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A B S T R A C T

Plant functional traits are key drivers of ecosystem processes. However, plot-based monitoring of functional 
composition across both large spatial and temporal extents is a time-consuming and expensive undertaking. 
Airborne and satellite remote sensing platforms collect data across large spatial expanses, often repeatedly over 
time, raising the tantalising prospect of detection of biodiversity change over space and time through remotely 
sensed methods. Here, we test the degree to which in situ measurements of taxonomic and functional β-diversity, 
defined as pairwise dissimilarity either between sites, or between years within individual sites, is detectable in 
airborne hyperspectral imagery across both space and time in an alpine vascular plant community in the Front 
Range, Colorado, USA. Functional and taxonomic dissimilarity were significantly related to spectral dissimilarity 
across space, but lacked robust relationships with spectral dissimilarity over time. Biomass showed stronger 
relationships with spectral dissimilarity than either taxonomic or functional dissimilarity over space, but 
exhibited no significant associations with spectral dissimilarity over time. Comparative analyses using NDVI 
revealed that NDVI alone explains much of the variation explained by the full-range spectra. Our results support 
the use of hyperspectral data to detect fine-scale changes in vascular plant β-diversity over space, but suggest that 
methodological limitations still preclude the use of this technology for long-term monitoring and change 
detection.

1. Introduction

Plant functional traits are a primary determinant of ecosystem ser
vices ranging from soil fertility levels to water availability and climate 
feedbacks (Dıáz and Cabido, 2001; Häger and Avalos, 2017; Lavorel 
et al., 2007; Miedema Brown and Anand, 2022; Ottoy et al., 2017; Wang 
et al., 2019; Zylstra et al., 2016). Shifts in the functional traits – the suite 
of biochemical, physiological and structural characteristics that affect 
the uptake and use of resources (Jetz et al., 2016) – of plant communities 
are therefore likely to have cascading effects on fundamental ecosystem 
services on which communities – floral, faunal, human or otherwise – 
rely (Imbert et al., 2021). Changes in the abundances of species with 
particular traits may provide an early indicator of future tipping points 

in ecosystem service provisioning (Schweiger and Laliberté, 2022; 
Villéger et al., 2013). As such, detecting changes in plant community 
functional composition is a critical component of biodiversity 
monitoring.

One method for detecting important changes in ecosystem services is 
by tracking β-diversity, a suite of metrics that quantify the dissimilarity 
in species and more recently functions across communities over space 
and time (Anderson et al., 2011; Bishop et al., 2015). β-diversity (change 
in community structure) can be quantified as simply variation among 
sites or along pre-defined environmental gradients; here we employ the 
former definition. A recent synthesis of biodiversity change emphasized 
that species replacement – not change in species richness – is the 
dominant form of global biodiversity change seen in long-term 
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monitoring studies (Blowes et al., 2019). However, given the time- 
consuming and costly nature of the on-the-ground sampling needed 
for longitudinal monitoring of taxonomic β-diversity, the geographic 
extent of rapid changes in community composition remains unknown. 
Assessing whether widespread changes in functional β-diversity are also 
occurring is similarly challenging due to the costs associated with in-situ 
sampling of traits over spatial domains beyond the local-scale and/or 
extended time periods (Serbin and Townsend, 2020).

Remote sensing offers the possibility of enhanced characterisation of 
vegetation diversity by providing repeat, consistent measurements 
across large, often under sampled spatial extents (Anderson, 2018; Wang 
et al., 2022). This application requires spatially extensive time series of 
imagery with sufficient spectral resolution and range to detect change 
on the ground (Wang and Gamon, 2019). There is a trade-off between 
the spatial, temporal and spectral resolution of most remote sensing 
datasets currently available (Gamon et al., 2019; Turner, 2014), but 
scheduled satellite campaigns seek to fill this gap. For example, the 
CHIME hyperspectral satellite (European Space Agency, 2023a) will 
provide global-scale hyperspectral imagery at regular intervals, whilst 
NASA’s ABoVE and NEON’s AOP missions have provided high resolu
tion airborne hyperspectral imagery with typically annual repeats over 
large areas (Miller et al., 2019; NEON, 2023a). Both the continued 
collection of spatially and temporally consistent hyperspectral data and 
its assessment against in situ field data are required to determine the 
feasibility of using remotely sensed hyperspectral data in global biodi
versity assessment and monitoring. A coupled approach that leverages 
field data to provide context and real-world validation for remotely 
sensed data may prove to be the most effective method to monitor 
biodiversity at the global scale (Baldeck and Asner, 2013; Gholizadeh 
et al., 2019; Gillespie et al., 2008; Turner et al., 2003).

Spectra have been used to characterise multiple aspects of terrestrial 
vegetation diversity, including taxonomic, phylogenetic and functional 
diversity (Rossi et al., 2022; Schweiger et al., 2018; Stasinski et al., 
2021; Wang et al., 2022; Wang et al., 2018). Plots with high spectral 
diversity typically exhibit high species richness (taxonomic α-diversity) 
(Carlson et al., 2007; Gholizadeh et al., 2019; Kishore et al., 2023; 
Marzialetti et al., 2021; Rocchini, 2007; Van Cleemput et al., 2023; 
Wang et al., 2018). However, it is ultimately not taxonomy per se, but 
rather variation in physiological and structural traits that determine a 
plant’s optical properties (Gholizadeh et al., 2019; Serbin and Town
send, 2020; Ustin and Gamon, 2010; Wang et al., 2022; Wang et al., 
2018). Imaging spectroscopy has long been known to accurately char
acterise physical and biochemical properties of key ecological processes 
(Gamon et al., 2023; Haboudane et al., 2004; Tagliabue et al., 2019; 
Ustin et al., 2004; Zarco-Tejada et al., 2001). As a result, spectral sig
natures typically reflect the particular ecosystem functions plants pro
vide (hereafter plant functional traits) (Dahlin et al., 2013; Homolová 
et al., 2013; Meng et al., 2019; Schneider et al., 2017; Suding et al., 
2008; Thomson et al., 2021; Wang et al., 2019) and likely track func
tional composition more strongly than taxonomic composition (Serbin 
and Townsend, 2020).

A growing corpus of research has investigated the relationship be
tween spectral diversity and plant functional diversity (Beccari et al., 
2024; Schneider et al., 2017; Schweiger et al., 2018). Most studies to 
date have focused on the local scale (α-diversity) component of func
tional diversity, with very few assessing plant functional β-diversity 
components (Asner et al., 2017). In contrast there are numerous ex
amples of tracking taxonomic β-diversity (changes in species composi
tion) across space with hyperspectral data (Baldeck and Asner, 2013; 
Féret and Asner, 2014; Féret and De Boissieu, 2020; Laliberté et al., 
2020; Rocchini et al., 2018). It has been argued that tracking changes in 
plant functional traits through time on globally relevant scales can be 
achieved only through hyperspectral time series due to the cost- 
prohibitive nature of field campaigns (Jetz et al., 2016). The strong 
connections between optical properties and plant functional traits also 
suggest that detecting functional turnover over time may in fact be 

easier than detecting species turnover.
Despite this strong theoretical grounding, we are not currently aware 

of any studies investigating the value of hyperspectral imagery in 
detecting functional β-diversity over time. One reason for the absence of 
such studies is likely limitations in the availability of comparable 
spectral time series data (Gamon et al., 2019). Other technical issues 
may also make the application of hyperspectral remote sensing data to 
detect functional β-diversity over time challenging. Plant traits, and 
hence optical properties, evolve asynchronistically throughout and be
tween growing seasons (Gamon et al., 2020; Gholizadeh et al., 2020; 
Gholizadeh et al., 2019; Rossi et al., 2022; Serbin and Townsend, 2020; 
Wang et al., 2022; Yang et al., 2016). As a result, disentangling long- 
term change in vegetation function from intra-annual variability may 
prove difficult. Multisite airborne campaigns generally face a host of 
challenges related to cost, instrument and personnel availability and 
weather conditions which can lead to inconsistency in revisit periods (e. 
g. Musinsky et al., 2022). This inconsistency in timing can reduce the 
comparability of multi-year hyperspectral time series and prove chal
lenging for detection of functional diversity over time (Rocchini et al., 
2018).

Whilst spectral studies of the vegetation diversity have been carried 
out in numerous settings, alpine tundra ecosystems typically remain less 
well represented in hyperspectral studies compared to other key biomes 
(Gholizadeh et al., 2019; Van Cleemput et al., 2023). This is likely due to 
the fine-scale compositional and functional heterogeneity that typically 
characterises tundra communities (Nelson et al., 2022; Rossi et al., 2022; 
Yang et al., 2020). It is also likely a result of the inherent issues of 
inaccessibility, cloud cover and extreme weather that working in such 
environments as the tundra encompass.

Here, we evaluate the capacity of airborne hyperspectral imagery to 
monitor fine-scale vascular plant functional β-diversity, in alpine tundra 
vegetation, over both space and time, specifically inter-annually. We 
define β-diversity as pairwise dissimilarity between sites, or between 
years for individual sites, in either taxonomic, functional, or spectral 
dimensions (Anderson et al., 2011; Bishop et al., 2015). We will ask 
three main questions: 1) is spectral dissimilarity indicative of fine-scale 
functional variation across space and/or time; 2) does spectral dissimi
larity most closely track in situ dissimilarity in functional composition, 
taxonomic composition, or biomass (an exemplar ecosystem function 
frequently targeted in remote sensing campaigns); and 3) do simpler, 
derived spectral products, namely the normalized difference vegetation 
index (NDVI), predict such dissimilarity similarly well to full-range 
spectra?

2. Materials & methods

2.1. Study area

The study area, henceforth termed the ‘Saddle’, is located in a 
depression between two knolls on Niwot Ridge, in the Indian Peaks 
Wilderness of the Colorado Front Range, USA (Fig. 1). It comprises a grid 
of 88 1 m2 long-term monitoring plots, each grouped into one of eight 
vegetation classes (Fig. 1) (Spasojevic et al., 2013). The site is monitored 
as part of the Niwot Ridge Long-term Ecological Research Program 
(Niwot Ridge LTER, 2023). The plots are located within an area ~550 ×
450 m in size (40.06◦N, −105.59◦E) and range in elevation from 3510 to 
3570 m a.s.l. (Fig. 1) (NEON, 2023b). The area comprises entirely alpine 
tundra and experiences relative climatic extremes annually. The site is 
predominantly snow covered between the months of December and May 
and experienced mean summer temperatures of 8.6–9.8 ◦C between 
2017 and 2020 (White et al., 2023).

2.2. Field measurements

Three long-term, in situ monitoring datasets were utilised in this 
study: 1) plant species composition, 2) above-ground biomass harvests, 
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and 3) plant functional traits. Both composition and biomass data were 
collected from the 88 Saddle grid plots (Fig. 1). Composition data has 
been collected throughout the Saddle since 1989, with annual mea
surements taken since 2010 (Walker et al., 2022a). All occurrences of 
both living and non-living plant and non-plant material were recorded 
using 100 pin drops and an ‘all-hits’ method within the 88 point framing 
plots. Tundra plant communities typically comprise both canopy and 
sub-canopy species (Ma et al., 2020) and in order to accurately elucidate 
community-level dissimilarity, both canopy and sub-canopy species 
must be accounted for (Ustin and Gamon, 2010). As such, we used an ‘all 
hits’ approach. However, whilst field measurements sample both canopy 
and sub-canopy species, the limited penetration ability of optical remote 
sensing often prevents the sampling of much of the sub-canopy, partic
ularly in shrub-dominated plots, leading to underrepresentation of sub- 
canopy individuals and their respective traits within the spectral profile 
(Ma et al., 2020). As such, we also ran our analyses using a ‘top hits’ only 
approach to determine the impact this limited optical penetration had 
on our ability to characterise community diversity; these results can be 
seen in Supplementary Materials 1.

Species were taxonomically standardised to the World Flora Online 
(WFO) Plant List (The Plant List, 2013). Relative cover was then 
calculated as the percentage of the total hits per plot ascribed to each 
vascular plant species recorded; non-vascular species were removed due 
to insufficient ID at the species level. This resulted in a final plot count of 
78 (Fig. 1); seven ‘barren’ plots containing no vascular plant hits were 
removed, as were two manipulated ‘snow fence’ plots and one 

incorrectly geolocated plot. Living vascular plant material comprised 
84.9 % of top hits within the retained plots, whilst non-vascular plant 
material comprised 2.64 %. Plot-level biomass data has been collected 
since 1992 (Walker et al., 2022b). In each sampling year, a single net 
primary productivity (NPP) value was measured from a representative 
area adjacent to each long-term monitoring plot using a combination of 
clipped biomass and allometry; the latter to prevent damage to sensitive 
cushion plants. Both datasets were trimmed to the years 2017–2020 to 
match the hyperspectral imagery availability (Section 2.3). The result
ing datasets therefore consisted of 78 plots in each of the four years (316 
total), comprising 85 species overall.

Trait records were obtained from samples collected in unmanipu
lated areas distributed more widely across the Saddle and surrounding 
tundra at Niwot Ridge during the years 2008–2009, 2017–2018 and 
2021 (Spasojevic and Weber, 2008). Traits were sampled predominantly 
in July and some in August. Whilst our trait data are not temporally 
aligned with the sampled composition and spectral data, this study 
benefits from trait measurements being sampled from within the near 
vicinity of the composition plots at a similar time of year (Fig. 1). In 
contrast, many trait studies rely on values aggregated across larger 
spatial and taxonomic scales (Bjorkman et al., 2018; Maitner et al., 
2023). Trait values from all measured years were included to maximise 
the overall size and taxonomic coverage of the dataset. Eight traits – 
plant height (cm), leaf dry matter content (LDMC; mg g−1), specific leaf 
area (SLA; cm2 g−1), δ15N (‰), δ13C (‰), and leaf chlorophyll (μmol 
m2), N (%) and C (%) concentrations – were measured following 

Fig. 1. Study locations on Niwot Ridge. The location of the 78 1 × 1 m2 assessed plots distributed across the Saddle grid between the East and West Knolls of Niwot 
Ridge, their corresponding vegetation classes (see legend) and the location of the Niwot Ridge LTER within the Colorado Front Range (see inset). Background 
imagery is sourced from NEON’s high-resolution orthorectified camera imagery mosaic (RGB, 0.1 × 0.1 m resolution) (NEON, 2023c) whilst the inset map is sourced 
from ESRI © 2014 National Geographic Society, i-cubed.
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standard protocols (Perez-Harguindeguy et al., 2016). Each trait relates 
to the two main axes in plant trait variation - resource acquisition and 
plant structure (Thomas et al., 2020), is deemed significant to tundra 
functions and is widely used in tundra trait studies (Bjorkman et al., 
2018). Species names were also standardised to the WFO Plant List to 
allow for the joining of trait values to individual species in the compo
sition records. In total our trait dataset contained 10,303 trait mea
surements. Trait values were ascribed to individual species via a gap- 
filling algorithm that generates median trait values – both within 
vegetation classes and overall – at the species, genus, family and func
tional group (shrub, forb and graminoid) levels (Supplementary Mate
rials 2). Trait medians were first calculated for each trait within a single 
species and vegetation class (Fig. 1), then by species alone, then by 
genus within each vegetation class and so on up to the functional group 
level, with each species composition record assigned a value for each 
trait at the lowest taxonomic hierarchy possible. An average of 87.9 % of 
records were assigned at the species level or lower (Supplementary 
Materials 2). Plant species together with their traits facilitated the 
calculation of functional dissimilarity across the Saddle (Section 2.4).

2.3. Hyperspectral imagery

Airborne hyperspectral imagery was sourced from the National 
Ecological Observatory Network (NEON) ‘spectrometer orthorectified 
surface directional reflectance mosaic’ (DP3.30006.001; NEON, 2023a). 
The level-three processed, 1 × 1 m spatial resolution, 426 band imagery 
is spectrally calibrated, atmospherically corrected, orthorectified and 
output onto a uniform 1 × 1 km spatial grid, details of which can be 
found at Gallery (2022) and Karpowicz and Kampe (2022). The spectra 
encompass a spectral resolution of 5 nm and range from 380 nm to 2500 
nm (NEON, 2023a). Imagery is available across the full study site and is 
provided as a single mosaic collected between July and August annually 
from 2017 to 2020 (NEON, 2023a). NEON aims to collect data around 
the point of peak greenness each assessed year, with data typically 
collected from flights on three or four days each season. The Saddle 
(Fig. 1) was typically covered by multiple flightlines on multiple days 
each season, so reflectance values for individual pixels are selected by 
NEON from the flightlines with the highest quality cloud conditions and 
at the closest proximity to nadir (Gallery, 2022). In 2017, 2018 and 
2020, all pixels covering the Saddle were selected from the same 
flightlines during mosaicking, whilst in 2019 pixels were selected from 

flightlines captured on consecutive days (14th August – 72 plots, 15th 
August – 6 plots; Fig. 2).

Spectra were extracted from this imagery at the coordinate of each of 
the 78 retained plots using a circular buffer of 1 m radius; mean spectral 
reflectances were calculated from all the cells encompassed by each 
buffer. A 1 m buffer was selected over a 0 m or 3 m buffer to correct for 
potential geolocation issues in the data (0 m) whilst minimising the risk 
of inadvertently capturing different vegetation types to that comprising 
the plot (3 m) (Inamdar et al., 2020); pairwise spectral differences be
tween plots were largely indistinguishable regardless of the buffer 
selected (R2: ~0.978–0.988; Supplementary Information 3). Spectral 
bands both at the spectral extremes (< 400 nm and > 2400 nm) and 
those that capture atmospheric water (1340–1445 nm and 1790–1995 
nm) were then removed (Schweiger and Laliberté, 2022). Broad-band 
NDVI was calculated from the extracted spectra using wavelengths 
corresponding to those utilised in the Sentinel-2 10 m bands (band 4: 
633–695 nm; band 8: 726–938 nm) (European Space Agency, 2023b). 
NDVI is an index known to saturate at high biomass levels (Goswami 
et al., 2015), however due to the relatively low biomass values in this 
high elevation tundra environment, few plots exceeded the threshold at 
which NDVI saturation is known to become problematic. To avoid po
tential artefacts due to shading or exposed soil, specific plots in indi
vidual years were removed from analyses based on the plot’s respective 
degree of shading and photosynthetically-active vegetation. A near- 
infrared (NIR) mask (NIR > 0.2; 752–1048 nm) was employed to 
remove shaded plots (Rüfenacht et al., 2014; Schweiger and Laliberté, 
2022), whilst a NDVI mask (NDVI >0.2; 667 and 827 nm) was utilised to 
remove plots with limited vegetation cover (Schweiger and Laliberté, 
2022).

Further processing steps frequently applied to hyperspectral data 
include brightness normalization, spectral smoothing and dimension
ality reduction. Following the calculation of NDVI and NIR, we bright
ness normalized our spectra (calculated as the square root of the sum of 
the reflectances squared) (Feilhauer et al., 2010), but chose not to carry 
out smoothing or dimensionality reduction. Differences in illumination 
are known to cause large variations in ‘brightness’ of plant spectra. 
Whilst natural differences in brightness are known to be informative of 
canopy structure (Zhirin et al., 2017), those artificially generated by 
differences in illumination may obscure the spectral signals of certain 
leaf traits (Wang et al., 2022). Based on both this and the known in
fluence of illumination differences on both intra-annual and inter- 

Fig. 2. Timing of hyperspectral data acquisition was generally delayed relative to peak greenness. The coloured triangles represent the day(s) on which the NEON 
hyperspectral imagery was sampled, the green triangles and lines represent the measured period of peak greenness as measured by NEON’s tundra phenocams on 
Niwot Ridge, with the labelled numbers representing the offset (days delayed) between the end of peak greenness and the date of NEON data acquisition. The green 
rectangle illustrates the targeted hyperspectral sampling window: mean period of peak greenness between 2003–2021 as measured from MODIS satellite imagery 
(Musinsky et al., 2022). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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annual hyperspectral data collection, we proceeded with brightness 
normalization; results both with and without brightness normalization 
were near identical (Supplementary Materials 4). Smoothing of the 
resulting spectra, a commonly used method in spectral studies of 
biodiversity (e.g. Van Cleemput et al., 2023), was also considered to 
remove random noise (Park et al., 2018), however we declined to un
dertake this step as it was likely to remove fine-scale, discriminatory 
features in the spectra. Similarly, dimensionality reduction via principal 
component analysis (PCA) was also considered, as is standard in many 
hyperspectral studies given the high-dimensionality of hyperspectral 
data (e.g. Féret and Asner, 2014). We again declined to undertake this 
step due to the loss of fine-scale variation and spectral information that 
occurs in the discarded principal components (Asner et al., 2012). For an 
example of the resulting spectra in one year, see Supplementary Mate
rials 5.

2.4. β-diversity calculations

Pairwise dissimilarity measures between plot-pairs were calculated 
for each of the four following metrics – taxonomic composition, func
tional composition, biomass and spectral composition, (Schweiger and 
Laliberté, 2022), in order to characterise β-diversity across the Saddle. 
Methods to calculate β-diversity from remote sensing imagery typically 
rely on distance-based measures (Rocchini et al., 2018). Different 
dissimilarity measures were utilised for each variable to ensure the 
method used was appropriate to the data type. Taxonomic dissimilarity 
was calculated as abundance-weighted Bray-Curtis dissimilarity, the 
most commonly used distance metric for species abundance data (Bray 
and Curtis, 1957; Ricotta and Pavoine, 2022). Functional dissimilarity 
was calculated as ‘functional dissimilarity’, or ‘FDis’ (Ricotta and Pav
oine, 2022), a generalised version of their parametric measure aimed at 
unifying the Euclidean distance and the Bray-Curtis dissimilarity in a 
manner suitable for use with community composition data. We calcu
lated FDis using median trait values incorporating all years for all eight 
measured traits as we lacked location- or year-specific values for species 
traits. As a result, interannual variability in FDis reflects only compo
sitional change and does not incorporate trait plasticity, intraspecific 
trait variability or seasonal variation in trait expression. Biomass 
dissimilarity was characterised as the absolute value of the difference 
between each plot-pair.

Euclidean distance was the selected measure of β-diversity for NDVI 
and spectral reflectance (Section 2.3). Numerous methods have been 
used in recent studies to determine ‘spectral dissimilarity’. We therefore 
investigated three separate metrics – 1) Euclidean distance (Chauhan 
and Krishna Mohan, 2014; Schweiger et al., 2018; Schweiger and 
Laliberté, 2022), 2) Manhattan distance (Van Cleemput et al., 2019), 
and 3) Spectral Angle Metric (SAM) (Chauhan and Krishna Mohan, 
2014; Van Cleemput et al., 2019) – to determine their respective utility 
in characterising spectral distance across the Saddle. Upon investiga
tion, it was clear that all of Euclidean distance, Manhattan distance and 
SAM conformed very closely to one another (Supplementary Materials 
6). Euclidean distance between outputted spectra was selected for rea
sons of both simplicity and consistency.

Pairwise dissimilarity measures were calculated across both space 
and time. Spatially, dissimilarities were calculated between pairs of 
plots within individual years (e.g. all plot-pairs in 2017 only), gener
ating 3081 unique plot combinations per year (Supplementary Materials 
7). Temporally, distances were calculated for individual plots (e.g. plot 
27 only) and between all the pairwise year combinations, generating 6 
unique year combinations per plot (Supplementary Materials 8). In 
doing so, it was possible to facilitate comparisons of dissimilarity in all 
four assessed variables across the saddle over both space and time. After 
applying the NDVI & NIR masks (Section 2.3; 11,367 (from a possible 
12,324) plot-pair and 453 (from a possible 474) plot-year combinations 
were retained from the spatial and temporal spectral dissimilarity 
datasets respectively.

2.5. β-diversity comparisons

In order to determine whether increased spectral dissimilarity is 
indicative of increased functional dissimilarity, matrices for both func
tional and spectral dissimilarity were statistically compared using 
Mantel tests (He and Zhang, 2009; He et al., 2009; Mantel, 1967); 
spectral matrices were also modelled against taxonomic and biomass 
distance matrices. Mantel tests were run using the ‘Pearson’ correlation 
parameter with 9999 permutations. This method allows for the signifi
cance of correlations between pairwise dissimilarity matrices to be 
assessed whilst accounting for the fact that each plot is included in 
multiple comparisons (Mantel, 1967). Mantel tests were run between 
plots within single years for spatial comparisons, and between years for 
a single plot for temporal comparisons, permuting over all year pair 
combinations (n = 6; Supplementary Materials 7–8). Both R and p-values 
were obtained from the Mantel tests to determine both the effect size 
and significance of any given relationship. Given the small number of 
paired year combinations per plot in the temporal analyses, the statis
tical power was insufficient to generate meaningful p-values; the 
calculated R remained sufficient to facilitate between-plot comparisons 
however. To summarise general patterns in the temporal analyses, mean 
R values were calculated using the individual R values from the tem
poral Mantel tests run on each of the 78 plots. Spatial and temporal 
Mantel tests were also run between NDVI distance matrices and func
tional, taxonomic and biomass dissimilarity matrices.

3. Results

3.1. Functional ~ spectral dissimilarity relationships

Throughout our study area, functional dissimilarity was positively 
associated with spectral dissimilarity over space (Fig. 3a) but not time 
(Fig. 3b). Spatially, the Mantel tests exhibited significant relationships 
(p: < 0.001–0.002) between functional and spectral dissimilarity within 
each year, typically with moderate R statistics (R: 0.293–0.555). How
ever, there is little evidence to suggest that plots with substantial func
tional dissimilarity over time exhibit a greater degree of spectral 
dissimilarity across the same time period (mean R: 0.106). While we had 
relatively less power to detect significant relationships across time, with 
only 4 years of data as compared to 79 plots within each year, the lower 
R values suggest spectral dissimilarity over time is less strongly related 
to functional dissimilarity over time than space. A cluster of more 
functionally dissimilar plot-pairs was evident in all years that reflect the 
extreme difference in traits between the one shrub-dominated plot in our 
study area (plot 37) and the remaining, herbaceous-dominated plots 
(Fig. 3a). Analyses were re-run without plot 37 (Supplementary Mate
rials 9) to ensure that results were robust even without the inclusion of 
this plot. The direction and significance of all results remained the same 
between spectral and functional, taxonomic and biomass dissimilarity 
(Fig. 4a; 4c), with only a small reduction in R values (Supplementary 
Materials 9). Hence, ‘shrubby’ plot 37 does exhibit a substantial shift in 
functions as compared to the non-shrub dominated plots, but was not the 
primary determinant of the results.

3.2. Taxonomic and biomass ~ spectral dissimilarity relationships

Relationships between taxonomic and spectral dissimilarity were 
broadly similar to those between functional and spectral dissimilarity 
(Section 3.1). Over space, when considering taxonomic dissimilarity, the 
mantel tests again exhibited significant relationships with spectral 
dissimilarity (p: < 0.001). The strength of the spatial relationships was 
moderate (R: 0.212–0.384), and tended to be slightly less than the 
strength of the relationships between functional dissimilarity and 
spectra (Fig. 4a). Unlike the functional results however, the relation
ships between taxonomy and spectra over time were similarly strong 
(mean R: 0.221) to those across space. Whilst the spatial relationships 
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were robust to dropping bottom hits, the temporal results largely dis
appeared when using top hits only (Supplementary Materials 1; mean R: 
0.037). As such, we have low confidence in this result. Change in 
biomass over space was more strongly associated with spectral dissim
ilarity than either functional or taxonomic dissimilarity. Spatially, 
biomass is significantly (p: < 0.001) and strongly (R: 0.358–0.648) 
related to spectral dissimilarity across all years (Fig. 4c), more strongly 
than either functional or taxonomic dissimilarity (Fig. 3a; 4a). Biomass 
however conversely exhibited no meaningful relationship over time 
between in situ and spectral data and displayed the lowest temporal 
values (mean R: −0.059; Fig. 4d).

3.3. Functional, taxonomic and biomass ~ NDVI relationships

Using NDVI to explain taxonomic, functional and biomass dissimi
larity yielded results that were largely similar to those using full spectra 
(Fig. 5). Mantel tests exhibited significant yet moderate relationships 
between NDVI and both functional (p: < 0.001–0.002; R: 0.244–0.315) 
and taxonomic dissimilarity (p: < 0.001; R: 0.215–0.325) across space 
(Fig. 5a; 5c), with similar patterns also displayed between both metrics 
and spectral dissimilarity (Fig. 3a; 4a). Again, similarly to spectral 
dissimilarity, spatial relationships between NDVI and biomass dissimi
larity were stronger with NDVI relating significantly and strongly to 
biomass dissimilarity (p: < 0.001; R: 0.289–0.542; Fig. 5e). Finally, as 
with full-range spectra, temporal relationships between NDVI dissimi
larity and the in situ metrics were weaker to non-existent when 

Fig. 3. Pairwise spectral dissimilarity among plots is greater for more functionally dissimilar plots across space but not time. The relationships between functional 
and spectral dissimilarity: (a) between all plot pairs within each studied year, and (b) for each plot between each pair of study years (e.g. 2017–2018, 2017–2019 and 
2017–2020; the dotted line represents the mean dissimilarity). Mantel R and p statistics for each year (spatial comparisons only) and averaged over all years (R bar; 
temporal comparisons only) are provided below the relevant panels (Section 2.5). Linear regression lines are provided as a visual fit of the data.

Fig. 4. Pairwise spectral dissimilarity among plots is greater for more taxonomically dissimilar plots and those with greater differences in biomass across space but 
not time. The relationships between spectral and both taxonomic and biomass dissimilarity: (a, c) between all plot pairs within each studied year, and (b, d) for each 
plot between each pair of study years (e.g. 2017–2018, 2017–2019 and 2017–2020; the dotted line represents the mean dissimilarity). Mantel R and p statistics for 
each year (spatial comparisons only) and averaged over all years (R bar; temporal comparisons only) are provided below the relevant panels (Section 2.5). Linear 
regression lines are provided as a visual fit of the data.
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compared to the spatial ones, with the taxonomic temporal link proving 
greater than either function or biomass (Figs. 5b; 4b,d). When 
comparing the strength of the results over space, spectral dissimilarity 
explains somewhat more variation in both functional and biomass 
dissimilarity in all years than NDVI dissimilarity, although NDVI 
dissimilarity in turn explains a greater proportion of the taxonomic 
dissimilarity between 2018–2020 (Fig. 6).

4. Discussion

4.1. Spectral dissimilarity moderately related to functional β-diversity

Our results highlight the potential utility of using hyperspectral 
imagery in the detection of fine-scale functional (and taxonomic) β-di
versity across space within a single alpine tundra habitat. This supports 
the much-anticipated promise of using spectral reflectance in functional 
change detection (Jetz et al., 2016) and the results of other studies that 
highlighted significant links between spectral reflectance and elements 

of taxonomic (Baldeck and Asner, 2013; Laliberté et al., 2020; Marzia
letti et al., 2021) and functional β-diversity (Asner et al., 2017). Spectral 
dissimilarity was significantly related to functional and taxonomic 
dissimilarity across space, although the relationships were only of 
moderate strength and exhibited considerable scatter (Fig. 3a; 4a). This 
suggests that whilst both these factors are clearly related, spectral dif
ferences are picking up additional factors beyond taxonomic and func
tional composition. Depending on the intended application, this may be 
advantageous. For example, our attempts to measure one ecosystem 
function directly (above-ground biomass) indicated in situ biomass 
generally showed a stronger spatial association with spectral reflectance 
than functional dissimilarity did. Relationships between in situ metrics 
and spectral dissimilarity across years however, were weaker to non- 
existent. Furthermore, whilst the associated R values suggest a moder
ately strong relationship between taxonomic and spectral dissimilarity 
over time, the almost complete removal of that relationship when using 
top hits only suggests a lack of robustness and reduces the confidence 
with which we view that result. This may mean that in slow-growing 

Fig. 5. Functional, taxonomic and biomass dissimilarity among plots track differences in NDVI across space but generally not time. The relationships between NDVI 
dissimilarity and each of functional (a, b), taxonomic (c, d) and biomass dissimilarity (e, f). Spatial dissimilarity tests relationships between all plot pairs within each 
studied year, whilst temporal dissimilarity compares relationships for each plot between each pair of study years (e.g. 2017–2018, 2017–2019 and 2017–2020; the 
dotted line represents the mean dissimilarity). Mantel R and p statistics for each year (spatial comparisons only) and averaged over all years (R bar; temporal 
comparisons only) are provided below the relevant panels (Section 2.5). Linear regression lines are provided as a visual fit of the data.
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alpine tundra environments, detection of small directional shifts in 
taxonomic or functional change over time from aerial hyperspectral data 
may prove difficult, and anticipated promise of monitoring fine-scale 
β-diversity using spectra alone should be treated with caution (Nelson 
et al., 2022).

4.2. Why spatial scale matters

Scale issues, over both space and time, likely contribute to the only 
moderate relationships observed between spectral and functional and 
taxonomic dissimilarity in this study. Spatially, a core issue comes from 
the grain size at which comparisons of dissimilarity within the in situ 
plots and spectral reflectance occur. Past studies have shown that 
spectral variability best relates to species β-diversity at larger spatial 
grains. For instance, (Rocchini et al., 2010) found stronger correlations 
at 20–50 m as opposed to 10 m spatial grains in highland Savannahs. 
This stems from lower grain sizes typically incorporating higher noise 
when calculating β-diversity metrics (Rocchini et al., 2010). Past studies 
often utilise large plots (Laliberté et al., 2020; Rocchini, 2007; 
Schweiger and Laliberté, 2022; Wang et al., 2016a), although this hin
ders the fine-scale delineation of vegetation diversity through spectra. 
The small grain size used in our study (1 × 1 m) reflects the standard plot 
size for vegetation monitoring in most herbaceous systems. However 
this grain size may decrease the signal-to-noise ratio and diminishes the 
strength of relationships between spectral dissimilarity and functional 
dissimilarity. Smaller spectral pixel sizes, typically 1 mm – 10 cm, are 
thought to be most appropriate for delineating aspects of fine-scale 
biodiversity, the size of individual herbaceous plants (Lopatin et al., 
2017; Wang et al., 2018). The spectral grain size utilised also precludes 
the use of a ‘spectral species’ approach in this study, given that indi
vidual tundra plants are typically significantly smaller than the 1 × 1 m 
grain size, thereby preventing assessments of within-plot dissimilarity 
and α-diversity through pixel clustering algorithms (Féret and Asner, 
2014; Rossi et al., 2022). Where the size of individuals exceeds that of 
the pixel (e.g., forests, or tundra dominated by large shrubs), such 
methods may become viable and stronger patterns may emerge as a 
result. In spite of this, there remains no spatial scale universally 
considered for the remote detection of biodiversity (Wang et al., 2018).

Spatial mismatches also exist vertically in spectral studies of plant 
diversity. As outlined in the methods (Section 2.2), whilst field 

measurements sample both canopy and sub-canopy species, thereby 
better characterising community function, the limited ability of optical 
remote sensing to penetrate the canopy results in an underrepresenta
tion of sub-canopy species and their associated traits within each plots’ 
spectral profile (Ma et al., 2020). As such, the spectra may not accurately 
capture plots’ functional composition, weakening relationships between 
spectral reflectances and in situ estimates of functional dissimilarity and 
limiting the utility of hyperspectral imagery in such analyses. In our 
study, on average, 76.5 % of the species found within each plot were 
present in the canopy layer, with 23.5 % found solely within the sub- 
canopy layers. When our analyses were re-run with top hits only (Sup
plementary Materials 1), the strength and significance of the observed 
relationships between spectral and functional and taxonomic dissimi
larity typically remained largely unchanged. This suggests that the 
hyperspectral imagery is doing a good job of capturing understorey 
vegetation, possibly because the functional traits of understory plants 
are similar to those in the canopy. The only result to dramatically change 
was the taxonomic – spectral relationship across time, which surpris
ingly reduced in significance when using top hits only; as described 
above, spectra usually follow top hits better than all hits due to their 
typical lack of canopy penetration. Moving forwards, if we are to 
comprehensively and accurately characterise vegetation β-diversity in 
the future from remotely sensed means, consideration of such factors 
must continue to be taken into account.

4.3. The importance of timing

Despite evidence for significant spatial relationships between spec
tral dissimilarity and functional and taxonomic dissimilarity throughout 
our study system, we found spectral and temporal dissimilarity were 
typically decoupled from spectral dissimilarity over time. This may stem 
in large part from the high plasticity, both intra- and inter-annually, 
displayed by plant traits that can lead to substantial variability in 
spectral signatures (Osnas et al., 2018; Rossi et al., 2022; Serbin and 
Townsend, 2020). Alpine tundra ecosystems are characterised by 
extreme climates and short growing seasons (Nelson et al., 2022), where 
all plants must progress through leaf development, expansion, flowering 
and senescence within a few short months. Intraspecific variation due to 
phenology may exceed interspecific variation for some plant traits 
(Fajardo and Siefert, 2016). In arctic tundra, deciduous shrubs, 

Fig. 6. A substantial proportion of the variation in functional composition, taxonomic composition and biomass among plots explained by hyperspectral dissimilarity 
can be explained by NDVI alone. Difference in strength of relationship between the three variables and spectral and NDVI dissimilarity respectively; grey bars 
illustrate the variation explained by both metrics, purple the additional variation explained when using full spectra over NDVI, and orange the additional variation 
explained when using NDVI over full spectra.
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graminoids and forbs showed approximately two-fold variation in foliar 
nitrogen values over the growing season (Kelsey et al., 2023). As well, 
different species may progress through key phenological stages asyn
chronistically (Bloomfield et al., 2018; Fajardo and Siefert, 2016; 
McKown et al., 2013). As such, functional composition of the plots, as 
well as traits of constituent species, evolve over the growing season (Ma 
et al., 2020; Wang et al., 2022). Using spectral reflectance from a single 
point in a time in the growing season therefore presents challenges as 
different species within plots are captured at differing points in their 
respective phenological path, which may not be the most spectrally 
discriminative part of the growing season (Beamish et al., 2017).

In addition to individual species phenology, the presence and rela
tive influence of other factors known to contribute to variability in 
spectral reflectance – factors such as the proportion of non-vascular 
species, standing litter within the plot and soil moisture concentra
tions – also evolve over the course of the growing season. For instance, 
high in situ soil moisture conditions can depress near-infrared (NIR) 
signals (Jiang et al., 2016), whilst high proportions of standing litter can 
disproportionately increase NIR reflectance (van Leeuwen and Huete, 
1996), introducing further intra-annual variability in spectral reflec
tance. Between year differences in environmental conditions further 
compound plant species’ and traits’ phenological pathways, in turn 
reducing the inter-annual comparability of spectral data. Indeed, within 
our study site the 2017/18 and 2018/19 winter snowpacks were 
respectively very low and high, thus some aspects of drought stress may 
have been apparent in the leaf spectra in 2017/18, even at peak season, 
while the 2018/19 development was delayed relative to a more typical 
year.

Differences in the timing of spectral data acquisition among years 
exacerbate the challenges in using this technology for long-term moni
toring. NEON aims to collect hyperspectral data at each site during peak 
greenness, however shared equipment, solar angle and cloud cover re
quirements pose additional constraints such that approximately a 
quarter of acquisitions to date have occurred outside the actual peak 
greenness window (Musinsky et al., 2022). At Niwot, acquisitions have 
typically fallen outside of the optimum timing, with only the 2020 ac
quisitions beginning within both the (targeted) mean 2003–2021 peak 
greenness window (measured by MODIS) and the observed period of 
annual peak greenness (measured by phenocams in tundra on Niwot 
Ridge) (Fig. 2). 2017 was a particularly poor year for data collection 
with acquisition not taking place until 47 days after the end of the 
measured peak greenness window (Fig. 2) (Musinsky et al., 2022). This 
was evident in all our results where spectral and NDVI dissimilarities 
were notably low in 2017 (Fig. 3a; 4a,b; 5a,c,e; Supplementary Materials 
10). It is likely that a substantial proportion of the annual growth in 
2017 had senesced by the time of the NEON flights, which would 
contribute to the decoupling of spectral signals, particularly the inter- 
annual signal in NDVI versus field measurements of productivity 
(Wang et al., 2022). The hyperspectral mosaic product combines indi
vidual flights that may have been sampled days or even weeks apart 
(NEON, 2023a). This could introduce further variability to the hyper
spectral comparisons and magnifying the influence of intra-annual 
compositional and trait plasticity.

Targeting peak phenology periods in mountainous environments is 
particularly complicated by the strong elevational gradients evident in 
their phenology, which makes the distinguishing of a single period of 
peak phenology difficult (Dai et al., 2021; Inouye and Wielgolaski, 
2013). When collection dates fall sufficiently late in the season, as those 
in 2017 did, the spectral data collection may miss the majority of the 
alpine tundra growing season entirely. As such, key discriminatory 
signals in the spectra may be lost. Furthermore, whilst the day of peak 
greenness is relatively stable in tundra ecosystems compared to other 
ecosystem types (Musinsky et al., 2022), the consequences of flying 
outside the preferred window to data quality are likely greater. This is 
because of the steep, rapid changes in both tundra spectra and traits 
after the peak season with the onset and rapid progression of vegetation 

senescence (May et al., 2017). Furthermore, even on the selected day of 
acquisition, factors such as atmospheric conditions, bidirectional 
reflectance distribution function (BRDF) effects and the timing of the 
solar noon add further complications to the collection of spectral time 
series data comparable across years (Jafarbiglu and Pourreza, 2023; Roy 
et al., 2016).

Characteristics of the in-situ measurement campaigns used here 
likely also contribute to temporal mismatches. Characterisation of 
functional composition relies on two primary data sources: composition 
data and trait data (Ricotta and Pavoine, 2022). Ideally, both plant trait 
and composition data could be collected at regular intervals across the 
growing season to facilitate consistent analyses of spectra (Ma et al., 
2020). The collection of in situ plant trait data however is extremely 
time consuming and laborious (Ma et al., 2020) so trait data is rarely 
collected with such temporal resolution (Jetz et al., 2016). It is typical 
therefore to rely on taxonomically and spatially gap-filled datasets 
(Supplementary Materials 2) collected at a limited number of time 
points. For example, in our study, we relied on data collected at irregular 
intervals throughout 2008–2009, 2017–2018 and 2021, instead of 
annually coinciding with the 2017–2020 flight campaigns. The temporal 
offset in the trait data likely diminishes its quality for use as in situ 
functional calibration data (Sandel et al., 2015). Thus, it is possible that 
with more temporally intensive in-situ field campaigns the relationships 
between spectral and functional β-diversity might be improved. Mini
mising GPS inaccuracies is also essential to ensure maximum compara
bility between in situ and remotely sensed data, although negligible 
differences in spectra extracted using 0 m, 1 m and 3 m buffers (Sup
plementary Materials 3) suggest that this was not an issue in this study. 
To say with certainty whether spectral dissimilarity can or cannot be 
used to monitor changes in functional β-diversity may require more 
intensive and temporally coherent within-season temporal sampling for 
both the remote- and both in situ components of the study (Gholizadeh 
et al., 2019).

4.4. Spectra perform well with biomass

In this study, spectral dissimilarity was more strongly related to 
biomass dissimilarity than either functional or taxonomic dissimilarity 
across space. Past studies have successfully established relationships 
between spectral reflectance and biomass so this result is perhaps un
surprising (Wang et al., 2016b). A plant community’s spectral reflec
tance is defined by the corresponding scattering and absorption of light 
within, which in turn drives both its chemical and three-dimensional 
physical structures (Schweiger et al., 2015; Ustin et al., 2004). It 
therefore follows that the greater the difference in biomass between 
plots, the greater the likely difference in physical structure and corre
sponding reflectance. As such, the spectral dissimilarity will be bigger, 
reflecting the difference in biomass within. Our study supports this 
application, although only over space where the strength of relation
ships observed was strong. Relationships between NDVI and biomass 
dissimilarity were similarly strong within our relatively low biomass 
study site, however, the strength of such relationships may likely be 
lower in higher biomass sites where NDVI saturation is more common. 
Tundra landscapes typically include large proportions of dead plant 
material, bare ground and disturbance (Nelson et al., 2022; Yang et al., 
2020), all factors that may weaken relationships between spectral 
reflectance, biomass and biodiversity (Rossi et al., 2022; Schweiger 
et al., 2015).

4.5. What are the alternatives?

Given the moderate strength of the spatial relationships between 
spectral, functional and taxonomic dissimilarity in this study, and lack of 
relationships over time, it is worth considering spectral scale and 
whether the investment in equipment that can capture full-range spec
tral data is even necessary to monitor change in β-diversity, or whether 
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simpler, pre-existing technology and metrics would characterise the 
relationships equally well. In our study, functional, taxonomic and 
biomass dissimilarity displayed similar relationships with NDVI 
dissimilarity as they did with spectral dissimilarity in terms of the di
rection of the relationships and statistical significance. The strength of 
the relationships between NDVI dissimilarity, and functional and 
biomass dissimilarity was however notably weaker in all years. This 
suggests that spectral dissimilarity does capture some functionally 
relevant information beyond those reflected in NDVI. Past studies have 
found mixed evidence to this end (Rossi et al., 2022), with some (e.g. 
Rocchini, 2007) supporting the conclusion that adding spectral bands 
beyond those present in multispectral imagery enhances the accuracy of 
spectral biodiversity characterisation, and others not (e.g. Wang et al., 
2018). Further studies cataloguing the influence of spectral scale 
(bandwidth, position and range) to detect different dimensions of 
biodiversity change (taxonomic vs functional; α vs β-diversity) across a 
variety of ecosystem types are fundamental to understanding 
biodiversity-spectral diversity relationships and providing more gener
alizable guidelines for targeting optical instrumentation for particular 
biodiversity monitoring applications (Gamon et al., 2020).

Whether the improvements justify the increased cost and complexity 
of the additional bands likely depends on the intended monitoring 
application. For characterising beta-diversity across study sites with 
dramatic variability in above-ground structure – such as across the sub- 
alpine/tundra ecotone – we would expect to see strong relationships 
between spectral and taxonomic or functional β-diversity. Indeed, a 
comparative study across all NEON sites found that spectral-taxonomic 
dissimilarity relationships were among the strongest at Niwot Ridge of 
all NEON sites (Schweiger and Laliberté, 2022). Notably, Schweiger and 
Laliberte’s analysis included plots that span multiple ecosystem types 
(forest, tundra etc.) within a single study area. Whether taxonomic 
β-diversity across these broad gradients could be detected equally well 
using NDVI alone, or in conjunction with LiDAR, has not been tested. We 
calculated NDVI using the same wavelengths as that calculated from 
Sentinel-2 multispectral imagery (European Space Agency, 2023b), a 
free, global and temporally dense dataset with 10 m spatial resolution 
and a return interval of 5 days. Given the wide availability and relative 
simplicity of multispectral imagery over hyperspectral, perhaps in 
certain scenarios, using the simpler measure over a larger temporal and 
geographical expanse is a more worthwhile endeavour, despite the 
moderate reduction in signal strength.

Even beyond NDVI, other simpler, cheaper methods have proved 
valuable in the remote characterisation of community diversity. For 
instance, using specific highly discriminant bands from full-range 
spectra have proven valuable in characterising tundra diversity 
(Bratsch et al., 2016; Rossi et al., 2022; Schweiger et al., 2018), whilst 
airborne LiDAR data, readily available across NEON sites (NEON, 
2023b), have been proven to accurately predict tundra shrub biomass 
(Greaves et al., 2016). Perhaps then the significant expense and 
complexity of full-range spectrometers are not justified in some in
stances, and simpler multispectral, LiDAR, or even RGB methods 
(Beamish et al., 2018) may be similarly effective at delineating aspects 
of tundra diversity in certain scenarios (Harris et al., 2018). We 
acknowledge that this is a rapidly developing field and ever-improving 
processes, methodologies and datasets will only increase the utility of 
hyperspectral data in biodiversity characterisation in the future. As well, 
spectral data may prove more useful for other applications than those 
explored here, such as quantifying canopy nitrogen or water content 
(Asner and Martin, 2009; Wang et al., 2018). We encourage future 
studies evaluating the utility of hyperspectral data for monitoring ap
plications to assess not only the performance of hyperspectral data, but 
also the relative gains over other methods that do not rely on full spectra 
data.

The question of alternative methods also raises the possibility of 
boosting performance by the incorporation of additional, non-spectral 
data sources (Ma et al., 2020). For instance, the fusion of spectral and 

LiDAR data from remotely sensed platforms has been shown to enhance 
the characterisation of key vegetation parameters, such as biomass and 
productivity (Asner et al., 2012; Sankey et al., 2018; Torabzadeh et al., 
2014). Fusing spectral data with data on the ecosystem’s vertical 
structure, can dramatically enhance the ecological interpretation of the 
spectra by facilitating the incorporation of sub-canopy information (Jetz 
et al., 2016), thereby negating a key limitation of optical data (Ma et al., 
2020). LiDAR data is readily available across all NEON sites, although 
the data from Niwot is insufficient for use in these analyses due to 
NEON’s processing algorithm which rounds all vegetation heights below 
2 m to 0 m due to uncertainties in the collected data (Scholl, 2019). Such 
fusion approaches may be the key to unlocking new satellite-borne 
hyperspectral platforms – such as the scheduled ‘CHIME’ (European 
Space Agency, 2023a). As such, data fusion may enhance the utility of 
hyperspectral imagery and allow it to fulfil its anticipated promise as the 
means through which function and biodiversity can be characterised at 
the biome-scale.

5. Conclusions

In sum, our data support the use of spectral dissimilarity based on 
hyperspectral campaigns to detect taxonomically and functionally 
unique areas of the landscape. We do however acknowledge that this 
application is in part likely to be affected by a degree of noise, high
lighted by the moderate relationships between spectral reflectance and 
in situ dissimilarity metrics over space. Still, we envision that spectral 
dissimilarity could be readily applied to prioritise spectrally distinct 
areas for in situ monitoring campaigns. However, the utility of hyper
spectral imagery in detecting inter-annual change in alpine tundra 
composition, functional or taxonomic, remains limited due to method
ological limitations, data deficiencies, and inherent mismatches in the 
acquisition of data across and between growing seasons. The lack of 
robust relationships identified over time is also a cautionary tale for 
those attempting to adopt the principles of space-for-time substitution in 
hyperspectral studies, as with many domains (Blois et al., 2013; Davison 
et al., 2021). It is important to consider and revisit these identified 
temporal issues as longer time series emerge to see how much of the 
anticipated promise of hyperspectral imagery is manifest in long-term 
monitoring. The lack of robust temporal patterns observed and issues 
surrounding temporal monitoring using airborne hyperspectral imagery 
however, do not negate the validity of our study. This work is among the 
first to use a hyperspectral time series to observe change in vegetation 
β-diversity over time (Gholizadeh et al., 2020) and paves the way for 
future studies incorporating longer, more rigorous and more comparable 
time series.

We attempted to detect and characterise fine-scale changes within a 
small area of a single tundra vegetation community, an environment 
known to encompass considerable sub-pixel heterogeneity in composi
tion and function and strong interspecific phenological variation 
(Bloomfield et al., 2018; Fajardo and Siefert, 2016; McKown et al., 2013; 
Nelson et al., 2022; Yang et al., 2020). Most plots in our study area were 
dominated by graminoids and forbs. Thus, the functional dissimilarity 
was relatively subtle as compared to what might be encountered in other 
tundra regions, which often also include more lichen, bryophyte, or 
shrub dominated patches. The limits of hyperspectral remote sensing for 
change detection encountered here may be similar in other graminoid- 
dominated systems, which exhibit relatively homogeneous physiog
nomy and small size of individuals relative to that of pixels. Whilst our 
ability to characterise such fine-scale change was limited, others have 
shown spectral and taxonomic β-diversity to strongly relate to one 
another at larger scales. This includes (Schweiger and Laliberté, 2022) 
who at the same field location, Niwot Ridge, utilised considerably larger 
plots (~ 20 × 20 m) across strongly dissimilar ecosystem types 
(encompassing both tundra and boreal forest) to detect such relation
ships. Consequently, hyperspectral platforms’ most useful avenues may 
currently lie in large-scale vegetation characterisation and monitoring of 
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ecosystem change. This includes the characterisation of processes such 
as treeline expansion and warming-induced shrubification (Grigoriev 
et al., 2022; Jia et al., 2022) but also more widely vegetation classifi
cation and the direct observation of tundra functional traits (Thomson 
et al., 2021). It could be argued that platforms including LiDAR and 
simpler optical measures (e.g. NDVI) perform these functions equally 
well already (Berner et al., 2020; Myers-Smith et al., 2020) and that the 
added utility of hyperspectral imaging does not yet justify its utility. This 
study suggests that hyperspectral imagery does provide notable addi
tional benefits in the characterisation of fine-scale tundra functional 
β-diversity across space, but that advances are required in methodology 
and data acquisition if we are to extract the full potential of hyper
spectral time series in biodiversity science.
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Pausas, J.G., Pérez-Harguindeguy, N., Roumet, C., Urcelay, C., 2007. Plant 
functional types: Are we getting any closer to the holy grail? In: Canadell, J.G., 
Pataki, D.E., Pitelka, L.F. (Eds.), Terrestrial Ecosystems in a Changing World, Global 
Change — The IGBP Series. Springer, Berlin, Heidelberg, pp. 149–164. https://doi. 
org/10.1007/978-3-540-32730-1_13.

van Leeuwen, W.J.D., Huete, A.R., 1996. Effects of standing litter on the biophysical 
interpretation of plant canopies with spectral indices. Remote Sens. Environ. 55, 
123–138. https://doi.org/10.1016/0034-4257(95)00198-0.

Lopatin, J., Fassnacht, F.E., Kattenborn, T., Schmidtlein, S., 2017. Mapping plant species 
in mixed grassland communities using close range imaging spectroscopy. Remote 
Sens. Environ. 201, 12–23.

Ma, X., Migliavacca, M., Wirth, C., Bohn, F.J., Huth, A., Richter, R., Mahecha, M.D., 
2020. Monitoring plant functional diversity using the reflectance and echo from 
space. Remote Sens. (Basel) 12, 1248. https://doi.org/10.3390/rs12081248.

Maitner, B.S., Halbritter, A.H., Telford, R.J., Strydom, T., Chacon, J., Lamanna, C., 
Sloat, L.L., Kerkhoff, A.J., Messier, J., Rasmussen, N., Pomati, F., Merz, E., 
Vandvik, V., Enquist, B.J., 2023. Bootstrapping outperforms community-weighted 
approaches for estimating the shapes of phenotypic distributions. Methods Ecol. 
Evol. 14, 2592–2610. https://doi.org/10.1111/2041-210X.14160.

Mantel, N., 1967. The detection of disease clustering and a generalized regression 
approach. Cancer Res. 27, 209–220.

Marzialetti, F., Cascone, S., Frate, L., Di Febbraro, M., Acosta, A.T.R., Carranza, M.L., 
2021. Measuring alpha and beta diversity by field and remote-sensing data: a 
challenge for coastal dunes biodiversity monitoring. Remote Sens. (Basel) 13, 1928. 
https://doi.org/10.3390/rs13101928.

May, J.L., Healey, N.C., Ahrends, H.E., Hollister, R.D., Tweedie, C.E., Welker, J.M., 
Gould, W.A., Oberbauer, S.F., 2017. Short-term impacts of the air temperature on 
greening and senescence in Alaskan arctic plant tundra habitats. Remote Sens. 
(Basel) 9, 1338. https://doi.org/10.3390/rs9121338.

McKown, A.D., Guy, R.D., Azam, M.S., Drewes, E.C., Quamme, L.K., 2013. Seasonality 
and phenology alter functional leaf traits. Oecologia 172, 653–665.

Meng, R., Yang, D., McMahon, A., Hantson, W., Hayes, D., Breen, A., Serbin, S., 2019. 
A UAS platform for assessing spectral, structural, and thermal patterns of arctic 
tundra vegetation. In: IGARSS 2019–2019 IEEE International Geoscience and 
Remote Sensing Symposium. Presented at the IGARSS 2019–2019 IEEE International 
Geoscience and Remote Sensing Symposium, pp. 9113–9116. https://doi.org/ 
10.1109/IGARSS.2019.8897953.

Miedema Brown, L., Anand, M., 2022. Plant functional traits as measures of ecosystem 
service provision. Ecosphere 13, e3930. https://doi.org/10.1002/ecs2.3930.

Miller, C.E., Griffith, P.C., Goetz, S.J., Hoy, E.E., Pinto, N., McCubbin, I.B., Thorpe, A.K., 
Hofton, M., Hodkinson, D., Hansen, C., Woods, J., Larson, E., Kasischke, E.S., 
Margolis, H.A., 2019. An overview of ABoVE airborne campaign data acquisitions 
and science opportunities. Environ. Res. Lett. 14, 080201. https://doi.org/10.1088/ 
1748-9326/ab0d44.

Musinsky, J., Goulden, T., Wirth, G., Leisso, N., Krause, K., Haynes, M., Chapman, C., 
2022. Spanning scales: the airborne spatial and temporal sampling design of the 
national ecological observatory network. Methods Ecol. Evol. 13, 1866–1884. 
https://doi.org/10.1111/2041-210X.13942.

Myers-Smith, I.H., Kerby, J.T., Phoenix, G.K., Bjerke, J.W., Epstein, H.E., Assmann, J.J., 
John, C., Andreu-Hayles, L., Angers-Blondin, S., Beck, P.S.A., Berner, L.T., Bhatt, U. 
S., Bjorkman, A.D., Blok, D., Bryn, A., Christiansen, C.T., Cornelissen, J.H.C., 
Cunliffe, A.M., Elmendorf, S.C., Forbes, B.C., Goetz, S.J., Hollister, R.D., de Jong, R., 
Loranty, M.M., Macias-Fauria, M., Maseyk, K., Normand, S., Olofsson, J., Parker, T. 
C., Parmentier, F.-J.W., Post, E., Schaepman-Strub, G., Stordal, F., Sullivan, P.F., 
Thomas, H.J.D., Tømmervik, H., Treharne, R., Tweedie, C.E., Walker, D.A., 

J.J. Everest et al.                                                                                                                                                                                                                                Remote Sensing of Environment 316 (2025) 114507 

12 

https://doi.org/10.1002/joc.7170
https://doi.org/10.1111/gcb.15846
https://doi.org/10.1016/S0169-5347(01)02283-2
https://doi.org/10.1016/S0169-5347(01)02283-2
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Going_hyperspectral_for_CHIME
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Going_hyperspectral_for_CHIME
https://copernicus.eu/missions/sentinel-2/instrument-payload/resolution-and-swath
https://copernicus.eu/missions/sentinel-2/instrument-payload/resolution-and-swath
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0135
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0135
https://doi.org/10.1016/j.jqsrt.2010.03.007
https://doi.org/10.1890/13-1824.1
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0150
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0150
https://data.neonscience.org/data-products/DP3.30006.001/RELEASE-2024
https://data.neonscience.org/data-products/DP3.30006.001/RELEASE-2024
https://doi.org/10.1007/s10712-019-09511-5
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0165
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0165
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0165
https://doi.org/10.1111/nph.18754
https://doi.org/10.1016/j.rse.2018.10.037
https://doi.org/10.1002/eap.2145
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0185
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0185
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0190
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0190
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0190
https://doi.org/10.1016/j.rse.2016.07.026
https://doi.org/10.3390/f13122106
https://doi.org/10.3390/f13122106
https://doi.org/10.1016/j.rse.2003.12.013
https://doi.org/10.1007/s00442-017-3880-x
https://doi.org/10.1007/s00442-017-3880-x
https://doi.org/10.7717/peerj.4278
https://doi.org/10.1016/j.ecoinf.2009.01.003
https://doi.org/10.1016/j.actao.2008.07.006
https://doi.org/10.1016/j.actao.2008.07.006
https://doi.org/10.1016/j.ecocom.2013.06.003
https://doi.org/10.1007/978-981-15-7301-9_12
https://doi.org/10.1007/978-981-15-7301-9_12
https://doi.org/10.3390/rs12040641
https://doi.org/10.1007/978-94-007-6925-0_14
https://doi.org/10.1016/j.isprsjprs.2022.12.002
https://doi.org/10.1016/j.isprsjprs.2022.12.002
https://doi.org/10.1038/nplants.2016.24
https://doi.org/10.1038/nplants.2016.24
https://doi.org/10.1016/j.soilbio.2022.108651
https://doi.org/10.1016/j.soilbio.2022.108651
https://doi.org/10.3390/rs8090755
https://data.neonscience.org/data-products/DP3.30006.001/RELEASE-2024
https://data.neonscience.org/data-products/DP3.30006.001/RELEASE-2024
https://doi.org/10.1002/ecs2.4515
https://doi.org/10.1016/j.asr.2023.02.031
https://doi.org/10.1111/ele.13429
https://doi.org/10.1111/ele.13429
https://doi.org/10.1007/978-3-540-32730-1_13
https://doi.org/10.1007/978-3-540-32730-1_13
https://doi.org/10.1016/0034-4257(95)00198-0
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0300
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0300
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0300
https://doi.org/10.3390/rs12081248
https://doi.org/10.1111/2041-210X.14160
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0315
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0315
https://doi.org/10.3390/rs13101928
https://doi.org/10.3390/rs9121338
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0330
http://refhub.elsevier.com/S0034-4257(24)00533-9/rf0330
https://doi.org/10.1109/IGARSS.2019.8897953
https://doi.org/10.1109/IGARSS.2019.8897953
https://doi.org/10.1002/ecs2.3930
https://doi.org/10.1088/1748-9326/ab0d44
https://doi.org/10.1088/1748-9326/ab0d44
https://doi.org/10.1111/2041-210X.13942


Wilmking, M., Wipf, S., 2020. Complexity revealed in the greening of the Arctic. Nat. 
Clim. Chang. 10, 106–117. https://doi.org/10.1038/s41558-019-0688-1.

Nelson, P.R., Maguire, A.J., Pierrat, Z., Orcutt, E.L., Yang, D., Serbin, S., Frost, G.V., 
Macander, M.J., Magney, T.S., Thompson, D.R., Wang, J.A., Oberbauer, S.F., 
Zesati, S.V., Davidson, S.J., Epstein, H.E., Unger, S., Campbell, P.K.E., Carmon, N., 
Velez-Reyes, M., Huemmrich, K.F., 2022. Remote sensing of tundra ecosystems using 
high spectral resolution reflectance: opportunities and challenges. J. Geophys. Res. 
Biogeosci. 127, e2021JG006697. https://doi.org/10.1029/2021JG006697.

NEON, 2023a. Spectrometer Orthorectified Surface Directional Reflectance - Mosaic 
(DP3.30006.001). https://doi.org/10.48443/WZWJ-NM11.

NEON, 2023b. Elevation - LiDAR. https://doi.org/10.48443/KVB6-4322.
NEON, 2023c. High-resolution Orthorectified Camera Imagery Mosaic (DP3.30010.001). 

https://doi.org/10.48443/67BY-MQ58.
Niwot Ridge, L.T.E.R., 2023. Niwot Ridge LTER [WWW Document]. Niwot Ridge LTER. 

https://nwt.lternet.edu (accessed 6.17.23). 
Osnas, J.L., Katabuchi, M., Kitajima, K., Wright, S.J., Reich, P.B., Van Bael, S.A., Kraft, N. 

J., Samaniego, M.J., Pacala, S.W., Lichstein, J.W., 2018. Divergent drivers of leaf 
trait variation within species, among species, and among functional groups. 
Proceedings of the National Academy of Sciences 115 (21), 5480–5485.

Ottoy, S., Van Meerbeek, K., Sindayihebura, A., Hermy, M., Van Orshoven, J., 2017. 
Assessing top-and subsoil organic carbon stocks of low-input high-diversity systems 
using soil and vegetation characteristics. Sci. Total Environ. 589, 153–164.

Park, Y., Noda, I., Jung, Y.M., 2018. Smooth factor analysis (SFA) to effectively remove 
high levels of noise from spectral data sets. Appl. Spectrosc. 72, 765–775. https:// 
doi.org/10.1177/0003702817752126.

Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., 
Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., Gurvich, D.E., 2016. Corrigendum to: 
new handbook for standardised measurement of plant functional traits worldwide. 
Aust. J. Bot. 64, 715–716.

Ricotta, C., Pavoine, S., 2022. A new parametric measure of functional dissimilarity: 
bridging the gap between the Bray-Curtis dissimilarity and the Euclidean distance. 
Ecol. Model. 466, 109880. https://doi.org/10.1016/j.ecolmodel.2022.109880.

Rocchini, D., 2007. Effects of spatial and spectral resolution in estimating ecosystem 
α-diversity by satellite imagery. Remote sensing of Environment 111 (4), 423–434.

Rocchini, D., He, K.S., Oldeland, J., Wesuls, D., Neteler, M., 2010. Spectral variation 
versus species β-diversity at different spatial scales: a test in African highland 
savannas. J. Environ. Monit. 12, 825–831. https://doi.org/10.1039/B921835A.

Rocchini, D., Luque, S., Pettorelli, N., Bastin, L., Doktor, D., Faedi, N., Feilhauer, H., 
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Halbritter, A.H., Henn, J.J., Jónsdóttir, I.S., Klanderud, K., Li, Y., Maitner, B.S., 
Michaletz, S.T., Niittynen, P., Roos, R.E., Telford, R.J., Enquist, B.J., Vandvik, V., 
Macias-Fauria, M., Malhi, Y., 2021. Multiscale mapping of plant functional groups 
and plant traits in the high Arctic using field spectroscopy, UAV imagery and 
sentinel-2A data. Environ. Res. Lett. 16, 055006. https://doi.org/10.1088/1748- 
9326/abf464.

Torabzadeh, H., Morsdorf, F., Schaepman, M.E., 2014. Fusion of imaging spectroscopy 
and airborne laser scanning data for characterization of forest ecosystems – a review. 
ISPRS J. Photogramm. Remote Sens. 97, 25–35. https://doi.org/10.1016/j. 
isprsjprs.2014.08.001.

Turner, W., 2014. Sensing biodiversity. Science 346, 301–302. https://doi.org/10.1126/ 
science.1256014.

Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., Steininger, M., 2003. 
Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18, 
306–314. https://doi.org/10.1016/S0169-5347(03)00070-3.

Ustin, S.L., Gamon, J.A., 2010. Remote sensing of plant functional types. New Phytol. 
186, 795–816. https://doi.org/10.1111/j.1469-8137.2010.03284.x.

Ustin, S.L., Roberts, D.A., Gamon, J.A., Asner, G.P., Green, R.O., 2004. Using imaging 
spectroscopy to study ecosystem processes and properties. Bioscience 54, 523–534. 
https://doi.org/10.1641/0006-3568(2004)054[0523:UISTSE]2.0.CO;2.

Van Cleemput, E., Roberts, D.A., Honnay, O., Somers, B., 2019. A novel procedure for 
measuring functional traits of herbaceous species through field spectroscopy. 
Methods Ecol. Evol. 10, 1332–1338. https://doi.org/10.1111/2041-210X.13237.

Van Cleemput, E., Adler, P., Suding, K.N., 2023. Making remote sense of biodiversity: 
What grassland characteristics make spectral diversity a good proxy for taxonomic 
diversity? Glob. Ecol. Biogeogr. 32 (12), 2177–2188.
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