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ABSTRACT
During emergencies where time is of the essence, e�cient man-
agement of disasters depends on swiftly recognizing relevant and
urgent information from online platforms like X (Twitter), which
is imperative for augmenting established response frameworks,
such as the 911 emergency system. This paper introduces CURD,
a Context-aware Relevance and Urgency Determination system
designed to enhance the e�ciency of disaster response. The sys-
tem addresses two critical challenges: �ltering out irrelevant data
and assessing the urgency of relevant information. Our approach
includes a multi-level annotation process for event type, relevancy,
and an urgency annotation algorithm that signi�cantly improves
information extraction accuracy and e�ciency. CURDdl , our classi-
�er, uses a deep learning pipeline architecture with a combination
of transformer models, a convolution layer, and custom attention
mechanisms to classify disaster-related tweets into multiclass-event
type, binary-relevance-and-urgency categories, and rank urgent
ones based on signi�cance. Experimental results show that our
best baseline classi�ers for all three tasks achieved � 88% F1 and
accuracy, and � 94%. AUC. Our models also outperformed models
from related works in all metrics, validating the e�ectiveness of
CURD in prioritizing response messages that will facilitate decision-
making and resource allocation in disaster scenarios. CURD anno-
tated dataset and code are available on GitHub1.
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1 INTRODUCTION
Climate change has exacerbated the di�culties caused by natural
disasters, including strain on infrastructure and resources, complex
emergencies, agricultural impacts, migration and displacement, and
increased health risks. As a result, advanced technological interven-
tions are necessary for e�ective response and recovery services. Re-
search shows that hurricanes are becoming more intense, leading to
unparalleled �ooding, destruction, and loss of lives and properties,
as evidenced by Hurricane Ike [38] and, more recently, Hurricane
Ida [34]. Additionally, climate change has increased the severity and
frequency of wild�res, such as those in Australia [32]and California
[39], presenting signi�cant challenges to traditional �re�ghting
methods. This calls for the development of innovative strategies
and technologies for early detection and swift response.

In disaster management, response services require innovative
and adaptive approaches to address the changing circumstances
of di�erent events. The increasing signi�cance of social media,
especially X (previously called Twitter), has been recognized in dis-
aster management. Researchers like [10] and [23] leverage X data
for predictive analytics and situational awareness using Machine
Learning (ML) techniques. Furthermore, [22]’s work on sentiment
analysis during the COVID-19 pandemic demonstrates the value of
social media insights for crisis communication and service improve-
ment. Recent research in disaster management has made signi�cant
strides in social media data analysis for crisis response. Studies like
[14], [24], and [25] highlight the utility of ensemble learning, a mul-
timodal strategy, and the combination of NLP and ML in improving
the e�ciency of disaster response, emphasizing the importance of
advanced computational techniques in this �eld.

In this study, we tackle two key challenges in disaster man-
agement: discerning vital information from irrelevant data and
evaluating the urgency of information. (1) The �rst challenge in-
volves a detailed analysis and �ltering process that allows disaster
management authorities to focus on crucial data, saving time and re-
sources. This enables expedited decision-making processes, which
is crucial for allocating resources, identifying the immediate needs
of a�ected individuals, and assigning appropriate �rst responders.
(2) The second challenge involves prioritizing information based
on urgency. Decision-makers in disaster response scenarios must
determine which messages require immediate attention and action
and which can be deferred.

Addressing the above challenges is necessary to improve disaster
response. Hence, we propose a framework for better information
management by de�ning ’relevance’ and ’urgency’ in the context
of disaster response.
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• Relevancy refers to how well the information aligns with
the current needs and objectives of the response e�ort. Rele-
vant information helps disaster management authorities to
concentrate their resources and e�orts more e�ectively by
prioritizing information that directly contributes to ongoing
rescue, relief, and recovery operations.

• Urgency refers to the immediate need for action or attention
that speci�c information demands during disaster response.
For instance, an urgent tweet or piece of information, such
as one reporting people trapped under a collapsed build-
ing following an earthquake, requires a swift response to
prevent further harm, save lives, or address critical disaster
situations.

Considering the outlined challenges and de�nitions, we present
the following arguments:

• During a disaster, there is a likelihood that extracted disaster
data may not be directly relevant. Relevance is determined
by considering the context, meaning, and potential impact
of the message on the current situation and its applicability.

• Moreover, it is also important to recognize that while cer-
tain data, such as infrastructure damage reports (damage
to bridges or roads), may be relevant to disaster response
e�orts, it may not always be of immediate concern when
compared to life-threatening situations that require immedi-
ate attention, such as rescue operations.

The conventional way of annotation in disaster management is
to evaluate data against pre-de�ned criteria and classify it into its
appropriate de�ned group. Studies by [17], [29], [26], and [33] have
re�ned various methods over time, contributing unique perspec-
tives and methodologies to the �eld. In this work, we introduced
CURD (Context-aware Relevance and Urgency Determination),
a novel approach that uses multi-level annotation to enhance the
accuracy and e�ciency of identifying critical information from the
large volume of data generated during disaster scenarios, particu-
larly from X. We propose a four-stage process as the primary aim
of CURD: (1) Initially, the stage of categorizing data into speci�c,
low-level disaster-related labels is crucial for organizing incom-
ing information into manageable and meaningful categories. This
�ltering and structuring of data lays the groundwork for more
detailed analysis in subsequent stages. (2) In the second stage of
classi�cation, the information labeled in the initial stage is catego-
rized as either ’relevant’ or ’not relevant’ to the disaster response
phase. This step assumes that not all disaster-related information
is important for immediate response e�orts. The criteria for rele-
vance include the need for the information, the potential impact on
response e�orts, and the applicability of the information to the cur-
rent phase of response. (3) The third stage of the CURD method is
the urgency determination of relevant information, which classi�es
all relevant information as either urgent or not urgent for e�cient
resource allocation. (4) Our �nal stage involves ranking tweets
based on their importance in critical disaster response phrases. We
compute the urgency scores of the tweets and sort them based on
their level of signi�cance, enabling us to swiftly identify, prioritize,
and act upon critical information within large datasets.

Our work has yielded the following contributions:

(1) We utilized the Automatic Content Extraction (ACE) stan-
dard [36] to annotate a total of 47,621 natural disaster tweets,
resulting in the identi�cation of 29 unique event types. Our
transformer-based event type classi�er achieved best result
with CURDdl – RoBERTa model, achieving 89% accuracy and
90% Fleiss Kappa inter-annotator agreement.

(2) Post event type annotation, we categorized the tweets based
on their relevance (relevant/not relevant). Furthermore, based
on the relevant class, we also use a combination of BERT-
based embeddings, K-Means clustering, and critical event-
type labels to determine their urgency.

(3) We developed a customized multiclass and binary classi-
�er model, CURDdl , which utilized pre-trained transformer
models (BERT, BERTweet, RoBERTa, DistilBERT, and XLNet)
[16], as well as convolution layer, custom attention layer, and
fully connected layers. Our best model, CURDdl-RoBERTa,
achieved 90% accuracy and an AUC-ROC of 97%.

(4) We introduced a novel method for computing urgency scores
based on individual or the combination of disaster response
terms, which allowed us to rank the classi�ed urgent tweets
and provide valuable assistance to disaster response e�orts.

2 RELATEDWORKS
Disaster management evolves to utilize social media data for e�-
cient response strategies, marked by innovative research addressing
technical and contextual obstacles. Transfer learning for crisis ur-
gency detection is discussed in [7], highlighting the adaptability of
existing models to disasters’ unpredictable nature. This approach
enables quick decision-making. [5] expands on this by address-
ing Arabic language data processing and integrating NLP methods
with cultural nuances, leading to more inclusive disaster response
tools. Recent works stress the importance of urgency detection and
relevance classi�cation in disaster response. [41] presents the cross-
topic relevance embedding aggregation that enhances relevance
classi�cation accuracy, especially in data-limited and topic-speci�c
disaster contexts. [21] utilizes a neural network model that merges
text and image data from social media to enhance disaster response.
The multimodal approach e�ectively identi�es informative content
during crises by combining LSTM networks for text and VGG-16
networks for image processing. The connection among researchers
in disaster response is crucial for developing e�ective strategies
and advancing knowledge. [11] focuses on using ML to identify
urgent tweet requests during hurricanes, improving disaster re-
sponse e�ciency, and setting a precedent for applying ML to other
emergencies. Studies on online news comments’ classi�cation ad-
dress misinformation [37]. A low-supervision urgency detection
system bridges these studies [20], showcasing AI’s potential to en-
hance resource-e�ciency and accessibility in urgency detection.
Disaster response research necessitates diverse methodologies and
approaches, as demonstrated by multiple studies, including [9],
[29], [26], [35], and [13]. These studies cover various aspects of cri-
sis management, such as political context relevance classi�cation
[9], the role of social networking sites in disaster relief [29], [26],
and situational awareness [35] and linguistic aspects of urgency
detection in crisis communication [13].
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The range of approaches discussed highlights disaster response
research’s complex and multifaceted nature, ensuring the devel-
opment of comprehensive and adaptable strategies for di�erent
crises. Advanced algorithms like BERT and XLNet have shown su-
perior performance in handling complex, unstructured data during
crises. These algorithms are particularly e�ective in categorizing
and understanding data in disaster scenarios, as noted in [31].

All of these works employ direct annotation of tweets to rele-
vance and urgency. In contrast, our method utilizes multilevel anno-
tation, which involves annotating tweets with event-type labels to
determine relevance and urgency indirectly via these labels, rather
than directly annotating the tweets themselves. This event-type
annotation is used to capture all information initially, preventing
information loss by utilizing prede�ned labels from previous works.

3 OUR APPROACH
Our methodology, depicted in Figure 1, comprises four sequential
phases: event classi�cation, relevance classi�cation, urgency classi-
�cation, and ranking of urgent tweets. This systematic approach
guarantees comprehensive analysis and categorization of tweets,
enabling the e�ective identi�cation and prioritization of crucial
disaster response information.

Figure 1: CURD Approach

3.1 Dataset Description
Our research examines tweets about natural disasters, speci�cally
earthquake, and hurricanes, using datasets from the CrisisNLP [18]
and UNT Library [30]. The dataset consists of 47,621 tweets, with
2,902 labeled as gold data and 44,719 as silver data. Notably, the
gold dataset includes 1,518 tweets about the Nepal earthquake. In
contrast, Hurricane Harvey, Hurricane Sandy, and Hurricane Odile
have 1,000, 200, and 183 tweets, respectively. We split the dataset
into training (80%) and testing (20%) sets for our experiments.

3.2 Event Type Phase
Our process for annotating event types involves label annotation,
reviewing annotations, standardizing class labels, preprocessing,
and classi�cation. This ensures thorough and standardized analysis.

3.2.1 Event Type Annotation. Our annotation process uses the
ACEmethodology developed by the ACE 2005 initiative [36] to auto-
matically extract data elements like entities and relationships from
text. The ACE framework consists of 8 event types, 33 sub-event
types, triggers, and arguments, but we modi�ed it for our task by
only using its standard elements. We did not use the predetermined
event types. To accommodate disaster-related data, our annotation
process, conducted by three graduate students over six months,
used free-form labeling and allowed for varied interpretations and
more nuanced labels. By initially annotating all tweets into 92 event
types, we established a foundation for further standardization in
our study. We avoided the overly speci�c traditional methods of
disaster data annotation, opting instead for free-form labeling via
ACE to prevent information loss from excessive speci�city.

3.2.2 Annotation Review. Our annotation review process in-
volves a collaborative approach where annotators actively review
and verify each other’s work. This method is commonly used in
data annotation and labeling tasks, where the annotators not only
focus on their individual tasks but also examine their peers’ an-
notations to guarantee accuracy and consistency. After reviewing
another’s work, an annotator can either agree or express disagree-
ment. If there is disagreement, the annotator must provide speci�c
reasons for their viewpoint. This step is essential because it fa-
cilitates dialogue and a collaborative e�ort to reach a consensus
and standardize annotations. Our primary goal is to ensure the
production of high-quality, consistent, and accurately labeled data.

3.2.3 Label Standardization. To standardize the categorization
of data, we have developed a method that reduces variability and
overlapping in classifying events. During the free-form phase, labels
are in their rawest and most varied form. For example, 92 distinct
labels were obtained for "Event type". To simplify the categoriza-
tion process, we have grouped these labels into more speci�c and
encapsulating categories. For instance, "personal matters" is an um-
brella label that encompasses speci�c categories such as "personal
account", "personal concern", and "personal view". This initial nor-
malization reduces the number of labels under "Event type" from 92
to 52. Further re�nement of these categories results in a more con-
cise set of labels [3]. Following this phase, the "Event type" labels
are reduced to 29 (admiration, appreciation, business, casualty,
climate & environmental issues, communication, damage, die,
disaster preparedness, education, empathy, health, humani-
tarian assistance, immigration, information dissemination,
inquiry, life, memories, news, others, personalma�ers, politics,
resources, safety, spiritual, sport, transportation, travel, warn-
ing). This approach ensures that the labels are relatively speci�c
while avoiding redundancy and operational challenges.

3.2.4 Inter-Annotator Rating. After standardizing the annota-
tions, we assessed the agreement between di�erent annotators us-
ing the inter-annotator agreement process. Each annotator scored
their agreement on a scale of 1 for agreement and 0 for disagreement.
We calculated the consensus level using the Fleiss Kappa statisti-
cal measure [15], which yielded a high consistency rate of 0.90,
0.92, and 0.95 for event types, relevancy, and urgency, respectively.
This indicates a considerable agreement among the annotators,
demonstrating the reliability and accuracy of the annotations.
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3.3 Dataset Preprocessing
We perform preprocessing and cleaning of the disaster tweets
dataset to ensure the accuracy and reliability of deep learning ap-
plications. This step involves removing duplicates and normalizing
text to treat variations uniformly (‘earthquake’ and ‘EARTHQUAKE’
become earthquake). We also eliminate extraneous information
like links and special characters and tokenize the tweet text into
individual words for detailed word frequency, distribution, and
co-occurrence analysis [1]. Additionally, we remove stop words to
reduce noise and emphasize signi�cant terms that re�ect the nature
of disaster contexts [2].

3.4 Relevancy Phase
Determining relevance during disaster response is a critical step
in identifying actionable insights from vast data. Our relevance
annotation methodology, depicted in Figure 1, is based on a binary
framework that labels data as either relevant or not relevant. Previ-
ous research has employed direct annotation of tweets with speci�c
keywords or criteria to determine relevance. For example, [17] cat-
egorized tweets as informative or non-informative, while [27] and
[8] used the CrisisLex26 dataset by [28] to segregate tweets based
on their usefulness in response and recovery scenarios. However,
these methods may be too narrow and could result in insu�cient
information for response e�orts.

In contrast to existing literature, our methodology is novel and
straightforward for determining relevance in disaster tweets. We
utilize low-level annotated class labels that categorize the event
type, as described in Section 3.2. By converting the 29 multiclass
labels into binary annotations, we assess whether tweets and their
respective labels are relevant to the disaster response. We de�ne
relevance as the immediate usefulness of the information in aiding
or understanding the disaster response e�orts. We have identi�ed
and classi�ed the most relevant class labels based on our analysis of
the tweets’ semantics and their relevance to disasters grounded on
the 29 standardized annotated class labels for event type annotation
in Section 3.2.3, along with the provided explanations. As a result,
we have 23 class labels for the relevant class, which is a total of
26,091 tweets for relevancy annotation out of the 47,621 annotated
event types. The remaining tweets belong to six class labels that
form the "not relevant" category. We have brie�y explained why
the event type labels were annotated into ’relevant’ class in Table 2.

Our approach to disaster tweet relevance judgment involves a
rigorous process that distinguishes between relevant and irrele-
vant tweets based on comprehensive guidelines developed during
event-type annotation. This approach is crucial as it allows us to
identify actionable insights from disaster tweets, vital for response
e�orts. Our guidelines are designed to capture tweets that might
unintentionally be deemed irrelevant but hold signi�cance in re-
sponse scenarios. The guiding criteria for relevant class annotation
include event-type labels that contain one or more of the following:

(1) Disaster Keywords: we classify tweets as relevant if they
contain keywords like ’earthquake’, ’�ood’, or ’injured.’

(2) Response Actions: we seek disaster response actions such
as rescues, appeals, and aid.

(3) Entities Involved: our focus entails organizations, locations,
and groups actively involved in disaster response, such as
NGOs, government entities, and impacted communities.

(4) Critical Assumptions: we evaluate various assumptions
to measure the immediate e�ects of the event on disaster
response, the informational value of the content, and the sup-
port provided to a�ected individuals. This involves assessing
whether the event directly contributes to response, recovery,
or mitigation e�orts, o�ers valuable information for situa-
tional awareness, safety, or aid distribution, and provides
support, whether emotional, physical, or resource-based, to
those a�ected by the disaster.

Our contribution to the relevancy annotation phase in Figure 1
lies in the innovative application of low-level event types and crite-
ria and in our diligent commitment to avoiding arbitrary annota-
tion. By adopting a multi-faceted approach, we enhance disaster
response e�orts by o�ering an accurate, comprehensive, and sen-
sitive method for relevance classi�cation. This attention to detail
is crucial in improving the e�ectiveness and responsiveness of
disaster management strategies.

3.5 Urgency Phase
The urgency part of Phase 3 in Figure 1 comprises two steps: (1)
The Urgency Annotation Phase, which includes clustering and la-
beling tweets with customized rule-based tags, and (2) The Binary
Classi�cation of Urgency. Our strategy for urgency, as outlined
in Section 1, highlights the pressing need for immediate action in
emergency situations. This necessitates timely responses to miti-
gate harm, safeguard lives, and manage critical circumstances. Our
methodology builds upon [11]’s work, which �ltered out animal-
related tweets during Hurricane Harvey. Furthermore, [31] em-
ployed MTurk workers to gauge urgency levels by examining tweet
elements like exclamation marks, key verbs, and calls to action
words such as ’rescue’. Our approach aligns with [26], which used
annotations including calls for help, location information, and vari-
ous action prompts. Our unique approach, however, encompasses
all entities, including animals and situations, if they provide crucial
information for disaster response services. During this phase, We
concentrate on relevant tweets from Section 3.4, disregarding ’not
relevant’ ones that lack urgency or signi�cance in disaster response.
This approach emphasizes tweets that provide signi�cant value in
disaster response and urgent action contexts.

3.5.1 Urgency Annotation. We employ amulti-faceted approach
to annotating urgency that involves capturing nuanced context
using BERT embeddings and identifying inherent patterns in the
data through unsupervised methods like K-Means clustering [19].
This is further re�ned with customized event-type labels to achieve
a comprehensive and accurate urgency annotation.

Algorithm 1 is designed to process, analyze, and annotate tweet
data in emergency situations. The process begins with the use of
BERT embedding, a transformer model that captures the context of
words in tweets, allowing for e�cient processing of the text data.
The high-dimensional BERT embeddings are then reduced using
principal component analysis (PCA) for simpli�ed data visualiza-
tion and processing. In the Clustering phase, we group the data
into clusters based on their PCA-reduced features. This step helps
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Algorithm 1 Urgency Annotation
Input: Relevant Labeled Tweets
Output: Clustered Tweets with Urgency Annotated Labels
1: Load dataset: Relevant Labeled Tweets
2: Tokenization and Embedding with BERT:

a. Initialize BERT tokenizer and model
for each tweet in all relevant classi�ed tweets do

b. Apply BERT embeddings
c. Store embeddings

end for
3: Stacking Multiple Numpy Arrays into a Single Array:

a. embeddings Stack embeddings
4: Dimensionality Reduction:

a. Initialize PCA with 2 components
b. X_reduced Fit and transform embeddings with PCA

5: Clustering:
a. Initialize K-Means with 2 clusters
b. clusters Fit and predict X_reduced with K-Means
c. Store clusters

6: t-SNE transformation:
a. Initialize t-SNE with 2 components
b. X_tsne Fit and transform embeddings with t-SNE

7: Calculate the Silhouette Score:
a. Average Silhouette Calculate silhouette score for X_reduced and clusters
b. Output Average Silhouette

8: Annotate Urgency:
a. De�ne customized event type labels

for each label in all event type labels do
b. Apply customized event type labels to annotate urgency
c. Store urgent/not urgent result

end for

in identifying patterns within the tweet corpus. In the t-SNE trans-
formation stage, we utilize t-SNE for dimensionality reduction and
visualization. This allows us to understand the distribution and sep-
aration of clusters. The silhouette score, computed for the K-Means
clustering, helps us evaluate the e�ectiveness of the clustering and
measure how well texts are positioned within their clusters. We
de�ned custom event-type labels for the urgent label (casualty, dam-
age, die, health, humanitarian assistance, communication, resources,
warning, safety) in the Annotate Urgency step, which enhanced the
coherence of our clustered tweets into ’Urgent’ and ’Not Urgent’
categories. This annotation is crucial for prioritizing or �ltering
tweets based on urgency, particularly in disaster response or urgent
public communications.

3.6 Event Type, Relevancy and Urgency
Classi�er

Our classi�cation system employs a suite of �ve transformer mod-
els, including BERT, BERTweet, DistilBERT, XLNet, and RoBERTa,
to capture the semantics and context of our dataset through binary
classi�cation for relevancy and urgency, and multiclass classi�-
cation for event type. By integrating these models, we have cre-
ated a highly accurate classi�cation system that utilizes the unique
strengths of each transformer model to ensure a nuanced and robust
understanding of the textual data. This approach is crucial for pre-
cise classi�cation of event type, relevancy, and urgency, allowing
our classi�er to perform optimally.

The CURDdl classi�er model, shown in Figure 2, is a deep learn-
ing pipeline that processes disaster tweets and generates �nal-ready
classi�cation output for our tasks. The step-by-step algorithm for
our classi�er can be found in Section 3.6.1. Hence, we brie�y de-
scribe the role of each block in Figure 2:

(1) Tokenize Tweet: This stage involves tokenizing tweets into
sequences of tokens using a tokenizer that converts words
into numerical IDs, with a limit of 512 tokens for processing
by Transformer models like BERT and DistilBERT. Note that
none of our tweets exceed half of the token size.

(2) Pretrained Transformers: CURDdl model uses embed-
dings from �ve di�erent pre-trained transformer models
with 12 layers and 768 embedding sizes, which can be �ne-
tuned for various tasks like classi�cation.

(3) Conv1d:Our classi�er incorporates a Conv1d layer with 768
input channels, corresponding to the model’s output, and 64
output channels, featuring 3 kernel sizes and 1 padding.

(4) Custom Attention Layer: Our model computes attention
scores using a learnable weight matrix and bias to focus on
relevant parts of the input sequence, capturing context and
disaster response terms with a custom attention layer having
768 input dimensions.

(5) Fully Connected Layer 1: The �rst dense layer following
the attention layer is this block, which combines the 768-
dimensional output from transformer models like BERT with
the 64-dimensional output from the convolutional layer to
create a 256-dimensional feature vector.

(6) Fully Connected Layer 2: This is the second dense layer
of the model, which takes the 256-dimensional input from
the �rst fully connected layer and maps it to the �nal output
size of 29, corresponding to the number of unique classes for
the event type classi�cation task. The layer also maps the
256 features to 1 output for the binary class classi�cation.

(7) Activation Function: We apply activation functions to
CURDdl , for binary classi�cation, a sigmoid function outputs
probabilities between 0 and 1. For multiclass classi�cation, a
softmax function outputs a probability distribution over the
class labels.

(8) Output Labels: The output of the model is the �nal result
for multiclass classi�cation, and for binary settings, it is a
single probability after applying the sigmoid function. The
logits are passed to the loss function during training.

Our CURDdl model, depicted in Figure 2 and detailed in algo-
rithm 2, builds on transformer models like BERT by [12]. Our model
di�ers from standard transformer architectures by introducing sev-
eral enhancements andmodi�cations that make it particularly adept
at analyzing disaster tweets. The model’s unique combination of
transformer embedding, custom attention mechanism, convolution
layer integration, and fully connected layers sets it apart. The in-
tegration of a custom attention layer enables the model to focus
more intently on vital parts of the input sequence, capturing nu-
ances in disaster tweets that standard transformer models might
overlook. The convolution layer extracts local features from the
transformer output, resulting in a more comprehensive analysis
of text data. Finally, the model utilizes fully connected layers for
the �nal classi�cation task, allowing it to learn more complex rela-
tionships and patterns from the combined features, o�ering a more
novel approach than standard transformer models.

3.6.1 CURDdl Classification Algorithm . Algorithm 2 presents
a comprehensive method for constructing an advanced model that
classi�es disaster tweets based on their event type, relevance, and
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Figure 2: CURDdl Event Type, Relevancy and Urgency Classi�er (dl - denote deep learning)

Algorithm 2 Event Type, Relevancy and Urgency Classi�er
Input: Preprocessed train and test data
Output: Trained and evaluated tweets classi�cation model
1: De�ne Custom Attention Layer:

a. Create CustomAttention class inheriting from nn.Module
b. Initialize weights and bias
c. De�ne forward pass for attention computation

2: De�ne the Transformer Model:
a. Create MyModel class inheriting from nn.Module
b. Initialize transformer, convolutional layer, custom attention, and fully con-

nected layers
c.De�ne forward pass combining transformer, a convolution layer, and attention

outputs
3: Data Preparation:

a. Create TweetDataset class inheriting from Dataset
b. De�ne initialization, length, and item retrieval methods
c. Tokenize tweets and prepare model inputs

4: Load Preprocess Data:
a. Load preprocessed training and testing datasets
b. Encode labels as binary/multiclasss

5: Create Datasets and DataLoader:
a. Initialize transformer tokenizer
b. Create TweetDataset instances for training and testing
c. Create DataLoader instances for datasets

6: De�ne Optimizer and Loss Function:
a. De�ne Adam optimizer
b. De�ne BCELoss/CrossEntropyLoss

7: Training Loop:
for each epoch do

a. Set model to training mode
b. Initialize loss and accuracy counters

for each batch in train_loader do
i. Forward pass
ii. Compute loss
iii. Backward pass and optimization
iv. Update counters

end for
end for
8: Model Evaluation:

a. Set model to evaluation mode
b. Initialize prediction and label lists

for each batch in test_loader do
i. Forward pass
ii. Store outputs and labels

end for
c. Convert predictions to binary/multiclass
d. Output classi�cation report and AUC-ROC score

urgency. The model leverages the strength of transformer models,
a convolution layer, and an attention mechanism and has several
components, each serving a speci�c purpose. The Custom Atten-
tion Layer in line 1 is designed to weigh speci�c parts of the input
sequence, such as critical words for disaster response, allowing
the model to focus more heavily on these inputs. This layer com-
putes attention scores through a learnable weight matrix and bias,
which are vital in enabling dynamic focus on relevant parts of the
tweet. This enhances the model’s ability to understand context and

meaning. Line 2 incorporates a pre-trained transformer model, a
convolution layer, a Custom Attention Layer, and Fully Connected
Layers. The transformer provides global context, the convolution
layer extracts local features from the transformer output, and the
Custom Attention Layer focuses on essential features within the
tweet. The Fully Connected Layers are used for the �nal classi�-
cation. This combination enables the model to capture both global
and local textual features, enhanced by the attention mechanism’s
focus on relevant parts of the tweet. Data preparation involves
creating a dataset compatible with PyTorch’s DataLoader for e�-
cient batch processing in line 3. The TweetDataset class tokenizes
tweets and prepares them for input into the model, ensuring that
the input data is in a format that the model can e�ectively process.
The DataLoader in PyTorch in line 4 organizes data into batches
for training and testing the model. This improves computational
e�ciency by e�ciently managing data loading for each training
and testing batch. In line 6, the initialization of the neural network
model is crucial for utilizing model training and inference. The
optimizer (Adam) and the loss function (Binary Cross-Entropy)
guide how the model learns from the training data for binary class;
and Cross-Entropy for multiclass. However, Our multiclass model
combines nn.LogSoftmax() and nn.NLLLoss() in one class, e�ectively
applying a softmax activation to the output layer and then comput-
ing the negative log-likelihood loss. The optimizer updates model
weights, and the loss function measures the model’s performance
on the binary/multiclass classi�cation task. The training loop in
line 7 is designed to train the model for 10 epochs; we stopped at
10 to avoid over�tting, thus updating weights based on the loss
function. Iterative training allows the model to learn from the data,
thereby improving its accuracy and performance. As shown in line
8, model evaluation assesses the model’s performance on the test
dataset using evaluation metrics such as precision, recall, F1, ac-
curacy, and AUC-ROC score. These metrics o�er a comprehensive
understanding of the model’s e�ectiveness, accuracy, and areas for
improvement.

3.7 Urgency Ranking Phase
Algorithm 3 evaluates tweets according to their urgency, using

BERT embeddings and cosine similarity. It begins by loading urgent
tweets in line 1 and then, in line 3, it identi�es and assigns weights
to grouped and individual keywords to determine their signi�cance
in determining tweet urgency. The process of de�ning keywords
during preprocessing emphasizes the importance of both individual
and combined critical response words. High-urgency keywords,
such as ’stranded,’ ’trapped,’ and ’injured,’ are given more weight
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Algorithm 3 Tweets Ranking by Urgency Score
Input: Dataset of Urgent Tweets
Output: Ranked Tweets with Urgency Scores
1: Load Dataset: Urgent Data
2: Load Pre-trained BERT Model:

a. Initialize BERT tokenizer and model
3: De�ne Keywords and Weights:

a. De�ne grouped and individual keywords with corresponding weights
4: De�ne BERT Vector Computation:

a. Compute BERT vector for a tweet
5: De�ne Group Vector Computation:

a. Compute average vector for a group of keywords
6: De�ne Urgency Score Computation:

a. Compute urgency score for a tweet
7: Compute Urgency Scores:

a. Apply urgency score computation to each tweet in the dataset
8: Rank Tweets Based on Urgency Scores:

a. Sort tweets by urgency scores in descending order

than medium-urgency keywords like ’hit,’ ’quake,’ and ’killed,’ as
well as low-urgency keywords like ’donate,’ ’donation,’ and ’safety.’
The algorithm prioritizes tweets containing combinations of words
indicating higher urgency, ensuring that tweets with compounded
critical terms are prioritized over those with less critical urgent con-
tent. The algorithm evaluates the standalone urgency of individual
keywords, such as ’stranded,’ to ensure e�ective prioritization of
urgent tweets. This context-aware approach is crucial in disaster
scenarios where timely responses can make a signi�cant di�erence.

The model computes BERT embeddings for each tweet to cap-
ture the semantic meaning in a high-dimensional space. It also
computes an average vector for groups of keywords, which is a
representative vector that aids in comparing with individual tweet
vectors. The algorithm’s key step is calculating urgency scores in
lines 6-7. Urgency scores are determined by comparing tweet vec-
tors with keyword vectors using cosine similarity, with weights
applied to highlight the signi�cance of each keyword category.
Tweets’ urgency scores are determined by a quantitative measure
that assesses their alignment with crucial keywords. This step is vi-
tal for categorizing and evaluating every tweet based on its content.
The eighth line involves ranking the tweets based on their urgency
score, which is computed using the algorithm. This ranking is cru-
cial in disaster response, as it allows for prioritization of tweets
based on their urgency. Algorithm 3 provides a comprehensive and
systematic approach to identifying critical information in large
datasets, especially in emergency situations.

4 EXPERIMENTAL RESULTS
We evaluated the e�ectiveness of our methodologies introduced in
Section 3 through various experiments, ranging from event type to
urgency classi�cation. We evaluated �ve transformer models for
event types, relevance, and urgency and assessed their performance
using AUC-ROC, accuracy, precision, recall, and F1 score (taking
into account class imbalance). Our evaluations considered factors
such as model complexity, hyperparameter tuning, and class label
distribution, showcasing our models’ e�ectiveness and versatility
for disaster applications.

To ensure robust training and testing, we conducted our experi-
ments on a high-end gaming desktop with a Ryzen 9 5950X proces-
sor, NVIDIA GeForce RTX 3090 GPU, 128 GB of RAM, and CUDA

11.8. This powerful machine allows reliable and consistent model
evaluation, as evidenced by the e�ectiveness of our approaches.

4.1 CURD Annotated Tweet Samples for Our
2-Arguments

Table 1 provides a comprehensive analysis of disaster-related tweets
and e�ectively meets the challenges and objectives outlined in
Section 1 of the study. This is achieved through several key features.

The relevancy part of Table 1 addresses the challenge of �ltering
out irrelevant data, categorizing tweets as either "Relevant" or "Not
Relevant." This helps in separating critical information from less
pertinent data. For instance, the �rst tweet from the top of Table 1
is labeled as "Not Relevant" as it holds lower signi�cance in the
context of immediate disaster response. This supports the argument
that even if a tweet is disaster-related, it might not be relevant.

Table 1’s urgency classi�cation directly responds to the challenge
of prioritizing information based on urgency. Tweets are classi�ed
as "Urgent" or "Not Urgent," which assists decision-makers in iden-
tifying which messages necessitate immediate action. For example,
the second tweet from the top is deemed "Relevant" but not "Ur-
gent," underscoring its signi�cance in disaster management. This
aligns with the argument that relevancy might not depict urgency.

4.2 Relevancy Annotation - Event Type to
Binary Relevance

In the context of disaster response, Table 2 categorizes various
event types to binary relevancy, along with brief details to em-
phasize their relevance. A collective understanding of these event
types is essential as it o�ers a complete insight into a disaster’s
impact. Moreover, they play a pivotal role in facilitating response
e�orts and extending support to a�ected communities. Thus, they
are instrumental in developing an e�ective and informed disaster
management strategy.

4.3 Baseline Result - Urgency Annotation
Figure 3 shows the use of unsupervised machine learning tech-
niques to uncover patterns in tweets and classify them based on
urgency.

In Figure 3a, principal component analysis was used to reduce
the two-dimensional space of tweet embeddings produced by a
BERT model, resulting in two well-de�ned clusters. The purple
cluster exhibited a high degree of homogeneity, while the yellow
cluster demonstrated greater diversity. The K-Means algorithm
successfully separated the tweets into distinct groups, as seen by
the clear boundary between the clusters. PCA Feature 1 and 2
captured the primary variations in the tweet embeddings, providing
a meaningful basis for the clusters. The silhouette score of 0.48
con�rmed the presence of a moderately strong cluster structure,
indicating the e�ectiveness of our clustering approach.

In Figure 3b, t-SNE is used to visualize tweet embeddings. This
non-linear technique reduces the dimensionality of high-dimensional
data while adeptly preserving its local structure. Unlike PCA, t-SNE
uncovers clustering patterns that may not be readily visible. The
t-SNE visualization of the dataset shows two clusters with a smooth
transition of points between them, indicating the presence of dis-
tinct groups and a continuum of tweet embeddings connecting
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Table 1: Assumptions - This tweet sample includes information on Event Type, Relevance, Urgency, and Urgency Score. The
�rst tweet falls under the event type category ’admiration,’ which is related to disasters, but is classi�ed as ’Not Relevant.’
Similarly, the second tweet, which is disaster-related, is categorized as ’Relevant’ but falls under the ’Not Urgent’ class.

Tweet Event Type Relevancy Urgency
1. Reading about all the help extended to Nepal by di�erent countries, seems like
this world is still a good place to live #earthquake

admiration Not Relevant Not Urgent

2.TVNews Covers Harvey:Weather Channel, ABC, Others Track Chaotic Hurricane climate & env. issues Relevant Not Urgent

Event type Relevancy Explanation
Casualty Relevant regarding the human cost of the disaster.
Climate & Envi. Issues Relevant for environmental-related discussion.
Communication Relevance in coordinating disaster response services.
Damage Relevance for assessing the impact of the disaster.
Die Relevant as it involves the loss of life via the disaster.
Disaster Preparedness Relevance for mitigating current/future disaster impact.
Education Relevant for increasing disaster awareness and safety.
Empathy Relevance as it provides moral support to those a�ected.
Health Relevance for direct impact on people’s well-being.
Humanitarian Asst. Relevance as it pertains to aid and relief e�orts.
Info. Dissemination Relevance for the spread of critical information.
Inquiry Relevance for active information-seeking behavior.
Memories Relevance for insights from past disasters.
News Relevant for factual reporting and updates.
Personal Matters Relevant for personal disaster impacts/insights.
Politics Relevance for discussing political intervention and help.
Resources Relevant for discussing necessary supplies and aids.
Safety Relevance for protecting life and well-being.
Spiritual Relevant as a form of moral support.
Sport Relevant as it discusses the impact on local events.
Transportation Relevant for information on logistics and movement.
Travel Relevant for those a�ected by/responding to the disaster.
Warning Relevant for immediate safety/preventative measures.

Table 2: Event Types that constitute our Relevant Class

(a) PCA-based Tweet Clusters (b) t-SNE Tweet Embeddings

Figure 3: Urgency Tweets Annotation

these groups. This nuanced depiction contrasts with PCA’s more
segregated cluster portrayal. Notably, the t-SNE plot reveals some
degree of cluster overlap or intermingling at the boundaries, a
hallmark of t-SNE’s ability to capture subtle relationships within
the data. In the t-SNE feature space, the axes do not correspond
to explicit features but function as a map of similarities, with the
proximity of points re�ecting their co-occurrence in the original
complex dataset. This quality makes t-SNE a powerful tool for show-
ing the complex topology of data embeddings, providing a deeper
understanding of the intrinsic patterns in our dataset.

Subsequently, we also employ a quantitative method to pinpoint
the closest neighbors within our urgent tweets by leveraging an
index that signi�es the location of a tweet in an embedding matrix.

Each row of the matrix corresponds to the BERT-generated embed-
dings of a speci�c tweet. As shown in Figure 4, our approach entails
retrieving the top �ve most similar tweets to a randomly selected
one. To accomplish this, we calculate the cosine similarity between
the chosen tweet’s embedding and all other tweets’ embeddings
in the dataset. Cosine similarity measures the cosine of the angle
between two vectors, serving as an indicator of similarity. We then
sort these similarity scores to identify the indices corresponding
to the highest values, which represent the closest neighbors. Im-
portantly, we exclude the randomly selected tweet from this list,
as it would naturally be the most similar to its own embedding.
Furthermore, we describe a process for randomly selecting a tweet
from the dataset and employing the nearest neighbors function
to identify and display its nearest neighbors, as demonstrated in
Figure 4. These tweets share similar contexts, as indicated by the
embeddings’ similarity, as determined by the model.

4.3.1 Top Similar Tweets To Selected Tweet. Upon analyz-
ing the nearest neighbors for urgency annotation, our cluster of
tweets shares thematic relevance with the response and recovery
e�orts following the disaster tweets. Figure 4 depicts a randomly
selected tweet, which highlights the activation of systems by social
media companies to verify the safety of individuals a�ected by
the disaster. The proximity of the nearest neighbors in the feature
space suggests a similarity in the content features of these tweets,
which could be attributed to the use of common keywords such as
"#NepalEarthquake."

Figure 4: Top-5 Nearest Tweets to a Randomly Selected Tweet
for Urgency Annotation

The top-5 tweets selected by our model for the nearest neighbors
in Figure 4 include tweets that appeal for donations to recovery
funds, suggest innovations for disaster relief, discuss the challenges
faced by non-pro�t organizations in response e�orts, and share in-
formation on how to help and stay informed about the earthquake’s
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aftermath. Notably, these tweets revolve around philanthropic ef-
forts, providing resources and sharing information relevant to the
earthquake’s impact and response initiatives.

This grouping of tweets signi�es that the embeddings, likely
calculated by the BERT model, successfully capture the semantic
similarity between these messages. The relatedness of these tweets
depends upon their context and content, which is centered around
the Nepal earthquake relief e�orts. The model’s ability to cluster
these similar tweets through embeddings is a testament to the
e�ectiveness of BERT in understanding and capturing the nuances
of language use in social media content.

4.4 Baseline Result - Event Type Classi�cation
The results of our event type classi�cation, presented in Table 3,
o�er a comprehensive overview of the performance of the �ve
transformers models we utilize in the CURDdl classi�er model.

Our experimental �ndings in Table 3 demonstrate that CURDdl
– RoBERTa is the most e�ective model for event-type classi�cation,
achieving an accuracy rate of 89%, which is the highest among the
�ve transformers models we used in the CURDdl model. This model
also exhibits a balanced performance across precision, recall, and
weighted F1 score, all at 0.89. CURDdl robustness makes it suitable
for di�erent pre-trained transformers and disaster-related tasks
where accurate event-type classi�cation is crucial to accommodate
all information into di�erent class labels.

Models Precision Recall F1 Accuracy
CURDdl – BERT 0.88 0.88 0.88 0.88
CURDdl – BERTweet 0.88 0.88 0.88 0.88
CURDdl – RoBERTa 0.89 0.89 0.89 0.89
CURDdl – DistilBERT 0.88 0.88 0.88 0.88
CURDdl – XLNet 0.81 0.84 0.82 0.84

Table 3: Baseline Models for Event Type Classi�cation

The analysis provides valuable insights that are important for
future research and applications. The results indicate that CURDdl
– RoBERTa is the top choice for tasks requiring high accuracy in
event-type classi�cation. However, CURDdl – BERT, CURDdl –
BERTweet, and CURDdl – DistilBERT are also suitable alternatives,
especially when computational e�ciency is a priority. This anal-
ysis serves as a reference point for future research using the 29
event-type annotation class labels, highlighting the importance of
selecting the appropriate model based on speci�c task requirements
and the potential need to improve performance in more challenging
classi�cation categories.

4.5 Baseline Result – Relevancy
Our �ndings on relevance classi�cation in Table 4 demonstrate the
high performance of our models in classifying tweets as relevant or
non-relevant. With precision, recall, F1 score, and accuracy scores
mainly exceeding 0.90, the models exhibit robustness in accurately
distinguishing between the two categories, which is crucial in iden-
tifying critical information from social media during disasters.

CURDdl – BERTweet and CURDdl – RoBERTa models exhibit
negligible superior performance, with an accuracy of 0.91 and F1

Models Precision Recall F1 Accuracy AUC
CURDdl – BERT 0.89 0.90 0.89 0.90 0.95
CURDdl – BERTweet 0.91 0.91 0.91 0.91 0.95
CURDdl – RoBERTa 0.91 0.91 0.91 0.91 0.96
CURDdl – DistilBERT 0.90 0.90 0.90 0.90 0.95
CURDdl – XLNet 0.90 0.90 0.90 0.90 0.94
Table 4: Performance Evaluation for Relevancy Classi�cation

scores of 0.91. CURDdl – RoBERTa’s AUC score of 0.96 indicates
its superior ability to di�erentiate between classes, suggesting its
suitability for relevance classi�cation. These models e�ectively
sift through large volumes of social media data to classify crucial
information.

4.6 Baseline Result – Urgency
The results in Table 5 reveal that 3 models (CURDdl – BERTweet,
CURDdl – BERT, and CURDdl – RoBERTa) have same scores that
outperform CURDdl – DistilBERT and CURDdl – XLNet models in
classifying tweets based on their urgency, with 1% precision, recall,
F1, and accuracy of 0.88, and 0.94 AUC. This suggests that these
models have a slightly better ability to distinguish urgent tweets
from non-urgent ones.

Models Precision Recall F1 Accuracy AUC
CURDdl – BERT 0.88 0.88 0.88 0.88 0.94
CURDdl – BERTweet 0.88 0.88 0.88 0.88 0.94
CURDdl – DistilBERT 0.87 0.87 0.87 0.87 0.92
CURDdl – RoBERTa 0.88 0.88 0.88 0.88 0.94
CURDdl – XLNet 0.87 0.87 0.87 0.87 0.94

Table 5: Evaluation for Urgency Classi�cation Models

The results indicate that CURDdl –BERT andCURDdl –RoBERTa
are suitable for urgency classi�cation, while CURDdl – BERTweet’s
performance is worth noting, given its special pre-training and tun-
ing for X data. The choice of the CURDdl model may also depend
on factors such as pre-trained data and parameters, where CURDdl
– RoBERTa o�ers a speci�c advantage.

Our dataset size was reduced to 18,911 from over 26,000 in the
relevance annotation aswe only used the relevant class to determine
the message’s urgency. This is evident in the urgency classi�cation
results compared to the relevance classi�cation despite using the
same classi�er for both tasks.

Notably, the �ve models in Tables 3, 4, and 5 show minimal
di�erences in evaluation metrics, demonstrating the robustness
and versatility of CURDdl . This consistency is largely due to the
roles of other components of the classi�er like the customize layer.

4.7 Urgency Ranking by Score
The urgency ranking as depicted in Table 6 enhances the prior-
itization process by providing urgency scores. Higher scores, as
observed in tweets regarding the disaster response tweets, indicate
greater urgency based on severity, context, signi�cance, and need
for response services during a disaster.

In Table 6, the urgency ranking is determined by the severity
of an event that measures the immediate human impact. Tweets
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Table 6: Urgency Ranking - Evaluated the urgency of tweets based on severity, context, signi�cance, and the requirement for
response services.)

Tweet Event Type Relevancy Urgency Urgency Score
1. #NepalEarthquake | 40 school children injured in #WestBengal Live updates casualty Relevant Urgent 258.89
2. A children’s hospital in Texas is evacuating ten of its sickest and smallest
patients out of Hurricane Harvey

casualty Relevant Urgent 258.07

3. #BREAKING: #Sandy now 40 miles from New Jersey as winds water swell
#SandyNJ

damage Relevant Urgent 257.89

detailing casualties, such as Tweet 1 of Table 6 reporting 40 school
children injured in the Nepal earthquake, signal a high level of
urgency. Such situations necessitate swift medical and rescue oper-
ations. The context of the tweet ampli�es this urgency, particularly
when vulnerable groups are mentioned. The Nepal earthquake and
Tweet 2 of the Texas hospital evacuation tweets highlight situations
involving at-risk populations like school children and sick infants,
respectively, underscoring the gravity of these situations.

The impact of a disaster tweet is re�ected in its potential to
a�ect numerous lives and communities. A tweet mentioning a large
number of injuries, for instance, not only points to a considerable
event but also to the ripple e�ect it has on the community. The
response services’ needs are closely tied to this. Tweets indicating
urgent situations, like the injuries of children or the evacuation
of critically ill infants from Tweet 1 and 2, respectively, call for
immediate and well-coordinated medical and logistical support.

On the other hand, tweets that serve more as alerts, like Tweet 3
about Hurricane Sandy approaching New Jersey, provide valuable
information for preparedness and preventive measures. Though
they convey urgency, they typically demand a di�erent level of
urgency and response than those reporting actual incidents with
established casualties or ongoing crises. This evaluative approach
to tweet content ensures that the most critical situations receive
prompt attention and resources required amidst disaster scenarios.

4.8 Comparison with Other Works (Relevancy
and Urgency)

We compared our best-performing model (CURDdl ) for relevancy
and urgency, respectively, with results from other state-of-the-art-
models from related studies in the �eld of disaster management for
tweet classi�cation. To enhance the coherence of the comparison,
we categorized it into two types, direct and indirect comparison.

4.8.1 Direct Comparisonwith State-Of-The-Art (SOTA)Mod-
els with their Corresponding Annotated Datasets. We com-
pare our CURDdl model with other SOTA models where we use
publicly accessible datasets to train and test our model through
direct comparisons. Our direct comparison includes works from
[8], which employed non-neural (SVMs) and neural methods (CNN
and Dual-CNN) for relevance classi�cation and information type
classi�cation on the CrisisLexT26 dataset, which includes 26 crisis
events from 2012 and 2013. Our approach is also compared to [4],
which used domain adaptation with adversarial training and graph-
based semi-supervised learning on tweets from the 2015 Nepal
Earthquake and the 2013 Queensland Floods.

To provide a thorough evaluation, we utilized precision, recall,
and F1 scores, as well as AUC scores from related studies. Each
model in the table is named based on its authors �rst letter, the
year of the study, and the model’s name for multiple models. Our
models are distinguished by ’Re’ for relevance and ’Ur’ for urgency.
The abbreviations and corresponding classi�cation tasks are: [4]
- (F-NEQ and F-QFL), [8] - (B-SVM and B-DCNN), [6] - A-2014,
[40] - Y-2017, and [31] - P-2023. This analysis not only places our
work in the broader context, but also highlights our methodologies’
advancements and unique contributions.

Direct Comparison - Relevancy
Models Precision Recall F1 Accuracy AUC
F–QFL 0.93 0.94 0.94 - 0.92
CURDdl–Re 0.97 0.97 0.97 0.97 0.99
F–NEQ 0.65 0.65 0.65 - 0.65
CURDdl–Re 0.77 0.76 0.76 0.76 0.85
B–SVM 0.87 0.74 0.79 - -
B–DCNN 0.86 0.76 0.80 - -
CURDdl–Re 0.93 0.93 0.93 0.93 0.94

Direct Comparison - Urgency
B–SVM 0.64 0.60 0.62 - -
B–CNN 0.63 0.59 0.61 - -
CURDdl–Ur 0.86 0.86 0.86 0.86 0.93

Table 7: Direct Comparison with SOTA Models

Our analysis in Table 7 reveals that the CURDdl model outper-
formed all state-of-the-art-models (F–QFL, B–SVM, and B–DCNN)
in relevancy and urgency classi�cation, showcasing its exceptional,
contextual understanding of disaster-related tweets.

4.8.2 Indirect Comparison with SOTA Models and Datasets.
Indirect comparisons involve studies that are related to our task
but do not make their datasets publicly available. For instance,
Ashktorab et al. [6] developed logistic regression models to classify
tweets for mentions of human or infrastructure damage. Yang et al.
[40] created SVM classi�ers to identify rescue requests in tweets
during Hurricane Harvey. Lastly, Powers et al. [31] proposed a bi-
nary relevance and urgency classi�cation scheme for Hurricane
Harvey tweets and developed both neural and non-neural ML mod-
els. By comparing our approach with these studies, we can better
understand the strengths and weaknesses of our models, as well as
potential areas for improvement.

In the indirect comparison analysis presented in Table 8, CURDdl
exhibited outstanding performance compared to models such as
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Indirect Comparison - Relevancy
Models Precision Recall F1 Accuracy AUC
A–2017 0.78 0.57 0.65 0.86 0.88
Y–2017 0.61 0.79 0.69 0.93 -
P–2023 0.78 0.79 0.78 0.78 0.78
CURDdl–Re 0.91 0.91 0.91 0.91 0.96

Indirect Comparison - Urgency
P–2023 0.67 0.71 0.68 0.77 0.71
CURDdl–Ur 0.88 0.88 0.88 0.88 0.94

Table 8: Indirect Comparison with SOTA Models

A–2017, Y–2017, and P–2023. These models were impressive in
accuracy and AUC, highlighting the advancements of our approach
in relevancy and urgency tasks. This comparison, especially with
P–2023, underscores the potential of our models in real-world disas-
ter response applications. The results from both comparison types
a�rm our models’ e�ectiveness in complex disaster tweet classi�ca-
tion. Notably, the outstanding performance of CURDdl in terms of
accuracy and AUC highlights its potential for practical implemen-
tations. This comparative study contributes to ongoing research,
providing valuable insights for future endeavors.

4.9 Ablation Study
Accurately categorizing tweets is crucial for e�cient aid provision
in disaster response. In order to achieve this objective, we con-
ducted an ablation study to determine the impact of our additional
design features on the pre-trained transformer and the CURDdldl –
RoBERTa model’s functionality. Our best hyperparameter combi-
nation from ablation experiments is a learning rate of 2e-5 and a
batch size of 32. We also noticed there were negligible di�erences
with or without preprocessing techniques during the ablation.

Figure 5a displays the accuracy and F1 scores for event-type
classi�cation. The CURDdl – RoBERTa model attains 89 in both
metrics. Without the convolutional layer, the scores decrease to
65 and 66, and removing both convolutional and custom layers
results in the lowest scores of 57 and 56. Figure 5b demonstrates the
CURDdl – RoBERTa model’s performance in relevancy classi�ca-
tion using accuracy, F1 score, and AUC as three metrics. The model
achieves impressive results with all layers intact, including 91%
accuracy, 78% F1 score, and 87% AUC. These results highlight the
signi�cance of these layers in identifying relevant disaster commu-
nications. Figure 5c demonstrates the urgency of handling tweets
during disasters. The CURDdl – RoBERTa model scores 87 in accu-
racy, F1, and AUC, while models without custom layers perform
worse, emphasizing the importance of advanced feature extraction
for determining urgency.

The inclusion of custom attention and convolutional layers boosts
CURDdl – RoBERTa’s classi�cation abilities, and their removal de-
creases performance, highlighting their vital role in accurate disas-
ter response classi�cation.

5 CONCLUSION AND FUTUREWORK
This study presents CURD, an innovative approach for annotat-
ing, classifying, and prioritizing social media content during dis-
asters. Our annotation process is a three-way systematic labeling
(1) 29 event type, (2) binary relevance, and (3) binary urgency. This
method e�ectively tackles the challenges of determining event type,
relevance, and urgency in disaster-related tweets. Our classi�er
(CURDdl ) leverages a combination of transformer-based models,
a convolution layer, and custom attention layers, resulting in ex-
ceptional �ltering performance and assessing classi�cation tasks.
The experimental evaluations highlight the potential of CURD in
enhancing real-time disaster management and response while com-
puting urgency scores for urgent tweets. The �ndings of this study
highlight the signi�cance of utilizing advanced deep learning tech-
niques to process large social media data for crucial applications
such as disaster response.

In future work, we plan to use multilingual and cross-cultural
adaptation, where we will expand the CURD model’s capabilities
to process and interpret data from multiple languages and cultural
contexts, thereby increasing its global applicability in diverse dis-
aster scenarios. We also plan to integrate with other social media
platforms, which will expand the scope to analyze data from various
social media platforms other than X to gather more comprehensive
public responses and information during disaster.
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