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ABSTRACT

Plant functional traits are key drivers of ecosystem processes. However, plot-based monitoring of functional
composition across both large spatial and temporal extents is a time-consuming and expensive undertaking.
Airborne and satellite remote sensing platforms collect data across large spatial expanses, often repeatedly over
time, raising the tantalising prospect of detection of biodiversity change over space and time through remotely
sensed methods. Here, we test the degree to which in situ measurements of taxonomic and functional f-diversity,
defined as pairwise dissimilarity either between sites, or between years within individual sites, is detectable in
airborne hyperspectral imagery across both space and time in an alpine vascular plant community in the Front
Range, Colorado, USA. Functional and taxonomic dissimilarity were significantly related to spectral dissimilarity
across space, but lacked robust relationships with spectral dissimilarity over time. Biomass showed stronger
relationships with spectral dissimilarity than either taxonomic or functional dissimilarity over space, but
exhibited no significant associations with spectral dissimilarity over time. Comparative analyses using NDVI
revealed that NDVI alone explains much of the variation explained by the full-range spectra. Our results support
the use of hyperspectral data to detect fine-scale changes in vascular plant $-diversity over space, but suggest that
methodological limitations still preclude the use of this technology for long-term monitoring and change

detection.

1. Introduction

Plant functional traits are a primary determinant of ecosystem ser-
vices ranging from soil fertility levels to water availability and climate
feedbacks (Diaz and Cabido, 2001; Hager and Avalos, 2017; Lavorel
et al., 2007; Miedema Brown and Anand, 2022; Ottoy et al., 2017; Wang
etal., 2019; Zylstra et al., 2016). Shifts in the functional traits — the suite
of biochemical, physiological and structural characteristics that affect
the uptake and use of resources (Jetz et al., 2016) — of plant communities
are therefore likely to have cascading effects on fundamental ecosystem
services on which communities — floral, faunal, human or otherwise —
rely (Imbert et al., 2021). Changes in the abundances of species with
particular traits may provide an early indicator of future tipping points
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in ecosystem service provisioning (Schweiger and Laliberté, 2022;
Villéger et al., 2013). As such, detecting changes in plant community
functional composition is a critical component of biodiversity
monitoring.

One method for detecting important changes in ecosystem services is
by tracking B-diversity, a suite of metrics that quantify the dissimilarity
in species and more recently functions across communities over space
and time (Anderson et al., 2011; Bishop et al., 2015). p-diversity (change
in community structure) can be quantified as simply variation among
sites or along pre-defined environmental gradients; here we employ the
former definition. A recent synthesis of biodiversity change emphasized
that species replacement — not change in species richness - is the
dominant form of global biodiversity change seen in long-term
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monitoring studies (Blowes et al., 2019). However, given the time-
consuming and costly nature of the on-the-ground sampling needed
for longitudinal monitoring of taxonomic f-diversity, the geographic
extent of rapid changes in community composition remains unknown.
Assessing whether widespread changes in functional -diversity are also
occurring is similarly challenging due to the costs associated with in-situ
sampling of traits over spatial domains beyond the local-scale and/or
extended time periods (Serbin and Townsend, 2020).

Remote sensing offers the possibility of enhanced characterisation of
vegetation diversity by providing repeat, consistent measurements
across large, often under sampled spatial extents (Anderson, 2018; Wang
et al., 2022). This application requires spatially extensive time series of
imagery with sufficient spectral resolution and range to detect change
on the ground (Wang and Gamon, 2019). There is a trade-off between
the spatial, temporal and spectral resolution of most remote sensing
datasets currently available (Gamon et al., 2019; Turner, 2014), but
scheduled satellite campaigns seek to fill this gap. For example, the
CHIME hyperspectral satellite (European Space Agency, 2023a) will
provide global-scale hyperspectral imagery at regular intervals, whilst
NASA’s ABoVE and NEON’s AOP missions have provided high resolu-
tion airborne hyperspectral imagery with typically annual repeats over
large areas (Miller et al., 2019; NEON, 2023a). Both the continued
collection of spatially and temporally consistent hyperspectral data and
its assessment against in situ field data are required to determine the
feasibility of using remotely sensed hyperspectral data in global biodi-
versity assessment and monitoring. A coupled approach that leverages
field data to provide context and real-world validation for remotely
sensed data may prove to be the most effective method to monitor
biodiversity at the global scale (Baldeck and Asner, 2013; Gholizadeh
et al., 2019; Gillespie et al., 2008; Turner et al., 2003).

Spectra have been used to characterise multiple aspects of terrestrial
vegetation diversity, including taxonomic, phylogenetic and functional
diversity (Rossi et al., 2022; Schweiger et al., 2018; Stasinski et al.,
2021; Wang et al., 2022; Wang et al., 2018). Plots with high spectral
diversity typically exhibit high species richness (taxonomic a-diversity)
(Carlson et al., 2007; Gholizadeh et al., 2019; Kishore et al., 2023;
Marzialetti et al., 2021; Rocchini, 2007; Van Cleemput et al., 2023;
Wang et al., 2018). However, it is ultimately not taxonomy per se, but
rather variation in physiological and structural traits that determine a
plant’s optical properties (Gholizadeh et al., 2019; Serbin and Town-
send, 2020; Ustin and Gamon, 2010; Wang et al., 2022; Wang et al.,
2018). Imaging spectroscopy has long been known to accurately char-
acterise physical and biochemical properties of key ecological processes
(Gamon et al., 2023; Haboudane et al., 2004; Tagliabue et al., 2019;
Ustin et al., 2004; Zarco-Tejada et al., 2001). As a result, spectral sig-
natures typically reflect the particular ecosystem functions plants pro-
vide (hereafter plant functional traits) (Dahlin et al., 2013; Homolova
et al., 2013; Meng et al., 2019; Schneider et al., 2017; Suding et al.,
2008; Thomson et al., 2021; Wang et al., 2019) and likely track func-
tional composition more strongly than taxonomic composition (Serbin
and Townsend, 2020).

A growing corpus of research has investigated the relationship be-
tween spectral diversity and plant functional diversity (Beccari et al.,
2024; Schneider et al., 2017; Schweiger et al., 2018). Most studies to
date have focused on the local scale (a-diversity) component of func-
tional diversity, with very few assessing plant functional B-diversity
components (Asner et al., 2017). In contrast there are numerous ex-
amples of tracking taxonomic p-diversity (changes in species composi-
tion) across space with hyperspectral data (Baldeck and Asner, 2013;
Féret and Asner, 2014; Féret and De Boissieu, 2020; Laliberté et al.,
2020; Rocchini et al., 2018). It has been argued that tracking changes in
plant functional traits through time on globally relevant scales can be
achieved only through hyperspectral time series due to the cost-
prohibitive nature of field campaigns (Jetz et al., 2016). The strong
connections between optical properties and plant functional traits also
suggest that detecting functional turnover over time may in fact be
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easier than detecting species turnover.

Despite this strong theoretical grounding, we are not currently aware
of any studies investigating the value of hyperspectral imagery in
detecting functional p-diversity over time. One reason for the absence of
such studies is likely limitations in the availability of comparable
spectral time series data (Gamon et al., 2019). Other technical issues
may also make the application of hyperspectral remote sensing data to
detect functional p-diversity over time challenging. Plant traits, and
hence optical properties, evolve asynchronistically throughout and be-
tween growing seasons (Gamon et al., 2020; Gholizadeh et al., 2020;
Gholizadeh et al., 2019; Rossi et al., 2022; Serbin and Townsend, 2020;
Wang et al., 2022; Yang et al., 2016). As a result, disentangling long-
term change in vegetation function from intra-annual variability may
prove difficult. Multisite airborne campaigns generally face a host of
challenges related to cost, instrument and personnel availability and
weather conditions which can lead to inconsistency in revisit periods (e.
g. Musinsky et al., 2022). This inconsistency in timing can reduce the
comparability of multi-year hyperspectral time series and prove chal-
lenging for detection of functional diversity over time (Rocchini et al.,
2018).

Whilst spectral studies of the vegetation diversity have been carried
out in numerous settings, alpine tundra ecosystems typically remain less
well represented in hyperspectral studies compared to other key biomes
(Gholizadeh et al., 2019; Van Cleemput et al., 2023). This is likely due to
the fine-scale compositional and functional heterogeneity that typically
characterises tundra communities (Nelson et al., 2022; Rossi et al., 2022;
Yang et al., 2020). It is also likely a result of the inherent issues of
inaccessibility, cloud cover and extreme weather that working in such
environments as the tundra encompass.

Here, we evaluate the capacity of airborne hyperspectral imagery to
monitor fine-scale vascular plant functional B-diversity, in alpine tundra
vegetation, over both space and time, specifically inter-annually. We
define p-diversity as pairwise dissimilarity between sites, or between
years for individual sites, in either taxonomic, functional, or spectral
dimensions (Anderson et al., 2011; Bishop et al., 2015). We will ask
three main questions: 1) is spectral dissimilarity indicative of fine-scale
functional variation across space and/or time; 2) does spectral dissimi-
larity most closely track in situ dissimilarity in functional composition,
taxonomic composition, or biomass (an exemplar ecosystem function
frequently targeted in remote sensing campaigns); and 3) do simpler,
derived spectral products, namely the normalized difference vegetation
index (NDVI), predict such dissimilarity similarly well to full-range
spectra?

2. Materials & methods
2.1. Study area

The study area, henceforth termed the ‘Saddle’, is located in a
depression between two knolls on Niwot Ridge, in the Indian Peaks
Wilderness of the Colorado Front Range, USA (Fig. 1). It comprises a grid
of 88 1 m? long-term monitoring plots, each grouped into one of eight
vegetation classes (Fig. 1) (Spasojevic et al., 2013). The site is monitored
as part of the Niwot Ridge Long-term Ecological Research Program
(Niwot Ridge LTER, 2023). The plots are located within an area ~550 x
450 m in size (40.06°N, —105.59°E) and range in elevation from 3510 to
3570 m a.s.l. (Fig. 1) (NEON, 2023b). The area comprises entirely alpine
tundra and experiences relative climatic extremes annually. The site is
predominantly snow covered between the months of December and May
and experienced mean summer temperatures of 8.6-9.8 °C between
2017 and 2020 (White et al., 2023).

2.2. Field measurements

Three long-term, in situ monitoring datasets were utilised in this
study: 1) plant species composition, 2) above-ground biomass harvests,
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Fig. 1. Study locations on Niwot Ridge. The location of the 78 1 x 1 m? assessed plots distributed across the Saddle grid between the East and West Knolls of Niwot
Ridge, their corresponding vegetation classes (see legend) and the location of the Niwot Ridge LTER within the Colorado Front Range (see inset). Background
imagery is sourced from NEON’s high-resolution orthorectified camera imagery mosaic (RGB, 0.1 x 0.1 m resolution) (NEON, 2023c) whilst the inset map is sourced

from ESRI © 2014 National Geographic Society, i-cubed.

and 3) plant functional traits. Both composition and biomass data were
collected from the 88 Saddle grid plots (Fig. 1). Composition data has
been collected throughout the Saddle since 1989, with annual mea-
surements taken since 2010 (Walker et al., 2022a). All occurrences of
both living and non-living plant and non-plant material were recorded
using 100 pin drops and an ‘all-hits’ method within the 88 point framing
plots. Tundra plant communities typically comprise both canopy and
sub-canopy species (Ma et al., 2020) and in order to accurately elucidate
community-level dissimilarity, both canopy and sub-canopy species
must be accounted for (Ustin and Gamon, 2010). As such, we used an ‘all
hits’ approach. However, whilst field measurements sample both canopy
and sub-canopy species, the limited penetration ability of optical remote
sensing often prevents the sampling of much of the sub-canopy, partic-
ularly in shrub-dominated plots, leading to underrepresentation of sub-
canopy individuals and their respective traits within the spectral profile
(Ma et al., 2020). As such, we also ran our analyses using a ‘top hits’ only
approach to determine the impact this limited optical penetration had
on our ability to characterise community diversity; these results can be
seen in Supplementary Materials 1.

Species were taxonomically standardised to the World Flora Online
(WFO) Plant List (The Plant List, 2013). Relative cover was then
calculated as the percentage of the total hits per plot ascribed to each
vascular plant species recorded; non-vascular species were removed due
to insufficient ID at the species level. This resulted in a final plot count of
78 (Fig. 1); seven ‘barren’ plots containing no vascular plant hits were
removed, as were two manipulated ‘snow fence’ plots and one

incorrectly geolocated plot. Living vascular plant material comprised
84.9 % of top hits within the retained plots, whilst non-vascular plant
material comprised 2.64 %. Plot-level biomass data has been collected
since 1992 (Walker et al., 2022b). In each sampling year, a single net
primary productivity (NPP) value was measured from a representative
area adjacent to each long-term monitoring plot using a combination of
clipped biomass and allometry; the latter to prevent damage to sensitive
cushion plants. Both datasets were trimmed to the years 2017-2020 to
match the hyperspectral imagery availability (Section 2.3). The result-
ing datasets therefore consisted of 78 plots in each of the four years (316
total), comprising 85 species overall.

Trait records were obtained from samples collected in unmanipu-
lated areas distributed more widely across the Saddle and surrounding
tundra at Niwot Ridge during the years 2008-2009, 2017-2018 and
2021 (Spasojevic and Weber, 2008). Traits were sampled predominantly
in July and some in August. Whilst our trait data are not temporally
aligned with the sampled composition and spectral data, this study
benefits from trait measurements being sampled from within the near
vicinity of the composition plots at a similar time of year (Fig. 1). In
contrast, many trait studies rely on values aggregated across larger
spatial and taxonomic scales (Bjorkman et al., 2018; Maitner et al.,
2023). Trait values from all measured years were included to maximise
the overall size and taxonomic coverage of the dataset. Eight traits —
plant height (cm), leaf dry matter content (LDMC; mg g~ 1), specific leaf
area (SLA; cm? g’l), 815N (%o), 813C (%o), and leaf chlorophyll (pmol
mz), N (%) and C (%) concentrations — were measured following
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standard protocols (Perez-Harguindeguy et al., 2016). Each trait relates
to the two main axes in plant trait variation - resource acquisition and
plant structure (Thomas et al., 2020), is deemed significant to tundra
functions and is widely used in tundra trait studies (Bjorkman et al.,
2018). Species names were also standardised to the WFO Plant List to
allow for the joining of trait values to individual species in the compo-
sition records. In total our trait dataset contained 10,303 trait mea-
surements. Trait values were ascribed to individual species via a gap-
filling algorithm that generates median trait values — both within
vegetation classes and overall — at the species, genus, family and func-
tional group (shrub, forb and graminoid) levels (Supplementary Mate-
rials 2). Trait medians were first calculated for each trait within a single
species and vegetation class (Fig. 1), then by species alone, then by
genus within each vegetation class and so on up to the functional group
level, with each species composition record assigned a value for each
trait at the lowest taxonomic hierarchy possible. An average of 87.9 % of
records were assigned at the species level or lower (Supplementary
Materials 2). Plant species together with their traits facilitated the
calculation of functional dissimilarity across the Saddle (Section 2.4).

2.3. Hyperspectral imagery

Airborne hyperspectral imagery was sourced from the National
Ecological Observatory Network (NEON) ‘spectrometer orthorectified
surface directional reflectance mosaic’ (DP3.30006.001; NEON, 2023a).
The level-three processed, 1 x 1 m spatial resolution, 426 band imagery
is spectrally calibrated, atmospherically corrected, orthorectified and
output onto a uniform 1 x 1 km spatial grid, details of which can be
found at Gallery (2022) and Karpowicz and Kampe (2022). The spectra
encompass a spectral resolution of 5 nm and range from 380 nm to 2500
nm (NEON, 2023a). Imagery is available across the full study site and is
provided as a single mosaic collected between July and August annually
from 2017 to 2020 (NEON, 2023a). NEON aims to collect data around
the point of peak greenness each assessed year, with data typically
collected from flights on three or four days each season. The Saddle
(Fig. 1) was typically covered by multiple flightlines on multiple days
each season, so reflectance values for individual pixels are selected by
NEON from the flightlines with the highest quality cloud conditions and
at the closest proximity to nadir (Gallery, 2022). In 2017, 2018 and
2020, all pixels covering the Saddle were selected from the same
flightlines during mosaicking, whilst in 2019 pixels were selected from

MODIS Period of Peak Greenness
(2003 — 2021)
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flightlines captured on consecutive days (14th August — 72 plots, 15th
August - 6 plots; Fig. 2).

Spectra were extracted from this imagery at the coordinate of each of
the 78 retained plots using a circular buffer of 1 m radius; mean spectral
reflectances were calculated from all the cells encompassed by each
buffer. A 1 m buffer was selected over a 0 m or 3 m buffer to correct for
potential geolocation issues in the data (0 m) whilst minimising the risk
of inadvertently capturing different vegetation types to that comprising
the plot (3 m) (Inamdar et al., 2020); pairwise spectral differences be-
tween plots were largely indistinguishable regardless of the buffer
selected (R%: ~0.978-0.988; Supplementary Information 3). Spectral
bands both at the spectral extremes (< 400 nm and > 2400 nm) and
those that capture atmospheric water (1340-1445 nm and 1790-1995
nm) were then removed (Schweiger and Laliberté, 2022). Broad-band
NDVI was calculated from the extracted spectra using wavelengths
corresponding to those utilised in the Sentinel-2 10 m bands (band 4:
633-695 nm; band 8: 726-938 nm) (Furopean Space Agency, 2023b).
NDVI is an index known to saturate at high biomass levels (Goswami
et al., 2015), however due to the relatively low biomass values in this
high elevation tundra environment, few plots exceeded the threshold at
which NDVI saturation is known to become problematic. To avoid po-
tential artefacts due to shading or exposed soil, specific plots in indi-
vidual years were removed from analyses based on the plot’s respective
degree of shading and photosynthetically-active vegetation. A near-
infrared (NIR) mask (NIR > 0.2; 752-1048 nm) was employed to
remove shaded plots (Riifenacht et al., 2014; Schweiger and Laliberte,
2022), whilst a NDVI mask (NDVI >0.2; 667 and 827 nm) was utilised to
remove plots with limited vegetation cover (Schweiger and Laliberté,
2022).

Further processing steps frequently applied to hyperspectral data
include brightness normalization, spectral smoothing and dimension-
ality reduction. Following the calculation of NDVI and NIR, we bright-
ness normalized our spectra (calculated as the square root of the sum of
the reflectances squared) (Feilhauer et al., 2010), but chose not to carry
out smoothing or dimensionality reduction. Differences in illumination
are known to cause large variations in ‘brightness’ of plant spectra.
Whilst natural differences in brightness are known to be informative of
canopy structure (Zhirin et al., 2017), those artificially generated by
differences in illumination may obscure the spectral signals of certain
leaf traits (Wang et al., 2022). Based on both this and the known in-
fluence of illumination differences on both intra-annual and inter-
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Fig. 2. Timing of hyperspectral data acquisition was generally delayed relative to peak greenness. The coloured triangles represent the day(s) on which the NEON
hyperspectral imagery was sampled, the green triangles and lines represent the measured period of peak greenness as measured by NEON’s tundra phenocams on
Niwot Ridge, with the labelled numbers representing the offset (days delayed) between the end of peak greenness and the date of NEON data acquisition. The green
rectangle illustrates the targeted hyperspectral sampling window: mean period of peak greenness between 2003-2021 as measured from MODIS satellite imagery
(Musinsky et al., 2022). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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annual hyperspectral data collection, we proceeded with brightness
normalization; results both with and without brightness normalization
were near identical (Supplementary Materials 4). Smoothing of the
resulting spectra, a commonly used method in spectral studies of
biodiversity (e.g. Van Cleemput et al., 2023), was also considered to
remove random noise (Park et al., 2018), however we declined to un-
dertake this step as it was likely to remove fine-scale, discriminatory
features in the spectra. Similarly, dimensionality reduction via principal
component analysis (PCA) was also considered, as is standard in many
hyperspectral studies given the high-dimensionality of hyperspectral
data (e.g. Féret and Asner, 2014). We again declined to undertake this
step due to the loss of fine-scale variation and spectral information that
occurs in the discarded principal components (Asner et al., 2012). For an
example of the resulting spectra in one year, see Supplementary Mate-
rials 5.

2.4. p-diversity calculations

Pairwise dissimilarity measures between plot-pairs were calculated
for each of the four following metrics — taxonomic composition, func-
tional composition, biomass and spectral composition, (Schweiger and
Laliberte, 2022), in order to characterise p-diversity across the Saddle.
Methods to calculate p-diversity from remote sensing imagery typically
rely on distance-based measures (Rocchini et al., 2018). Different
dissimilarity measures were utilised for each variable to ensure the
method used was appropriate to the data type. Taxonomic dissimilarity
was calculated as abundance-weighted Bray-Curtis dissimilarity, the
most commonly used distance metric for species abundance data (Bray
and Curtis, 1957; Ricotta and Pavoine, 2022). Functional dissimilarity
was calculated as ‘functional dissimilarity’, or ‘FDis’ (Ricotta and Pav-
oine, 2022), a generalised version of their parametric measure aimed at
unifying the Euclidean distance and the Bray-Curtis dissimilarity in a
manner suitable for use with community composition data. We calcu-
lated FDis using median trait values incorporating all years for all eight
measured traits as we lacked location- or year-specific values for species
traits. As a result, interannual variability in FDis reflects only compo-
sitional change and does not incorporate trait plasticity, intraspecific
trait variability or seasonal variation in trait expression. Biomass
dissimilarity was characterised as the absolute value of the difference
between each plot-pair.

Euclidean distance was the selected measure of p-diversity for NDVI
and spectral reflectance (Section 2.3). Numerous methods have been
used in recent studies to determine ‘spectral dissimilarity’. We therefore
investigated three separate metrics — 1) Euclidean distance (Chauhan
and Krishna Mohan, 2014; Schweiger et al., 2018; Schweiger and
Laliberte, 2022), 2) Manhattan distance (Van Cleemput et al., 2019),
and 3) Spectral Angle Metric (SAM) (Chauhan and Krishna Mohan,
2014; Van Cleemput et al., 2019) — to determine their respective utility
in characterising spectral distance across the Saddle. Upon investiga-
tion, it was clear that all of Euclidean distance, Manhattan distance and
SAM conformed very closely to one another (Supplementary Materials
6). Euclidean distance between outputted spectra was selected for rea-
sons of both simplicity and consistency.

Pairwise dissimilarity measures were calculated across both space
and time. Spatially, dissimilarities were calculated between pairs of
plots within individual years (e.g. all plot-pairs in 2017 only), gener-
ating 3081 unique plot combinations per year (Supplementary Materials
7). Temporally, distances were calculated for individual plots (e.g. plot
27 only) and between all the pairwise year combinations, generating 6
unique year combinations per plot (Supplementary Materials 8). In
doing so, it was possible to facilitate comparisons of dissimilarity in all
four assessed variables across the saddle over both space and time. After
applying the NDVI & NIR masks (Section 2.3; 11,367 (from a possible
12,324) plot-pair and 453 (from a possible 474) plot-year combinations
were retained from the spatial and temporal spectral dissimilarity
datasets respectively.

Remote Sensing of Environment 316 (2025) 114507
2.5. p-diversity comparisons

In order to determine whether increased spectral dissimilarity is
indicative of increased functional dissimilarity, matrices for both func-
tional and spectral dissimilarity were statistically compared using
Mantel tests (He and Zhang, 2009; He et al., 2009; Mantel, 1967);
spectral matrices were also modelled against taxonomic and biomass
distance matrices. Mantel tests were run using the ‘Pearson’ correlation
parameter with 9999 permutations. This method allows for the signifi-
cance of correlations between pairwise dissimilarity matrices to be
assessed whilst accounting for the fact that each plot is included in
multiple comparisons (Mantel, 1967). Mantel tests were run between
plots within single years for spatial comparisons, and between years for
a single plot for temporal comparisons, permuting over all year pair
combinations (n = 6; Supplementary Materials 7-8). Both R and p-values
were obtained from the Mantel tests to determine both the effect size
and significance of any given relationship. Given the small number of
paired year combinations per plot in the temporal analyses, the statis-
tical power was insufficient to generate meaningful p-values; the
calculated R remained sufficient to facilitate between-plot comparisons
however. To summarise general patterns in the temporal analyses, mean
R values were calculated using the individual R values from the tem-
poral Mantel tests run on each of the 78 plots. Spatial and temporal
Mantel tests were also run between NDVI distance matrices and func-
tional, taxonomic and biomass dissimilarity matrices.

3. Results
3.1. Functional ~ spectral dissimilarity relationships

Throughout our study area, functional dissimilarity was positively
associated with spectral dissimilarity over space (Fig. 3a) but not time
(Fig. 3b). Spatially, the Mantel tests exhibited significant relationships
(p: < 0.001-0.002) between functional and spectral dissimilarity within
each year, typically with moderate R statistics (R: 0.293-0.555). How-
ever, there is little evidence to suggest that plots with substantial func-
tional dissimilarity over time exhibit a greater degree of spectral
dissimilarity across the same time period (mean R: 0.106). While we had
relatively less power to detect significant relationships across time, with
only 4 years of data as compared to 79 plots within each year, the lower
R values suggest spectral dissimilarity over time is less strongly related
to functional dissimilarity over time than space. A cluster of more
functionally dissimilar plot-pairs was evident in all years that reflect the
extreme difference in traits between the one shrub-dominated plot in our
study area (plot 37) and the remaining, herbaceous-dominated plots
(Fig. 3a). Analyses were re-run without plot 37 (Supplementary Mate-
rials 9) to ensure that results were robust even without the inclusion of
this plot. The direction and significance of all results remained the same
between spectral and functional, taxonomic and biomass dissimilarity
(Fig. 4a; 4c), with only a small reduction in R values (Supplementary
Materials 9). Hence, ‘shrubby’ plot 37 does exhibit a substantial shift in
functions as compared to the non-shrub dominated plots, but was not the
primary determinant of the results.

3.2. Taxonomic and biomass ~ spectral dissimilarity relationships

Relationships between taxonomic and spectral dissimilarity were
broadly similar to those between functional and spectral dissimilarity
(Section 3.1). Over space, when considering taxonomic dissimilarity, the
mantel tests again exhibited significant relationships with spectral
dissimilarity (p: < 0.001). The strength of the spatial relationships was
moderate (R: 0.212-0.384), and tended to be slightly less than the
strength of the relationships between functional dissimilarity and
spectra (Fig. 4a). Unlike the functional results however, the relation-
ships between taxonomy and spectra over time were similarly strong
(mean R: 0.221) to those across space. Whilst the spatial relationships
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were robust to dropping bottom hits, the temporal results largely dis-
appeared when using top hits only (Supplementary Materials 1; mean R:
0.037). As such, we have low confidence in this result. Change in
biomass over space was more strongly associated with spectral dissim-
ilarity than either functional or taxonomic dissimilarity. Spatially,
biomass is significantly (p: < 0.001) and strongly (R: 0.358-0.648)
related to spectral dissimilarity across all years (Fig. 4c), more strongly
than either functional or taxonomic dissimilarity (Fig. 3a; 4a). Biomass
however conversely exhibited no meaningful relationship over time
between in situ and spectral data and displayed the lowest temporal
values (mean R: —0.059; Fig. 4d).

3.3. Functional, taxonomic and biomass ~ NDVI relationships

Using NDVI to explain taxonomic, functional and biomass dissimi-
larity yielded results that were largely similar to those using full spectra
(Fig. 5). Mantel tests exhibited significant yet moderate relationships
between NDVI and both functional (p: < 0.001-0.002; R: 0.244-0.315)
and taxonomic dissimilarity (p: < 0.001; R: 0.215-0.325) across space
(Fig. 5a; 5¢), with similar patterns also displayed between both metrics
and spectral dissimilarity (Fig. 3a; 4a). Again, similarly to spectral
dissimilarity, spatial relationships between NDVI and biomass dissimi-
larity were stronger with NDVI relating significantly and strongly to
biomass dissimilarity (p: < 0.001; R: 0.289-0.542; Fig. 5e). Finally, as
with full-range spectra, temporal relationships between NDVI dissimi-
larity and the in situ metrics were weaker to non-existent when
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Fig. 5. Functional, taxonomic and biomass dissimilarity among plots track differences in NDVI across space but generally not time. The relationships between NDVI
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compared to the spatial ones, with the taxonomic temporal link proving
greater than either function or biomass (Figs. 5b; 4b,d). When
comparing the strength of the results over space, spectral dissimilarity
explains somewhat more variation in both functional and biomass
dissimilarity in all years than NDVI dissimilarity, although NDVI
dissimilarity in turn explains a greater proportion of the taxonomic
dissimilarity between 2018-2020 (Fig. 6).

4. Discussion
4.1. Spectral dissimilarity moderately related to functional f-diversity

Our results highlight the potential utility of using hyperspectral
imagery in the detection of fine-scale functional (and taxonomic) p-di-
versity across space within a single alpine tundra habitat. This supports
the much-anticipated promise of using spectral reflectance in functional
change detection (Jetz et al., 2016) and the results of other studies that
highlighted significant links between spectral reflectance and elements

of taxonomic (Baldeck and Asner, 2013; Laliberté et al., 2020; Marzia-
letti et al., 2021) and functional p-diversity (Asner et al., 2017). Spectral
dissimilarity was significantly related to functional and taxonomic
dissimilarity across space, although the relationships were only of
moderate strength and exhibited considerable scatter (Fig. 3a; 4a). This
suggests that whilst both these factors are clearly related, spectral dif-
ferences are picking up additional factors beyond taxonomic and func-
tional composition. Depending on the intended application, this may be
advantageous. For example, our attempts to measure one ecosystem
function directly (above-ground biomass) indicated in situ biomass
generally showed a stronger spatial association with spectral reflectance
than functional dissimilarity did. Relationships between in situ metrics
and spectral dissimilarity across years however, were weaker to non-
existent. Furthermore, whilst the associated R values suggest a moder-
ately strong relationship between taxonomic and spectral dissimilarity
over time, the almost complete removal of that relationship when using
top hits only suggests a lack of robustness and reduces the confidence
with which we view that result. This may mean that in slow-growing
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Fig. 6. A substantial proportion of the variation in functional composition, taxonomic composition and biomass among plots explained by hyperspectral dissimilarity
can be explained by NDVI alone. Difference in strength of relationship between the three variables and spectral and NDVI dissimilarity respectively; grey bars
illustrate the variation explained by both metrics, purple the additional variation explained when using full spectra over NDVI, and orange the additional variation

explained when using NDVI over full spectra.

alpine tundra environments, detection of small directional shifts in
taxonomic or functional change over time from aerial hyperspectral data
may prove difficult, and anticipated promise of monitoring fine-scale
pB-diversity using spectra alone should be treated with caution (Nelson
et al., 2022).

4.2. Why spatial scale matters

Scale issues, over both space and time, likely contribute to the only
moderate relationships observed between spectral and functional and
taxonomic dissimilarity in this study. Spatially, a core issue comes from
the grain size at which comparisons of dissimilarity within the in situ
plots and spectral reflectance occur. Past studies have shown that
spectral variability best relates to species p-diversity at larger spatial
grains. For instance, (Rocchini et al., 2010) found stronger correlations
at 20-50 m as opposed to 10 m spatial grains in highland Savannahs.
This stems from lower grain sizes typically incorporating higher noise
when calculating p-diversity metrics (Rocchini et al., 2010). Past studies
often utilise large plots (Laliberté et al, 2020; Rocchini, 2007;
Schweiger and Laliberté, 2022; Wang et al., 2016a), although this hin-
ders the fine-scale delineation of vegetation diversity through spectra.
The small grain size used in our study (1 x 1 m) reflects the standard plot
size for vegetation monitoring in most herbaceous systems. However
this grain size may decrease the signal-to-noise ratio and diminishes the
strength of relationships between spectral dissimilarity and functional
dissimilarity. Smaller spectral pixel sizes, typically 1 mm — 10 cm, are
thought to be most appropriate for delineating aspects of fine-scale
biodiversity, the size of individual herbaceous plants (Lopatin et al.,
2017; Wang et al., 2018). The spectral grain size utilised also precludes
the use of a ‘spectral species’ approach in this study, given that indi-
vidual tundra plants are typically significantly smaller than the 1 x 1 m
grain size, thereby preventing assessments of within-plot dissimilarity
and o-diversity through pixel clustering algorithms (Féret and Asner,
2014; Rossi et al., 2022). Where the size of individuals exceeds that of
the pixel (e.g., forests, or tundra dominated by large shrubs), such
methods may become viable and stronger patterns may emerge as a
result. In spite of this, there remains no spatial scale universally
considered for the remote detection of biodiversity (Wang et al., 2018).

Spatial mismatches also exist vertically in spectral studies of plant
diversity. As outlined in the methods (Section 2.2), whilst field

measurements sample both canopy and sub-canopy species, thereby
better characterising community function, the limited ability of optical
remote sensing to penetrate the canopy results in an underrepresenta-
tion of sub-canopy species and their associated traits within each plots’
spectral profile (Ma et al., 2020). As such, the spectra may not accurately
capture plots’ functional composition, weakening relationships between
spectral reflectances and in situ estimates of functional dissimilarity and
limiting the utility of hyperspectral imagery in such analyses. In our
study, on average, 76.5 % of the species found within each plot were
present in the canopy layer, with 23.5 % found solely within the sub-
canopy layers. When our analyses were re-run with top hits only (Sup-
plementary Materials 1), the strength and significance of the observed
relationships between spectral and functional and taxonomic dissimi-
larity typically remained largely unchanged. This suggests that the
hyperspectral imagery is doing a good job of capturing understorey
vegetation, possibly because the functional traits of understory plants
are similar to those in the canopy. The only result to dramatically change
was the taxonomic — spectral relationship across time, which surpris-
ingly reduced in significance when using top hits only; as described
above, spectra usually follow top hits better than all hits due to their
typical lack of canopy penetration. Moving forwards, if we are to
comprehensively and accurately characterise vegetation B-diversity in
the future from remotely sensed means, consideration of such factors
must continue to be taken into account.

4.3. The importance of timing

Despite evidence for significant spatial relationships between spec-
tral dissimilarity and functional and taxonomic dissimilarity throughout
our study system, we found spectral and temporal dissimilarity were
typically decoupled from spectral dissimilarity over time. This may stem
in large part from the high plasticity, both intra- and inter-annually,
displayed by plant traits that can lead to substantial variability in
spectral signatures (Osnas et al., 2018; Rossi et al., 2022; Serbin and
Townsend, 2020). Alpine tundra ecosystems are characterised by
extreme climates and short growing seasons (Nelson et al., 2022), where
all plants must progress through leaf development, expansion, flowering
and senescence within a few short months. Intraspecific variation due to
phenology may exceed interspecific variation for some plant traits
(Fajardo and Siefert, 2016). In arctic tundra, deciduous shrubs,
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graminoids and forbs showed approximately two-fold variation in foliar
nitrogen values over the growing season (Kelsey et al., 2023). As well,
different species may progress through key phenological stages asyn-
chronistically (Bloomfield et al., 2018; Fajardo and Siefert, 2016;
McKown et al., 2013). As such, functional composition of the plots, as
well as traits of constituent species, evolve over the growing season (Ma
et al., 2020; Wang et al., 2022). Using spectral reflectance from a single
point in a time in the growing season therefore presents challenges as
different species within plots are captured at differing points in their
respective phenological path, which may not be the most spectrally
discriminative part of the growing season (Beamish et al., 2017).

In addition to individual species phenology, the presence and rela-
tive influence of other factors known to contribute to variability in
spectral reflectance — factors such as the proportion of non-vascular
species, standing litter within the plot and soil moisture concentra-
tions — also evolve over the course of the growing season. For instance,
high in situ soil moisture conditions can depress near-infrared (NIR)
signals (Jiang et al., 2016), whilst high proportions of standing litter can
disproportionately increase NIR reflectance (van Leeuwen and Huete,
1996), introducing further intra-annual variability in spectral reflec-
tance. Between year differences in environmental conditions further
compound plant species’ and traits’ phenological pathways, in turn
reducing the inter-annual comparability of spectral data. Indeed, within
our study site the 2017/18 and 2018/19 winter snowpacks were
respectively very low and high, thus some aspects of drought stress may
have been apparent in the leaf spectra in 2017/18, even at peak season,
while the 2018/19 development was delayed relative to a more typical
year.

Differences in the timing of spectral data acquisition among years
exacerbate the challenges in using this technology for long-term moni-
toring. NEON aims to collect hyperspectral data at each site during peak
greenness, however shared equipment, solar angle and cloud cover re-
quirements pose additional constraints such that approximately a
quarter of acquisitions to date have occurred outside the actual peak
greenness window (Musinsky et al., 2022). At Niwot, acquisitions have
typically fallen outside of the optimum timing, with only the 2020 ac-
quisitions beginning within both the (targeted) mean 2003-2021 peak
greenness window (measured by MODIS) and the observed period of
annual peak greenness (measured by phenocams in tundra on Niwot
Ridge) (Fig. 2). 2017 was a particularly poor year for data collection
with acquisition not taking place until 47 days after the end of the
measured peak greenness window (Fig. 2) (Musinsky et al., 2022). This
was evident in all our results where spectral and NDVI dissimilarities
were notably low in 2017 (Fig. 3a; 4a,b; 5a,c,e; Supplementary Materials
10). It is likely that a substantial proportion of the annual growth in
2017 had senesced by the time of the NEON flights, which would
contribute to the decoupling of spectral signals, particularly the inter-
annual signal in NDVI versus field measurements of productivity
(Wang et al., 2022). The hyperspectral mosaic product combines indi-
vidual flights that may have been sampled days or even weeks apart
(NEON, 2023a). This could introduce further variability to the hyper-
spectral comparisons and magnifying the influence of intra-annual
compositional and trait plasticity.

Targeting peak phenology periods in mountainous environments is
particularly complicated by the strong elevational gradients evident in
their phenology, which makes the distinguishing of a single period of
peak phenology difficult (Dai et al., 2021; Inouye and Wielgolaski,
2013). When collection dates fall sufficiently late in the season, as those
in 2017 did, the spectral data collection may miss the majority of the
alpine tundra growing season entirely. As such, key discriminatory
signals in the spectra may be lost. Furthermore, whilst the day of peak
greenness is relatively stable in tundra ecosystems compared to other
ecosystem types (Musinsky et al., 2022), the consequences of flying
outside the preferred window to data quality are likely greater. This is
because of the steep, rapid changes in both tundra spectra and traits
after the peak season with the onset and rapid progression of vegetation
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senescence (May et al., 2017). Furthermore, even on the selected day of
acquisition, factors such as atmospheric conditions, bidirectional
reflectance distribution function (BRDF) effects and the timing of the
solar noon add further complications to the collection of spectral time
series data comparable across years (Jafarbiglu and Pourreza, 2023; Roy
et al., 2016).

Characteristics of the in-situ measurement campaigns used here
likely also contribute to temporal mismatches. Characterisation of
functional composition relies on two primary data sources: composition
data and trait data (Ricotta and Pavoine, 2022). Ideally, both plant trait
and composition data could be collected at regular intervals across the
growing season to facilitate consistent analyses of spectra (Ma et al.,
2020). The collection of in situ plant trait data however is extremely
time consuming and laborious (Ma et al., 2020) so trait data is rarely
collected with such temporal resolution (Jetz et al., 2016). It is typical
therefore to rely on taxonomically and spatially gap-filled datasets
(Supplementary Materials 2) collected at a limited number of time
points. For example, in our study, we relied on data collected at irregular
intervals throughout 2008-2009, 2017-2018 and 2021, instead of
annually coinciding with the 2017-2020 flight campaigns. The temporal
offset in the trait data likely diminishes its quality for use as in situ
functional calibration data (Sandel et al., 2015). Thus, it is possible that
with more temporally intensive in-situ field campaigns the relationships
between spectral and functional p-diversity might be improved. Mini-
mising GPS inaccuracies is also essential to ensure maximum compara-
bility between in situ and remotely sensed data, although negligible
differences in spectra extracted using 0 m, 1 m and 3 m buffers (Sup-
plementary Materials 3) suggest that this was not an issue in this study.
To say with certainty whether spectral dissimilarity can or cannot be
used to monitor changes in functional p-diversity may require more
intensive and temporally coherent within-season temporal sampling for
both the remote- and both in situ components of the study (Gholizadeh
et al., 2019).

4.4. Spectra perform well with biomass

In this study, spectral dissimilarity was more strongly related to
biomass dissimilarity than either functional or taxonomic dissimilarity
across space. Past studies have successfully established relationships
between spectral reflectance and biomass so this result is perhaps un-
surprising (Wang et al., 2016b). A plant community’s spectral reflec-
tance is defined by the corresponding scattering and absorption of light
within, which in turn drives both its chemical and three-dimensional
physical structures (Schweiger et al., 2015; Ustin et al., 2004). It
therefore follows that the greater the difference in biomass between
plots, the greater the likely difference in physical structure and corre-
sponding reflectance. As such, the spectral dissimilarity will be bigger,
reflecting the difference in biomass within. Our study supports this
application, although only over space where the strength of relation-
ships observed was strong. Relationships between NDVI and biomass
dissimilarity were similarly strong within our relatively low biomass
study site, however, the strength of such relationships may likely be
lower in higher biomass sites where NDVI saturation is more common.
Tundra landscapes typically include large proportions of dead plant
material, bare ground and disturbance (Nelson et al., 2022; Yang et al.,
2020), all factors that may weaken relationships between spectral
reflectance, biomass and biodiversity (Rossi et al., 2022; Schweiger
et al., 2015).

4.5. What are the alternatives?

Given the moderate strength of the spatial relationships between
spectral, functional and taxonomic dissimilarity in this study, and lack of
relationships over time, it is worth considering spectral scale and
whether the investment in equipment that can capture full-range spec-
tral data is even necessary to monitor change in p-diversity, or whether
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simpler, pre-existing technology and metrics would characterise the
relationships equally well. In our study, functional, taxonomic and
biomass dissimilarity displayed similar relationships with NDVI
dissimilarity as they did with spectral dissimilarity in terms of the di-
rection of the relationships and statistical significance. The strength of
the relationships between NDVI dissimilarity, and functional and
biomass dissimilarity was however notably weaker in all years. This
suggests that spectral dissimilarity does capture some functionally
relevant information beyond those reflected in NDVI. Past studies have
found mixed evidence to this end (Rossi et al., 2022), with some (e.g.
Rocchini, 2007) supporting the conclusion that adding spectral bands
beyond those present in multispectral imagery enhances the accuracy of
spectral biodiversity characterisation, and others not (e.g. Wang et al.,
2018). Further studies cataloguing the influence of spectral scale
(bandwidth, position and range) to detect different dimensions of
biodiversity change (taxonomic vs functional; « vs p-diversity) across a
variety of ecosystem types are fundamental to understanding
biodiversity-spectral diversity relationships and providing more gener-
alizable guidelines for targeting optical instrumentation for particular
biodiversity monitoring applications (Gamon et al., 2020).

Whether the improvements justify the increased cost and complexity
of the additional bands likely depends on the intended monitoring
application. For characterising beta-diversity across study sites with
dramatic variability in above-ground structure — such as across the sub-
alpine/tundra ecotone — we would expect to see strong relationships
between spectral and taxonomic or functional p-diversity. Indeed, a
comparative study across all NEON sites found that spectral-taxonomic
dissimilarity relationships were among the strongest at Niwot Ridge of
all NEON sites (Schweiger and Laliberté, 2022). Notably, Schweiger and
Laliberte’s analysis included plots that span multiple ecosystem types
(forest, tundra etc.) within a single study area. Whether taxonomic
B-diversity across these broad gradients could be detected equally well
using NDVI alone, or in conjunction with LiDAR, has not been tested. We
calculated NDVI using the same wavelengths as that calculated from
Sentinel-2 multispectral imagery (European Space Agency, 2023b), a
free, global and temporally dense dataset with 10 m spatial resolution
and a return interval of 5 days. Given the wide availability and relative
simplicity of multispectral imagery over hyperspectral, perhaps in
certain scenarios, using the simpler measure over a larger temporal and
geographical expanse is a more worthwhile endeavour, despite the
moderate reduction in signal strength.

Even beyond NDVI, other simpler, cheaper methods have proved
valuable in the remote characterisation of community diversity. For
instance, using specific highly discriminant bands from full-range
spectra have proven valuable in characterising tundra diversity
(Bratsch et al., 2016; Rossi et al., 2022; Schweiger et al., 2018), whilst
airborne LiDAR data, readily available across NEON sites (NEON,
2023b), have been proven to accurately predict tundra shrub biomass
(Greaves et al.,, 2016). Perhaps then the significant expense and
complexity of full-range spectrometers are not justified in some in-
stances, and simpler multispectral, LiDAR, or even RGB methods
(Beamish et al., 2018) may be similarly effective at delineating aspects
of tundra diversity in certain scenarios (Harris et al., 2018). We
acknowledge that this is a rapidly developing field and ever-improving
processes, methodologies and datasets will only increase the utility of
hyperspectral data in biodiversity characterisation in the future. As well,
spectral data may prove more useful for other applications than those
explored here, such as quantifying canopy nitrogen or water content
(Asner and Martin, 2009; Wang et al., 2018). We encourage future
studies evaluating the utility of hyperspectral data for monitoring ap-
plications to assess not only the performance of hyperspectral data, but
also the relative gains over other methods that do not rely on full spectra
data.

The question of alternative methods also raises the possibility of
boosting performance by the incorporation of additional, non-spectral
data sources (Ma et al., 2020). For instance, the fusion of spectral and
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LiDAR data from remotely sensed platforms has been shown to enhance
the characterisation of key vegetation parameters, such as biomass and
productivity (Asner et al., 2012; Sankey et al., 2018; Torabzadeh et al.,
2014). Fusing spectral data with data on the ecosystem’s vertical
structure, can dramatically enhance the ecological interpretation of the
spectra by facilitating the incorporation of sub-canopy information (Jetz
et al., 2016), thereby negating a key limitation of optical data (Ma et al.,
2020). LiDAR data is readily available across all NEON sites, although
the data from Niwot is insufficient for use in these analyses due to
NEON’s processing algorithm which rounds all vegetation heights below
2 m to 0 m due to uncertainties in the collected data (Scholl, 2019). Such
fusion approaches may be the key to unlocking new satellite-borne
hyperspectral platforms — such as the scheduled ‘CHIME’ (European
Space Agency, 2023a). As such, data fusion may enhance the utility of
hyperspectral imagery and allow it to fulfil its anticipated promise as the
means through which function and biodiversity can be characterised at
the biome-scale.

5. Conclusions

In sum, our data support the use of spectral dissimilarity based on
hyperspectral campaigns to detect taxonomically and functionally
unique areas of the landscape. We do however acknowledge that this
application is in part likely to be affected by a degree of noise, high-
lighted by the moderate relationships between spectral reflectance and
in situ dissimilarity metrics over space. Still, we envision that spectral
dissimilarity could be readily applied to prioritise spectrally distinct
areas for in situ monitoring campaigns. However, the utility of hyper-
spectral imagery in detecting inter-annual change in alpine tundra
composition, functional or taxonomic, remains limited due to method-
ological limitations, data deficiencies, and inherent mismatches in the
acquisition of data across and between growing seasons. The lack of
robust relationships identified over time is also a cautionary tale for
those attempting to adopt the principles of space-for-time substitution in
hyperspectral studies, as with many domains (Blois et al., 2013; Davison
et al.,, 2021). It is important to consider and revisit these identified
temporal issues as longer time series emerge to see how much of the
anticipated promise of hyperspectral imagery is manifest in long-term
monitoring. The lack of robust temporal patterns observed and issues
surrounding temporal monitoring using airborne hyperspectral imagery
however, do not negate the validity of our study. This work is among the
first to use a hyperspectral time series to observe change in vegetation
B-diversity over time (Gholizadeh et al., 2020) and paves the way for
future studies incorporating longer, more rigorous and more comparable
time series.

We attempted to detect and characterise fine-scale changes within a
small area of a single tundra vegetation community, an environment
known to encompass considerable sub-pixel heterogeneity in composi-
tion and function and strong interspecific phenological variation
(Bloomfield et al., 2018; Fajardo and Siefert, 2016; McKown et al., 2013;
Nelson et al., 2022; Yang et al., 2020). Most plots in our study area were
dominated by graminoids and forbs. Thus, the functional dissimilarity
was relatively subtle as compared to what might be encountered in other
tundra regions, which often also include more lichen, bryophyte, or
shrub dominated patches. The limits of hyperspectral remote sensing for
change detection encountered here may be similar in other graminoid-
dominated systems, which exhibit relatively homogeneous physiog-
nomy and small size of individuals relative to that of pixels. Whilst our
ability to characterise such fine-scale change was limited, others have
shown spectral and taxonomic p-diversity to strongly relate to one
another at larger scales. This includes (Schweiger and Laliberté, 2022)
who at the same field location, Niwot Ridge, utilised considerably larger
plots (~ 20 x 20 m) across strongly dissimilar ecosystem types
(encompassing both tundra and boreal forest) to detect such relation-
ships. Consequently, hyperspectral platforms’ most useful avenues may
currently lie in large-scale vegetation characterisation and monitoring of
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ecosystem change. This includes the characterisation of processes such
as treeline expansion and warming-induced shrubification (Grigoriev
et al., 2022; Jia et al., 2022) but also more widely vegetation classifi-
cation and the direct observation of tundra functional traits (Thomson
et al., 2021). It could be argued that platforms including LiDAR and
simpler optical measures (e.g. NDVI) perform these functions equally
well already (Berner et al., 2020; Myers-Smith et al., 2020) and that the
added utility of hyperspectral imaging does not yet justify its utility. This
study suggests that hyperspectral imagery does provide notable addi-
tional benefits in the characterisation of fine-scale tundra functional
B-diversity across space, but that advances are required in methodology
and data acquisition if we are to extract the full potential of hyper-
spectral time series in biodiversity science.
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