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Abstract

One of the most reliable features of natural systems is that they change

through time. Theory predicts that temporally fluctuating conditions shape

community composition, species distribution patterns, and life history varia-

tion, yet features of temporal variability are rarely incorporated into studies of

species–environment associations. In this study, we evaluated how two compo-

nents of temporal environmental variation—variability and predictability—
impact plant community composition and species distribution patterns in the

alpine tundra of the Southern Rocky Mountains in Colorado (USA). Using the

Sensor Network Array at the Niwot Ridge Long-Term Ecological Research site,

we used in situ, high-resolution temporal measurements of soil moisture and

temperature from 13 locations (“nodes”) distributed throughout an alpine

catchment to characterize the annual mean, variability, and predictability in

these variables in each of four consecutive years. We combined these data with

annual vegetation surveys at each node to evaluate whether variability over

short (within-day) and seasonal (2- to 4-month) timescales could predict pat-

terns in plant community composition, species distributions, and species abun-

dances better than models that considered average annual conditions alone. We

found that metrics for variability and predictability in soil moisture and soil tem-

perature, at both daily and seasonal timescales, improved our ability to explain

spatial variation in alpine plant community composition. Daily variability in soil

moisture and temperature, along with seasonal predictability in soil moisture,

was particularly important in predicting community composition and species

occurrences. These results indicate that the magnitude and patterns of fluctua-

tions in soil moisture and temperature are important predictors of community

composition and plant distribution patterns in alpine plant communities. More

broadly, these results highlight that components of temporal change provide

important niche axes that can partition species with different growth and life

history strategies along environmental gradients in heterogeneous landscapes.
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INTRODUCTION

Understanding how environmental factors shape species
distributions and abundance patterns is a long-standing
goal in ecology that has become increasingly relevant to
predicting species responses to climate change (Taheri
et al., 2021; Thuiller et al., 2008). A large body of research
has demonstrated that species ranges can often be
predicted by average environmental conditions (Beaumont
et al., 2005; Elith et al., 2006), with the magnitude and
patterns of temporal variability in those conditions
remaining relatively unexplored. However, we know that
one of the most salient features of natural systems is that
they fluctuate through time. For example, seasonal shifts
in precipitation influence resource availability in aquatic
systems (Aguilera et al., 2019) and are a key determinant
of water availability in water-limited systems like grass-
lands (Munson et al., 2022). Temperatures in desert sys-
tems can swing by as much as 40�C within a single day at
any time of year (Hastings et al., 2005), while temperate
zones experience lower diurnal variation but greater
seasonal changes in temperature (Davidson et al., 1998).
Despite clear differences in the magnitude and patterns of
temporal variation at multiple spatial scales, the role that
spatial heterogeneity in temporal variability plays in shap-
ing species distribution patterns and community structure
is rarely tested. As climate change brings more variable
and extreme climate conditions (Gulev et al., 2021), under-
standing how temporal variability in temperature and pre-
cipitation patterns shapes species distribution and
abundance patterns is increasingly important for and rele-
vant to conservation and management practices.

While community ecologists have considered how the
magnitude of temporal variation influences community
dynamics (Arellano et al., 2016; Herben et al., 1995),
less attention has been directed toward how different pat-
terns of variability shape populations and communities
(Sheldon & Dillon, 2016). Today, in situ sensors that
accurately measure fine-scale spatial and temporal vari-
ability in environmental conditions make it possible
to accurately quantify these patterns at resolutions
(e.g., multiple measurements per hour, multiple locations
within a site) that cannot be captured at coarser
spatial scales. Temporal variability can be decomposed
into two components: the magnitude of variation in
environmental factors and the predictability of that
variation. While variability characterizes the range of
conditions that occur over a given time frame (measured
as the CV or variance, for example), predictability
describes the extent to which current conditions provide
reliable information about future conditions (Moran, 1992;
Ruokolainen et al., 2009). Predictability can arise from
temporal autocorrelation in the variable of interest

(e.g., declining temperatures in autumn), or from a corre-
lation between a cue and future conditions (e.g., changing
daylength as a cue for seasonal change) (Bernhardt
et al., 2020). In either case, a correlation of 1 represents an
environment that is perfectly predictable and a correlation
of 0 represents complete unpredictability.

Variability and predictability can provide indepen-
dent axes for specialization and niche differentiation
because each axis has the potential to vary independently
from one another and the mean (Botero et al., 2015;
Nadeau et al., 2017). The same magnitude of variability
can fluctuate stochastically (and thus unpredictably) or
be autocorrelated through time, where the conditions
at one point in time predict conditions in the future.
Furthermore, environmental conditions might exhibit dif-
ferent patterns of variability and predictability at different
timescales (Keitt & Fischer, 2006; Mallet et al., 2020). For
example, soil moisture may vary unpredictably throughout
the day depending on precipitation events, temperature,
and solar exposure (Griffin-Nolan et al., 2021). However,
over longer timescales, soil moisture patterns may be more
predictable due to consistent shifts in temperature and pre-
cipitation within or among years (Nippert et al., 2006).
Finally, the extent to which an organism perceives environ-
mental change as “fast” or “slow” will depend on its devel-
opmental patterns, growth rate, generation time, and life
history; for example, a 24-h shift in soil moisture may be a
relatively slow change for a microbe and abrupt for a
long-lived perennial plant (DeWitt & Scheiner, 2004;
Rosenheim & Tabashnik, 1991).

From an evolutionary perspective, life history theory
predicts that the rates and patterns of variability and pre-
dictability favor strategies for growth and reproduction
that, in turn, are likely to influence where species occur
and how they interact with other organisms (Nadeau
et al., 2017; Orzack, 1985; Tuljapurkar, 1989). Variable
and unpredictable environments are expected to favor
more conservative, bet-hedging life histories, particularly
when environmental changes are relatively rapid in com-
parison with organismal lifespans; these “jack-of-all-trades,
master-of-none” phenotypes may exhibit fixed growth and
reproductive patterns that increase their ability to persist
under poor conditions at the cost of optimizing per-
formance under favorable conditions (Gremer, 2023;
Philippi & Seger, 1989). In contrast, predictable varia-
tion can favor adaptive phenotypic plasticity, where
organisms use reliable cues to “match” their phenotype
or life history patterns to the current or predicted envi-
ronment (Botero et al., 2015; Nadeau et al., 2017;
Scheiner, 1993). Plasticity can unfold in different ways
across ontogeny, such as when a cue that an organism
experiences early in life sends it down a particular devel-
opmental trajectory, or over days or even minutes when
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regulated by physiological and/or behavioral responses
(e.g., acclimation, thermoregulation, metabolic shifts)
(Nadeau et al., 2017). Species with “fast” or acquisitive
resource use strategies are often able to take advantage of
resource shifts through phenotypic plasticity. Given that
the prevalence of conservative (“slow”) versus acquisitive
(“fast”) strategies will influence the rates of resource
uptake and population growth rates within communities
(Rollinson & Brooks, 2007; Ryser & Eek, 2000), species’
responses to temporal variation should influence (and be
influenced by) interactions with other species (Chesson,
2000). In spite of these broad theoretical predictions, the
biological effects of environmental variability and pre-
dictability at different timescales have rarely been sys-
tematically measured and compared (Dillon et al., 2016),
limiting our understanding of how different growth and
life history strategies respond to different rates of tempo-
ral variability and their impacts on population and com-
munity dynamics.

Alpine ecosystems are particularly well-suited for
studying how spatial variation in the components of
temporal variability influences species distributions and
community composition. The topographic complexity of
the alpine environment generates considerable microcli-
matic heterogeneity within and across growing seasons
and across space. Within a single landscape, changes in
microtopography, slope, and aspect influence exposure
to solar radiation and wind (Löffler & Pape, 2020;
Seastedt et al., 2004), which in turn drive patterns
of snow accumulation (Holtmeier & Broll, 1992;
Pérez, 1998; Taylor & Seastedt, 1994). Snow insulates
soil during the winter and provides a steady, predictable
source of early-season soil moisture as it melts (Schneider
et al., 2020). Areas with little snow experience colder,
more variable temperatures during the winter and rely
on rainfall for water during the growing season (Zhao
et al., 2022). In the summer, solar radiation warms and
dries exposed soils, while soils that are more sheltered
from the sun remain wetter and cooler (Bertoldi
et al., 2010). Overall, the heterogeneous topography of
the alpine landscape generates a diverse set of habitats
that differ in the temporal variability and predictability
in the environment that plants experience. Previous
work has characterized how differences in average
moisture and temperature align with alpine plant com-
munity composition (e.g., Litaor et al., 2008), but the
effects of temporal variability and predictability in shap-
ing alpine plant communities have not been explicitly
investigated.

In this study, we evaluated the roles of variability and
predictability in soil moisture and temperature in driving
plant community structure and species distribution
patterns in the alpine tundra of Niwot Ridge,

CO. Using high-resolution, multi-year time series mea-
surements of soil moisture and temperature that
are co-located with annually surveyed vegetation plots,
we asked two questions: (1) Do temporal variability and
predictability predict patterns in plant community com-
position each year that are not explained by the average
conditions alone? (2) How does spatial variation in tem-
poral variability and predictability shape the
distributions and abundances of individual species
across heterogeneous alpine terrain? We addressed each
of these questions considering two different timescales
of temporal fluctuations: daily (24-h) and seasonal (early
to late summer). We predicted that spatial heterogeneity
in the rate (daily vs. seasonal), magnitude (variance),
and pattern (predictable vs. unpredictable) of temporal
variability would significantly predict community com-
position and species distribution patterns because sta-
ble, predictably variable, and variable but unpredictable
environments should select different growth and life
history strategies from the species pool. We expected
daily variability in soil temperature and seasonal pre-
dictability in soil moisture to be particularly important
drivers of plant community composition and species
distributions in the alpine tundra because spatial het-
erogeneity in snow accumulation influences diurnal
temperature variation during the winter and snowmelt
during the growing season. The same rationale led us to
expect that species would vary in the extent to which
they associate with variable and/or unpredictable envi-
ronments, consistent with our overarching hypothesis
that these two components of temporal variability pro-
vide important niche axes that structure communities
and drive species distribution patterns in heterogeneous
landscapes.

METHODS

Study site

This study used plant and environmental data collected
at the Niwot Ridge Long-Term Ecological Research
(LTER) site in the Colorado Front Range of the Southern
Rocky Mountains northwest of Denver, Colorado
(40�030 N, 105�350 W). The site extends to the Continental
Divide, with an average elevation of ~3500 m above sea
level (asl). The mean daily temperature is −8.8�C in winter
and −0.5�C in summer, and roughly 80% of the ~1035-mm
mean annual precipitation falls as snow (Bjarke et al., 2021;
Bowman & Seastedt, 2001; Jennings et al., 2019). Strong
and predominantly westerly winds interact with topo-
graphic variation to create an unequal distribution of
snow across the alpine landscape (Badger et al., 2021;
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Hoover et al., 2014; Olyphant & Isard, 1987), which in
turn causes spatial variation in soil temperature throughout
the year and soil moisture during the growing season. The
vegetation at the site is characteristic alpine tundra of the
Central and Southern Rocky Mountains, dominated by
long-lived herbaceous forbs and graminoids such as
Geum rossii, Trifolium parryi, Kobresia myosuroides, and
Deschampsia cespitosa. The growing season ranges from
1 to 3 months (June–August), depending on topographic
position and snowpack.

The Niwot LTER Sensor Network Array is a network
of instrumentation that was established in the Saddle
Catchment of Niwot Ridge in the summer of 2017 to
measure spatial and temporal environmental variation
within a single alpine catchment area. The Sensor
Network Array consists of 16 permanent towers and asso-
ciated instrumentation distributed throughout a drainage
that spans from the Saddle of Niwot Ridge (3528 m asl)
into the upper Green Lakes Valley watershed (Figure 1A),
a 0.6-km2 area located 5.6 km east of the Continental
Divide (Bjarke et al., 2021). The towers were placed to
span the range of hydrological, topographic, and vegetative
variation that exists within the catchment. Each tower is
equipped with a Campbell CR1000 data logger that is
connected to soil moisture and soil temperature sensors
that collect volumetric soil moisture and soil temperature
measurements, respectively, every 10 min at 5- and 30-cm
depths in a 1-m2 plot that is placed immediately adjacent
to the tower (Figure 1B). Two additional permanent 1-m2

plots were established immediately downslope from each
tower, along existing hydrological pathways, to monitor
plant community composition at each node on an annual
basis. For the purposes of this study, we considered the
“node” as the spatial unit of replication, with the two vege-
tation plots representing the plant community associated
with each node (within ~6 m).

Data collection

We used the first four complete years of soil moisture,
soil temperature (Morse & Niwot Ridge LTER, 2022), and
vegetation (Reed et al., 2022) data collected from 13 of
the 16 nodes in the Sensor Network Array (2018–2021).
One node (no. 18) was excluded because it was relocated
partway through the study period, another (no. 21) was
removed because the soil moisture sensors were not
well-aligned with the vegetation plots due to local
microtopography, and a third (no. 15) was excluded
because of large amounts of missing environmental data
due to sensor failure. The first year (2018) of vegetation
data from node no. 17 was also excluded due to sensor
malfunction, but the remaining years were included.

While the sensors in the network array are generally
reliable and robust, the harsh alpine environment can
take its toll on this equipment, resulting in short gaps in
the otherwise continuous data ranging from a few hours
to several days. In the 13 nodes we included in our analy-
sis, these gaps usually constituted less than ~3% of any
soil moisture and temperature data series. We employed
two methods to fill the gaps that did occur in the data.
For the temperature data, we used the R package MICE
(Multiple Imputations by Chained Equation), a technique
commonly used for this type of data (van Buuren &
Groothuis-Oudshoorn, 2011). For the moisture data, we
used the R package “mtdsi” to fill in data where there
were small gaps (100 min or less) in the time series
(Junger & Ponce de Leon, 2018). Both methods leverage
data from different time points at the same location and
different locations at the same time point to estimate
missing values.

Vegetation surveys in the Sensor Network Array at
Niwot Ridge have been conducted on an annual basis
at peak productivity since 2018; in this study, we use the
data from the first four surveys (2018, 2019, 2020, and
2021). The point-intercept sampling method was used for
each survey (Spasojevic et al., 2013). The sampling proto-
col is summarized in detail in the metadata for the
published data set (Reed et al., 2022). Briefly, each year
we sampled 100 locations in each 1-m2 plot in a uniform
grid with 10 cm × 10 cm spacing. At each of the 100 loca-
tions, a metal pin flag was inserted vertically through the
vegetation to the soil surface, and each species that
touched the pin at that location was recorded. We did not
count multiple touches from the same species at a single
grid position, as it was often difficult to distinguish
between one individual versus multiple individuals of the
same species. After all 100 locations were sampled in a
plot, we conducted an exhaustive search of the plot to
identify and record any other species that were present
but never touched by a pin. This procedure provides
robust estimates of species abundance, total composition,
and the presence or absence of rare species in each plot.
In 2018, we conducted vegetation surveys in one 1-m2

plot at each node; from 2019 onward, we collected data
in both permanent plots at each node (Figure 1B) to bet-
ter characterize the vegetation community of each node.
See Appendix S1: Table S2 for summary statistics by
species.

We used the plant survey data to evaluate the rela-
tionships between temporal variability in the environ-
ment and the distribution and abundance of alpine
plants in the Sensor Network Array. To evaluate the
distribution of species, we calculated the occurrence
(1 for present, 0 for absent) of each species in each plot
by comparing the list of species that had been found in
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F I GURE 1 Spatial arrangement of nodes, sensors, and vegetation plots in the Sensor Network Array of the Niwot Ridge Long-Term

Ecological Research (LTER) site. (A) The Niwot Ridge Sensor Network Array consists of 16 nodes (orange diamonds) distributed throughout

a 45-ha catchment from the Saddle of Niwot Ridge to the subalpine zone of the Green Lakes Valley. Thirteen of the 16 nodes had sufficiently

continuous data sets to be included in this study. (B) Each node in the array consists of a single tower with three permanently marked 1-m2

plots (green squares) placed along existing water flow paths downslope from the tower. Plot A is adjacent to the tower and is equipped with soil

moisture (blue circle) and soil temperature (red circle) sensors that collect measurements at 5- and 30-cm depths every 10 min. Plots B and C

are permanent monitoring plots that are approximately 1–3 m apart following the path of natural water movement. The vegetation plots are

surveyed every year at peak biomass for plant community composition using point-intercept sampling at 100 evenlyspaced positions within the

plot (indicated by hatching). In this study, we used soil temperature and moisture data from Plot A and plant community data from Plots B and

C to evaluate community composition and species associations with temporal variability in soil moisture and temperature at each node. (C) A

photograph of an annual vegetation survey at one of the plots in the Sensor Network Array. Photo credit: Nancy C. Emery.
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a plot to the list of all species found across all plots.
We calculated the total abundance of each species in
each plot by counting the number of grid locations where
it was touched by a pin (with a maximum of one touch
per grid position giving an abundance of 100 in a plot).
Species that were found in the plot but never contacted by
a pin were given a value of 0.5 (i.e., less than one). We did
not normalize abundances to the total number of touches
across all species to ensure that we captured differences in
the absolute abundances of species across plots. In 2018,
abundances were calculated from only one plot per node
(ranging from 0.5 to a maximum possible value of 100); in
2019–2021, when two plots were sampled per node, we
summed the abundances across plots to obtain a single
value per node, so the total possible range of abundance
for a species was 0.5–200. Year was included as a fixed
effect in the analyses (see below) to account for the differ-
ences in the number of plots sampled per node each year.

Data analysis

All analyses in this study were conducted in R version
4.3.3 (R Core Team, 2024), and all code is archived on
Zenodo at https://doi.org/10.5281/zenodo.13629151.

The first step in our analyses was to identify biologi-
cally meaningful ways to describe the mean, variability,
and predictability in soil moisture and temperature at dif-
ferent timescales. We used year-round soil temperature
data because both growing season and winter tempera-
tures influence tundra plant community composition
(Niittynen et al., 2020; Suding et al., 2015). We restricted
our analysis of soil moisture to days where the ground
was not frozen (temperature > 0�C, generally late April
to late September or early October), which is when it
influences plant growth and reproduction (Taylor &
Seastedt, 1994). Using these time windows, we calculated
mean annual soil temperature at each node as the aver-
age of all measurements each year, and the mean annual
soil moisture as the average moisture when the soil tem-
perature was >0�C each year.

We calculated variability in two different ways that
represented two different timescales. First, to quantify
variability within a typical day (i.e., within a 24-h
period, hereafter referred to as the daily timescale), we
used all temperature from the sensor network to calcu-
late the average daily CV in soil moisture and soil
temperature at each node for each year. Second, we
described variability over each growing season (hereaf-
ter the seasonal timescale) using the number of times
soil temperature or moisture measurements crossed
physiologically important thresholds. The use of thresh-
old crossings over the season, rather than the CV or

other summary statistics, recognizes that the effects
of seasonal fluctuations on plant growth and survival
depend largely on their relationship with the mean, and
in particular the potential for fluctuations to push plants
beyond discrete physiological limits. For example, soil
moisture fluctuations during a dry part of the season will
induce episodes of drought stress that impact growth,
survival, and reproduction, while fluctuations of the
same magnitude will have little to no effect on plants
when water is readily available and abundant. We used
thresholds of 0.4�C and 13% volumetric water content
(VWC) for soil temperature and moisture, respectively,
based on published literature that documented these
are critical thresholds for alpine plants (Billings &
Bliss, 1959; Nagelmüller et al., 2016). Thus, seasonal
soil temperature variability was calculated as the num-
ber of times the temperature at each node went above
or below 0.4�C in a year (Nagelmüller et al., 2016, 2017).
For moisture, we calculated the number of times the soil
moisture level crossed 13% VWC (Billings & Bliss, 1959)
during the growing season.

We represented the predictability of environmental
conditions using the autocorrelation factor (ACF), which
measures the average correlation between past and future
time points over a defined interval (Nounou &
Bakshi, 2000). For daily predictability, we calculated the
average ACF in hourly average values measured 1 day
(24 h) apart, for every hour of the day and all days in
the year (for temperature) or growing season (for soil
moisture). Seasonal predictability was calculated as the
average ACF among daily average values with a lag of
60 days for all pairs of points that could be computed
within the year (for temperature) or growing season (for
soil moisture). We chose 60 days because this time frame
spanned enough of the growing season to characterize
how well early-season conditions predicted late-season
conditions and maximized the variation in ACF values
detected among nodes.

We examined the correlations among the mean, vari-
ability, and predictability in soil moisture and tempera-
ture at each timescale (Appendix S1: Figures S1 and S2).
While we found some significant cross-correlations
among variables, we decided to include all variables
given their potential biological importance while recog-
nizing our limited ability to isolate the direct effects of
variables that are correlated (see below).

Community associations with variability and
predictability

We used redundancy analysis (RDA) to examine how
plant community variation among node communities
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in the Sensor Network Array relates to environmental
variables. RDA is an asymmetric constrained ordination
method (Zuur et al., 2007) that models the relationship
between a predictor matrix and a response matrix
(Legendre & Legendre, 2012). After performing a regres-
sion between matrices, RDA uses principal components
analysis (PCA) to reduce the dimensionality of the
predicted relationships into canonical axes that repres-
ent linear combinations of the explanatory variables
(Legendre & Legendre, 2012). We used this approach to
quantify relationships between environmental matrices
containing our environmental variables (the predictor
matrix) on plant community composition (the response
matrix) and visualize the multivariate relationships
between them. Due to the size of our data set (N = 13
nodes, 4 years), we were not able to consider nonlinear
relationships between environmental axes and commu-
nity composition, and acknowledge this as a limitation
of this approach (Legendre & Legendre, 2012; Zuur
et al., 2007). Prior to the RDA, we first tested for spatial
autocorrelation in the environmental variables across
the Sensor Network Array using a Mantel test
(Mantel, 1967). We found weak correlations in all com-
parisons (soil temperature variability: r = 0.09, p = 0.14;
soil temperature predictability: 0.12, p = 0.09; soil mois-
ture variability: r = 0.07, p = 0.21; soil moisture predict-
ability: 0.11, p = 0.12), so we did not incorporate the
distances among nodes in our RDA.

We developed three different models to evaluate the
relationships between community structure and our envi-
ronmental variables using RDA. All RDA models were
implemented using the R package Vegan (v.2.6-4). The
first model included only the annual mean conditions in
soil moisture and soil temperature and fixed effects of
year and node (the RDA does not allow random effects).
The second included daily measures of variability
(CV) and predictability (autocorrelation) for soil mois-
ture and soil temperature in addition to the annual
mean, year, and node. The final model included our
measures of seasonal variability (threshold crossing)
and predictability (autocorrelation) for soil moisture
and soil temperature, annual means, year, and node. In
all models, we determined the importance of the mean,
variability, and predictability of soil temperature and
moisture in driving community structure by evaluating
their relative contributions to the total explained vari-
ance and the statistical significance of each environ-
mental term. We also investigated the correlations
between environmental variables and the constrained
axes of variation to determine which variables were
most important. Finally, we used the adjusted R 2 values
of each RDA to compare the total variation explained
by different models; these comparisons were most

relevant for the models that contained the same num-
ber of explanatory variables.

Species associations with variability and
predictability

To examine the variation among species in their asso-
ciations with temporal variation over both daily and
seasonal timescales, we modeled patterns of species
occurrence (presence/absence) and abundance (total
number of “touches”) against each of our environmen-
tal variables using mixed-effects models (LME4 pack-
age, Bates et al., 2015). Each model contained fixed
effects of year (N = 4) and one environmental variable
(e.g., mean soil temperature, daily variability in soil
moisture, etc.), and a random intercept term for each
node (N = 13) to account for repeated measurements
at each location. We included random intercepts and
slopes for each species to test whether species (N = 87)
had different relationships with each environmental
variable. Models that included multiple environmental
predictor variables did not converge, likely due to the
limited number of independent replicates in the data
set (N = 13 nodes), even with 4 years of sampling.
Consequently, we proceeded with models that evalu-
ated one predictor variable at a time, which included
the appropriate random effect structure but could not
account for correlations among predictors. We present
the pairwise correlations between predictors in
Appendix S1: Figures S1 and S2, respectively, so they
can be considered in association with the results of
these analyses. While this approach is conservative
and may have low statistical power for less common
species, the spatial scale and exceptional time resolution
of the environmental data nonetheless provide a unique
opportunity to evaluate relationships between temporal
variability and species distribution and abundance
patterns.

We modeled occurrence using logistic regression to
accommodate the binary nature (presence/absence) of
the occurrence data. We used all the full vegetation data
set in the occurrence analysis, assigning each species a
value of “0” if absent and “1” if present at each node.

We modeled abundance using a regression with a
zero-truncated Poisson distribution and an observation-level
random effect (OLRE) to account for overdispersion
(Appendix S1: Table S2). We excluded species absences
(i.e., plots where a species abundance = 0) and rounded
values that were not integers (e.g., 0.5) up to the nearest
integer to align with the expectations of count data. While a
Poisson model is most appropriate for count data, we com-
pared the fit and results of models that assumed a Gaussian
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binomial (considering “touches” as presence/absence data)
and a negative binomial (to account for overdispersion in
the Poisson) distribution. These models did not provide
better fits to the data and, in some cases, failed to con-
verge, yet overall provided qualitatively similar results to
the Poisson model.

We tested whether species exhibit significant variation
in their relationships (i.e., occurrence and abundance pat-
terns) with the mean, variability, and predictability of soil
moisture and temperature by first examining how many
species had nonzero slope estimates (95% CI around the
median does not overlap zero, as determined by nonpara-
metric bootstrap) (R MASS package, Venables &
Riplen, 2002). Note that 95% confidence intervals could
overlap zero because there was no relationship between
the predictor variable and the occurrence or abundance of
a species or because we did not have sufficient power to
detect a relationship, with the latter being particularly rel-
evant for taxa that were rare in our data set. However, this
should not bias comparisons among environmental predic-
tors as they are based on the same response variables. We
also compared the amount of variation explained by the
random effects structure (conditional R2) in the variabil-
ity/predictability models and models with mean environ-
mental covariates, and in models that included random
intercepts for species without random slopes. To highlight
some of the contrasting relationships with variability and
predictability that we detected among species, we visual-
ized the predicted slopes for a subset of six taxa that were
abundant in our data set and represent a range of habitat
types and functional groups in the alpine tundra plant
community at Niwot Ridge: G. rossii (widespread forb),
Carex scopulorum and D. cespitosa (common moist
meadow graminoids), K. myosuroides (common dry
meadow graminoid), T. parryi (widespread forb
legume), and Sedum lanceolatum (widespread succu-
lent). The names, total occurrences per node and per plot,
and average plot-level abundance for all 87 taxa are pro-
vided in Appendix S1: Table S1.

RESULTS

Community associations with variability
and predictability

Mean soil moisture and temperature explained a rela-
tively small but statistically significant amount of the var-
iation observed in the alpine plant community among
nodes in the Sensor Network Array over the 4 years of
this study (RDA, adjusted R2 = 10.4%, p = 0.001)
(Figure 2A). The first and second RDA axes explained
10.5% (p = 0.001) and 3.6% (p = 0.027) of the total

variation in community composition, respectively. The
first RDA axis was primarily correlated with mean soil
moisture (r = 0.98 for soil moisture and r = −0.46 for soil
temperature), while the second RDA axis was primarily
correlated with soil temperature (r = 0.17 for soil moisture
and r = 0.88 for soil temperature). Individually, mean soil
moisture explained 10.2% of the variation in community
composition (p = 0.001) while mean soil temperature
explained only 3.8% (p = 0.031).

Daily variability and predictability in soil moisture
and temperature substantially increased the amount of
variation in community composition explained by the
model, even after adjusting for the number of predictors.
In the RDA that included mean, daily variability, and
daily predictability in soil moisture and temperature as
predictor variables, all axes had an adjusted R2 of 27%
(p = 0.01). The communities are separated along a
variable-to-invariable axis (RDA1) and a hot/dry-to-cold/
wet (RDA2) axis (Figure 2B). The first RDA axis
explained 17.4% of the variation in community composi-
tion while the second explained 8%. Mean soil moisture
and the variability in soil moisture and temperature were
the most correlated with the first RDA axis (r = 0.67,
−0.95, and −0.74, respectively), while the second RDA
axis was primarily associated with mean conditions in
soil moisture and temperature (r = 0.48 for both vari-
ables). Mean soil moisture had the largest explanatory
power of any term in the model (10.2% of variation
explained, p = 0.001), followed by daily variability in soil
moisture (8.8%, p = 0.001). In contrast, daily variability
in temperature explained more variation (7.3%,
p = 0.001) than mean temperature (3.8%, p = 0.008).
Daily predictability in soil moisture (3.2%, p = 0.02)
explained a relatively small amount of the variation in
community composition, while daily predictability in soil
temperature had the lowest explanatory power of any
term (2.6%, p = 0.08).

Seasonal variability and predictability also improved
the explanatory power of differences in community com-
position over the model with means alone (adjusted
R2 = 21%; p = 0.001). The environmental variables sepa-
rated the vegetation in the Sensor Network Array plots
along a hot/dry-to-cold/wet axis and a variable/unpredic-
table-to-invariable/predictable axis (Figure 2C). The first
and second RDA axes explained 15.9% and 6.8% of the
total variation, respectively. The first axis was most corre-
lated with mean (r = 0.71), variability (r = −0.99), and
predictability (r = 0.80) in soil moisture, while the second
axis was most associated with the mean (r = 0.42) and
variability (r = 0.57) in soil temperature. Variability in
soil moisture explained almost as much variation in com-
munity composition as mean soil moisture (9.8% of varia-
tion explained, p = 0.001 compared to 10.2%, p = 0.002).
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Mean soil temperature (3.8%, p = 0.01) and seasonal vari-
ability in soil temperature (3.8%, p = 0.016) again
explained similar amounts of variation in community
composition. Finally, seasonal predictability in soil mois-
ture and temperature were not important predictors of com-
munity composition, explaining only 2.0% (p = 0.231) and
1.5% (p = 0.501) of variation in plant community structure,
respectively.

Variability and predictability as predictors
of species distributions and abundances

We detected few significant relationships between overall
species occurrences and abundances and variation in soil
moisture and temperature in the Sensor Network Array
vegetation plots. On average, species occurrences showed
a tendency to decline with increasing mean soil moisture
(odds ratio < 1, p = 0.02) and increase with variability in
soil temperature (odds ratio > 1, p = 0.001)
(Appendix S1: Table S3). No other environmental predic-
tors explained significant levels of variation in overall
species occurrences and abundances (Appendix S1:
Tables S3–S6), nor did variation among years, with mar-
ginal R2 values (which quantifies the amount of variation
explained by the fixed effects alone) of 0 or near 0 in all

models. In contrast, there was significant support for
including species-specific responses to environmental
predictors in the model (i.e., random slopes for species)
for all predictor variables except those evaluating species
abundances as a function of daily predictability and sea-
sonal variability in soil temperature (Table 1). The
explanatory power of the random effect structure in
models where random slopes were supported had condi-
tional R2 values ranging from 52% to 66% (Table 1).

We used the CIs around conditional median estimates
for the random slopes in these models to determine
whether and how often the probability of occurrence of
individual species was influenced by the mean, variabil-
ity, or predictability of the environmental variables. We
found that 66% of the 87 species in our data set
(Figure 3A) had at least one significant relationship
(i.e., the CIs did not overlap zero) with the overall mean,
daily variability, or daily predictability in soil moisture or
temperature, while 43% had at least one significant rela-
tionship in the corresponding analyses with seasonal
timescales (Figure 3B). In both cases, more than half of
the significant relationships were in association with
metrics of variability or predictability, with fewer total found
with the overall mean environmental conditions
(Figure 3A,B). The occurrence patterns of many species,
including the six species we examined individually, were

F I GURE 2 Effects of soil moisture and soil temperature on community structure at Niwot Ridge. Each panel shows the results of a

redundancy analysis (RDA) evaluating the effects of (A) mean soil moisture (MSM) and mean soil temperature (MST), (B) MSM, MST, and

daily soil moisture and temperature variability (VSM, VST), predictability (PSM, PST), and (C) seasonal MSM, MST, VSM, VST, PSM, and PST on

community structure. In all panels, an * indicates p < 0.05 for the indicated term in the RDA. Gray circles represent the community

composition measured at each node ieach year of the study (2018, 2019, 2020, and 2021), placed along the x and y axes to reflect their

relative positions along the two multivariate axes of community composition that explain the most variation in the data set. The arrows

represent the environmental predictor variables included in each model. Colored diamonds indicate the positions of the six highlighted plant

species within community space and relative to the soil moisture and temperature axes.
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related to some, but not all, of the environmental predictors
(Figure 4A,B). For example, the probability of occurrence of
C. scopulorum and D. cespitosa increased with mean soil
moisture, declined with soil moisture variability, and had no
relationship with soil moisture predictability (Figure 4A).
Overall, daily and seasonal variability in soil moisture
was particularly important in differentiating the occur-
rence patterns of plants in our data set (Table 1,
Figure 3; Appendix S1: Tables S3 and S4).

In general, patterns of species’ abundances were less
sensitive to environmental variability and predictability
than their occurrences, with only 30% (Figure 3C) and
24% (Figure 3D) of the species, respectively, having ran-
dom slope estimates (medians ± 95% CIs) that did not
overlap 0. We saw no overall directional relationships
between total species abundance and any of the environ-
mental predictors (Appendix S1: Tables S5 and S6).
Instead, we observed a wide distribution of responses
across species for each predictor, indicated by the range
of random slope estimates, as well as varied responses
across predictors within a species. For example, G. rossii’s
abundance decreased with increasing variability in soil
moisture but had the opposite relationship with predict-
ability in soil moisture (Figure 4C,D) at both daily and
seasonal timescales. We did not find support for the
specified random effect structure for predictability in
soil temperature at daily timescales or variability in soil
temperature at seasonal timescales.

For many species, the effects of environmental vari-
ables on individual species’ occurrence and abundance
often differed across timescales, with the same environ-
mental variable at seasonal and daily timescales showing
contrasting effects on distribution patterns. For example,
the probability of occurrence of T. parryi, C. scopulorum,
and D. cespitosa (common moist meadow graminoids)
declined with increasing daily variability in temperature

(Figure 4A) but showed no sensitivity to temperature vari-
ability over the seasonal timescale (Figure 4B).

Full model summaries including random effect vari-
ance estimates are provided in Appendix S1: Tables S2–S5.

DISCUSSION

Incorporating estimates of variability and predictability in
soil moisture and temperature improved our ability to pre-
dict spatial variation in community composition and relative
to models that relied on time-averaged estimates of these
variables alone. Species had varying relationships with tem-
poral variability, with the strength and direction of the asso-
ciation (positive or negative) depending on the species,
environmental variable, and the timescale over which vari-
ables fluctuated. Together, our results suggest that species
vary widely in their relationships with temporal environ-
mental variation, as we would expect if different patterns
and rates of environmental fluctuations favor alternative
growth and life history strategies. Collectively, these results
indicate that the axes of temporal variability provide impor-
tant opportunities for differentiation among alpine tundra
plant species that shape fine-scale differences in community
composition across heterogeneous alpine terrain.

Species-specific responses to variability and
predictability

Species’ affinities for specific patterns of temporal
variability and predictability can drive distribution and
abundance patterns within communities when those
patterns vary across the landscape, but these associations
are rarely quantified (Terradas et al., 2009). Previous
studies have documented that spatial variation in mean

TAB L E 1 Conditional R2 valuesa for models of species occurrences and abundances and each of six tested predictors.

MSM MST VSM VST PSM PST

Occurrence

Daily 0.56b (0.44) 0.50 (0.44) 0.59 (0.44) 0.61c (0.44) 0.45 (0.44) 0.48 (0.44)

Seasonal 0.56b (0.44) 0.50 (0.44) 0.58b (0.44) 0.46 (0.44) 0.52 (0.44) 0.48 (0.44)

Abundance

Daily 0.59 (0.54) 0.57 (0.54) 0.57 (0.54) 0.60 (0.54) 0.55 (0.54) NS

Seasonal 0.59 (0.54) 0.57 (0.54) 0.59 (0.54) NS 0.57 (0.54) 0.55 (0.54)

Abbreviations: M, mean; P, predictability; SM, soil moisture; ST, soil temperature; V, variability.
aConditional R 2 values for generalized linear mixed models including random intercepts and slopes for species (bolded terms) and the corresponding model
without random slopes for species (unbolded terms, in parentheses). NS is the model with a random effect for species slopes was not supported over a model
without random slopes (p > 0.05); in all other cases, the model with random slopes and intercepts explained significantly more variation than the
intercept-only model (p < 0.05).
bMarginal R 2 = 0.02.
cMarginal R 2 = 0.05. All other marginal R 2 values were estimated to be less than 0.01 or zero.
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temperature (Steinbauer et al., 2022) and soil moisture
(Ehleringer & Miller, 1975; Foster et al., 2020) influence
population growth rates and distribution patterns in

alpine plant species (Abeli et al., 2012; Carlson
et al., 2015; Kopp & Cleland, 2014). Our analysis of
fine-scale spatial and temporal variation among nodes in

F I GURE 3 Total numbers of species with occurrence and abundance patterns that are significantly predicted by soil moisture and temperature

variation at Niwot Ridge. (A) The number of species with nonzero slope estimates (i.e., with 95% CIs that do not overlap zero; seeMethods) for the

relationship between their occurrence (presence or absence) in a plot and daily variability and predictability in soil moisture and temperature. (B) The

number of species with nonzero slope estimates for the relationship between their occurrence patterns and seasonal metrics of variability and

predictability in soil moisture and temperature. (C) The number of species with nonzero relationships between their abundance and daily variability

and predictability. There was no support for a random effect of species slopes for the model including predictability in soil temperature (PST). (D) The

number of species with nonzero slopes for the relationships between their abundance and seasonal variability and predictability metrics. There was no

support for a random effect of species slopes for the model including variability in soil temperature (VST). All panels also show the number of species

with nonzero slope estimates in their occurrence (A, B) or abundance (C, D) and mean soil moisture and temperature. The percentages in each panel

show the proportion of species with at least one nonzero slope (out of 87 total). Please see Figure 4 for the distributions of the random slopes for

species’ relationships with each environmental predictor, and Appendix S1: Tables S2–S5 for full model output. M, mean value (dark shading); P,

predictability (light shading); SM, soil moisture (shades of red); ST, soil temperature (shades of blue); V, variability (medium shading).
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the Sensor Network Array also detected relationships
between plant community composition and mean soil
moisture and temperature, reinforcing the importance of

overall wet-dry and cold-hot gradients in shaping plant
associations at Niwot Ridge. However, we further found
that variability and predictability in soil moisture and

F I GURE 4 Variation among alpine plant species in their relationships with the annual mean, daily and seasonal variability, and daily and

seasonal predictability in soil moisture and temperature. Panels (A) and (B) show the estimated slopes of relationships between species’ occurrences
and the mean, variability, and predictability of soil moisture and temperature measured over (A) daily and (B) seasonal timescales in the alpine

vegetation at the Niwot Ridge Long-Term Ecological Research site. Panels (C) and (D) illustrate the estimated slopes of the relationships between

species abundances and the mean, variability, and predictability of soil moisture and temperature measured over (C) daily and (D) seasonal

timescales. Each boxplot shows the range of random slopes generated in a model with a singular predictor variable (e.g., mean soil temperature).

Colored dots correspond to the six highlighted species that are common in the alpine plant community at Niwot Ridge (seeMethods). The vertical

line aligned with “0” on the x-axis represents no relationship between the predictor variable and species occurrence or abundance; boxplots to the left

have a negative relationship between the predictor and response, while plots to the right indicate a positive relationship. No values were generated for

relationships between species’ abundances and the predictability of soil temperature (PST) at the daily scale or variability in soil temperature (PST) at

the seasonal scale because there was no statistical support for including random slopes in those models (see Table 1; Appendix S1: Tables S4 and S5).

Error bars show 95% CIs for each random slope estimate. M, means; P, predictability; SM, soil moisture; ST, soil temperature; V, variability.
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temperature explained additional variation that the time-
averaged variables alone did not capture (Table 1,
Figures 3 and 4; Appendix S1: Tables S3–S6). In our analy-
sis of six focal species, C. scopulorum and D. cespitosa—
both wet meadow species—were most likely to occur in
locations where soil moisture was high, consistent (low
daily and seasonal variability), and predictable across the
season (Figure 4A,B), perhaps reflecting mechanisms to
track slowly drying conditions through adaptive pheno-
typic plasticity (Gill et al., 2022; March-Salas et al., 2022).
The abundance of K. myosuroides—a dry meadow
species—was particularly sensitive to soil moisture variabil-
ity and predictability at daily timescales (Figure 4C), poten-
tially reflecting the importance of intermittent rain events
in driving soil moisture patterns in the dry meadow habitat.
The widespread succulent S. lanceolatum was most likely to
occur where daily soil moisture variability was high and rel-
atively unpredictable (Figure 4A) and, in the plots it occu-
pied, increased in abundance with increasingly warm and
dry conditions (Figure 4C,D), suggesting that the relatively
conservative growth strategy of this species might provide
an advantage in relatively exposed habitats that rely on
summer precipitation for moisture rather than snowmelt
(Koshkin et al., 2021; Nevoux et al., 2010).

Our analyses of individual species’ relationships with
temporal variability and predictability were limited to
taxa that were relatively abundant in our data set, and
thus even the large variation we observed among them
may represent a biased subset of what exists in this com-
munity. The vegetation and environmental monitoring
project of the Sensor Network Array is a long-term data
set for the Niwot LTER that will eventually provide
opportunities to evaluate how species representing differ-
ent functional groups, phylogenetic associations, and
forms of rarity associate with axes of temporal variability,
including inter-annual variation in conditions such as
the timing of snowmelt and total length of the growing
season. Longer time series will make it possible to
include multiple axes of temporal variability into the
same predictive models, tease apart the correlations
among predictor variables, and test whether there are
trade-offs among different axes of variability. It will also
become possible to directly compare different measures
of variability and predictability (e.g., CV vs. variance,
autocorrelation within variables vs. correlations between
different variables) and quantify how those metrics them-
selves change through time. Despite the large amount of
time, effort, and expense invested in the data set
presented here, we were still relatively data-sparse in the
number of independent replicates we had available for
this first analysis (N = 13 nodes sampled in four consecu-
tive years), limiting our ability to dissect the relationships
within and among axes of temporal variability that likely

interact to shape plant community composition at Niwot
Ridge (Appendix S1: Figures S1 and S2). For example,
daily variability in soil moisture and soil temperature are
correlated with one another, and both are negatively cor-
related with mean overall (time-averaged) soil moisture
(Appendix S1: Figure S1), reflecting the dominant role of
snowmelt in shaping moisture and temperature variation
in space and time in the alpine. Only longer-term data
collection, ideally coupled with manipulative experi-
ments, can tease apart which (if any) of these axes and
other environmental axes are the most important drivers
of individual species distribution patterns in the alpine.

Life history theory predicts that the growth and repro-
ductive strategies that are favored in an environment hinge
heavily on the rate and pattern of environmental change
relative to the rate at which organisms can respond through
phenotypic plasticity (Botero et al., 2015; Orzack, 1985;
Tuljapurkar, 1989). Species can only successfully respond to
environmental changes through plasticity if they can sense
shifting environments and then initiate physiological
changes on timescales commensurate with the environmen-
tal shifts (Bernhardt et al., 2020; Terradas et al., 2009). At
Niwot Ridge, we saw a striking difference between the
extent to which daily and seasonal fluctuations in soil tem-
perature predict the distributions and abundances of alpine
plants, with daily variability in soil temperature explaining
a large amount of the total variation in both response vari-
ables (Table 1) and for more species (Figure 3). Relatively
rapid fluctuations can be impossible for organisms to track
through phenotypic plasticity, favoring more conservative,
slow life history strategies that allow persistence through
periods of stress or resource limitation while limiting their
ability to capitalize on periods of benign, resource-rich con-
ditions. In alpine environments, diurnal fluctuations in tem-
perature can provide information about a seed’s location in
the soil column and the extent of snow cover, with vari-
ability itself being a germination or dormancy cue in
species that are adapted to seasonally snow-covered
habitats (Fern�andez-Pascual et al., 2021). Studies
have documented both interspecific (Fern�andez-Pascual
et al., 2021) and intraspecific (Satyanti et al., 2019) varia-
tion in how temperature fluctuations influence alpine seed
germination rates, suggesting that species responses to
rapid fluctuations in soil temperature is an important axis
of differentiation in this plant community.

Slower oscillations in environmental conditions gen-
erate temporal autocorrelation over timescales that are
expected to favor adaptive phenotypic plasticity, as the
conditions that occur at one time point can be used to
predict those at some point in the future (Botero
et al., 2015; Scheiner & Holt, 2012). That is, for the same
magnitude of variability, slower changes and higher pre-
dictability should favor plasticity over fixed conservative
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and bet-hedging strategies. Seasonal patterns of soil
moisture in the alpine can reflect topographic variation
in the extent to which moisture is controlled by snowmelt
(a relatively predictable water source) versus precipita-
tion (an unpredictable source) over the growing season.
We found that the seasonal predictability of soil moisture
was more strongly associated with species’ occurrence
patterns than daily predictability (Table 1, Figure 3A,B),
consistent with the expectation that alpine plants have
differentiated in their associations with snowmelt versus
precipitation as their primary source of moisture during
the growing season.

Community responses to variability and
predictability

Species-specific responses to temporal fluctuations in the
environment are expected to play a critical role in driving
patterns of coexistence and exclusion (Adler et al., 2010;
Chesson, 1994, 2000) and community responses to future
environmental change (Botero et al., 2015). Several differ-
ent ecological mechanisms may explain how and why
environmental variability and predictability influence
plant community structure in alpine systems. For exam-
ple, species’ varied responses to different environment
variables at multiple timescales (Figure 4) suggest that
species may have evolved different strategies for manag-
ing temporal variation, a form of niche partitioning
(Gavini et al., 2019; Morente-L�opez et al., 2022; Terradas
et al., 2009). Furthermore, species-specific responses to
temporal variation could change the relative fitness of
species within communities as soil moisture or tempera-
ture fluctuates (Danby & Hik, 2007). For example, even if
two species exhibit the same preference for low variabil-
ity in soil moisture (e.g., D. cespitosa and C. scopulorum
in our study), one might have a relative fitness advantage
at intermediate levels of soil moisture while the other has
a slight advantage at higher and lower moisture levels.
Variation in species’ responses to temporal changes in
the environment can generate compensatory dynamics,
allowing aggregate community properties (such as total
biomass) to remain constant while the abundances of indi-
vidual species fluctuate through time (Doak et al., 1998;
Schindler et al., 2015). Finally, species with opposite
responses to the same variables can coexist if their abun-
dances increase and decrease with differences in the
timing of favorable conditions (e.g., wet and dry seasons)
(Gonzalez & Loreau, 2009; Shoemaker et al., 2022). Future
work will disentangle the relative importance of these
mechanisms in driving the patterns we documented
here using manipulative experiments or modeling
approaches.

Conclusions and future work

We found that alpine plant community composition
and the distributions of individual species are associ-
ated with variability and predictability in soil moisture
and temperature across a heterogeneous landscape.
While these measures of temporal variability improved
our ability to predict plant population and community
patterns, a large amount of variation in these patterns
remains unexplained. It is likely that we could further
improve the predictive power of our models by quanti-
fying variability and predictability along other impor-
tant environmental axes, many of which may occur
over timescales that are not captured in the 4 years of
our study. For example, the timing of snowmelt is an
event that occurs only once/year, but varies substan-
tially across the landscape and can be associated with
plant community structure in ways beyond its impacts
on soil moisture and temperature (Litaor et al., 2008).
Finally, very little is known about the scale of dispersal
in alpine plants, and it is possible that our 4-year data
set did not provide enough time to adequately capture
recruitment and extinction dynamics in these long-lived,
perennial communities. Again, the longer time series that
will develop with additional years of sampling in the
Sensor Network Array will provide future opportunities
to explore how dispersal and recruitment contribute
to plant responses to temporal fluctuations at Niwot
Ridge.

Our results indicate that patterns of temporal vari-
ability are critical components of niche space that may
be as important, if not more so, than average conditions
in explaining species’ distribution patterns in complex
environments. These axes are becoming increasingly
important to understand as environments become more
variable and unpredictable due to human impacts.
Finally, the outcomes of this study underscore the
immense value of long-term data sets that collect eco-
logically relevant environmental data at temporal resolu-
tions that can be partitioned into different components
(e.g., variability and predictability) and different time-
scales. Such data sets are essential to fully explore the
diverse relationships between temporal niche axes, life
history strategies, and species interactions that ulti-
mately determine how communities respond to environ-
mental change.
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