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Abstract

Maintaining a maximum bipartite matching online while minimizing augmentations is a well studied
problem, motivated by content delivery, job scheduling, and hashing. A breakthrough result of Bernstein,
Holm, and Rotenberg (SODA 2018 ) resolved this problem up to a logarithmic factors. However, to model
other problems in scheduling and resource allocation, we may need a richer class of combinatorial constraints
(e.g., matroid constraints).

We consider the problem of maintaining a maximum independent set of an arbitrary matroid M and a
partition matroid P. Specifically, at each timestep t one part Pt of the partition matroid is revealed: we
must now select at most one newly-revealed element, but may exchange some previously selected elements, to
maintain a maximum independent set on the elements seen thus far. The goal is to minimize the number of
augmentations. If M is also a partition matroid, we recover the problem of maintaining a maximum bipartite
matching online with recourse as a special case.

Our main result is an O(n log2 n)-competitive algorithm, where n is the rank of the largest common base;
this matches the current best quantitative bound for the bipartite matching special case. Our result builds
substantively on the result of Bernstein, Holm, and Rotenberg: a key contribution of our work is to make use
of market equilibria and prices in submodular utility allocation markets.
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1 Introduction

In the Online Matroid Intersection Maintenance Problem with recourse, we want to maintain a maximum
independent set in the intersection of an arbitrary matroid M and a partition matroid P in the online setting.
Specifically, suppose the partition matroid is given by a partition (P1, P2, . . . , Pℓ) of the element set E, andM is
another matroid on E. 1 Both of these matroids are initially unknown to us. Now at each timestep t, we have a
current maximum independent set It−1 and the next part Pt of the partition matroid is revealed.

Since we need to maintain a maximum independent set in the intersection of M and the portion of the
partition matroid seen so far, we may need to perform some augmentations—i.e., we may need to drop elements
from It−1 and add elements from E \ It−1 to the current independent set. Our objective is to minimize the total
number of reassignments (i.e., additions or deletions from the independent set) over the course of the arrival of
all parts of P.

A special case of our problem that has been considered extensively [GKKV95, BLSZ14, BLSZ18, BLSZ22,
BHR18] is that of the online bipartite matching problem with recourse. This setting corresponds to the matroid
M also being a partition matroid. In turn, it allows us to identify the elements with edges of a bipartite graph
whose vertices are the parts in the two partitions. Hence each timestep corresponds to a new vertex from one
side of the graph arriving, along with its incident edges.

In order to maintain a maximum matching, we need to augment along alternating paths, which corresponds
to dropping or adding edges. (If individual edges arrive one-by-one rather than vertices, nothing better than
Ω(n2) total cost is possible in the worst case. For example, in the instance where edges arrive on alternating ends
of a path, the augmentation must be the entire path at each step [BHR18, §1].)

In addition to its natural and combinatorial appeal, the generality of the online matroid intersection
maintenance problem allows us to model problems in resource allocation and scheduling beyond the matching
case:

• Laminar matroids generalize the bipartite matching setting to allowing constraints on a hierarchy of
“groups”: e.g., suppose clients arrive online and need to be matched to a server from their desired subset.
However, we may have restrictions on the number of clients assigned to servers on the same server rack, or
the same data center (due to cooling, power, and bandwidth constraints). These can be captured by laminar
matroids, where we are given capacities on a family of laminar sets. Laminar restrictions are common when
considering such job scheduling problems with restricted (hierarchical) resources.

• A different setting is that of matroid partitioning [Edm65]: the elements of a single matroid M arrive
over time, and need to be partitioned among k color classes, so that each color class is an independent
set in M. The goal is to minimize the number of color changes. In this setting, the underlying matroid
constraint captures the scheduling constraints of a single server cluster (e.g., like in the laminar case above,
or the examples below), the coloring captures the idea of partitioning the jobs among these clusters, and the
recourse bound ensures that only a few jobs are reassigned between clusters. The matroid coloring problem
can be modeled using online matroid intersection by the simple idea of “lifting” elements to (element, color)
pairs.

• Transversal matroids are a useful matroid constraint for modern schedulers, since they can model
coflows [CS12] (which are tasks that can be jointly processed on a computing resource, e.g., can be shuffled
in parallel on a MapReduce cluster [IMPP19]). In transversal matroids the elements are nodes on one side
of a bipartite graph, and independent sets correspond to matchable subsets of nodes. Combining these with
the matroid partitioning idea allows us to partition a collection of jobs among clusters. In particular, if we
now have several different computing resources (clusters), and jobs arriving online, the scheduler algorithm
needs to decide which cluster to choose for each job in order to process it, and the goal is to minimize the
number of jobs that have to be switched between clusters.

• If we have a routing problem instead of a scheduling one [JKR17], we can use gammoids instead of transversal
matroids: these capture sets of nodes which admit vertex-disjoint flows to a sink; again the goal would be
to minimize reroutings.

1A matroid M over a ground set E is given by a downward-closed collection of independent sets I ⊆ 2E such that for any A,B ∈ I
with |A| < |B| there exists an element e ∈ B \A such that A ∪ {e} ∈ I [Sch03, §39].
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1.1 Our Result and Techniques The augmenting-path algorithm for matroid intersection [AD71, Law75]
(see also [Sch03, §41.2]) immediately bounds the total number of reassignments by O(n2), where n is the rank of
the maximum independent set in P ∩M. To our knowledge, nothing better was known about this problem in
general prior to the current paper. Our main result is the following:

Theorem 1.1. (Main Theorem) The Shortest Augmenting Path (SAP) algorithm for the Online Matroid
Intersection Maintenance problem results in at most O(n log2 n) total reassignments, where n is the rank of the
intersectionM∩P.

Our analysis reveals a perhaps surprising connection between matroid intersection maintenance and the well-
known theory of market equilibrium prices. Indeed, we define a market with the arriving parts viewed as buyers
who want to get one item/element from their desired subset. Viewing the items as being divisible allows us to find
a market equilibrium, where the price of each item gives us crucial information about the length of the shortest
augmenting path starting with that item. Note that the algorithm is purely combinatorial; the market helps us
expose the properties of the underlying instance, and to argue about the algorithm’s performance.

The bound of O(n log2 n) matches that given by the breakthrough paper of Bernstein, Holm and Roten-
berg [BHR18] for the special case of online matchings; this is not a coincidence. Indeed, our first step is to
reinterpret their work in the language of market equilibria; we then develop the machinery and connections to
reason about general matroid intersection markets and obtain our results. We now elaborate on these connections
and our techniques.

Bipartite Matching In the special case of online bipartite matching, we imagine the vertices (“clients”) of
one side of a bipartite graph, along with the induced edges to the other side (“servers”), arriving online. [BHR18]
define a notion of server necessity to capture how much of each server s is needed to match all clients. They
compute server necessities via “balanced flows” (which is the solution to a certain convex program), and also via
an intuitive combinatorial decomposition (also called a “matching skeleton” in other works) that builds on Hall’s
Theorem. These ingredients give an expansion lemma bounding the length of the shortest augmenting path for a
new client in terms of the minimum server necessity among its neighbors.

We begin our investigation by showing in §2 how the language and machinery of market equilibria yield a
concise and appealing version—though unchanged in its fundamentals—of Bernstein et al’s proof for the online
bipartite matching problem with recourse. Our starting point is a reinterpretation of the concept of server necessity
as prices in a market equilibrium. A Fisher market [BS05] consists of n buyers and m divisible items: each buyer
i arrives with a budget of money mi and a utility function that specifies buyers’ utilities for each possible bundle
of goods. A market equilibrium is a set of prices p1, . . . , pm, where pj is the price of item j, such that each buyer
spends their money on a utility-maximizing bundle, the supply precisely equals the demand, and the market
clears (i.e., each good with positive price is sold and each buyer spends all their money). If we view clients in
the online matching problem as buyers each having one dollar, and the servers as items, with each buyer having
equal and linear utility for each item in their bipartite graph neighborhood (and zero utility for non-neighbors),
the market clearing prices turn out to be precisely the server necessities. The equilibrium allocation and prices
can be computed using the Eisenberg-Gale convex program [EG59] (which differs from the convex program used
in [BHR18]).

Matroid Intersection We then show how this market equilibrium perspective allows us to generalize to
online matroid intersection with recourse, where we have a more general set of feasibility conditions on the
allocations. Again, we start with n buyers and m items, but the items are now the elements E of matroidM, and
the buyers are interested in disjoint elements. (In the online matching problem, these elements of the matroid are
edges incident to the buyer/online vertex, and hence map to a set of offline vertices that buyer wants to match
to.) Each buyer again arrives with some money mi and a linear utility function over the items in its part. In
this market, the allocation of items to buyers must lie in the matroid polytope of M. This market again is an
Eisenberg-Gale market [JV07], for which a market equilibrium exists and can be be computed with a

convex program of the form:

max

{∑
i

mi log
∑
e∈Pi

ye

∣∣∣∣ ∑
e∈S

ye ≤ rankM(S) ∀S ⊆ E, y ≥ 0

}
.

The dual variables to the program again yield equilibrium prices for each item.
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Using these ideas, we extend the ideas from §2 to the general online matroid intersection problem in §3.
Our setting requires new ideas beyond the case of matchings because the convex program is richer: the prices

(i.e., duals) are now on sets and not on elements. There is a natural way to translate from sets to elements:
the price of each element is the sum of prices of sets containing it—but then the prices are not unique, and we
can no longer argue the monotonicity of prices as new clients arrive, a crucial ingredient in [BHR18] and in §2.
To address this, we first make a connection to submodular utility allocation markets [JV10] to show that prices
seen by buyers are monotone. Then we show a decomposition theorem for matroids (extending such a result
for matchings [GKK12, BHR18]) that allows us to define unique and consistent prices for elements, and to show
monotonicity of all individual element prices over arrivals.

In conjunction with this, we can define for any element e a collection of nested sets, showing that if there are
no short augmenting paths (in the natural exchange graph) starting at this element, then these nested sets grow
exponentially at rate ≈ (1/pe). With this, we bound the length of paths by ≈ lnn

1−pe
(of course, the paths are never

of length more than n.) Finally, the monotonicity of element prices allows us to distribute this augmentation cost
to the price increase of the elements participating in this augmenting path. Since the element prices lie in [0, 1],
the cost charged to each element (over the entire run of the algorithm) is∫ 1

p=0

min

{
n,

lnn

1− p

}
dp ≤

∫ 1−1/n

p=0

lnn

1− p
dp+

∫ 1

p=1−1/n

ndp = O(ln2 n).

A technical detail is that summing this over all elements would give us |E| log2 n, and not something that depends
on the rank. This issue can be handled using a convexity-based argument.

Paper Outline In the remainder of the paper, we first illustrate the basic ideas of our arguments in §2 for
the setting of bipartite matchings. In §3 we give details for the general case of maintaining matroid intersections.
Finally, we close with some remarks and future directions in §4.

1.2 Related work To our knowledge, online matroid intersection maintenance with recourse has not been
studied previously. The special case of online bipartite matching problem with recourse was defined by [GKKV95],
who gave an Ω(n log n) lower bound. [CDKL09] gave optimal algorithms with O(n log n) recourse when clients
arrive in random order, or when the graph is a forest. For the case of forests, [BLSZ18, BLSZ22] studied the
shortest augmenting path algorithm and showed it to also be optimal. The first breakthrough on the general
case of matching maintenance was by [BLSZ14] who gave a O(n1.5) recourse bound; eventually [BHR18] gave the
current best O(n log2 n) bound.

The problem of load-balancing with recourse is closely related: [AGZ99, PW98, Wes00] show how to
allocate jobs to machines and maintain near-optimum load while reassigning O(log n) jobs per timestep.
[ABK94, AKP+93, ANR92] show results for dynamic settings without reassignments, and observe strong lower
bounds. [GKS14] show how to allocate unit jobs to machines in a restricted machines setting to maintain a load
of (1 + ε)L with O(1/ε) recourse; they give results for a dynamic flow variant. Recently similar results were
given by [KLS22] for the case of unrelated machines, with logarithmic recourse. Very recently [BBLS23] studied a
more general setting in which covering-packing constraints arrive and depart online and should be satisfied upon
arrival. This setting captures as a special case a fully dynamic fractional load balancing/matching problem in
which jobs arrive and depart online. They obtained an O(log(n/ε)/ε)-competitive algorithm when the algorithm
is given a (1 + ε) resource augmentation.

Several works [BHK09, EFN23] have also modelled recourse in online matching with buybacks or cancellations.
In these settings, there is instead a penalty for recourse; for every online vertex that is matched the algorithm
earns money, but the algorithm may choose to “buy back” resources from offline vertices, incurring a penalty.
The buyback setting has also been extended beyond matchings to matroid and matroid intersection constraints
[AK09, BHK09, BV11].

There is an enormous body of work on online bipartite matching problems without recourse, starting with
the seminal work of Karp, Vazirani and Vazirani [KVV90]. In these settings, the algorithm makes irrevocable
decisions, and the goal is to maximize the size/weight of the matchings; see, e.g., [Meh13, EIV23]. An extension
of this to matroid intersection was studied by [GS17], who considered two arbitrary matroids defined on the same
ground set whose elements arrive one at a time in a random order, and must be irrevocably picked/discarded,
to maximize the size of the independent set selected. Another large body of work studies the min-weight perfect
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matching problem (mostly in metric settings); see, e.g., [MNP06, BBGN14, Rag18, PS21]. The techniques in
these works are orthogonal to ours.

Our combinatorial decomposition for matroids produces a matroid intersection skeleton extending that for
matching; this decomposition for matching was studied by [BHR18], and previously, under the name of matching
skeletons by [GKK12, LS17] with the goal of understanding streaming algorithms for matchings. The matching
skeleton was also used to derive an optimal competitive ratio in the batch arrival model of online bipartite matching
[FN20, FNS21]. To the best of our knowledge, the extension to matroids has not been studied before; making
further connections to streaming algorithms for matroid intersection remains an interesting future direction.

As discussed above, our work makes a connection to and builds on basic results on market equilibria [AD54,
EG59, BS05]. Market equilibria and especially the design of algorithms for computing these equilibria have
been the subject of intense study by the algorithmic game theory community over the last two decades. For an
introduction to the topic, see chapters 5 and 6 of [NRTV07]. Of particular relevance to us is the work of Jain
and Vazirani [JV07] on Eisenberg-Gale markets [EG59].

Convex programming techniques, and in particular the Eisenberg-Gale “fair allocation” convex program have
also been used to guide combinatorial algorithms before, e.g., in the context of flow-time scheduling [IKM18,
GGKS19]. However, these prior works do not consider the cost of recourse; they use the convex program to
directly schedule jobs. We instead use it to compute prices and show the existence of short augmenting paths.

Note that while the problem we study can viewed as a dynamic graph problem, the cost function we study
(bounding recourse) is unrelated to the kinds of cost functions studied in the dynamic graph algorithms literature.

2 Maintaining Matchings via Markets

We now present our market equilibria-based perspective for the bipartite matching case; we build on this for
general matroids in §3. For matchings, the adversary fixes a bipartite graph (B, T,E) with n buyers B and m
items T . The vertices in T (the offline side) are known up-front, whereas the vertices in B (and the edges between
them) are revealed online (we can assume that the maximum matching after i arrivals has size i, and hence the
maximum matching has size n = |B|; this is without loss of generality, see [BHR18, Obs. 9]). We see the edges
between the ith buyer (also called i) and its neighbors N(i) only at time i.

If Mi−1 is the maximum matching maintained by the algorithm after seeing i−1 vertices, and buyer i arrives,
the shortest augmenting path algorithm (SAP) finds an (arbitrary) shortest augmenting path from i to a free item
(if such a path exists), and augments the matching Mi−1 along this path to get Mi.

Let ℓi denote the length of this shortest augmenting path found by the algorithm, and the goal is to bound
the worst-case value of

∑n
i=1 ℓi. There exist instances for which

∑n
i−1 ℓi = Ω(n log n) [GKKV95, Thm. 1]; the

following result of [BHR18]—which we prove using market equilibria in this section—matches this lower bound
up to a logarithmic factor.

Theorem 2.1. The Shortest Augmenting Path (SAP) algorithm performs O(n log2 n) changes.

2.1 Preliminaries on the Fisher Market In the Fisher’s linear model [BS05], we have n buyers and m
divisible goods. Each buyer i has a budget mi. The utility functions are linear: buyer i derives a utility uijyij out
of being allocated an amount yij of good j. There exist “market-clearing” prices for the goods and a corresponding
equilibrium allocation of the goods to buyers in which (i) each good with a positive price is fully sold; (ii) buyers
are only allocated goods that maximize their utility-per-price, sometimes called “bang-per-buck” (if a good has
price 0, no buyer has positive utility for it, so we assume that each item has an interested buyer); and (iii) each
buyer spends their entire budget.

Eisenberg and Gale [EG59] showed how to compute the market equilibrium allocation and prices in the Fisher
model using the following convex program.

(EG1)

max
∑n

i=1 mi ln
(∑m

j=1 uijyij
)

s.t.,
∑n

i=1 yij ≤ 1 ∀j = 1, 2, . . . ,m

yij ≥ 0.

Let {yij} be the optimal solution to the convex program. The Lagrangian dual variable pj for each item j in
the program can be interpreted as the price of that item. We imagine that the budget of a buyer when it arrives
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is 1 (and 0 before it arrives) and the utilities are uij = 1 for all edges (i, j) ∈ E and 0 otherwise. The following
properties can be derived from the KKT optimality conditions (see, e.g., [NRTV07, Chapter 5]).

Theorem 2.2. Let {pj}mj=1 be an optimal dual solution to (EG1). Then the following hold:

(i) All items are fully allocated:
∑n

i=1 yij = 1 for all j.
(ii) Buyers are buying the cheapest price items: yij > 0⇒ pj = minj′∈N(i) pj′ .
(iii) Each buyer i spends all of their money:

∑m
j=1 pj · yij = 1, and hence

∑m
j=1 pj = n.

Thus, with unit utilities each buyer i buys only the lowest-price items from N(i); we refer to this lowest price
for buyer i as qi. Let us prove an additional important property of market-clearing prices for this utility function.

Lemma 2.1. Let i be the ith buyer to arrives and let p, p′ be the equilibrium prices before and after it is added.
Let q := minj∈N(i){pj}. Then

(2.1)
p′j = pj if pj < q
p′j ≥ pj if pj ≥ q.

Proof. Let B≥q (resp. T≥q) be the set of buyers that buy at price at least q (resp. the set of items whose price
is at least q) in the market equilibrium immediately prior to the arrival of buyer i. No buyer in B≥q has an
edge to an item in T<q, since it would buy such an item otherwise. So if we find a market equilibrium for the
subproblem consisting of buyers in B≥q ∪{i} and show that all prices do not decrease in that equilibrium, we will
be done: that equilibrium together with the equilibrium for B<q satisfies KKT conditions and hence is the new
equilibrium.

Hence, let us restrict our attention to buyers in B≥q ∪ {i} and their neighbors T≥q. Towards a contradiction,
let T< := {j | p′j < pj} be the subset of items whose price decreases in the new market equilibrium. Let
B< := {ℓ | yℓj > 0, j ∈ T<} be the buyers who buy items from T<. Since each such buyer expends all their
budget and all goods are completely sold, we have

∑
j∈T<

pj ≤ |B<|. However, after the price update all the
minimum price items for buyers in B< must be in T<. Moreover, these item prices strictly decreased, and other
item prices may increase or remain the same. Thus, it must be that

∑
j∈T<

pj >
∑

j∈T<
p′j ≥ |B<|, where the

second inequality holds since the buyers now spend all their budgets on items from T<. This is a contradiction.

2.2 The Expansion Lemma A tail augmenting path is an alternating path that starts from an arbitrary item,
alternates between matched and unmatched edges, and ends in a free item. The length of a (tail) augmenting
path is the number of items on the path. The following key lemma relates the length of these paths to the item
prices.

Lemma 2.2. (Expansion lemma) Let (B, T,E) be a bipartite graph, let M⋆ be an arbitrary matching, and let
p be the market clearing prices. Then, for any item j∗ with pj∗ ∈ [0, 1), there is a tail augmenting path from j∗

whose length is O
(

lnn
1−pj∗

)
.

Proof. Consider market clearing prices p and an allocation yij . Let j∗ ∈ T be an arbitrary item with price
pj∗ ∈ [0, 1). We will denote M⋆(i) to be the item that buyer i is matched to under M⋆. If pj∗ = 0 then there is no
i such that j∗ ∈ N(i), the item is therefore unmatched, and the claim holds. Otherwise, we define the following
sets inductively,

R1 = {j∗}
Lk = {i |M⋆(i) ∈ Rk} k = 1, 2, . . . ,

Rk+1 = {j | yij > 0, i ∈ Lk} k = 1, 2, . . . ,

That is, Lk is the set of buyers that are matched in M⋆ to items in Rk, and Rk+1 is the set of items that are
bought by some buyer in Lk in the market clearing allocation. We prove the following inductively: If R1, . . . , Rk

do not contain an unmatched item, then (a) pj ≤ pj∗ for all items j ∈ Rk+1, and (b) the size |Rk+1| ≥ (1/pj∗)
k.

The base case for R1 trivially holds. We begin by proving property (a) of the induction. Consider an item
j ∈ Rk+1. Since it is bought strictly positively by some item i ∈ Lk, its price pj must be the price paid by i, that
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is, pj = qi. Moreover, observe that qi ≤ pM⋆(i), by definition. And since i ∈ Lk, we have M⋆(i) ∈ Rk, so the
induction hypothesis implies pM⋆(i) ≤ pj∗ . Together, this shows that pj = qi ≤ pM⋆(i) ≤ pj∗ as desired.

To prove property (b) of the induction, suppose that Rk has no unmatched items, then we have that
|Lk| = |Rk|. Hence, we have,

|Rk+1| ≜ |{j | yij > 0, i ∈ Lk}| =
∑

j∈Rk+1

∑
i:j∈N(i) yij(2.2)

≥
∑

i∈Lk

∑
j∈Rk+1

yij(2.3)

=
∑

i∈Lk

1
qi
≥ |Lk|

pj∗
= |Rk|

pj∗
≥
(

1
pj∗

)k
.(2.4)

Equality (2.2) holds since every item j that is allocated is fully sold, and so
∑

i:j∈N(i) yij = 1, and (2.3) holds

since the RHS sums only on the subset of yij > 0 from Lk to Rk+1. Finally, (2.4) holds by Theorem 2.2 (ii),(iii)
since each buyer i ∈ Lk spends all its money on items of price qi that are in Rk+1 and so qi ·

∑
j∈Rk+1

yij = 1.
The next inequality holds since qi ≤ pj∗ , and finally we use the induction hypothesis.

By our construction, if Rk contains an unmatched item j, then there is a tail augmenting path from j∗ to j
of length k. To conclude the proof, note that for any Rk whose items are all matched, |Rk| ≤ n (the number of
buyers), since otherwise there must be an unmatched item in Rk. Thus, ( 1

pj∗
)k−1 ≤ |Rk| ≤ n. Simplifying we

get that the length of such a tail augmenting path is at most O
(
max

{
1, ln(n)

ln(1/pj∗ )

})
= O

(
lnn

1−pj∗

)
, where the final

inequality follows from 1− x ≤ ln 1/x for x ∈ (0, 1].

2.3 Bounding the Augmentations

Fact 2.1. The price of all items before the arrival of the ith buyer is either 1 or at most 1− 1
i . There is no tail

augmenting path from items with price 1.

Proof. Recall that we are assuming that all buyers can be matched, hence all prices being at most 1 follows
from the KKT optimality conditions for (EG1) and Hall’s theorem. Let Tp be a set of items with some price
p ≤ 1, and let Bp := {i | yij > 0, j ∈ Tp}. Then, since the buyers in Bp buy only items in Tp, we have
|Bp| =

∑
i∈Bp,j∈Tp

p · yij = p · |Tp|, giving p = |Bp|/|Tp|. This fraction is either 1, or at most i−1
i (because

|Bp| ≤ i − 1 before the arrival of i). For the items of price 1, the buyers in B1 have edges only to items in T1

(since otherwise, they would buy cheaper items) and |B1| = |T1|. Thus, by Hall’s theorem, they are all matched
and there can be no tail augmenting path from such items.

Theorem 2.1. The Shortest Augmenting Path (SAP) algorithm performs O(n log2 n) changes.

Proof. For each item j, let pj(i) be its price before the arrival of the ith buyer. Let jmin ∈ N(i) be a neighbor
of i of minimal price, and define qmin(i) := minj∈N(i){pj(i)}. By Fact 2.1 and the assumption that each arriving
buyer can be matched, qmin(i) ≤ 1− 1/n.

Let ∆pj(i) be the change in the price of item j due to the arrival of buyer i. By Lemma 2.2 the length of the
shortest augmenting path from i is at most that of the tail augmenting path from jmin which can be bounded as
follows,

ℓi = O

(
lnn

1− qmin(i)

)
= O

(
lnn

1− qmin(i)

) ∑
j:pj(i)≥qmin(i)

∆pj(i) ≤ O (lnn) ·
∑
j∈T

∆pj(i)

1− pj(i)
,(2.5)

where the second equality uses Theorem 2.2 (iii) to infer that
∑m

j=1 pj equals the current number of matched
buyers, and Lemma 2.1 says that the price of items with pj < qmin(i) do not change, which together imply that∑

j:pj≥qmin(i)
∆pj(i) = 1.

Hence, the total number of augmentations is

n∑
i=1

ℓi ≤ O(lnn) ·
∑
i

∑
j∈T

∆pj(i)

1− pj(i)︸ ︷︷ ︸
(⋆)

≤ O(lnn) · n ·

(
1 +

∫ 1−1/n

p=0

dp

1− p

)
= O(n ln2 n),
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where the second inequality uses two facts: firstly, because
∑

j∈T ∆pj(i) = 1 and as 1/1−x is monotonically
increasing, the sum (⋆) is maximized when n items have a final value of 1. Secondly, we bound the last term

of any one sum
∑

i
∆pj(i)
1−pj(i)

by 1, and the previous terms—for which pj(i) ≤ 1 − 1/n—by the integral (note that

∆pj(i) ≥ 0 for all i, j by Lemma 2.1). This completes the proof.

3 Extending to a General Matroid

We now prove our main result, for the intersection of a partition matroid P with a general matroidM over the
same ground set E. The matroid P has n parts, each with rank 1. The elements of the ith part are revealed at
time i (the order of the parts is unknown). We assume that there is an independent set of size n after the final
arrival2, and hence the maximum independent set after the arrival of i parts has size i.

The shortest augmenting path also works in this setting. Let I be the chosen independent set before the
arrival of i, and P|i andM|i be the matroids restricted to elements E|i, the elements which have been revealed
thus far. Define the exchange graph DP|i,M|i(I) as the bipartite graph on nodes (I, E|i \ I) with (directed) arcs:

1. y → x is an arc of DP|i,M|i(I) if I − y + x is independent in P.
2. y ← x is an arc of DP|i,M|i(I) if I − y + x is independent inM.

The algorithm finds a shortest path in DP|i,M|i(I) from some element in Pi to a free element inM (that is, some
e ̸∈ I for which I + e is independent inM). This is an augmenting path: it defines a valid sequence of exchanges
to form a new independent set, and the resulting independent set will have size |I| + 1. The correctness of this
algorithm and its analysis in the offline setting are due to Aigner and Dowling, and also Lawler [AD71, Law75]
(see also [Sch03, §41.2]).

Again, let ℓi be the length of the shortest augmenting path upon the arrival of the ith part, and we want to
bound the worst-case value of

∑n
i=1 ℓi. We restate our main Theorem:

Theorem 1.1. (Main Theorem) The Shortest Augmenting Path (SAP) algorithm for the Online Matroid
Intersection Maintenance problem results in at most O(n log2 n) total reassignments, where n is the rank of the
intersectionM∩P.

The remainder of the paper is dedicated to the proof of Theorem 1.1. It proceeds analogously to our proof for
bipartite matchings in §2: we begin by defining a corresponding market we call the matroid intersection market
which, in conjunction with the matroid intersection skeleton, yields “prices” for the elements of E. We then
use properties of these prices to prove an “Expansion Lemma” generalizing Lemma 2.2. This lemma bounds the
length of augmenting paths in terms of prices, and and hence gives our main result. However, as mentioned in
§1, each of these steps requires us to build on the ideas we used for the matchings case.

3.1 The matroid intersection (MI) market The matroid intersection (MI) market is defined for an
arbitrary matroid M = (E, I) and a partition matroid P on the elements in E. There is a set B of buyers,
where each part Pi, i = 1, . . . , |B| is associated with a buyer i. In this market, E is the set of items, the items
in Pi are precisely those that are of interest to buyer i, and each buyer arrives at the market with a budget
of mi dollars. The utility ui to agent i for allocation {ye}e∈Pi

is
∑

e∈Pi
ye, and the allocation constraints are∑

e∈S ye ≤ rankM(S) for each S ⊆ E. It is immediate that the Fisher market with uij ∈ {0, 1} is the special case
in whichM is a partition matroid. A market equilibrium for an MI market can be computed using the following
convex program that optimizes over the matroid polytope ofM:

(EG2)

max
∑

i∈B mi · log
(∑

e∈Pi
ye
)∑

e∈S ye ≤ rankM(S) ∀S ⊆ E (αS)

ye ≥ 0.

2This is w.l.o.g.: if an arriving part does not cause an augmentation, then no future augmenting path will pass through that part.
And thus, the part can be ignored henceforth. See also [BHR18, Obs. 9] for a description in the matching setting.
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Here ye is the amount of item e allocated (to the buyer whose part contains e), and αS for S ⊆ E are a set of
dual variables. The optimal dual is not necessarily unique. For any optimal dual solution α, we define prices as

pe :=
∑
S∋e

αS for each element e ∈ E.(3.6)

The KKT conditions for (EG2) are the following:
(A) Stationarity and complementary slackness:

pe ≥
1∑

e′∈Pi
ye′

and ye ·

(
pe −

1∑
e′∈Pi

ye′

)
= 0 ∀e ∈ E.(3.7)

αS ·

(∑
e′∈S

ye′ − rankM(S)

)
= 0 ∀S ⊆ E.(3.8)

(B) Primal feasibility and αS ≥ 0 for all S ⊆ E (dual feasibility).

Lemma 3.1. Let αS be any optimal dual values for the convex program (EG2), and pe the corresponding prices.
The following hold:
(a) All goods are maximally allocated: For every e in a part Pi with mi ̸= 0, we have pe > 0, so there is some

S ∋ e such that αS > 0, and the corresponding primal constraint is tight (i.e.,
∑

e∈S ye = rank(S)).
(b) Each buyer i is only buying elements (i.e. ye > 0) of minimum price qi := mine∈Pi pe (or equivalently,

highest bang-per-buck).
(c) Each buyer spends all of their money: qi ·

∑
e∈Pi

ye =
∑

e∈Pi
peye = mi.

(d)
∑

S⊆E αS · rank(S) =
∑

i∈B mi.

Proof. All parts follow directly from the above KKT optimality conditions.

Jain and Vazirani [JV10] proposed a generalization of the Fisher linear market called Eisenberg-Gale markets,
which capture many interesting markets, such as the resource allocation framework of Kelly [Kel97]. By definition,
equilibria in these markets can be computed using an Eisenberg-Gale type convex program. One specific class of
these markets are the so-called submodular utility allocation (SUA) markets, in which there are n buyers (where
buyer i has budget mi) and each buyer has an associated utility ui. There are packing constraints on the utilities,
which are encoded via a polymatroid function ν : 2[n] → R+ (i.e., the function ν is submodular, monotone, and
ν(∅) = 0). The corresponding SUA convex program is

max
{∑

i

mi log ui |
∑
i∈S

ui ≤ ν(S) ∀S ⊆ [n], u ≥ 0
}
.(3.9)

Note that in the MI market, we have an allocation constraint for each subset of E, whereas in an SUA market
there is an allocation constraint only for each subset ∪i∈APi, where A ⊆ [n]. Nonetheless, an application of a
continuous version of Rado’s theorem [McD75] can be used to prove the following. (The proof is deferred to
Appendix A.)

Lemma 3.2. The MI market is a submodular utility allocation market.

3.2 The Matroid Intersection Skeleton In this section, we give a combinatorial description of a specific
set of prices of elements with respect to the buyers’ budgets. We refer to this decomposition as the matroid
intersection (MI) skeleton of the matroid intersection market. In Lemma 3.4 we show these prices correspond to
a very specific optimal dual solution to the convex program (EG2). Hence, although optimal dual solutions are
not unique in general, this allows us to focus on a unique set of duals, which we subsequently show can be related
to a notion of expansion.

Definition 3.1. Denote the budget for a subset of buyers B′ ⊆ B to be m(B′) :=
∑

i∈B′ mi. Also define the
neighborhood of these buyers as all elements in all of their parts: N(B′) :=

⋃
i∈B′ Pi. With this, define inverse

expansion of a set of buyers as

InvExpM(B′) :=
m(B′)

rankM(N(B′))

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4291

D
ow

nl
oa

de
d 

11
/2

2/
24

 to
 1

65
.1

23
.2

39
.2

43
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



We now give an algorithm that outputs a nested family of elements ∅ = E0 ⊆ E1 ⊆ . . . ⊆ EL = E, which
we call the matroid intersection skeleton, as well as prices for each of the items in E. The algorithm, which is
given as Algorithm 1, does the following: in each step ℓ, the algorithm finds the (inclusion-wise maximal) set
Bℓ+1 of buyers having maximum inverse expansion ρ. The elements spanned by the neighborhood of those buyers
are assigned a price of ρ. These elements are then contracted inM, and the buyers Bℓ+1 are “peeled off”, with
the process then repeating on the contracted matroid with the remaining buyers. Defining Eℓ to be the set of
elements contracted until the ℓth step gives us the desired nested family ∅ = E0 ⊆ E1 ⊆ . . . ⊆ EL = E. Moreover,
the dual variables αS can be chosen to be positive only on the sets in this nested family.

A similar nested family (of buyers, instead of elements) is introduced in an algorithm for finding equilibria
in SUA markets [JV07]; however, such a decomposition is not uniquely extendable to all items in an MI market.
Our MI skeleton is one such extension, which in particular, connects the market to a notion of expansion on the
matroid intersection.

Henceforth, we will use Mℓ to denote the matroid contraction M/Eℓ, and rank(ℓ) and InvExp(ℓ) to denote
the rank and the inverse expansion with respect to this matroidMℓ.

Algorithm 1: The Matroid Intersection Skeleton

1.1 Initialize E0 ← ∅, the contracted elements.
1.2 Initialize Brem

0 ← B the remaining buyers.
1.3 for ℓ = 0, 1, . . . until Brem

ℓ is empty do

1.4 ρ← maxB′⊆Brem
ℓ

InvExp(ℓ)(B′).

1.5 Find the (unique) largest set of buyers Bℓ+1 ⊆ Brem
ℓ with inverse expansion InvExp(ℓ)(Bℓ+1) = ρ.

1.6 Consider the elements S′ := spanMℓ
(N(Bℓ+1)).

1.7 Set the prices of each e ∈ S′ to be p̂ℓ+1 := ρ.
1.8 Eℓ+1 ← Eℓ ∪ S′.
1.9 Brem

ℓ+1 ← Brem
ℓ \Bℓ+1.

Lemma 3.3. The MI skeleton is well-defined, and p̂ℓ > p̂ℓ+1 for every ℓ.

The proof of Lemma 3.3 uses the submodularity of the matroid rank function, and uncrossing arguments to
show the uniqueness of the sets Bℓ, and the fact that the densities are strictly increasing; we defer the formal
argument to Appendix A. Instead we focus on showing that the prices defined by Algorithm 1 indeed give us
optimal duals. The proof proceeds by induction on the total number of rounds L. We begin with the case L = 1
(where the “densest” set of buyers form the entire matroid).

Claim 3.1. (Single Round) Consider an instance in which the inverse expansion of the entire set of buyers,
ρ := InvExpM(B), is the maximum inverse expansion. Then any optimal primal-dual pair of solutions y∗, α∗ for
the convex program (EG2) satisfies p∗e :=

∑
S∋e α

∗
S = ρ. That is, all prices with respect to the optimal duals α∗

are equal to ρ. One such optimal dual solution sets α̂E = ρ and α̂S = 0 for all other sets.

Proof. Let Smax ⊆ E be the set of elements with price p∗max := maxe∈E p∗e. We claim that Smax = E.
As a first step, we show that constraint corresponding to Smax in (EG2) is tight. This uses the observation

that if the constraints for two sets are tight, then the constraints for their union and intersection are also tight
due to submodularity of the matroid rank function. Now define:

Se :=
⋂
S∋e
α∗

S>0

S.

This set Se is the smallest tight set containing e ∈ Smax. Note that any e′ ∈ Se has price at least that of e, and
hence belongs to Smax by the maximality of e’s price. In turn this implies that Smax = ∪e∈SmaxSe; writing Smax

as a union of tight sets shows its tightness.
Next, define Bmax as the set of buyers buying from Smax; we claim that N(Bmax) is also tight. Indeed,

N(Bmax) ⊆ Smax, since the buyers in Bmax must buy at the least price in their neighborhood. All other items
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in Smax \N(Bmax) must have ye = 0 since they are not sold. This means y(N(Bmax)) = y(Smax) = r(Smax) ≥
r(N(Bmax)); combining with the constraint in (EG2) means the last inequality is an equality.

Now, observe that for any subset K of buyers, we have

(3.10) m(K) =
∑
i∈K

q∗i
∑
e∈Pi

ye ≤ p∗max

∑
i∈K

∑
e∈Pi

ye ≤ p∗max rank(N(K)),

where the equality uses Lemma 3.1(c). In particular, this implies that InvExpM(K) ≤ p∗max for every K ⊆ B,
and so ρ = maxK InvExpM(K) ≤ p∗max.

Now consider setting K = Bmax: the first inequality in eq. (3.10) holds at equality because each buyer in Bmax

buys at price p∗max, while the second holds at equality by the tightness of N(Bmax). So InvExpM(Bmax) = p∗max,
which shows that ρ ≥ p∗max, and in fact equality holds.

Finally, for K = B, eq. (3.10) implies

m(B) ≤ p∗max rank(N(B)) = ρ rank(N(B)) = m(B)

by the assumption that InvExpM(B) = ρ. Therefore, setting K = B gives equality throughout the sums in
eq. (3.10). That is, q∗i = p∗max for all i ∈ B, which means that each buyer i buys at price p∗max. In particular,
Bmax = B and Smax = N(B) = E.

The fact that α̂ is an optimal dual follows from checking the KKT conditions with respect to y∗: Equation (3.7)
is satisfied trivially, and Equation (3.8) is satisfied since we have shown above that E is a tight set.

Claim 3.1 shows that the prices we computed (for the case of L = 1) indeed correspond to optimal duals.
Next, we extend the proof to the case of general L, via an inductive argument.

Lemma 3.4. (Prices are Optimal) Consider the prices p̂1, . . . , p̂L from Algorithm 1, and define

α̂EL
:= p̂L

α̂Eℓ
:= p̂ℓ − p̂ℓ+1 ℓ = 1, . . . , L− 1

and α̂S = 0 for all other S ⊆ E; note that all α̂S ≥ 0 by Lemma 3.3. Then the resulting α̂ forms an optimal dual
solution to (EG2); in particular, it satisfies the KKT optimality conditions.

Proof. We construct an optimal primal solution ŷ, such that (ŷ, α̂) form a primal/dual pair satisfying the KKT
conditions for the convex program in (EG2).

We proceed via induction on L, the number of steps in Algorithm 1. Claim 3.1 precisely proves the base case
of L = 1. For our inductive hypothesis, assume the lemma holds true for Algorithm 1 having up to k iterations.
We consider an instance that requires k + 1 iterations of the Algorithm 1. Consider the two markets

• market M(1) on buyers B1, where all budgets mi are equal to those from market M, and with the matroid
M restricted to the ground set E(1) := N(B1). Let y

(1) be an optimal primal solutions. By Claim 3.1, the

vector α̂(1) where α̂
(1)
N(B1)

= p1 (and all other sets have α̂ value 0) is an optimal dual solution to market

M(1).
• market M(2) on buyers B\B1, where all budgets mi are equal to those from market M, and with the matroid

M/ span(E(1)) (contracting elements span(E(1))). We apply the inductive hypothesis on market M(2): Let
y(2) be an optimal primal solution and let α̂(2) be the (optimal) dual solution arising from Algorithm 1.

We may consider a gluing of y(1) and y(2) to create a primal solution ŷ

ŷe :=


y
(1)
e if e ∈ E(1)

0 if e ∈ span(E(1)) \ E(1)

y
(2)
e otherwise

The proof that ŷ and α̂ satisfy the KKT conditions for marketM is an application of the gluing lemma, Lemma A.1.

Definition 3.2. (Canonical Duals/Prices) The duals and prices for (EG2) generated by Algorithm 1 are
called canonical duals and prices.
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Theorem 3.1 shows that canonical duals are optimal duals for the convex program (EG2). We can now extend
Lemma 3.1 to record two more properties that are specific to canonical prices.

Theorem 3.1. (Two More Properties) Let αS be the canonical dual values for (EG2) with corresponding
prices pe, and let y be any optimal primal solution for (EG2). The following hold:
(e) Let F ⊆ E be a maximum-price basis ofM. Then

∑
e∈F pe = m(B).

(f) For B′ ⊆ B and qmax := maxi∈B′ qi, consider the set of elements S := {e ∈ N(B′) : ye > 0}, and E> the

elements with prices higher than qmax. Then rankM/E>
(S) ≥ m(B′)

qmax
.

Proof. We prove:

(e) Let F be a maximum-price basis (with respect to M) of elements. We first claim that for any S ⊆ E, if
αS > 0 (in particular, S = Eℓ for some ℓ), then F contains rank(S) elements from S. Observe that for each
Eℓ from the MI skeleton, the greedy algorithm to compute F always considers all elements of Eℓ before
considering elements of E \ Eℓ (those of lower price). Therefore, |F ∩ Eℓ| = rank(Eℓ).

Finally, Lemma 3.1(d) and the above claim together imply the desired:

m(B) =
∑

S:αS>0

αS · rank(S) =
∑
ℓ

∑
e∈F∩Eℓ

αEℓ
=
∑
e∈F

∑
S∋e

αS =
∑
e∈F

pe.

(f) Denote qmax := maxi∈B′ qi. First observe that since ye > 0 for e ∈ S (lying in part Pi for some i ∈ B′),
Lemma 3.1(b) implies that pe = qi ≤ qmax. Now consider Algorithm 1, in particular, the step where all
elements with prices strictly greater than qmax have been contracted. This is exactly the matroidM/E>.
At this point, the maximum inverse expansion is at most qmax (by Lemma 3.3). Hence, for any subset of
buyers B′ at this stage, we have

m(B′)

rankM/E>
(M(B′))

≤ qmax.

This is precisely the desired result.

Part (e) is used later in the proof of the main theorem to bound the total price, while part (f) gives a relation
between the prices in an arbitrary set of buyers and its expansion (in some contraction ofM).

3.3 Monotonicity of Prices We can now show that the prices of items only increase as new buyers arrive.
Showing this for the minimum prices that buyers observe follows from a property called competition monotonicity
that holds for SUA markets (and hence for our MI market). However, for the proof of Theorem 1.1 we will need
to use the fact that the canonical prices are monotone for all items (and not just for the price that each buyer
buys at). Note that since the item prices are not unique, monotonicity of prices may not hold for all items.

For the purposes of this proof, we view the arrival of buyers as a change in their budgets. That is, the budget
of all buyers that have arrived is 1 and the budget of all buyers that have not yet arrived is 0. Thus, the arrival
of iinc is represented by an increase in its budget from miinc = 0 to miinc = 1. Throughout this section, we
assume that the MI skeleton immediately before iinc arrives is given by the sequence of buyers B1, . . . , BL, and
the nested family of elements E1 ⊆ . . . ⊆ EL = E, where price pℓ is assigned to the elements of Eℓ \ Eℓ−1, and
each buyer i ∈ Bℓ buys at price qoldi = pℓ (i.e., pℓ is the minimum price element in Pi). We will use the notation
B≤k := ∪kj=1Bj .

Theorem 3.2. (Monotonicity of Prices) Let iinc be an incoming buyer and let pold, pnew be the canonical
price vectors for the instances before and after its arrival. Then, for every item e ∈ E,

(3.11) pnewe ≥ polde

Moreover, let q := mine∈Piinc
{polde } be the minimum price that buyer iinc observes before arriving. If polde < q,

then,

(3.12) pnewe = polde

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4294

D
ow

nl
oa

de
d 

11
/2

2/
24

 to
 1

65
.1

23
.2

39
.2

43
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



We will prove Theorem 3.2 in two steps: first, we show monotonicity of the prices buyers are buying at3.
Second, we use the structure of the MI skeleton to extend this monotonicity to all elements.

Lemma 3.5. For any buyer i, let qoldi = mine∈Pi pe be the price it buys at immediately before the arrival of iinc,
and similarly qnewi the price it buys at immediately after. Then qnewi ≥ qoldi .

Proof. Recall that by Lemma 3.2, the matroid intersection market is an SUA market. Jain and Vazirani [JV07]
proved the following monotonicity result about SUA markets:

Fact 3.1. (Competition monotonicity) At the addition of a new buyer iinc, no other buyer’s utility ui,
defined in MI markets as ui :=

∑
e∈Pi

ye, increases.

An immediate corollary of this fact and Lemma 3.1, part (c) is that for all buyers i that arrive before iinc, we
have qnewi ≥ qoldi .

It remains to show that the minimum price of elements in Piinc also does not decrease. To see this, suppose
that (immediately before its arrival) iinc is in Bk. Then, the MI skeleton implies that

(3.13) InvExp(k)(Bk) ≥ InvExp(k)(Bk \ iinc),

but since m(Bk) = m(Bk \ iinc), we must have rank(k)(N(Bk)) = rank(k)(N(Bk \ iinc)), or iinc would not be in Bk.
Therefore, Piinc ⊆ span(N(B≤k \ iinc)). Therefore, since the prices paid by buyers in B≤k \ iinc do not decrease
after the arrival of iinc, once all of these buyers are peeled off, iinc must be as well, at a price no smaller than its
price was before its arrival.

Now we can prove monotonicity of the prices of all elements.

Proof. [Proof of Theorem 3.2] We first prove Equation (3.11) and specifically that pnewe ≥ polde for each e ∈ Eℓ\Eℓ−1

by induction on ℓ. There are two cases: since e was contracted at step ℓ of Algorithm 1, we must either have that
e ∈ N(Bℓ), or e ∈ spanMℓ−1

(N(Bℓ)) \N(Bℓ).

1. If e ∈ N(Bℓ), then e ∈ N(i) for some i ∈ Bℓ, and polde = pℓ = qoldi . But then by Lemma 3.5,

pnewe ≥ qnewi ≥ qoldi = polde .

2. If e ∈ spanMℓ−1
(N(Bℓ))\N(Bℓ), then we have that e ∈ spanM(Eℓ−1∪N(Bℓ)), by the definition of matroid

contraction. By induction and case 1 above, we know that all elements e′ in Eℓ−1 ∪N(Bℓ) have new price
at least pnewe′ ≥ polde′ ≥ pℓ = polde . Moreover, by design of Algorithm 1, we must have that after the arrival,

pnewe ≥ min
e′∈Eℓ−1∪N(Bℓ)

pnewe′ ≥ polde

where the first inequality follows because once all elements in Eℓ−1 ∪ N(Bℓ) have been assigned a price,
then so have the elements in their span, including e.

It remains to prove Equation (3.12), that pnewe = polde if polde < q. Recall that when running Algorithm 1,
immediately before iinc’s arrival, iinc is peeled off at step k with corresponding price pk. We claim that this
implies that in the MI skeleton with m(iinc) = 1, all buyers of B(1) := B≤k are peeled off before any buyer
i ∈ B(2) := B \B(1), and hence the prices of all elements with polde < pk are unchanged.

To prove this, we consider two submarkets of the MI market after the arrival of iinc : (1) market instance M(1)

with buyers B(1), elements E(1) := N(B(1)), with matroidM(1) :=M|E(1) and partition matroid P|E(1) , and (2)

market instance M(2) with buyers B(2) := B \ B(1), E(2) := E \ span(E(1)), matroid M(2) := M/ span(E(1)),
and partition matroid P|E(2) . Budgets in both markets are precisely those immediately after the arrival of iinc.
Note that deriving an MI skeleton from each of these markets separately yields optimal primal and dual solutions
y(1), α(1) (for market M(1)) and y(2), α(2) (for market M(2)) where all prices in market M(1) are at least pk and all

prices buyers in market M(2) buy at are exactly as they were from the MI skeleton on that market immediately

3For a buyer i with a budget of 0, this price is simply the price of the cheapest element of Pi
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before iinc arrived. Note also that the elements in span(E(1))\E(1) are not included in either market. To complete
the proof then, it suffices to show that these two solutions can be “glued together” to obtain an optimal primal
and dual solution to the full market after the arrival of iinc, where the prices of all elements in E(2) are given by
the optimal solution to market M(2) and thus are unchanged relative to the prices before iinc arrived. This is
shown in Lemma A.1.

3.4 The Expansion Lemma We now prove our expansion lemma, which relates the length of augmenting
paths in the exchange graph to prices of elements.

Lemma 3.6. Let I∗ be an arbitrary independent set in the intersection P ∩M, and let p ∈ R|E|
≥0 be the canonical

prices. Then, for any element e∗ ∈ E with current price pe∗ ∈ [0, 1) such that I∗∪ e∗ ∈ P, there is an augmenting
path from e∗ of length at most O

(
lnn

1−pe∗

)
.

Just as in the case of matchings, we define a sequence of sets of buyers {Lk}k and of items {Rk}k inductively,
based on the independent set I∗ and the prices p. Firstly, for an element e ∈ E, let circuit(e, I∗) ⊆ I∗ be the
elements from I∗ in the circuit formed by adding e to I∗. (If I∗ ∪ {e} ∈ M then circuit(e, I∗) = ∅.) Now, for any
S ⊆ E, we define

circuit(S, I∗) :=
⋃
e∈S

circuit(e, I∗).

Secondly, for a set S ⊆ E, let S≤τ := {e ∈ S | pe ≤ τ} denote the set of elements in S which have price less than
or equal to some threshold τ . With this, we may define our sequences of sets:

R1 := {e∗}
Lk := {i ∈ B | Pi ∩ circuit(Rk, I

∗)≤pe∗ ̸= ∅}
Rk+1 := {e ∈ N(Lk) | ye > 0}.

In order to prove Lemma 3.6, we need the following expansion claim.

Claim 3.2. If R1, . . . , Rk do not contain a free element with respect toM, then
(a) pe ≤ pe∗ for all e ∈ Rk+1, and
(b) rankM(Rk+1) ≥ (1/pe∗)

k.

Proof. We proceed by induction on k. The base case is k = 0, in which case both properties are true for the
singleton set R1 = {e∗}. Now, to inductively prove property (a): consider an element e ∈ Rk+1, and say it belongs
to part Pi. Since ye > 0, Lemma 3.1(b) implies that pe = qi. Moreover, i ∈ Lk by definition, so part Pi contains
an element from circuit(Rk, I

∗)≤pe∗ , which in particular implies that it contains an element with price at most
pe∗ and so qi ≤ pe∗ . Putting these two facts together shows pe ≤ pe∗ , and hence part (a). To prove part (b): for
brevity, define the sets

K := circuit(Rk, I
∗) and K≤ := circuit(Rk, I

∗)≤pe∗ .

Since K≤ ⊆ K ⊆ I∗, and I∗ is independent in the matroid I, we have rankI(K≤) = |K≤|. This means that each
i ∈ Lk has exactly one element in Pi∩K≤, and therefore |Lk| = |K≤|. Let E> be all the elements of price greater
than pe∗ , and consider the contractionM≤ :=M/E>. We claim that

rank(M≤)(Rk) ≤ |K≤| = |Lk|.(3.14)

Before we prove the claim in (3.14), let us use it to complete the inductive proof for part (b). Indeed,
Theorem 3.1(f), along with the fact that no client of Lk buys at price greater than pe∗ , tells us that

rank(M≤)(Rk+1) ≥
|Lk|
pe∗

.

Using (3.14) now proves the second part of the inductive claim:

|Rk+1| ≥ rank(M≤)(Rk+1) ≥
rank(M≤)(Rk)

pe∗
≥
(

1

pe∗

)k

.
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Finally, it remains to prove the inequality in (3.14). For the sake of contradiction, suppose

|Rk| ≥ rank(M≤)(Rk) > |K≤| ≥ rank(M≤)(K≤).

By the matroid exchange property, there is some e ∈ Rk for which K≤∪{e} is independent. But by the definition
of matroid contraction, this implies that in our un-contracted matroidM we have

rankM(K≤ ∪ {e} ∪ E>) > rankM(K≤ ∪ E>).

Since K ⊆ K≤ ∪ E>, submodularity gives rankM(K ∪ e) > rankM(K). But this contradicts the fact that K is
independent, while K ∪ e contains the circuit circuit(e, I∗) by construction.

Proof. [Proof of Lemma 3.6] Indeed, if Rk does contain a free element with respect toM, then there is a path in
the exchange graph from e∗ to this free element of length at most 2k. Indeed, each element e ∈ Rk is contained in
Pi for some buyer i ∈ Lk−1, and i has a neighbor e′ ∈ circuit(Rk−1, I

∗)≤pe∗ ⊆ I∗. This means that there is some
e′′ ∈ Rk−1 for which I∗− e′ + e′′ ∈M, and I∗− e′ + e ∈ P. Inductively, e′′ is reachable from e∗ by an alternating
path of length 2(k− 1), so therefore e is reachable by an alternating path of length 2k. Such an alternating path
to a free element implies that the shortest AP to a free element is of length no more than 2k.

On the other hand, if Rk contains no free element, then we have (1/pe∗)
k−1 ≤ rankM(Rk) ≤ |Lk| ≤ n. Taking

logs, we get that k is at most O(max{1, lnn
ln(1/pe∗ )

}) = O( lnn
1−pe∗

) when the process ends with an augmenting path
of length at most 2k, hence proving Lemma 3.6.

3.5 Bounding the Total Augmentation Cost

Proof. [Proof of Theorem 1.1] When the ith buyer arrives, say the minimum price neighbor before its arrival
(i.e. while it has 0 budget) has price qmin. Denote the maximum-price basis before arrival i as Fi−1, having

elements of prices f
(i−1)
1 ≥ . . . ≥ f

(i−1)
R (where R denotes the rank of M), and similarly for Fi after arrival

i. ∆f
(i)
z := f

(i)
z − f

(i−1)
z ≥ 0, by Theorem 3.2 (monotonicity of prices). Then, using the Expansion lemma

(Lemma 3.6), the length ℓi of the shortest augmenting path upon arrival i is at most

ℓi ≤ O

(
lnn

1− qmin

)
= O

(
lnn

1− qmin

)
·

R∑
z=1

∆f (i)
z ≤ O(lnn) ·

R∑
z=1

∆f
(i)
z

1− f
(i−1)
z

.

where the equality follows from Theorem 3.1(e) (since the total budget increases by 1 at the arrival of i), and the

final inequality again from Theorem 3.2, since either ∆f
(i)
z = 0, or qmin ≤ f

(i−1)
z .

Denote f̂z := max{f (i)
z : f

(i)
z < 1}. Notice that by Theorem 3.1(e) at most n elements in Fn can have final

price f
(n)
z = 1. The total cost of all augmenting paths is at most:

n∑
i=1

ℓi ≤ O(lnn)

R∑
z=1

n∑
i=1

∆f
(i)
z

1− f
(i−1)
z

≤ O(lnn)

R∑
z=1

(
1(z≤n) +

∫ f̂z

p=0

dp

1− p

)

= O(n lnn) +O(lnn)

R∑
z=1

ln

(
1

1− f̂z

)
It remains to upper bound the right hand term by O(n ln2 n). Here we give a more careful argument of this

fact than in §2. We can compute the maximum value the sum could possibly attain, given certain constraints on
the prices f̂z. Observe that at all times, prices satisfy pe ≤ n

n+1 or pe = 1 for every element e. Indeed, Algorithm 1

assigns e a price p = m(B′)

rank(ℓ)(N(B′))
for some ℓ and some set B′ of buyers. If p < 1, then rank(ℓ)(N(B′)) ≥ m(B′)+1,

so p ≤ m(B′)
m(B′)+1 ≤

n
n+1 . Also from part (e) of Theorem 3.1,

∑
z f̂z ≤

∑
z f

(n)
z = n. Now, we have

maxp
∑R

z=1 ln
(

1
1−pz

)
s.t.

∑R
z=1 pz ≤ n

pz ≤ n
n+1

 =


maxp

∑R
z=1 ln

(
1

1−pz

)
s.t.

∑R
z=1 pz = n

pz ≤ n
n+1

 = (n+ 1) ln(n+ 1).
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The first equality follows from monotonicity of the objective. The second comes from the following mass-shifting
argument: given two elements with prices p, q and p ≥ q, let their sum be p+ q = D. Then

d

dp

[
log

(
1

1− p

)
+ log

(
1

1− (D − p)

)]
=

1

1− p
+

1

1− (D − p)
≥ 0.

In particular, we can increase the sum by moving price-mass from pi to pj for any pi < pj . Therefore the

maximizing p has pz = n
n+1 for n+1 elements, and pz = 0 for the rest. Since our prices {f̂z} satisfy the constraints

in the maximization problem above, we have shown
∑n

i=1 ℓi ≤ n lnn+ (n+ 1) ln(n+ 1) lnn = O(n ln2 n).

4 Closing Remarks

We gave the matroid intersection maintenance problem, where we maintain a common base in the intersection
of a partition matroid P and another arbitrary matroid M, where the parts of P appear online, such that the
total number of changes performed is O(n log2 n). This extends the previous result for the special case of the
intersection of two partition matroids (i.e., bipartite matching). Our results were based on viewing the problem
from the perspective of market equilibria, and using market-clearing prices to bound the lengths of augmenting
paths. Several open problems remain: the most natural one is whether we can improve the bound to O(n log n),
or give a better lower bound, even for the bipartite matchings case. Can a better bound be given for the fractional
variant of the problem? Can the matroid constraints be generalized to broader sets of packing constraints (again
in the fractional case)?

Finally, what can we say about intersections of two arbitrary matroids? This problem is hopeless in full
generality because it captures the edge-arrival model in bipartite matchings, which has a simple Ω(n2) lower
bound. Are there other interesting special cases which avoid these lower bounds?

Acknowledgments Part of this work was conducted while A. Gupta and S. Sarkar were visiting the Simons
Institute for the Theory of Computing; they thank the institute for its generous hospitality.

A Appendix

Lemma 3.2. The MI market is a submodular utility allocation market.

Proof. In a sub-modular utility allocation (SUA) market, the utility of buyers are defined by sub-modular packing
constraints. The convex program corresponding to this market is

(A.1)

max
∑
i∈B

m(i) · log ui∑
i∈B′

ui ≤ ν(B′) ∀B′ ⊆ B (αB′)

ui ≥ 0

where ν is a sub-modular, monotone function. We consider the following SUA market. Define for a subset of
buyers B′ ⊆ B the sub-modular monotone function

ν(B′) := rank(N(B′)).

We will show that this SUA market and the matroid intersection market are equivalent, i.e., an optimal set of
y′es can be transformed into an optimal solution in the SUA market, and vice versa. To see that a solution to
the matroid intersection market can be turned into a solution to the SUA market with the same objective value,
consider the following assignment of ui’s:

ui :=
∑
e∈Pi

ye.

Clearly, the ui’s are feasible, and the objective values are the same.
For the converse direction, we use the following theorem of McDiarmid, an extension of Rado’s theorem
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Theorem A.1. (Proposition 2C of [McD75]) Let G = (X,Y,E) be a bipartite graph, and P a polymatroid
on ground set Y associated to polymatroid function ρ. Let u ∈ R+

X , then u is linked onto some vector y ∈ P if and
only if

(A.2) u(B′) ≤ ρ(NG(B
′)) ∀B′ ⊆ X.

In McDiarmid’s language, any solution u in the SUA market (and therefore satisfying (A.2)) is “linked to” some
y in the polymatroid defined by polymatroid function ρ(A) = rankM(A) (so P is the matroid polytope of M).
This precisely gives us a solution of ye’s that lie in the matroid polytope ofM such that ui =

∑
e∈Pi

ye.

Lemma 3.3. The MI skeleton is well-defined, and p̂ℓ > p̂ℓ+1 for every ℓ.

Proof. In particular, we have the following:
(a) Each Bℓ+1 is uniquely defined.
(b) At each step ℓ, every remaining buyer i ∈ Brem

ℓ has a nonempty neighborhood. That is, Pi \ Eℓ ̸= ∅.
(c) The prices assigned in step ℓ are greater than those assigned in later steps. That is, p̂ℓ > p̂ℓ+1.

First, we state a fact that will be useful:

Fact A.1. For non-negative a, b, c, d, p, if a
b ≤ p and c

d ≤ p, then a+c
b+d ≤ p. Moreover, if either of the first two

inequalities are strict, then so is the third.

(a) Let B′, B′′ be two sets of buyers at iteration ℓ with maximum inverse expansion ρ. We claim that B′ ∪B′′

has the same inverse expansion. Observe that

m(B′ ∪B′′) ≤ rank(ℓ)(N(B′) ∪N(B′′)) · ρ

≤
(
rank(ℓ)(N(B′)) + rank(ℓ)(N(B′′))− rank(ℓ)(N(B′) ∩N(B′′))

)
· ρ

≤ m(B′) +m(B′′)−m(B′ ∩B′′)

= m(B′ ∪B′′),

where the first inequality follows from maximality of ρ, the second by submodularity, and the third
by our assumption on the inverse expansion of B′ and B′′. Therefore equality holds throughout, and
InvExp(ℓ)(B′ ∪B′′) = ρ. So the union of all sets of maximum inverse expansion gives the unique largest set
of maximum inverse expansion.

(b) Consider for contradiction the first iteration ℓ + 1 at which some remaining buyer i ∈ Brem
ℓ+1 has empty

neighborhood. That means i ̸∈ Bℓ+1, while its neighbors Pi \ Eℓ are in spanMℓ
(N(Bℓ+1)). But then

we could add i to Bℓ+1 without increasing the rank of its neighborhood. That is rank(ℓ)(N(Bℓ+1)) =

rank(ℓ)(N(Bℓ+1∪i)), and thus InvExp(ℓ)(Bℓ+1∪i) ≥ InvExp(ℓ)(Bℓ+1) = ρ, a contradiction to the maximality
of Bℓ+1.

(c) For contradiction, suppose that p̂ℓ+1 > p̂ℓ. We will argue that Bℓ is not the maximum inverse expansion
set inMℓ−1. Since Bℓ and Bℓ+1 are disjoint, we have

InvExp(ℓ−1)(Bℓ ∪Bℓ+1) =
m(Bℓ) +m(Bℓ+1)

rank(ℓ−1)(N(Bℓ) ∪N(Bℓ+1))
.

Furthermore, recall that Mℓ = M/Eℓ = Mℓ−1/ spanMℓ−1
(N(Bℓ)), so by the definition of matroid

contraction,
rank(ℓ)(N(Bℓ+1)) + rank(ℓ−1)(N(Bℓ)) = rank(ℓ−1)(N(Bℓ) ∪N(Bℓ+1)).

We use this substitution to get our second equality:

InvExp(ℓ−1)(Bℓ ∪Bℓ+1) =
m(Bℓ) +m(Bℓ+1)

rank(ℓ−1)(N(Bℓ) ∪N(Bℓ+1))

=
m(Bℓ) +m(Bℓ+1)

rank(ℓ−1)(N(Bℓ)) + rank(ℓ)(N(Bℓ+1))

> p̂ℓ.
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The last strict inequality follows from Fact A.1 and our assumption that p̂ℓ+1 > p̂ℓ. This contradicts that
p̂ℓ is the maximum inverse expansion inMℓ−1.

A.1 The Gluing Lemma Fix an MI market M, and let B1, B2, . . . , BL be the sets of buyers peeled off in
Algorithm 1. Fix some 1 ≤ r < L, and define B≤r :=

⋃
ℓ≤r Bℓ, and B>r := B \ B≤r. Now we define two MI

markets:
• market M(1) on the ground set E(1) := N(B≤r), with matroid M(1) := M|E(1) , and partition matroid
P|E(1) . The buyers are B≤r, and their budgets are the same as in market M. Let y(1), α̂(1) be corresponding

optimal primal and dual solutions, where α̂(1) is the dual solution from the MI skeleton on market M(1).
• market M(2) on the ground set E(2) := E \ span(E(1)), with matroidM(2) :=M/ span(E(1)), and partition
matroid P|E(2) . The buyers are B>r, and their budgets are the same as in market M. Let y(2), α̂(2) be
corresponding optimal primal and dual solutions, where α̂(2) is the dual solution from the MI skeleton on
market M(2).

Additionally, let p̂r+1 be the price assigned in step r + 1 of Algorithm 1 for market M.

Lemma A.1. (Gluing Lemma) Let y+ be

y+e :=


y
(1)
e if e ∈ E(1)

0 if e ∈ span(E(1)) \ E(1)

y
(2)
e otherwise

and α+ be

α+
S :=


α̂
(1)
S′ S = span(S′) for S′ ⊊ E(1) with α̂

(1)
S′ > 0

α̂
(1)

E(1) − p̂r+1 S = span(E(1))

α̂
(2)
S′ S = S′ ∪ span(E(1)) for S′ ⊆ E(2) with α̂

(2)
S′ > 0

0 otherwise.

Then, y+ is an optimal solution to the convex program (EG2) for market instance M+, identical to market M.

And, in particular, the prices defined by α+ are identical to those assigned in markets M(1) and M(2).
Moreover, the lemma still holds if the budgets of buyers in B≤r are allowed to increase from their original

values in market M, with the increase happening simultaneously in M(1) and M+.

Proof. It suffices to check that y+ and α+ satisfy the KKT conditions for market M+.
Primal Feasibility: We first verify primal feasibility: for any S ⊆ E, we have∑

e∈S

y+e =
∑

e∈S∩E(1)

y(1)e +
∑

e∈S∩E(2)

y(2)e ≤ rankM(1)(S ∩ E(1)) + rankM(2)(S ∩ E(2)) ≤ rank(S)

where the first inequality follows from feasibility of y(1) and y(2) in their respective markets, and the second from
the definition of matroid contraction.

Dual Feasibility: For all S ̸= span(E(1)), it is clear that α+
S ≥ 0, so dual feasibility holds. It remains

to show for S = span(E(1)). We first observe that
∑

S′⊆E(2) α
(2)
S′ = p̂r+1, since Algorithm 1 on market M(2)

is identical to steps r + 1, . . . , L in market M (by construction). Moreover, α̂
(1)

E(1) is the minimum price of any

element in market M(1). In the case that budgets are not increased, α̂
(1)

E(1) is clearly equal to p̂r, since the steps

Algorithm 1 takes for market M(1) are the same as the first r steps on market M.

If budgets have been increased, then still we have α̂
(1)

E(1) ≥ p̂r, by the monotonicity of prices given in Lemma 3.5.
In either case,

α̂
(1)

E(1) ≥ p̂r > p̂r+1.

So α+
span(E(1))

= α̂
(1)

E(1) − p̂r+1 ≥ 0, and dual feasibility is satisfied.
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KKT Stationarity Condition (eq. (3.7)): Let use define

p+e :=
∑
S∋e

α+
S .

and likewise p̂
(1)
e =

∑
S∋e α̂

(1)
S for e ∈ E(1) and p̂

(2)
e =

∑
S∋e α̂

(2)
S for e ∈ E(2). We first observe that p+e = p̂

(1)
e for

every e ∈ E(1), and likewise for e ∈ E(2). This is immediate for every e ∈ E(2), by the definition of α+. Moreover,

since
∑

S′⊆E(2) α
(2)
S′ = p̂r+1, we have that for e ∈ E(1)

p+e =
∑
S∋e

α+
S = pr+1 +

∑
S∋e

S⊆span(E(1))

α+
S =

∑
S′∋e

S′⊆E(1)

α̂
(1)
S′ = p̂(1)e

This implies that α+ and y+ satisfy the stationarity condition for e ∈ E(1) ∪ E(2), since y(1), α̂(1), y(2), α̂(2) are
optimal and satisfy the stationarity conditions.

Lastly, we must check whether edges e ∈ span(E(1)) \ E(1) satisfy the stationarity condition. Say edge e

belongs to buyer i’s part. By definition, buyer i is a part of market M(2). By the the optimality of y(2) and α̂(2)

in market M(2), we know the price buyer i is purchasing at is precisely equal to

qi =
1∑

e′∈Pi
y+e

.

Since buyer i is a part of market M(2), we have qi ≤ p̂r+1. By monotonicity of prices, all prices in market M(1)

are at least p̂r+1. Notice that, by construction, p+e has the same price as some element in E(1). Hence,

p+e > p̂r+1 ≥ qi =
1∑

e′∈Pi
y+e

.

Note that the second part of (eq. (3.7)) is trivially satisfied since y+e = 0.
KKT Complementary Slackness (eq. (3.8)): We show that sets with non-zero α+

S value are tight under

y+e . We go through the cases on what values α+
S could take. If α+

S = α̂
(1)
S′ for some S = span(S′) where α̂

(1)
S′ > 0

(case 1), then, ∑
e∈S′

y(1)e = rank(S′)

by complementary slackness on market M(1). Therefore,∑
e∈S

y+e =
∑
e∈S

y(1)e +
∑

e∈S\S′

0

= rank(S′) = rank(S).

Similar logic holds for the case S = span(E(1)) (case 2). Lastly, if α+
S = α̂

(2)
S′ for some S = S′ ∪ span(E(1)), then,

since S′ is disjoint from span(E(1)) and span(E(1)) is a tight set under y+e , we have∑
e∈S

y+e =
∑
e∈S′

y+e +
∑

e∈span(E(1))

y+e

=
∑
e∈S′

y(2)e +
∑

e∈span(E(1))

y+e

= rank(S′) + rank(E(1))

≥ rank(S′ ∪ span(E(1)))

which means
∑

e∈S y+e = rank(S′ ∪ span(E(1))) as desired.
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