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ABSTRACT

Ecological disturbances driving state changes in

ecosystems are likely to be exacerbated with cli-

mate shifts during this century. Temperate mon-

tane ecosystems of the Western United States

(Mountain West) are especially vulnerable due to

their low fertility, heterogeneous landscapes, and

tight coupling between terrestrial and aquatic

components. We review how catchment level pulse

and press disturbances will intensify, and how they

are reflected by coupled measurements of stream

water chemistry and flow. Detecting effects on

watershed processes can be complex and depend

on the type and extent of disturbance. Within this

context, we discuss the impacts of wildfire (pulse),

bark beetle outbreaks (pulse), snowpack shifts

(press), and progressive vegetation community

shifts (press) on streamflow and chemistry

dynamics (hydrochemographs). We used long-

term data from three mid- to high-elevation

watersheds as examples of how disturbances may

influence stream hydrochemographs, including

increased variability in winter nitrate export in

more recent years with extremes in snowmelt

runoff export; variable nitrate export when snow

water equivalent was abnormally high or low; and

high nitrate flux in the years immediately following

sudden forest loss. These examples illustrate the

need for long-term continuous monitoring to fill

the gap in our understanding of the short- and

long-term consequences of climate change-induced

disturbances to watersheds. As disturbances in-

crease in severity and frequency and induce eco-

logical state changes, it is critical that we develop

our understanding of impacts on downstream

communities that depend sociologically and eco-

nomically on water availability and quality.
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HIGHLIGHTS

� Mountain West ecosystems are at risk as climate-

driven disturbances intensify.

� Short- and long-term disturbances will alter

water quality and quantity.

� Long-term stream monitoring can signal climate-

driven shifts in watershed processes

INTRODUCTION

Shifts in climate during this century will drive

changes in hydrology (Gergel and others 2017;

Musselman and others 2017; Barnhart and others

2020) and vegetation dynamics (Billings and Bliss

1959; Parks and others 2019), and will increase the

frequency of large-scale disturbances (Higuera and

Abatzoglou 2021; Schapira and others 2021). These

changes may be exacerbated by decreases in annual

snowpack (Mote and others 2005, 2018; Pierce and

others 2008; Gergel and others 2017), earlier

snowmelt (Stewart and others 2004; Gergel and

others 2017), earlier peak streamflow (Stewart and

others 2005; Moore and others 2007), and in-

creases in evapotranspiration (Milly and Dunne

2020; Hostetler and others 2021). Mountain West

ecosystems are especially sensitive to climate-in-

duced changes because of their low soil fertility,

cold temperatures (Seastedt 2020), distinctive and

sparse vegetation cover (Humphries 2020), and

heterogeneous microclimates (Elias 2020). These

climate shifts can change stream discharge and

nutrient concentration which will alter ecosystem

functioning, trickling downstream and altering

ecosystem services. These changes, reflected in a

stream’s hydrograph (streamflow time series) and

chemograph (water chemistry time series) (Davis

and others 2013; Arora and others 2020), are due

to a stream’s ability to integrate heterogeneous

processes in upstream source areas. Hence, streams

can act as sentinels of how drainage basins are

responding to climatic and biotic disturbances at

multiple spatial and temporal scales (Davis and

others 2013; Arora and others 2020; Yang and

others 2022).

Climate-driven changes act as either a pulse dis-

turbance—the result of an episodic event—or a

press disturbance—the result of cumulative changes

in environmental conditions. Pulse disturbances

are single events that may occur over short time-

scales and induce rapid changes in ecosystem pro-

cesses and properties. Common pulse disturbances

in Mountain West ecosystems include events such

as wildfires (Kipfmueller and Baker 2000; Larouche

and others 2015; Cattau and others 2020) or insect

outbreaks that damage vegetation (Kretchun and

others 2016). Fire and insect outbreaks (Bentz and

others 2009; Kretchun and others 2016) are often

viewed as pulse events because the event itself

occurs over a short time period, even though the

resulting ecosystem changes may take years to be

expressed in stream hydrochemograph signals.

Alternatively, press disturbances alter ecosystem

processes through slow gradual changes, such as

from progressive multi-annual to decadal changes

in climate that alter hydrology and vegetation

(Harris and others 2018) or chronic nutrient

deposition that alters balances of plant resource

limitations (Smith and others 2009). Pulse and

press disturbances in Mountain West ecosystems

can unfold simultaneously in interrelated ways,

exacerbated by climate change. For example, de-

creased snowpack may increase the chances for

drought, leading to increased risk for insect out-

breaks and wildfires. In this review, we explore the

benefits of coupling the hydrograph and chemo-

graph to understand more about watershed con-

dition and reactions to disturbances.

THE HYDROCHEMOGRAPH

AS AN INTEGRATED MEASURE

OF WATERSHED PROCESSES AND CHANGE

Successful, long-term environmental monitoring

programs provide process understanding at multi-

ple scales and can detect impacts from pulse and

press disturbances (Iwaniec and others 2021).

These observations can generate new testable hy-

potheses and guide management improvements

(Lindenmayer and Likens 2010). Taken at a single

point in a stream, long-term, high-frequency

measurements can detect shifts in biogeochemical

processes operating within the stream and sur-

rounding landscape (Laudon and Sponseller 2018;

Lewis and others 2019). Additionally, hydrological

and biogeochemical observations are likely to be

leading indicators of climate-driven system changes

(Laudon and Sponseller 2018). Hydrographs are

commonly coupled with chemographs to assess
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impacts of terrestrial processes on water quality and

to understand the dynamics resulting from multi-

scale processes such as climate change, source wa-

ter contribution, and watershed storage (Peters and

Ratcliffe 1998; Gooseff and others 2002; Kirchner

and Neal 2013; Oni and others 2013; Arora and

others 2020). Concentration–discharge (cQ) anal-

ysis derived from analyzing the slopes of the flow

and solute concentration covariance describes

nutrient export.

The combination of the hydrograph and che-

mograph, hereafter the hydrochemograph, is a

useful tool for understanding nutrient retention

and release within a stream and the surrounding

watershed. The coupled movement of water with

solutes and nutrients is the ‘‘fingerprint’’ of the

multi-scale ecological processes within the water-

shed (Knapp and others 2020), and any significant

changes to those processes will likely be captured

by the hydrochemograph. Examining nutrient hy-

drochemographs can provide insight into the

influence on ecological processing, like seasonal

shifts in nutrient export or in-stream productivity

(Kincaid and others 2020). Long-term analysis of

nutrient hydrochemographs can help highlight

climate-driven pulse or press disturbances that can

have repercussions on nutrient imbalances (Yang

and others 2022). Local-scale changes such as

nutrient retention and availability from the ter-

restrial to aquatic ecosystems (Rhoades and others

2017; Ren and others 2019b), changes in source

water (MacNeille and others 2020), and sur-

rounding vegetation shifts (Wondzell and others

2019) can be explained by the hydrochemograph.

These observations may be especially useful in

mountain streams, which are often oligotrophic

and can be co-limited by nitrogen and phosphorus

(Piper and others 2017). Monitoring water and

nutrient flux in mountain streams could increase

our awareness of how climate change-driven dis-

turbances may impact water quantity and quality;

for example, accelerated weathering (Crawford and

others 2020) and drying vs. runoff events (Datry

and others 2016; Sadro and others 2018; Davenport

and others 2020) may mobilize sediment and

nutrients from different parts of the watershed at

varying magnitudes, and have implications for

waters downstream (Kincaid and others 2020).

These effects will have cascading and far-reaching

effects on ecosystem services, from variable

streamflow impacting reservoir storage and man-

agement (Willis and others 2011) to socioeconomic

stresses in areas reliant on snowmelt as a substan-

tial proportion of water source (Huning and

AghaKouchak 2020). Evaluating the shifts in hy-

drochemographs may lead to deeper understanding

of press and pulse disturbances which are projected

to become more severe in future climate scenarios.

THE WATER CYCLE IN THE MOUNTAIN WEST

To begin understanding the impacts of climate-

driven disturbances on the hydrochemograph,

knowledge of the water cycle in the Mountain

West is critical. Precipitation, runoff, water storage,

evaporation, transpiration, and deep drainage pro-

cesses impact streamflow and variations in

streamflow can provide mechanistic understanding

of the disturbance-driven changes. A thorough

characterization of hydrologic pathways in moun-

tain systems (left side of Figure 1) is fundamental

for understanding disturbance-driven changes

(right side of Figure 1). In the Mountain West,

snowpack generally starts to accumulate in Octo-

ber–December and melts out in May–June. The late

spring and early summer periods are dominated by

runoff and shallow flow paths (surface water flows

in Figure 1) (Somers and McKenzie 2020). Fol-

lowing the initial pulse of melt water, other water

sources, particularly groundwater, become

increasingly important to maintain baseflow (sub-

surface flows in Figure 1). The groundwater com-

ponent is heavily dependent on local geologic and

geomorphic features. Geomorphic features such as

talus slopes can act in a twofold manner: first, as a

fast-flowing reservoir in high-alpine settings they

can have a large storage capacity (Somers and

McKenzie 2020) and second, finer-grained deposits

beneath the coarse blocks, if present, can act as

slow-releasing aquifers capable of sustaining base-

flow (Liu and others 2004). Other geomorphic

features such as alluvium (Käser and Hunkeler

2016) and glacial moraines (Hood and Hayashi

2015) can also sustain baseflow during late summer

months.

Another important flow path that historically

was seen as contributing minimal water is

groundwater flow through bedrock. Shallow and

deep fractured bedrock (Frisbee and others 2011,

2017; Manning and others 2021) can contribute

groundwater able to sustain streamflow during

summer months (Somers and McKenzie 2020).

While bedrock can contribute water to streamflow,

the quantity is dictated by the geologic properties of

the bedrock. For instance, fracture quantity and

depth, permeability, porosity, and hydraulic con-

ductivity can affect the amount of water stored and

released. The hydrochemistry observed, in part, is

dependent on the source of water (for example,

talus fields, groundwaters) and the associated geo-
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logic properties. Non-conservative ions, such as

nitrate, have been shown to have elevated con-

centrations from talus field outflow compared to

snowpack (Williams and others 1997; Campbell

and others 2000), which is a function of microbial

processes (Clark and others 2021). Nitrate export

from talus fields will become increasingly impor-

tant as groundwater contributions for sustaining

baseflow during late summer increases due to

changes in precipitation regimes. In groundwaters,

conservative ions (for example, Cl-, F-, Ca2+, Na+)

are usually enriched due to the sustained interac-

Figure 1. Historic (left) and future (right) conditions in Mountain West ecosystems. Warmer temperatures are altering

hydrological processes by decreasing snowpack in high-elevation locations (Gergel and others 2017), inducing earlier melt

of snowpack (Barnhart and others 2016; Musselman and others 2017), and shifting dominant precipitation inputs from

snow to rain which increases flood-inducing rain-on-snow events (Musselman and others 2018). Shifts in vegetation are

represented by forest migration to higher elevations, conversion of forest to non-forest vegetation at lower elevation, and

conversion of high-alpine meadow to young forests creating patchy old growth stands mixed with younger new growth

(Rust and Minckley 2020). Predicted increases in fire and insect outbreaks will lead to increased rates of forest conversion

to non-forest vegetation (Rhoades and others 2017; Rust and Minckley 2020; Higuera and Abatzoglou 2021).
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tion with rock. This is further exemplified by

groundwaters with increasing residence times

containing increasing concentrations of solutes

(Rademacher and others 2001). The relative con-

tribution of groundwater discharge compared to

other flow sources and associated geochemical

signals likely dictate the sensitivity of shifts in the

hydrochemograph to pulse and press disturbances

that unfold at the surface. The use of hydro-

chemographs to detect disturbances may be most

effective where groundwater discharge plays a

minor role.

HYDROCHEMOGRAPH RESPONSE

TO CLIMATE-DRIVEN DISTURBANCES

In this study, we used a combination of synthesiz-

ing existing literature and case study evidence to

develop a conceptual framework that describes

how hydrochemographs are useful tools for mea-

suring ecosystem response to climate-driven dis-

turbances. We focus on four disturbances that are

likely to increase in frequency or intensity under

future climate changes in high-elevation Mountain

West watersheds: 1) the transition of precipitation

from snow to rain; 2) chronic shifts in vegetation

composition; 3) wildfires; and 4) insect outbreaks

(Berghuijs and others 2014; Harris and others 2018;

Coop and others 2020). Some are rapid, pulse dis-

turbances (for example, fire and insect outbreaks).

Others are gradual, press disturbances (for exam-

ple, snow to rain, vegetation shifts due to slow

processes like migration and regeneration). We

present hypotheses for how watershed process

changes triggered by those four disturbances are

detected in the hydrochemograph (Figure 2). One

way to assess the impact of these disturbances is

having some form of long-term monitoring, pro-

viding the baseline information about the hydro-

chemistry and streamflow controlled by local

environmental conditions and geology, but this can

be limited by data availability. The conceptual

framework presented here is intended to illustrate

the utility of hydrochemographs as early warning

signs of disturbance, for detecting historical dis-

turbance, and for evaluating disturbance influence

in Mountain West watersheds.

Hydrological Changes

As climate warms in the Mountain West, the

dominant form of precipitation will shift from snow

to rain that will move up in latitude and elevation

(Klos and others 2014). This shift will increase the

frequency and intensity of rain-on-snow (ROS)

events that occur in the Mountain West (Trenberth

2011; Gergel and others 2017; Musselman and

others 2018). As a result, lower elevations are likely

to see a reduction, or even a suppression of snow-

pack, with only higher elevations receiving snow,

reducing the total annual snowpack and expanding

the intermittent snow zone (Gergel and others

2017). Warming is predicted to push the timing of

snow melt to earlier in the spring leading to a

prolonged snowmelt period (Barnhart and others

2016; Musselman and others 2017; Wu and others

2018). Prolonged snowmelt may reduce soil mois-

ture, reducing the connection to streams (Barnhart

and others 2016; Musselman and others 2017)

altering current patterns of stream discharge (Ber-

ghuijs and others 2014; Fyfe and others 2017). Dust

deposition is a factor that may accelerate the

alteration of snowmelt and timing by decreasing

snow albedo (Rhoades and others 2010). Increased

dust deposition has been linked to drought (Pros-

pero and Lamb 2003; Munson and others 2011)

and livestock grazing (Schlesinger and others 1990;

Neff and others 2005; Fernandez and others 2008).

Additional risks include increased chances for large,

damaging floods as the likelihood of ROS events

increases (McCabe and others 2007; Musselman

and others 2018). Ultimately, ROS events and

associated flooding may decrease as snowpack de-

creases or disappears, especially at lower elevations

(Musselman and others 2018).

Nutrient export will be impacted by the changes

in hydrology. During peak snowmelt, the upper

soils layers are flushed of dissolved organic carbon

(DOC) (Winnick and others 2017) and soil nitrogen

(Sickman and others 2003) that accumulated from

the previous growing season. The changes in

hydrology may reduce peak flow or extend the

rising limb in early spring with similar responses

reflected in stream DOC and nitrogen stored in the

upper soils. Increasing the number of ROS events

will increase the amount of nitrate entering

streams earlier in the season. The increase in ni-

trate comes directly from rainfall as wet deposition

and through melting snowpack containing nitrate

from atmospheric deposition. The excess nitrate

cannot accumulate in the soil profile due to over-

lying snowpack and an already saturated soil pro-

file (Eimers and others 2007; Casson and others

2014), resulting in observable nitrate pulses in the

chemograph. These pulses act as early flushes in

the system leading to an overall decrease in nitrate

during peak flow, but not necessarily a total

reduction in nitrate entering the system on a yearly

basis.

Watershed Responses to Climate Change



Figure 2a conceptualizes changes to the hydro-

chemograph resulting from changes in hydrology

on an annual basis. Major changes in the hydro-

graph are represented by decreased and earlier

peak runoff with several small peaks occurring

through the winter months. A reduction in peak

discharge results from decreased snowpack accu-

mulation during winter months (Gergel and others

2017). The shift in timing is a product of warmer

temperatures in the late spring and early summer

months (Gergel and others 2017). Although the

melt out period will be longer, it will not neces-

sarily be reflected in the peak discharge curve due

to reduced soil moisture leading to a reduced con-

nection to the streams (Barnhart and others 2016;

Musselman and others 2017). ROS events create

minor peaks which are a combination of rainfall

and snow melt (Pomeroy and others 2016). Nitrate

follows a similar pattern as peak discharge with

noticeable releases of nitrate during ROS event. As

with the discharge peaks, minor nitrate peaks are a

function of rainfall and snow melt (Eimers and

others 2007; Casson and others 2014).

Vegetation Shifts

Mountain West forest vegetation has historically

been resilient to disturbance events for over mil-

lenniums, with no major changes in species com-

position as long intervals between disturbances

provided enough time for forest vegetation to re-

cover (Romme and others 2016; Stegner and others

2019; Strand and others 2019). However, increased

frequency and severity of stand-replacing distur-

bance events and unsuitable post-disturbance

conditions for seedling establishment result in for-

est vegetation moving beyond a recovery threshold

(Harvey and others 2016b; Hansen and others

2018; Davis and others 2019; Hoecker and others

2020; Parks and Abatzoglou 2020; Rodman and

others 2020). Homogenization of the landscape

may result in decline in forest resilience due to

unavailable seed sources in the surrounding land-

scape (Harvey and others 2016a).

Interactions between disturbance types may

have compounding effects on forest vegetation. For

example, insect outbreak affecting mature trees

could limit seed production prior to stand-replacing

fire affecting forest vegetation recovery (Harvey

Figure 2. Hypothetical hydrochemographs representing A rain-on-snow events, B changing from a forested system to a

meadow, C post-fire, D post-bark beetle. Arrows indicate direction of shift following the observed disturbance.
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and others 2013; Carlson and others 2017, 2020).

In addition, climate-induced warmer and drier

post-disturbance conditions reduces seedling den-

sities and survival of established tree seedlings

(Stevens-Rumann and others 2018; Hansen and

Turner 2019) which may lead to forest conversion

(Coop and others 2020) in the absence of forest

management. Models of future climate scenarios,

stand-replacing fire, and forest regeneration sug-

gests forests will be replaced with non-forest veg-

etation in the Mountain West (Davis and others

2019; Parks and others 2019; Rammer and others

2021). With such an expected reduction in forest

cover in the Mountain West, it is important to

quantify the effect on ecosystem services, and to

understand different trajectories that may occur

under active forest management strategies (for

example, post-wildfire salvage and planting vs.

natural regeneration).

Forest vegetation provides important ecosystem

services such as regulating water flow and quality

by preventing flooding through evapotranspira-

tion, precipitation interception, and absorption of

nutrients (Bosch and Hewlett 1982; Hornbeck and

others 1993; Rhoades and others 2011; Biederman

and others 2014; Beier and others 2015). Litterfall

can also contribute to these processes through the

building and maintenance of soil organic matter,

which is important for soil water retention and the

maintenance of thriving microbial communities

that immobilize nutrients and prevent leaching to

the streams. Therefore, conversion of forested to

non-forest vegetation has the tendency to disrupt

livelihoods from increased flooding and nutrient

input downstream, which could take up to 65 years

to offset by recovering forest vegetation (Stednick

1996; Beier and others 2015; Caputo and others

2016). Changes in mountain vegetation resulting

in increased bare ground promote nutrient export

downstream, alleviating nitrogen and phosphorus

limitations, which can reduce water quality

through eutrophication (Visser and others 2016;

Ren and others 2019b; Oleksy and others 2020)

depending on substrate type, age, and soil mobile

nutrient content. To understand the impacts of a

switch from forest to non-forest vegetation, a

conceptual hydrochemograph is presented in Fig-

ure 2b. During an annual period, both the hydro-

graph and chemograph experience increases in

peak values, with the rest of the hydrochemograph

behaving similarly to pre-disturbance conditions.

The reduction of leaf area index associated with the

loss of tree cover allows for higher snow accumu-

lation and reduced transpiration, increasing peak

discharge (VanShaar and others 2002). Concomi-

tantly, nutrient export to streams increases, also

exacerbated by the loss of vegetation uptake as

observed for nitrate (Beier and others 2015; Caputo

and others 2016). The changes presented in Fig-

ure 2b are from two time points; if each individual

annual hydrochemograph were plotted, it would

be a slow evolution with slight change between

interannual variability.

Fire Disturbance

Fire regimes are rapidly changing in Mountain

West ecosystems. More frequently, large fires are

occurring as a result of climate-induced increases in

fuel load combined with increased ignition fre-

quency from lightning and anthropogenic activities

(Kipfmueller and Baker 2000; Cattau and others

2020). Additionally, fire suppression policies have

resulted in increased fire severity with a projected

65% loss of forest cover by 2098 (Hansen and

others 2020). Increasing exposure to viable fuel

(Beverly and others 2021) along with wildfire’s

positive correlation with fluctuating drought years

(Dewar and others 2021) means the Mountain

West is likely to continue to experience high-

severity fires.

While fires can be considered a ‘‘pulse’’ distur-

bance, their impact on the hydrochemograph can

often persist for years, especially following high-

severity burns. In Mountain West ecosystems,

streamflow responses after wildfires are highly

heterogeneous and likely depend on several factors

that interact to determine the magnitude of the

increase in hydrologic flows: fire severity, post-fire

precipitation, and stream network position. In

general, across ecosystems, streamflow has been

shown to increase for several years after a fire in

forested watersheds, but many systems do recover

to pre-fire discharge after 5–10 years (Saxe and

others 2018; Williams and others 2022). The mag-

nitude of the streamflow response is heavily

influenced by the proportion of the watershed that

burned at high severity (Hallema and others 2018)

and the amount, intensity, and type of precipita-

tion that falls in the years following wildfire dis-

turbance (Wine and Cadol 2016). Specifically,

watersheds with a larger proportion of high-

severity burn area will be more vulnerable to ex-

treme precipitation events due to limitations in

vegetation recovery and reductions in soil infiltra-

tion rates (Saxe and others 2018; Wine and others

2018). Furthermore, streams lower in a river net-

work are likely less sensitive to changes in hydro-

logic flows post-fire, and empirical work shows

dampened responses to post-fire precipitation rel-
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ative to lower-order streams (Reale and others

2015). While hydrologic responses can be variable,

Figure 2c presents a generalized understanding of

the impacts of wildfires on hydrology. Post-fire

increases peak discharge with little to no change in

baseflow conditions. This is a function of increased

snowmelt, reduction of evapotranspiration, and

decreased soil infiltration (Seibert and others

2010).

Although streamflow may increase after a fire,

nutrient export does not always respond in tandem

nor do all nutrients respond in synchrony. For in-

stance, a recent meta-analysis showed that the

largest increases in stream chemistry after wildfire

were with nitrate, total phosphorus, and ammo-

nium with relatively minor changes in phosphate,

dissolved organic carbon, and total suspended so-

lids (Hampton and others 2022). Often, investiga-

tors notice a several-year lag response in nutrient

export after wildfire (Rhoades and others 2011). In

some cases, particularly following the most ex-

treme burns, nitrate concentrations may remain

chronically in streams, fundamentally altering in-

stream biogeochemical function, such as by

increasing autotrophic productivity (Rhea and

others 2021). The hypothetical chemograph pre-

sented in Figure 2c represents increases in observed

nitrate during peak runoff. This hypothetical hy-

drochemograph behaves similarly to vegetation

shifts in magnitude, but a key difference is the

timescale the change occurs. Fire outbreak re-

sponse will usually occur over a much shorter time

span. Other stream constituents, like dissolved or-

ganic carbon or total suspended solids, show com-

plex and context dependent responses to fire. For

example, DOC levels post-fire may be re-volati-

lized, but in moderately burned catchment DOC

may remain elevated for years following fire

(Rhoades and others 2019).

Bark Beetle Outbreaks

Similar to fires, bark beetle outbreaks are a natural

disturbance process in temperate mountain

ecosystems, where insects such as the Mountain

Pine Beetle (Dendroctonus ponderosae) cyclically kill

about 2% of conifer trees in affected watersheds

but have intensified in recent years due to climate

change, management legacies, and insect adapta-

tion (Raffa and others 2008; Bentz and others 2010;

Williams and others 2010; Meddens and others

2012; Mitton and Ferrenberg 2012; Creeden and

others 2014). As their geographical range is

expanding with climate change, bark beetles are a

key player in the shift of forest disturbance regimes

(Bentz and others 2010; Weed and others 2013).

Climate change is resulting in unprecedented in-

crease in frequency and severity of disturbance

events with the potential for more frequent inter-

action between different disturbance types (Hi-

guera and Abatzoglou 2021; Schapira and others

2021). The evidence for whether insect outbreaks

and fire are likely to interact is equivocal, with

some studies noting that insect outbreaks prior to

fire in the Western United States may have no ef-

fect on fire (Harvey and others 2013; Hart and

others 2015; Andrus and others 2016). In contrast,

previous fire disturbance in subalpine forest pro-

motes resistance to insect disturbance as older trees

that are more susceptible to insect attacks are re-

placed by more disconnected, younger trees that

impeding the spread of subsequent insect outbreaks

(Kulakowski and others 2012; Seidl and others

2016). The effect of a prior disturbance may be

positive, negative or have no effect on subsequent

disturbance depending on weather condition,

intensity, and timing of disturbance (Harvey and

others 2014a, 2014b; Andrus and others 2016;

Meigs and others 2015), making it imperative to

consider interaction among disturbance types in

developing a framework for management in

Mountain West ecosystems.

The effects of bark beetle outbreaks on the hy-

drochemograph are likely to be context dependent,

but the alterations of hydrological and biogeo-

chemical processes they induce are generally of

lower magnitude than those of wildfires (Pugh and

Gordon 2013). Bark beetle outbreaks typically un-

fold in three phases where changes in tree func-

tioning and stand structure drive the sequence and

intensity of the events recorded on the hydrograph

(Wulder and others 2006; Mikkelson and others

2013a; Pugh and Gordon 2013). First, in the ‘‘green

phase’’ during the weeks following the infection,

the host trees die from the interruption of sap flow

(Hubbard and others 2013) and reduced transpi-

ration may increase soil moisture, but no effects on

hydrology are anticipated during this phase (Pugh

and Gordon 2013). In the second phase (‘‘red

phase’’), dead trees may retain their needles for 1–

3 years as they progressively turn red and fall

(Wulder and others 2006). In this phase, canopy

opening might not be important enough to allow

for higher snow accumulation, but snow melt is

accelerated by the needle litter that reduces albedo,

eventually triggering earlier peak flow (Pugh and

Small 2012; Pugh and Gordon 2013; Livneh and

others 2015). Once all needles have fallen, dead

standing trees enter the third phase (‘‘gray phase’’),

which may last years to decades (Lewis and Hartley
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2006; Mikkelson and others 2013a). The gray phase

is likely to have increased streamflow due to higher

snow accumulation and reduced transpiration, and

earlier peak flow due to earlier and faster snowmelt

(Love 1955; Bethlahmy 1974; Potts 1984; Pugh and

Small 2012; Mikkelson and others 2013c; Livneh

and others 2015). The hydrological response is

expected to be proportional to the forest removed,

with lesser response in dry regions or periods

(Bosch and Hewlett 1982; Stednick 1996; Brown

and others 2005; Pomeroy and others 2012; Bie-

derman and others 2014).

In addition to their effects on hydrology, bark

beetle disturbances are likely to influence nutrient

cycling and stream chemographs. Following bark

beetle outbreaks, elevated in-stream nutrients and

organic matter have been observed (Clow and

others 2011; Mikkelson and others 2013a, 2013b;

Bearup and others 2014), partly due to increases in

litter breakdown and vegetation productivity (Clow

and others 2011). Old-growth stands, typically

unmanaged and where mortality from bark beetle

outbreaks is higher, are more prone to leak nitrate

to streams than mixed-aged and managed stands

(Rhoades and others 2017). Drier regions, with

sparser understory vegetation and slower regener-

ation (Lotan and Critchfield 1990; Strong 2015),

may be more prone to leach inorganic nitrogen

(Rhoades and others 2017). With the prospect of

earlier snow melt and/or patchier snowpack, soil

microbes might not be able to efficiently immobi-

lize inorganic nitrogen during winter, which could

promote its export to streams at snowmelt (Brooks

and Williams 1999; Mikkelson and others 2013a).

The biogeochemical effects of bark beetle outbreaks

can also extend beyond nutrients as organic matter

and nitrate increase and soil pH decreases, mobi-

lizing and leaching cations and metals from soils to

stream water (Likens and others 1969; Bearup and

others 2014; Mikkelson and others 2014). The

intensity of the sorption, complexation, and pre-

cipitation mechanisms controlling metal mobility

in soil and to the streams are likely to evolve

through the different phases following a bark beetle

outbreak, but observations are lacking (Bearup and

others 2014).

While bark beetle outbreak effects occur over a

multi-year period, Figure 2d conceptualizes the

generalizable changes to the hydrochemograph. At

intermediate timescales (1–3 years of the red

phase), beetle outbreaks result in earlier snowmelt

due to lower-snow albedo (increased needle litter)

causing earlier peak discharge (Pugh and Small

2012; Pugh and Gordon 2013; Livneh and others

2015). At longer timescales (gray phase that may

last decades), higher snow accumulation along

with increased radiation results in earlier snowmelt

and increased discharge (Love 1955; Bethlahmy

1974; Potts 1984; Pugh and Small 2012; Mikkelson

and others 2013c; Livneh and others 2015). We

would also expect increases in nitrate export in

ecosystems with high nitrogen deposition (Zim-

mermann and others 2000; Huber and others 2004;

Tokuchi and others 2004; Huber 2005; Jung and

others 2021).

ASSESSING CHANGE USING

HYDROCHEMOGRAPHS THROUGH CASE

STUDIES

Hydrochemographs are useful tools for examining

water quantity and quality and can increase our

understanding of watershed-scale changes in re-

sponse to disturbances. Here, we use three exam-

ples of watersheds with high-frequency, long-term

monitoring to demonstrate how we can detect and

visualize responses to climate change-induced dis-

turbances The three examples presented here

emphasize the importance of long-term monitoring

data for using the conceptual framework to detect,

identify, and evaluate climate-driven disturbances

via hydrochemographs. First, we evaluate stream

response to multi-year drought and long-term

warming air temperatures using data from Loch

Vale, a high-elevation watershed in the central

Rocky Mountains. We next examine variation be-

tween high- and low-snow years in another high-

elevation watershed in the Rocky Mountains at

Niwot Ridge. Finally, we evaluate the mid-eleva-

tion Andrews Experimental Forest and the conse-

quences of mountainous forest clear-cut. The

openly available data used in these case studies

demonstrate the invaluable benefit of long-term

data collection, allowing scientists to observe pat-

terns and anomalies in streamflow and solute ex-

port.

In all three of our examples, we examine

streamflow and nitrate export. Loch Vale data were

gathered directly from their data maintenance site

(USGS, US Geological Survey 2024), while Niwot

Ridge (Caine 2021) and Andrews Experimental

Forest data (Johnson and Fredriksen 2019) were

gathered from Macrosheds using the Macrosheds R

package (Rhea and others 2023; Vlah and others

2023). We chose these case studies because of the

publicly available long-term, high-frequency data

that highlights the importance of monitoring

mountain streams to detect disturbances whose

effects can propagate downstream at the basin
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scale. The three mid- to high-elevation case study

locations are also already showing signs of climate

change manifested as increasing summer air tem-

peratures (Figure S1 Modeling and others 2015).

We analyzed the data in the R programming lan-

guage (R Core Team 2024). The tidyverse (Wick-

ham and others 2019) package was used for data

wrangling and visualization, and the dataRetrieval

package’s addWaterYear function was used to for-

mat the data into water year—October–October

(De Cicco and others 2018); water years, rather

than calendar years, were used for all analyses.

Please see the supplement for more details and

methods for each case study.

Loch Vale, Colorado

The Loch Vale outlet of a subalpine lake is at ele-

vation 3105 m in the Rocky Mountains and rep-

resents a watershed minimally disturbed by direct

human influences. We discretized the Loch Vale

outlet data into three periods to distinguish typical

climate periods from a drought period using Palmer

Drought Severity Index, annual precipitation, and

nitrate deposition data: 1990–2000, 2001–2007

(drought), and 2008–2019. The decades are further

divided into three seasons (Figure S2a): winter

(December to April), snowmelt runoff (May–June),

and summer (July–November). The seasons coin-

cide with strong snowmelt-dominated streamflow

patterns with little to no flow over winter,

increasing streamflow during snowmelt runoff, and

decreasing streamflow during summer (Figure 3a).

As demonstrated by Mast and others (2014), ni-

trate concentrations peaked in the middle period

(2001–2007) in response to drought (Figure 3a),

then returned to pre-2000 levels during the 2008–

2019 decade. The increased nitrate levels in the

early 2000s were further distinguished from the

other decades by the cumulative nitrate export

curves with the highest sum during the drought

period > 500 kg greater than the typical sum

(Figure 3b). Using cQ analysis, the long-term Loch

Vale record revealed how the watershed can switch

between periods of chemostasis (no change in

concentration as streamflow changes), mobilization

(increased concentration with streamflow), and

dilution (decreased concentration with increased

streamflow) within years and across time periods

(Figure 3c–d). Most notably, winter cQ during the

most recent time period 2008–2019 (blue triangles

in Figure 3c–d) demonstrated stronger variability

including periods of mobilization, resembling the

snowmelt runoff slopes.

Three of the five lowest snow water equivalent

(SWE) years in our record (1980–2019) were 2018

(379.890 kg m-2), 2013 (430.0234 kg m-2), and

2016 (505.160 kg m-2), with the other two lowest

occurring in 1981 and 1991 (NLDAS Project 2020).

Low SWE (Figure S3a) along with increasing

summertime air temperature (Figure S1a) may be

indicative of earlier melt and greater precipitation

as rain rather than snow, driving the winter cQ

pattern toward mobilization. This trend is further

evidenced by the streamflow duration curves that

show winter streamflows at minimal val-

ues < 83% of the time from 1990 to 2007, con-

trasted with minimal values met or exceeded as

high as > 99% in the most recent time period

(blue lines in Figure 3e). Trends of earlier snow-

melt and warming temperatures have been

demonstrated across Colorado watersheds (Clow

2010). If winter mobilization trends continue, the

hydrograph may shift toward earlier high flows,

decreasing water and nutrient availability later in

the season (Figure 2a).

Niwot Ridge, Colorado

Green Lake 4 is an alpine lake in the Green Lakes

Valley at Niwot Ridge. Here we examine variation

in the outlet hydrochemograph of Green Lake 4,

located at elevation 3550 m in the Rocky Moun-

tains. Like Loch Vale, this location is representative

of a watershed minimally disturbed by direct hu-

man influences, with the exception of mining

activity and water level manipulations at lower

elevations in the watershed. We again found three

seasons examining the average monthly SWE:

winter (December–May), snowmelt runoff (June–

July), and summer (August–November). The sea-

sons coincide with strong snowmelt-dominated

streamflow patterns with little to no flow over

winter, increasing streamflow during snowmelt

runoff, and decreasing streamflow during summer

(Figure 4a).

We determined the highest (2011 at 2121.71 kg

m-2) and lowest (1991 at 464.972 kg m-2) SWE

years using cumulative annual SWE data from

1986–2019 (Figure S13b; NLDAS Project 2020),

paired with when we had streamflow and nitrate

data available. Comparing the high- and low-snow

years (solid and dotted lines in Figure 4b, respec-

tively) to the average hydrochemograph of the full

data record (Figure 4a), nitrate concentrations

were similar to average. High- and low-snow year

nitrate demonstrated opposite summertime peaks

with a spike in nitrate during the low-snow year

and a drop during the high-snow year. High-snow
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year streamflow was similar to average but peaked

later in year. Streamflow was only collected in May

during the low-snow year winter, making clear

assessment of this season difficult. However,

streamflow was substantially less than average

during the low-snow year snowmelt runoff and

summer seasons.

On average, nitrate–streamflow cQ slopes (circles

in Figure 4c) demonstrate mobilization in winter

(blue circle), high variability during snowmelt

runoff (yellow circle), and dilution in summer

(pink circle). Interestingly, both the high- and low-

SWE years demonstrated dilution during the

snowmelt runoff period (yellow square and trian-

gle, respectively) but not during the summer period

(pink square and triangle, respectively). During the

high-SWE year (squares in Figure 4c), there was

significant variation in winter (blue square) rang-

ing from very dilute (slope of -4.97) to very mobile

(slope of 3.32). Large swings in water availability

are likely to increase in frequency with press dis-

turbances like climate warming and precipitation

shifts (Datry and others 2016; Davenport and oth-

ers 2020) and could unpredictably mobilize nutri-

ents or other solutes within the watershed (Kincaid

and others 2020). As demonstrated in the Loch

Vale case, high variability occurred in the most

recent decade on record and may be indicative of

warming temperatures and earlier onset of snow-

melt. Changes like these observed in the hydro-

chemograph can serve as warnings of imbalanced

nutrient content (Yang and others 2022), increased

phytoplankton growth (Sadro and others 2018),

and shifts in biotic communities (Datry and others

2016).

Figure 3. Hydrochemographs reveal seasonal and climate differences in the Loch Vale outlet in the Rocky Mountains,

USA. Time periods are distinguished by line type and shape with 1990–2000 represented by dotted lines and circles, 2001–

2007 (drought years) represented by dashed lines and squares, and 2008–2019 represented by solid lines and triangles.

Seasons are divided into winter (December–April, blue), snowmelt runoff (May–June, yellow), and summer (July–

November, pink). a Average weekly nitrate (green lines) and streamflow (blue lines) over the water year within each time

period. b Average yearly cumulative sum of nitrate in kg over the water year, distinguished by time period. Vertical dashed

lines in a) and b) display the seasonal breaks. c Seasonal nitrate concentration–discharge (cQ) on the log–log scale. d)

Summary of seasonal cQ slopes (and 95% confidence intervals) with the gray bar representing the chemostatic range

(slope <|0.05|). e Flow duration curves, distinguished by time period and season, displaying the percent of time

streamflow rates were met or exceeded.
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HJ Andrews Experimental Watersheds,
Oregon

The HJ Andrews Experimental Forest (HJA) site is a

mid-elevation forested area in Oregon. In this

example, we compared two watersheds with high-

frequency, long-term monitoring. Watershed 6 has

a maximum elevation of 1029 m, with the stream

monitored at 878 m, and was clear-cut 100% in

1974. We compared Watershed 6 to a nearby

control site, Watershed 8, which has a maximum

elevation of 1182 m, with the stream monitored at

962 m. The two HJA watersheds are lower eleva-

tion and have different streamflow and watershed

characteristics compared to our other two case

studies but provided a broader range of examples

from western montane watersheds with high-fre-

quency, long-term monitoring.

In this example, we present a longer-term look at

the Watersheds 6 and 8 hydrochemographs and

Figure 4. Hydrochemographs demonstrate variation in nutrient export between high- and low-snow years in the Green

Lake 4 outlet in the Rocky Mountains, USA. a Average weekly nitrate concentrations (green lines) and streamflow (blue

lines) from 1986–2019. b) Nitrate concentrations (green lines) and streamflow (blue lines) in the highest snow year (2011,

solid lines) and lowest snow year (1991, dashed lines). Vertical dashed lines in a) and b display the seasonal breaks, with

winter (December–May), snowmelt runoff (June–July), and summer (August–November). c Summary of nitrate

concentration–discharge (cQ) slopes with 95% confidence intervals on the log–log scale. Gray bar represents the

chemostatic range (slope <|0.05|).
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observe the shift in nitrate concentrations, yet not

in streamflow (Figure 5a). Furthermore, we ob-

served a change in area-normalized nitrate flux (kg

ha-1 day-1) between the two watersheds after

clear-cutting by examining the flux in Watershed 8

subtracted from the flux in Watershed 6 (Fig-

ure 5b). Area-normalized nitrate flux was calcu-

lated as:

Prior to the clear-cut logging in 1974, Water-

sheds 6 and 8 showed no substantial difference in

their hydrochemographs. Logging occurred May–

August 1974 in Watershed 6. The hydro-

chemographs demonstrate the loss of forested

vegetation did not influence streamflow (in oppo-

sition to our prediction in Figure 2b), yet nitrate

concentrations were higher in Watershed 6 than in

the un-logged control Watershed 8 (Figure 5a, in

agreement with our prediction in Figure 2b). The

high nitrate values in Watershed 6 are further ob-

served via the difference between area-normalized

nitrate flux in Watersheds 6 and 8, in which the

difference is higher between 1976 and 1980 com-

pared to before clear-cutting and after (Figure 5b).

The high nitrate concentrations continued until

1980, when Watershed 6 returned to baseline

conditions similar to Watershed 8.

Flux ¼ nitrateconcentration mg=Lð Þ � streamflow L=sð Þ � dailytimeinterval sð Þð Þ
watershed area hað Þ � 1000000ð Þ

Figure 5. Hydrochemographs over a decade demonstrate high nutrient export after forest reduction in Watershed 6

compared to control Watershed 8 in montane Oregon, USA. a Nitrate concentrations are depicted in green and streamflow

by blue. The watersheds are delineated by line type, with the control Watershed 8 shown by solid lines and the logged

Watershed 6 shown by dashed lines. b Difference of area-normalized nitrate flux between Watershed 6 and Watershed 8.

The vertical gray line at 1974 in both a and b displays the year Watershed 6 was clear-cut.
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The clear-cutting disturbance in HJA Watershed

6 demonstrates the results of a pulse loss of forest

vegetation. As a climate-induced disturbance, there

may be differences between vegetation loss due to

bark beetle (pulse disturbance) and a shift away

from forested vegetation as community composi-

tion shifts (press disturbance). For both bark beetle

and vegetation shifts, increased streamflow and

nitrate are expected along with changes in peak

timing with nuances depending on the disturbance.

For example, long-lasting removal of large woody

biomass due to press vegetation community com-

position shifts results in higher nitrate export to

streams (Beier and others 2015; Caputo and others

2016). At near to intermediate timescales after a

bark beetle outbreak, increased pine needle litter

lowers snow albedo, resulting in earlier peak dis-

charge (Pugh and Small 2012; Pugh and Gordon

2013; Livneh and others 2015). Forest cover in

western montane ecosystems of the USA is ex-

pected to reduce and transition to non-forest veg-

etation as climate change progresses and

disturbances persist (Stevens-Rumann and others

2018; Davis and others 2019; Coop and others

2020; Rammer and others 2021). As bare ground

can increase nutrient export, we expect water

quality degradation to accompany forest reduction

(Visser and others 2016; Ren and others 2019a;

Oleksy and others 2020).

IMPLICATIONS

High-elevation montane ecosystems may be espe-

cially susceptible to climate change. Mountain

West aquatic environments, which provide

important ecosystem services, will likely deterio-

rate as the consequences of climate change con-

tinue to be amplified. Increased fire, biotic

stressors, precipitation occurring as rain rather than

snow, and vegetation shifts are some of the main

pulse and press disturbances changing Mountain

West ecosystems. These can have cascading effects

within alpine ecosystems that trickle to down-

stream ecosystem services. For example, as snow

drought becomes more prevalent in the Western

United States, there could be strong impacts on

water quality and quantity in surrounding land-

scapes suffer, which could have socioeconomic

consequences (Huning and AghaKouchak 2020).

Disturbances occur naturally and often in the

environment. The influence of and recovery from a

disturbance varies with disturbance type (for

example, pulse vs. press), the sensitivity of the

ecosystem, and the severity of disturbance (Chapin

and others 2011). While ecological memory may

enhance resilience in some cases, changes in

severity, frequency, magnitude, and timing of dis-

turbances have the potential to restructure

ecosystems (Johnstone and others 2016).

Biogeochemical cycling in high-elevation

streams has shown dramatic responses to climate

change-driven disturbances, like shifts in carbon

and nutrient dynamics (Ren and others 2019b; Zhi

and others 2020) and transformation of alpine

streams from CO2 sinks to sources (Ulseth and

others 2018). Additionally, hydrologic conditions

of alpine streams will be altered under a new cli-

mate with potential for both drying of streams with

less snowpack (Datry and others 2016) and expo-

nentially increased stormflows and flooding with

rainfall (Davenport and others 2020). These ex-

treme swings between drought and flood alter

organismal communities, migration patterns,

nutrient processing (Datry and others 2016), and

overall threaten biodiversity (Pittock and others

2011). Variable flows can also be problematic for

strategizing reservoir storage and management

(Willis and others 2011). Understanding whether

these changes are reversible and the magnitude of

these changes on ecosystem health and services

requires further research.

High-frequency, long-term monitoring of

Mountain West streams’ hydrology and nutrient

fluxes can detect signals of pulse and press distur-

bances occurring over varying ecosystem scales.

Often, ecological data are collected infrequently

and over short periods of time, which have bene-

fited our knowledge and understanding of ecolog-

ical processes. However, longer datasets enable

detection of early warning signs of climate-driven

changes to critical processes and services (Williams

and others 2007). The disturbances we discuss in

this manuscript are already affecting the Mountain

West. Increasing our monitoring efforts and

developing more long-term, continuous monitor-

ing sites are important steps to progress our grasp

on these changes to the hydrochemograph, which

could have profound consequences for down-

stream aquatic habitats and ecosystem services.
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