viral transcripts in field samples have been
tied to different stages of the diel cycle, with reads decreasing 10-fold
between day samples and night samples on a viral species, but not
genus level (Martinez-Hernandez et al., 2020) - to this end perhaps
our observations should not be surprising. Yet this becomes an
important caveat in the analysis of environmental-omics. Over 1,800
genes in uninfected cells were differentially expressed between at least
two sampling points, corresponding to ~11% of all predicted genes
in A. anophagefferens (Gann et al., 2022). Such heterogeneity in
transcript abundance among control samples is compelling and
that
transcriptionally and metabolically distinct at different times of day.

indicates cells in non-synchronous infections are
Yet some of the signal is also due to virus-shaped metabolism: if light
shapes responses in the field as it has in our lab study, it means that
when a significant portion of the population is infected (e.g., up to
37.5%, Gastrich et al., 2004) that large degrees of variability in the

data could simply be the infected vs non-infected state.

Conclusion

We have demonstrated the effects of the diel cycle on growth and
division of the pelagophyte A. anophagefferens and that infection by a
“giant virus,” Kratosvirus quantuckense strain AaV, inhibits the diel
cycling of cell size and cell division. Our findings demonstrate an
important linkage between cellular energetics and physiology and that
this process is interrupted by viral takeover. These findings also illustrate
the importance of light in the infection cycle of viruses of phototrophic
hosts. When considering the activity of marine viruses, it may become
important to consider sampling multiple times throughout both the day
and night to achieve a higher resolution on environmental viral infection.
Likewise, ignoring virocells leaves large holes in measurements of
ecological physiology. Further analysis into the transcriptome of
individual cells (i.e., single cell transcriptomics) in the presence and
absence of infectious particles may better show the extent to which these
cells vary throughout something as simple as the diel cycle. Still, our
findings have revealed a continuously altering physiological profile in
algae which likely extends beyond light into other environmental stimuli
that should be further explored on an in situ basis.
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