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ABSTRACT
Probabilistic models such as logistic regression, Bayesian classi!cation, neural networks, and models for
natural language processing, are increasingly more present in both undergraduate and graduate statistics
and data science curricula due to their wide range of applications. In this article, we present a one-
week course module for students in advanced undergraduate and applied graduate courses on variational
inference, a popular optimization-based approach for approximate inference with probabilistic models. Our
proposed module is guided by active learning principles: In addition to lecture materials on variational
inference, we provide an accompanying class activity, an R shiny app, and guided labs based on real data
applications of logistic regression and clustering documents using Latent Dirichlet Allocation with R code.
The main goal of our module is to expose students to a method that facilitates statistical modeling and
inference with large datasets. Using our proposed module as a foundation, instructors can adopt and adapt
it to introduce more realistic case studies and applications in data science, Bayesian statistics, multivariate
analysis, and statistical machine learning courses.
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1. Introduction

With the recent and rapid expansion of both undergraduate and
graduate curricula with o!erings in data science, Bayesian statis-
tics, multivariate data analysis, and statistical machine learn-
ing, probabilistic models and Bayesian methods have grown
to become more popular (Schwab-McCoy, Baker, and Gasper
2021; Dogucu and Hu 2022). In many settings, a central task in
applications of probabilistic models is the evaluation of posterior
distribution p(θ | y) of m model parameters θ ∈ Rm (m ≥ 1)
conditioned on the observed data y = (y1, . . . , yn) provided by
the Bayes’ theorem

p(θ | y) = p(y | θ)p(θ)

p(y)
∝ p(y | θ)p(θ). (1)

Here, p(y | θ) is the sampling density given by the underly-
ing probabilistic model for data, p(θ) is the prior density that
represents our prior beliefs about θ before seeing the data, and
p(y) is the marginal data distribution. The posterior distribution
p(θ | y), however, has closed form only in a limited number of
scenarios (e.g., conjugate priors) and therefore typically requires
approximation. By far the most popular approximation methods
are Markov chain Monte Carlo (MCMC) algorithms including
Gibbs sampler, Metropolis, Metropolis-Hastings, and Hamilto-
nian Monte Carlo (Gelman et al. 2013), to name a few. See
Albert and Hu (2020) for a review of these algorithms in under-
graduate Bayesian courses. While useful for certain scenarios,
these MCMC algorithms do not scale well with large datasets
and can have a hard time approximating multimodal posteriors
(Rudoy and Wolfe 2006; Bardenet, Doucet, and Holmes 2017).

CONTACT Vojtech Kejzlar vkejzlar@skidmore.edu Department of Mathematics and Statistics, Skidmore College, Saratoga Springs, NY.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/TAS.

Such challenges therefore limit the applications of probabilistic
models that can be discussed in the classroom and restrict
students’ exposure to more realistic case studies that include
applying neural networks, pattern recognition, and natural lan-
guage processing to massive datasets.

Variational inference is an alternative to the sampling-based
approximation via MCMC that approximates a target density
through optimization. Statisticians and computer scientists
(starting with Peterson and Anderson 1987; Jordan et al.
1999; Blei, Kucukelbir, and McAuli!e 2017) have been using
variational techniques in a variety of settings because these
techniques tend to be faster and easier to scale to massive
datasets. Despite its popularity among statistics and data
science practitioners, variational inference is rarely discussed,
especially in undergraduate courses, as it is believed to be
a too advanced topic (Dogucu and Hu 2022). With this in
mind, we have developed a one-week course module that
serves as a gentle introduction to this topic. The goal is to help
instructors to introduce variational techniques in their advanced
undergraduate and applied graduate courses for more realistic
case studies of probabilistic models. Our proposed one-week
module is based on the best practices of active learning, which
have been shown to improve student learning and engagement
(Michael 2006; Freeman et al. 2014; Deslauriers et al. 2019). Our
main guiding principle in designing the module is to involve
students in the learning process by introducing student-centered
class activities and labs. The guiding principle also includes
assigning open-ended questions, focusing on problem-solving,
providing appropriate sca!olding for activities, and creating
opportunities to work collaboratively with peers.

© 2023 American Statistical Association
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Table 1. Outline of the one-week variational inference module.

Content

First class Lecture: Fundamentals of variational inference
Class activity: Probabilistic model for count data with variational
inference

Second class Lab: Logistic regression/Document clustering

Our module is designed for students to gain a fundamental
understanding and practical experience with variational infer-
ence over the course of two class meetings. During the "rst
meeting, students are exposed to the fundamentals of variational
inferences including the Kullback-Leibler divergence, evidence
lower bound, gradient ascent, and coordinate ascent. Addi-
tionally, they gain their "rst hands-on experience by applying
variational inference to a simple probabilistic model for count
data. To encourage and empower instructors to adopt and adapt
this variational inference module, we provide an accompanying
in-class handout and an R Shiny app with details in the sup-
plementary materials. During the second class meeting, students
work on a guided R lab to apply variational inference to a realistic
scenario. We o!er two lab options for instructors to choose
from depending on the course level and student background.
For advanced undergraduate courses, we provide a case study of
U.S. women labor participation with logistic regression model.
For more advanced and self-motivated undergraduate students
and applied graduate students, we present an application of vari-
ational inference to clustering documents with Latent Dirichlet
Allocation (Blei, Ng, and Jordan 2003). See Table 1 for the
breakdown of the module.

As for the audience, we believe that the module can be seam-
lessly integrated into any advanced undergraduate or applied
graduate course in data science, Bayesian statistics, multivari-
ate data analysis, and statistical machine learning that covers
topics on clustering, classi"cation, or text analysis. The pre-
requisites needed for the module are a basic understanding of
statistical modeling, probability distributions, and elementary
calculus.

The remainder of the article is organized as the following.
In Section 2, we provide an overview of variational inference
essentials that can be readily used as a basis for a lecture instruc-
tion. Section 3 presents a motivating example and the Gamma-
Poisson model for count data that serves as the "rst hands-on
class activity with variational inference. In Section 4, we o!er
realistic case studies for variational inference with implementa-
tion details in R, which can be used as a computing lab. We end
the article in Section 5 with a few concluding remarks.

2. Lecture: Foundations of Variational Inference

In this section, we introduce concepts and de"nitions of vari-
ational inference in Section 2.1, discuss the choices of vari-
ational families in Section 2.2, and present details of ELBO
optimization in Section 2.3. We also include recommendations
of variational families and ELBO optimization strategies with
pedagogical considerations for an advanced undergraduate and
applied graduate audience. Instructors can design their lecture
based on these materials tailored to their needs.

Figure 1. Illustration of variational inference as the optimization-based approxima-
tion. The goal of variational inference is to !nd a member of the variational family
that minimizes KL divergence with the target distribution.

2.1. Concepts and De!nitions

The main idea behind variational inference is to approximate
the target probability density p(θ | y) by a member of some
relatively simple family of densities q(θ | λ), indexed by the
variational parameter λ, over the space of model parameters
θ . Note that λ = (λ1, . . . , λm) has m components of (poten-
tially) varying dimensions. Variational approximation is done
by "nding the member of variational family that minimizes the
Kullback-Leibler (KL) divergence of q(θ | λ) from p(θ | y):

q∗ = arg min
q(θ |λ)

KL(q(θ | λ)||p(θ | y)), (2)

with KL divergence being the expectation of the log ratio
between the q(θ | λ) and p(θ | y) with respect to q(θ | λ):

KL(q(θ | λ)||p(θ | y)) = Eq
[

log q(θ | λ)

p(θ | y)

]

= Eq
[

log q(θ | λ)
]
− Eq

[
log p(y, θ)

]

+ log p(y). (3)

The KL divergence measures how di!erent is the probability
distribution q(θ | λ) from p(θ | y) (Kullback and Leibler
1951). Note that while we use the KL divergence to measure the
similarity between two densities, it is not a metric because the
KL divergence is not symmetric and does not satisfy the triangle
inequality. In fact, the order of q(θ | λ) and p(θ | y) in (2) is
deliberate as it leads to taking the expectation with respect to
the variational distribution q(θ | λ). One can naturally think
of reversing the roles of q(θ | λ) and p(θ | y). However, this
leads to a “di!erent kind” of variational inference called expec-
tation propagation (Minka (2001)), which loses computational
e#ciency of variational inference de"ned in (2).

In a nutshell, rather than sampling, variational inference
approximates densities using optimization. See Figure 1 for a
graphical illustration, that is, by "nding the values of variational
parameters from λinit to λ∗ through optimization which lead
to a variational distribution q(θ | λ) that is close to the target
posterior distribution p(θ | y) de"ned by the smallest KL diver-
gence. Finding the optimal q∗ is done in practice by maximizing
an equivalent objective function, L(λ), the evidence lower bound
(ELBO), because the KL divergence is intractable as it requires
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the evaluation of the marginal distribution p(y):
L(λ) = Eq[log p(y, θ) − log q(θ |λ)]

= Eq[log p(y|θ)]
︸ ︷︷ ︸

Expected log-likelihood of data

− KL(q(θ |λ)||p(θ))︸ ︷︷ ︸
KL div. between the variational and prior densities

. (4)

Starting with (3), one can derive the ELBO as the sum between
the negative KL divergence of the variational density from the
target density and the log of the marginal density p(y). Since
the term log p(y) is constant with respect to q(θ | λ), the
objective functions in (3) and (4) are equivalent. Examining the
ELBO also reveals the intuition behind variational inference. On
the one hand, the "rst term in (4) encourages the variational
approximation to place mass on parameter values that maximize
the sampling density p(y | θ). On the other hand, the second
term in (4) prefers closeness of the variational density to the
prior. Therefore, the ELBO shows a similar tension between the
sampling density and the prior known in Bayesian inference.

2.2. Variational Families with Pedagogical
Recommendations

We now move on to the implementation details of variational
inference starting with the selection of the variational family
q(θ | λ). This choice is crucial as it a!ects the complexity of
optimization outlined in Section 2.1 as well as the quality of
variational approximation.

2.2.1. Mean-Field Variational Family
By far the most popular is the mean-!eld variational family
which assumes that all the unknown parameters are mutually
independent, each approximated by its own univariate varia-
tional density:

q(θ | λ) =
m∏

i=1
q(θi | λi). (5)

For example, a typical choice for real-valued parameters is the
normal variational family q(θ | µ, σ 2) and the log-normal or
Gamma for nonnegative parameters. The main advantage of
the mean-"eld family is in its simplicity as it requires only a
minimum number of parameters to be estimated (no correla-
tion parameters) and o$en leads to uncomplicated optimiza-
tion. However, the mutually independent parameter assumption
comes at a price because the mean-"eld family cannot capture
relationships between model parameters. To illustrate the pit-
falls of mean-"eld approximation, consider a simple case of a
two-dimensional normal target density with highly correlated
components. Figure 2 shows the optimal mean-"eld variational
approximation given by the product of two normal densities.
One can clearly see that the optimal variational densities match
well with the means of the target density, but the marginal vari-
ances are underestimated. To further understand this common
%aw of mean-"eld approximation, consider the de"nition of KL
divergence in (3). The objective function penalizes more larger
density in q(θ | λ) in areas where p(θ | y) has low density than
the opposite direction (recall that the expectation is taken with
respect to the variational density).

Figure 2. Mean-!eld variational approximation of a two-dimensional normal target
density. The !gure illustrates the common pitfall of the mean-!eld approximation
in situations with correlated model parameters.

2.2.2. Recommendation for Instruction
It is worth noting that the development of new variational
families which improves on the tradeo! between complexity
and expressiveness of variational approximations has been a
fruitful and active area of research. To keep the scope of the
one-week variational inference module manageable to both the
students and the instructors, we recommend solely focusing on
the mean-"eld approximation. For interested students who want
to explore further, we encourage the instructors to refer them
to the recent work of Ambrogioni et al. (2021) that provides a
detailed discussion on many state-of-the-art variational families
and their associated implementation challenges.

2.3. ELBO Optimization with Pedagogical
Recommendations

Besides the choice of variational family, another key implemen-
tation detail to address is the way in which we "nd the member
of the variational family that maximizes the ELBO. Since this is a
fairly general optimization problem, one can in principle use any
optimization procedure. In the variational inference literature,
the coordinate ascent and the gradient ascent procedures are
the most prominent and widely used (Blei, Kucukelbir, and
McAuli!e 2017).

2.3.1. Coordinate Ascent
The coordinate ascent approach is based on the simple idea that
one can maximize ELBO, which is a multivariate function, by
cyclically maximizing it along one direction at a time. Starting
with initial values (denoted by superscript 0) of the m variational
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parameters λ0

λ0 = (λ0
1, . . . , λ0

m),

one obtains the (k+1)th updated value of variational parameters
by iteratively solving

λk+1
i = arg max

x
L(λk+1

1 , . . . , λk+1
i−1 , x, λk

i+1, . . . , λk
m),

which can be accomplished without using gradients (Blei,
Kucukelbir, and McAuli!e 2017).

2.3.2. Gradient Ascent
Variational inference via gradient ascent uses the standard iter-
ative optimization algorithm based on the idea that the ELBO
grows fastest in the direction of its gradient (Ho!man et al.
2013). In particular, the update of variational parameters λ at
the (k + 1)th iteration is given by

λk+1 ← λk + η × ∇λL(λk),

where ∇λL(λ) is the ELBO gradient, and η is the step size which
is also called the learning rate. The step size controls the rate at
which one updates the variational parameters.

For both coordinate and gradient ascent, we typically declare
convergence of variational parameters once the change in
ELBO falls below some small threshold (Blei, Kucukelbir, and
McAuli!e 2017).

2.3.3. Recommendation for Instruction
Our recommendation for this variational inference module
is to take the route of gradient ascent. This pedagogical
choice is guided by our combined experience of teaching
statistical modeling, Bayesian statistics, and data science at
various undergraduate levels to students with diverse statistical
backgrounds. Our recommendation has also taken into account
the pedagogical advantages and disadvantages of gradient ascent
and coordinate ascent for the target audience: Variational infer-
ence via coordinate ascent, while conceptually straightforward,
requires nontrivial and model-speci"c derivations which can
easily obscure the overall goal of this one-week module to
expand students’ exposure to the state-of-the-art approximate
inference for probabilistic models; gradient-based variational
inference, in contrast, leads to a black-box optimization that
does not require any model-speci"c derivations due to an
extensive autodi!erentiation capabilities of modern statistical
so$ware such as RStan (Stan Development Team 2022)
and Python packages PyTorch (Paszke et al. 2019) and
TensorFlow (Abadi et al. 2015), to name a few.

We believe that from an advanced undergraduate- and
applied graduate-level pedagogical perspective, gradient descent
re%ects better the current data science pipeline and allows
the instruction to be focused on conceptual understanding of
variational inference rather than technical details. Of course,
using gradient-based optimization requires the students to be
familiar with partial derivatives. Such a prerequisite potentially
restricts the audience for our module to a course with a
multivariable calculus prerequisite. Nevertheless, we believe that
an instructor with su#cient preparation can explain the basics
behind gradient ascent to an audience with a minimal calculus
background.

3. Class Activity: A Probabilistic Model for Count Data
with Variational Inference

In this section, we provide a fully developed hands-on class
activity with variational inference for count data. Starting with
a motivating example in Section 3.1, we give an overview of the
Gamma-Poisson model in Section 3.2, and discuss details of the
variational inference of this model in Section 3.3, illustrated with
an R Shiny app we have developed for instruction purpose.
Instructors can adopt and adapt this class activity based on these
materials tailored to their needs.

3.1. A Motivating Example

To illustrate how ELBO optimization leads to a good approx-
imation of target posterior distribution, we consider Poisson
sampling with a Gamma prior, which is a popular one-parameter
model for count data (Gelman et al. 2013; Albert and Hu 2019;
Johnson, Ott, and Dogucu 2022). To get started, we provide the
following motivating example:

Our task is to estimate the average number of active users
of a popular massively multiplier online role-playing game
(mmorpg) playing between the peak evening hours 7 pm and
10 pm. This information can help game developers in allo-
cating server resources and optimizing user experience. To
estimate the average number of active users, we will consider
the counts (in thousands) of active players collected during
the peak evening hours over a two-week period in the past
month.

We have chosen the Gamma-Poisson model as the proba-
bilistic model in this class activity for two reasons. First, the
Gamma-Poisson model is relatively easy to understand for stu-
dents with an elementary knowledge of probability distribu-
tions. Second, the Gamma is a conjugate prior for Poisson sam-
pling which means that one can derive the exact posterior dis-
tribution (another Gamma) and check the "delity of variational
approximation by comparing to the analytical Gamma solution.
The learning objective of this class activity is to get students
familiarized with various aspects of variational inference pre-
sented in Section 2, such as ELBO and variational family, with
a simple example. A$erwards, students are better prepared to
move on to more realistic scenarios described in Section 4.

3.2. Overview of the Gamma-Poisson Model

We now provide an overview of the Gamma-Poisson model
which can be readily turned into a class lecture. Suppose y =
(y1, . . . , yn) represent the observed counts in n time intervals
where the counts are independent, and each yi follows a Poisson
distribution with the same rate parameter θ > 0. The joint
probability mass function of y = (y1, . . . , yn) is

p(y | θ) =
n∏

i=1
p(yi | θ) ∝ θ

∑n
i=1 yi e−nθ . (6)

The posterior distribution for the rate parameter θ is our infer-
ence target as θ represents the expected number of counts that
occurs during the given time intervals. Note that the Poisson
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sampling relies on several assumptions about the sampling pro-
cess: One assumes that the time interval is "xed, the counts
occurring during di!erent time intervals are independent, and
the rate θ at which the counts occur is constant over time.

The Gamma-Poisson conjugacy states that if θ follows a
Gamma prior distribution with shape and rate parameters α and
β , it can be shown that the posterior distribution p(θ | y) will
also have a Gamma density. Namely, if

θ ∼ Gamma(α, β), (7)

then

θ | y ∼ Gamma(α +
n∑

i=1
yi, β + n). (8)

In other words, given α, β , and y, one can derive the analytical
solution to the posterior of p(θ | y) and can subsequently sample
from Gamma(α +∑n

i=1 yi, β + n) to get posterior samples of θ .
While no approximation is needed, it serves as a good example of
illustrating how variational inference works in such a setting and
allows evaluations of the performance of variational inference.

3.3. Variational Inference of the Gamma-Poisson Model

Recall from Section 2 that variational inference approximates
the (unknown) posterior distribution of a parameter by a simple
family of distributions. In this Gamma-Poisson case, we will
approximate the posterior distribution p(θ | y) by a log-normal
distribution with mean µ and standard deviation σ :

q(θ | µ, σ ) = 1
θσ

√
2π

e− (ln θ−µ)2
2σ2 . (9)

The log-normal distribution is a continuous probability dis-
tribution of a random variable whose logarithm is normally
distributed. It is a popular variational family for nonnegative
parameters because it can be expressed as a (continuously) trans-
formed normal distribution, and therefore it is amenable to auto-
matic di!erentiation. Automatic di!erentiation is a computation
method for derivatives in computer programs that relies on
the application of chain rule in di!erential calculus. It provides
accurate and fast numerical derivative evaluations that leads to
machine learning algorithms (such as variational inference) that
do not require users to manually work out and code derivatives
(Kucukelbir et al. 2017; Baydin et al. 2018).

In the supplementary materials, we provide an accompanying
in-class handout and an R Shiny app based on the motivating
scenario of mmorpg described in Section 3.1. The "rst two parts
of the handout present the motivating example and the overview
of the Gamma-Poisson model. In the third part of the handout,
students carry out exact posterior inference for the unknown
rate parameter θ using a small dataset of observed counts of
mmorpg’s active players. In the fourth and "nal part, students
"nd variational approximation of p(θ | y) and check how well
their approximation matches the true posterior distribution.
Figure 3 shows the "nal variational approximation compared
to the true Gamma(792, 100) posterior distribution from the
handout example. We can see, on the one hand, the resulting
log-normal(3.9, 0.04) distribution (the black dash line) that
maximizes the ELBO visually overlaps with the true posterior

0.0

0.1

0.2

0.3

40 50 60
θ

D
en

si
ty

Prior True posterior log−normal(3.7, 0.05) ELBO maximization: log−normal(3.9, 0.04)

Figure 3. Variational approximation based on the motivating scenario of mmorpg’s
player activity. The true Gamma(792, 100) posterior and the prior Gamma(100,2)
distributions are included.

(ELBO = −42.52, KL divergence < 0.001). On the other hand,
another member of the variational family, the log-normal(3.7,
0.05) distribution (the blue dot-dash line; with ELBO = −57.55
and KL divergence = 15.085), clearly di!ers from the target.
This example illustrates the good performance of variational
inference through optimization for the Gamma-Poisson count
model.

The design of this class activity is guided by the active-
learning principles listed in Section 1 and the goal is to give stu-
dents their "rst hands-on experience with variational inference
without the need of coding. Speci"cally, we include open-ended
questions that focus on problem-solving and create opportuni-
ties for students to collaborate with peers. Moreover, the accom-
panying R Shiny app provides appropriate and su#cient scaf-
folding so that students can concentrate on conceptual under-
standing instead of the technical details, which follows our
pedagogical recommendations in Section 2.

We now turn to two guided R labs to illustrate the use of
variational inference for more realistic case studies of logistic
regression and document clustering.

4. Labs: Logistic Regression and Document Clustering

In what follows, we provide two alternatives for the lab portion
of the proposed module. Section 4.1 outlines a case study of
U.S. women labor participation with logistic regression model
aimed for an advanced undergraduate audience. Section 4.1
applies variational inference on document clustering of a col-
lection of Associate Press newspaper articles targeted for more
advanced and self-motivated undergraduate students and stu-
dents in applied graduate courses.

4.1. Logistic Regression

Logistic regression model is a popular supervised learning algo-
rithm for binary classi"cation due to its interpretability, solid
predictive performance, and intuitive connection to the stan-
dard linear regression (James et al. 2013). Despites its popularity,
logistic regression, and its Bayesian version in particular, poses
computational and statistical challenges in scenarios with large
and high-dimensional data (Genkin, Lewis, and Madigan 2007).
For these reasons, we believe that a logistic regression is a
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suitable lab for an advanced (or an intermediate) undergraduate
audience that can demonstrate the bene"ts of variational infer-
ence with a relatively low barrier from the statistical methodol-
ogy point of view.

In Section 4.1.1, we brie%y introduce the logistic regression
model. In Section 4.1.2, we present a case study of U.S. women
labor participation analysis where variational inference is imple-
mented by the cmdstanr R package. We mainly focus on the
interpretation of results and discuss pedagogical considerations
and leave the details of the guided lab assignment with R code
in the supplementary materials.

4.1.1. Overview of Logistic Regression
The logistic regression model assumes that a binary response yi
follows a Bernoulli distribution with probability of success pi:

yi | pi ∼ Bernoulli(pi).

To relate a single predictor xi to the response yi, logistic
regression typically considers the natural logarithm of odds
pi/(1 − pi) (also known as logit) to be a linear function of the
predictor variable xi:

logit(pi) = ln
( pi

1 − pi

)
= α + βxi, (10)

with α and β being regression coe#cients. Note that it is a
bit more challenging to interpret the coe#cients in the logistic
regression than in standard linear regression as α and β are
directly related to the log odds pi/(1 − pi), instead of pi. For
example, eα is the odds when the value of predictor xi is 0,
whereas the quantity eβ refers to the change in odds per unit
increase in xi.

Lastly, by rearranging the terms in (10), one can express the
probability of success pi as

pi = eα+βxi

1 + eα+βxi
.

In the Bayesian framework, one proceeds to prior speci"cation
of regression coe#cients (α, β) and posterior inference through
MCMC. For illustration, we consider independent normal pri-
ors for the regression coe#cients α ∼ Normal(µ0, σ0) and
β ∼ Normal(µ1, σ1), where (µ0, µ1) and (σ0, σ1) are the prior
means and standard deviations for the regression coe#cients,
respectively.

4.1.2. Predicting Labor Participation
To apply variational inference in the context of logistic regres-
sion, we present a case study of predicting U.S. women labor par-
ticipation. To do so, we consider a sample from the University of
Michigan Panel Study of Income Dynamics (PSID), the longest
running longitudinal household survey in the world. The survey
dates back to 1968 and contains information on over 18,000 indi-
viduals living in 5000 families in the United States. The survey
of these individuals and their descendants has been collected
continuously and includes data on income, wealth, employment
status, health, marriage, and hundreds of other variables. Our
interest is in analyzing a PSID sample of 753 observations from
1976 (Mroz 1987). The PSID 1976 survey is particularly inter-
esting since it interviewed wives in households directly in the
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Figure 4. The evolution of ELBO for the logistic regression model based on a PSID
sample of 753 observations from 1976.
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Figure 5. Posterior interval estimates for the probability of labor participation of a
married woman who has a family income exclusive of her own income.

previous year. This PISD sample contains two variables: Family
income exclusive of wife’s income (in $1000) and wife’s labor
participation (yes or no). The goal of the lab is predicting a wife’s
labor participation status (response variable yi) from the family
income exclusive of her income (predictor variable xi) using
logistic regression. We refer interested readers to Albert and
Hu (2019) Section 11.4 for an in-depth illustration of Bayesian
logistic regression applied to the same prediction task.

Figure 4 shows the evolution of ELBO for the logistic regres-
sion model which converged a$er 80 iterations of the gradient
ascent algorithm described in Section 2.3. We recommend run-
ning the algorithm repeatedly (i.e., 2–3 times) with a di!erent
random seed in the classroom and discussing the dependency of
variational inference on initial values of variational parameters
which can occur in practice. To highlight the computational
bene"ts of variational inference, we also propose generating 50
replicates of the PSID sample (37,650 observations in total) and
comparing the speed of convergence of variational approxima-
tion and MCMC approximation. The details of this exercise are
provided in the supplementary materials.

Figure 5 demonstrates one of the potential insights of the
PSID survey data analysis, which is a series of posterior interval
estimates for the probability of labor participation of a mar-
ried woman who has a family income exclusive of her own
income ranging from $10,000 to $70,000 with $10,000 incre-
ments. One can see that in 1976, the likelihood of labor par-
ticipation decreased with increasing family income exclusive of
wife’s income.

4.2. Document Clustering

Among the many models approximated by variational inference
techniques, Latent Dirichlet Allocation (LDA) might be one of
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the most popular (Blei, Ng, and Jordan 2003). LDA is a mixed-
membership clustering model, commonly used for document
clustering. Speci"cally, LDA models each document to have a
mixture of topics, where each word in the document is drawn
from a topic based on the mixing proportions (Stan Develop-
ment Team 2022). While the LDA model is relatively easy and
straightforward to follow, using conventional MCMC estimation
techniques has proven to be too computationally demanding
due to the large number of parameters involved. Therefore,
researchers and practitioners turn to variational inference tech-
niques when using LDA for document clustering (Blei, Ng, and
Jordan 2003).

In Section 4.2.1, we brie%y introduce the LDA model fol-
lowing the presentation in Stan Development Team (2022). In
Section 4.2.2, we present an LDA application to a collection of
Associate Press newspaper articles where variational inference
is implemented by the cmdstanr R package. For brevity, we
focus on the interpretation of results and discuss pedagogical
considerations and leave a Stan script for the LDA model and
the details of the guided lab assignment with R code in the
supplementary materials.

4.2.1. Overview of the LDA Model
The LDA model considers K topics for M documents made up
of words drawn from a vocabulary of V distinct words. For a
document m, a topic distribution θm over K topics is drawn from
a Dirichlet distribution,

θm ∼ Dirichlet(α), (11)

where
∑K

k=1 θm,k = 1 (0 ≤ θm,k ≤ 1) and α is a vector of length
K with positive values.

Each of the Nm words {wm,1, . . . , wm,Nm} in document m is
then generated independently conditional on θm. To do so, "rst,
the topic zm,n for word wm,n in document m is drawn from

zm,n ∼ categorical(θm), (12)

where θm is the document-speci"c topic-distribution de"ned in
(11).

Next, the word wm,n in document m is drawn from

wm,n ∼ categorical(φz[m,n]), (13)

which is the word distribution for topic zm,n. Note that z[m, n]
in (13) refers to zm,n.

Lastly, a Dirichlet prior is given to distributions φk over words
for topic k as

φk ∼ Dirichlet(β), (14)

where β is the prior a vector of length V (i.e., the total number
of words) with positive values. Figure 6 shows a graphical model
representation of LDA.

4.2.2. Clustering of Associated Press Newspaper Articles
As a realistic application of variational inference, we consider a
collection of 2246 Associated Press newspaper articles to be clus-
tered using the LDA model. The dataset is (conveniently) part
of the topicmodels R package. We believe this dataset is well
suited to demonstrate the capabilities of variational inference in

Figure 6. Graphical model representation of LDA. The largest box represents the
documents. On the left, the inner box represents the topics and words within each
document. On the right, the box represents the topics.
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Figure 7. The evolution of ELBO for the two-topic LDA model based on 2246
Associated Press newspaper articles.

the classroom as it is too large for the MCMC approximation
to be feasible but small enough for the variational inference to
take just a few minutes to converge. For brevity, we highlight
the results based on a two-topic LDA model (i.e., K = 2)
and leave the details to the guided lab in the supplementary
materials. The number of topics is set to 2 for demonstration
purposes and simplicity of interpretations. Comparing LDA
with a di!erent number of topics is o$en done with metrics
such as semantic coherence or held-out data likelihood (Mimno
et al. 2011). While such a comparison is beyond the scope of this
lab, interested students are encouraged to explore while being
mentored by the instructors.

Figure 7 shows the evolution of ELBO for the two-topic LDA
model which converged a$er a little bit over 100 iterations of
the gradient ascent algorithm described in Section 2.3. On a
standard laptop computer, this typically takes between 5 and
10 min depending on the CPU speed. Similar to the U.S. labor
participation case study, we recommend running the algorithm
repeatedly (i.e., 2–3 times) with a di!erent random seed in the
classroom and discussing the dependency of variational infer-
ence on initial values of variational parameters which can occur
in practice.

Figures 8 and 9 are examples of graphical displays of the
topics that were extracted from the collection of articles based
with the LDA. In particular, Figure 8 shows the 10 most common
words for each topic; that is, the parts of distribution φk, for
k ∈ {1, 2}, with the largest mass. Figure 9 displays similar
information for the 20 most common words for each topic in
the form of a word cloud. The most common words in topic
1 include people, government, president, police, and state, sug-
gesting that this topic may represent political news. In contrast,
the most common words in topic 2 include percent, billion,
million, market, American, and states, hinting that this topic may
represent news about the U.S. economy.
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Figure 8. Word distributions based on the two-topic LDA model. The 10 most common words are displayed.

Figure 9. World clouds consisting of the 20 most common words for each of the two topics extracted by the LDA.

5. Concluding Remarks

In this article, we present a newly-developed one-week course
module that exposes students in advanced undergraduate and
applied graduate courses to approximation via variational infer-
ence. The proposed module is self-contained in the sense that
it encourages and empowers potential instructors to adopt and
adapt the module as we provide an overview of variational infer-
ence, an active-learning-based class activity with an R Shiny
app, and guided labs based on a realistic application with R
code (see the supplementary materials or https://github.com/
kejzlarv/variational_inference_module). Its design is rooted in
the best practices of active learning that have been demonstrated
to improve student learning and engagement.

The module can be integrated into any advanced undergrad-
uate or applied graduate course where students learn probabilis-
tic models (including logistic regression, Bayesian classi"ers,
neural networks, or models for natural language processing),
such as Bayesian statistics, multivariate data analysis, and data
science courses. The applications discussed in these courses are
typically limited to scenarios with relatively small datasets, since
the required use of MCMC does not scale well to large datasets.

Given the popularity and scalability of variational inference, we
hope that instructors adopting and adapting this module will be
able to integrate more realistic and fun case studies in their class-
rooms. Moreover, the references and further readings provided
in this article are readily available resources for a deeper dive
of variational inference by interested students with appropriate
mentoring by their instructors.

Supplementary Materials

The supplementary "les for this article include the following: (a) Details
of the class activity on probabilistic model for count data with variational
inference; (b) The manual and theR shiny app we have developed for the
module; (c) Details of the guided R logistic regression lab with U.S. women
labor participation sample data; and (d) Details of the guided R lab of the
LDA application to a sample of the Associated Press newspaper articles with
variational inference.
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