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Abstract

The ecology of forest ecosystems depends on the composition of trees. Capturing fine-
grained information on individual trees at broad scales provides a unique perspective on for-
est ecosystems, forest restoration, and responses to disturbance. Individual tree data at
wide extents promises to increase the scale of forest analysis, biogeographic research, and
ecosystem monitoring without losing details on individual species composition and abun-
dance. Computer vision using deep neural networks can convert raw sensor data into pre-
dictions of individual canopy tree species through labeled data collected by field
researchers. Using over 40,000 individual tree stems as training data, we create landscape-
level species predictions for over 100 million individual trees across 24 sites in the National
Ecological Observatory Network (NEON). Using hierarchical multi-temporal models fine-
tuned for each geographic area, we produce open-source data available as 1 km? shapefiles
with individual tree species prediction, as well as crown location, crown area, and height of
81 canopy tree species. Site-specific models had an average performance of 79% accuracy
covering an average of 6 species per site, ranging from 3 to 15 species per site. All predic-
tions are openly archived and have been uploaded to Google Earth Engine to benefit the
ecology community and overlay with other remote sensing assets. We outline the potential
utility and limitations of these data in ecology and computer vision research, as well as strat-
egies for improving predictions using targeted data sampling.
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to preview predictions over RGB imagery: https:/
visualize.idtrees.org/. A csv file per site was
uploaded to Google Earth engine and a public link
is available as a FeatureCollection. For example,
‘https://code.earthengine.google.com/?asset=
users/benweinstein2010/RVINP * is the RMNP,
Rocky Mountain National Park, predictions. For
more on using NEON data and earth engine, see
https://www.neonscience.org/resources/learning-
hub/tutorials/intro-aop-gee-image-collections. The
code used in this manuscript is available both as an
archive resource on zenodo (https://zenodo.org/
records/10689811) and as a github repository
(https://github.com/weecology/DeepTreeAttention).
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Introduction

Broadscale tree taxonomic data is essential for forest management, conservation planning, eco-
system service modeling, and biodiversity research. Historically, collection of tree species data
has largely relied on (1) field-censused plots ranging from dozens of individuals to several
thousand trees [1] that provide high-quality data, but can only be monitored over small areas
for each plot; and (2) satellite-based predictions of community-level taxonomic diversity,
which can be made continuously over broad scales, but lack detailed information on individual
trees [2]. Individual tree predictions from high-resolution airborne data complement these
approaches by creating a bridge between high-quality, but spatially restricted, field data (e.g.,
[3]), and spatially continuous, but low-resolution data, from satellite or airborne sensors [4].
The spatial coverage of high-resolution airborne imagery from planes and UAVs allows a
broader view of forest ecology over areas from dozens to 10,000s of hectares [5,6]. Access to
these data can complement field data and global satellite monitoring to facilitate the assess-
ment of forest structure and dynamics and how they respond to ecological processes, human
management, and global change [7].

Individual tree detection is a long-standing task for remote sensing of the environment as it
provides information on the densities of individual trees for large areas. Predicting the location
of individual trees (e.g., [8-10]), as well delineating the extent of tree crowns (e.g., [11]), is
essential in many remote-sensing workflows and has been a rich area of algorithmic research
(see reviews by [12,13]). Deep learning algorithms using a combination of human-labeled
imagery and field-based geospatial data have become the standard tool for tree detection for
airborne RGB data [14-16]. The challenge for deep learning algorithms for tree detection is
collecting sufficient training data to capture the variation in tree crown shape when applied
across land-use and forest types.

After individual tree crowns have been delineated, the next step towards airborne forest
inventories is to assign each crown a taxonomic label [17]. Dozens of models have been pro-
posed using classical image processing [18], feature-based machine learning [19,20], and deep
learning [21-23] but it is unclear if they are successful when applied to a variety of ecosystems
with differences in tree density, abundance distributions, and spectral backgrounds. Given the
very low sample sizes of training data in most studies, it is difficult to capture the range of spe-
cies present and the spectral representations for each species. One proposed solution to this is
using an ensemble of multiple time points of airborne imagery to improve within-site perfor-
mance [24]. Sample size issues are magnified by class imbalance since the dominant taxa in
many systems comprises more than 50% of training data and can thousands of times more
common than the rarer species in the dataset. This imbalance makes it difficult to train large
neural network models and create rigorous evaluation datasets [17].

Combining tree delineation and species classification to create broad scale tree maps is fur-
ther complicated by the interaction between workflow components. Ref [25] reported that spe-
cies classification decreased by more than 20% when moving from pixel-level to individual
tree crown-level predictions. Changes in illumination during multiple days of remote-sensing
data collection hampers generalization and species mapping has largely occurred at single
flight line scales (e.g., [21]), or supported by terrestrial data in urban environments [26]. The
changes in local species abundance over large areas contributes to further mismatch between
training data and predicted landscapes at wide extents. Ref [27] proposed an approach to
addressing these limitations by using a flexible hierarchical model structure that uses simple
rules to define a series of models to create an ensemble species prediction. This approach uses
both multiple views of the same crown across years, as well as a hierarchical structure to reduce
the effect of species imbalance. It was effective at expanding the number of species that could
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Fig 1. Conceptual workflow for species prediction at each NEON site. The fig is modified from [27].
https://doi.org/10.1371/journal.pbio.3002700.9001

be accurately classified at a single National Ecological Observatory Network (NEON) site but
has yet to be tested and applied across sites with a diversity of forest types. Here, we apply the
tree delineation and species classification workflow proposed for a single site in [27] to sites
across the United States and assess its performance in order to provide data for ecological and
computer vision research.

The NEON provides an opportunity to advance our regional scale understanding of forests
by collecting open-access, high-resolution airborne remote-sensing data over 10,000s of hect-
ares [28]. NEON collects standardized terrestrial and airborne data at dozens of sites across
the US, creating an ideal situation for constructing landscape scale maps of canopy tree species
for ecological research. Our aim is to generate individual canopy tree crown maps to support
the ongoing forest, ecosystem, natural history, community science, and wildlife research pro-
grams at NEON sites [29-32]. Here, we combine airborne RGB, hyperspectral, and LIDAR
data, to predict 100 million canopy tree locations for 81 species within 24 NEON sites across
the US using machine learning models to predict crown position, species identity, health sta-
tus, and height for individual trees visible in the canopy (Fig 1). Our work extends the crown
location dataset published in [33] by adding predictions of species identity and alive/dead clas-
sification. The addition of species labels significantly expands the utility of this dataset for bio-
diversity research and natural resource management.

Materials and methods
Airborne sensor data

The NEON airborne observation platform (AOP) collects remote-sensing data on an annual
basis during leaf-on conditions for all sites. For each site, data is collected at peak greenness to
reduce variation due to phenological differences [28]. We used 4 NEON data products: (1)
orthorectified camera mosaic (“RGB” NEON ID: DP3.30010.001); (2) ecosystem structure
(“Canopy Height Model” NEON ID: DP3.30015.001); (3) hyperspectral surface reflectance
(“HSI” NEON ID: DP1.30006.001); and (4) vegetation structure (NEON ID: DP1.10098.001).
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All data were downloaded in August 2022 and were the RELEASE form [34]. The 10 cmm RGB
data were used to predict tree crown locations necessary for associating field labels and sensor
data during model development. RGB data were also used to identify dead trees during our
prediction workflow. The 1 m canopy-height model was used to determine which field col-
lected data were likely to be visible from the air, as well as to define a 3 m minimum tree height
threshold during the prediction workflow. The HSI data is used to differentiate tree species
based on spectral reflectance. The HSI data spanned approximately 420 to 2,500 nm with a
spectral sampling interval of 5 nm producing a total of 426 bands. NEON provides orthorecti-
fied images with a pixel size of 1 m” in 1 km” tiles that are georectified and aligned with the
RGB and Canopy-Height-Model. For more information on hyperspectral data processing and
calibration, see NEON technical document NEON.DOC.001288.

Field-based species labels

The NEON Vegetation Structure dataset is a collection of tree stem points within fixed-area
field plots; plot locations are allocated across sites according to a stratified random, spatially
balanced design [35]. All trees in sampled areas with a stem diameter >10 cm are mapped and
measured for diameter, height, health status, and species identity. Building on this NEON
dataset, we contacted researchers at each NEON site to find as many mapped stems as possible
outside the NEON woody vegetation sampling plots. We collected 22,072 additional canopy
trees from a variety of sources, including several large ForestGEO plots co-located at NEON
sites [1] and public data [36]. We followed the taxonomic hierarchy used by NEON except for
genus-only, subspecies, and variety labels.

To connect species information from ground-based stem points with the airborne sensor
data, we adopted a heuristic data filtering approach (Fig 2). We began with raw stem data for
41,036 individuals. We removed stems that were labeled as dead or broken, did not have a spe-
cies label, or were less than 3 m in field-measured height. Whenever DBH was available, stems
less than 10 cm were discarded. We then compared the field-measured height to the height of
the LiDAR-derived canopy model at the stem point for the closest available year. If the differ-
ence between the LIDAR-derived and field height was more than 4 m, we discarded the stem.
We then overlaid these height-filtered points to crown bounding box predictions made from
the DeepForest RGB algorithm. If more than 1 height-filtered point fell within the predicted
canopy crown box, we selected the tallest point using the canopy height model since this was
most likely to be the dominant tree in the canopy. The shorter tree stems that overlapped the
bounding box were discarded. If a point did not overlap with any bounding box, we created a
1 m buffer around the point to serve as a crown box. We refer to these crowns as “fixed boxes,”
and these were only included in training data, but never in testing data due to lower confi-
dence in associating species labels and sensor pixels. Finally, if there less than 3 matched stems
per species at a site, the species and its stems were removed for that site. After these steps, there
were 31,736 points remaining to be used for model training and validation. Ref [20] used a
portion of these training data to compare local versus global models for each site. Because of
the differences in evaluation approaches, a precise comparison between [20] and this article is
not possible. We emphasize that the focus of this article is on the publication of the crowns
dataset rather than a comparison of a bounding box multi-temporal deep learning approach
versus the pixel-based ensemble of machine learning classifiers presented in [20]

For predictions to be maximally useful, they should cover the dominant canopy tree species
that occur within a site. There is a tradeoff between the filtering steps described above to strive
for accurate matches with canopy trees versus a desire to include as many species as possible.
We compared our final filtered data to all field-collected tree species to assess the proportion
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of field-estimated tree species richness at the site captured by the model. We calculated the
proportion comparing image-predicted species data to: (1) all species—every record in the
field collected data with at least 2 samples; (2) canopy species—the data filtered to 3 m height
and labeled as visible in the canopy in NEON field-surveys; (3) individuals—the proportion of
individuals in the training data captured by the species in the model. For example, if we had
100 individuals in a geographic site in the original field data, with 97 individuals coming from
species A and 3 individuals from species B, and the model only contained species A, the pro-
portion of species covered would be 0.5, but the proportion of individuals would be 0.97.

Crown prediction

The DeepForest algorithm used in this work was first proposed in [37] using a combination of
hand-annotated tree crown delineations and large-scale synthetic pretraining data using
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LiDAR-derived tree locations; [16,38] compared the performance of tree detection algorithms
across NEON sites and released the DeepForest model as an open-source python package with
an average recall of 72%. Recall was measured using intersection-over-union, a common
object detection metric, with a threshold for overlap of 0.4 for a positive match between pre-
dicted crown box and hand annotation. In [33], we released a dataset of 100 million crowns
and calculated the performance of our workflow in matching crown predictions to individual
trees by scoring the proportion of field stems that fall within a prediction. Field stems can only
be applied to 1 prediction, so if 2 predictions overlap over a field stem, only one is considered a
positive match. The average stem recall was 69.4%, with better performance in well-spaced
western forests, and weaker performance in alpine conifer forests. DeepForest has been used
widely outside of NEON sites [10,26,39,40] with accuracies generally mirroring approximately
70% for fine-tuned models from independent analysis [41].

We follow the workflow described in [33] with tree crowns less than 3 m maximum height
in the LiDAR-derived canopy height model removed. Each predicted crown in the RGB imag-
ery had a unique ID, predicted crown location, crown area, and confidence score from the
DeepForest tree detection model. Following tree detection, we classified each predicted crown
as “Alive” or “Dead” based on the RGB data. Presented in [27], this Alive-Dead model is a 2
class resnet-50 deep learning neural network trained on hand-annotated images from across
all NEON sites. During prediction, the location of each predicted crown was cropped and
passed to the Alive-Dead model for labeling as Alive (0) or Dead (1) with a confidence score
for each class. Combining the information from the crown prediction, alive/dead prediction,
and species classification, we release shapefiles for each 1 km NEON HSI tile that has overlap-
ping RGB and LiDAR data (Table 1).

Species prediction
To train species classification models, we opted to build a different model for each NEON site
to create the best possible set of species predictions for downstream ecological analysis. To

Table 1. Data available for each predicted crown. Crowns are organized into 1 km shapefiles with UTM projection
and follow the naming scheme from NEON’s AOP data, with a geographic index at the top left corner. For sites with
fewer than 5 species, the broadleaf and conifer labels are not available, as they are largely redundant with the species
present and were all modeled jointly.

Column Definition
name
Geometry A 4 pointed bounding box location in UTM coordinates.
indiv_id A unique crown identifier that combines the year, site, and geoindex of the NEON airborne tile

(e.g., 732000_4707000). The UTM coordinate is the northwest corner of the tile.
sci_name The full Latin name of predicted species aligned with NEON’s taxonomic nomenclature.

ens_score | The confidence score of the species prediction. This score is the output of the multi-temporal model
for the ensemble hierarchical model.

bleaf_taxa Highest predicted category for the broadleaf model.
bleaf_score The confidence score for the broadleaf taxa submodel.

oak_taxa Highest predicted category for the oak model.

dead_label A 2 class alive/dead classification based on the RGB data. 0 = Alive/1 = Dead.
dead_score The confidence score of the Alive/Dead prediction.

site_id The 4 letter code for the NEON site. See for site locations.

conif_taxa Highest predicted category for the conifer model.
conif_score The confidence score for the conifer taxa submodel.

dom_taxa Highest predicted category for the dominant taxa mode submodel.
dom_score The confidence score for the dominant taxa submodel.

https://doi.org/10.1371/journal.pbio.3002700.t001
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classify each predicted crown tree crown to species, we use the 1-m hyperspectral data and a
multi-temporal hierarchical model. Ref [27] found that a hierarchical model outperforms a flat
model by improving rare species accuracy. The hierarchical model organizes tree species into
submodels, allowing each model to learn better features related to distinguishing similar clas-
ses. The submodels also allow species that are well sampled to be separated from poorly sam-
pled species, thereby reducing the effect of class imbalance in favoring common species [42].
Within each submodel, we combine predictions for each year of available sensor data to reduce
the potential overfitting and bias due to georectification of ground-truth trees and image
acquisition conditions. The top model predicts “Broadleaf,” “Conifer” and optionally the dom-
inant tree species class at that site based on its frequency in the training data. A species was
considered “dominant” if it consisted of more than 40% of the training samples. Without this,
common machine learning approaches will predict most samples as the dominant class regard-
less of spectral signal. After prediction in the first subgroup, samples that are predicted as
“Broadleaf” are then passed to the Broadleaf submodule, and samples that are predicted as
“Conifer” are then passed to the Conifer submodule. This structure was maintained for the
majority of sites, but we did allow some site-specific customization. For example, at the Ord-
way Swisher Biological Station, Florida (OSBS) site, the many similar oak congenerics were
split off into their own oak submodule within the broadleaf submodule.

Each submodule consists of a 2D spectral attention block (Fig 1) with 3 convolutional layers
and a max pooling spectral attention layer following [43]. Batch normalization is used to nor-
malize layer weights after each convolution. This spectral attention block was repeated for
each year of airborne sensor data to create an ensemble model. For example, if there are 4
years of available hyperspectral data for a geographic location, we predicted 4 classification
outputs and then combined them to create the final prediction. This assumes that canopy trees
at each geographic location are unlikely to change species label among years at short time
scales [44]. A weighted average among all years was used to create the sample prediction for
each crown. This relative weight among years was a learned parameter for each submodel.
Despite multiple publications that highlight performance gains through multi-modal data
fusion in remote-sensing classification [45,46] we did not find significant improvements when
adding the 10 cm RGB data to species classification (Fig A in S1 File), but continue to believe it
will have a role in distinguishing similar species.

For each site, we pretrained the hierarchical model using data from all sites, but only
including the species at the focal site. We then fine-tuned this model using samples only at the
target site. We experimented with a single NEON-wide model across all sites, but found con-
sistently worse performance, especially for rare species (Fig B in S1 File). For each site, we pre-
trained for 200 epochs, decreasing the learning rate of each submodel based on performance
on the focal site test data. We then fine-tuned this model with the available annotations at the
target site for 200 epochs. Learning rates differed among submodules, with the dominant class
and conifer submodules having an initial learning rate of 10e-5, and the broadleaf model start-
ing at 10e-4. We allowed batch size to vary between 12 and 24 depending on the site to account
for differences in class imbalance and dataset size.

To determine the evaluation accuracy of species predictions, we developed a train-test split
with a minimum of 10 samples per class. To minimize the potential effect of spatial autocorre-
lation in hyperspectral signature between training and test datasets, we adopted a spatial block
approach [17]. All samples within a NEON plot or within a 40-m grid for the non-NEON con-
tributed data were assigned to training or test. We performed this assignment iteratively until
the minimum number of samples per class were in the test dataset. The remaining samples
were used to train the model. For each site, we evaluated the accuracy and precision of each
species. To get the site-level score, we used both micro-averaged accuracy and macro-averaged
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accuracy. Micro-averaging weights all samples the same, and therefore, is largely driven by the
performance of the common species. Macro-average weights all species the same, giving greater
importance to the rare species as compared to their frequency in the dataset. We also computed
the accuracy of the higher order taxonomic labels (e.g., “Broadleaf” versus “Conifer”), which
may be useful to downstream applications in which coarser categories are sufficient.

Results

We developed individual canopy tree species predictions for 81 species at 24 NEON sites
(Table 2). To visualize the predictions and overlapping RGB data, see visualize.idtrees.org.
There was an average of 6.56 species per site, with a maximum of 15 species (Harvard Forest,
Massachuesetts) and minimum of 3 (Delta Junction, Alaska and San Joaquin Experimental
Range, California). Compared to reference species lists filtered for canopy species, the crown
dataset covered 47.5% of the total species richness for trees >10 cm dbh represented in the ref-
erence list at the sites (Fig 3). These species account for an average of 85.0% of the stems >10
cm dbh from the forest plot data at the NEON sites. The average model had a micro-averaged
accuracy of 78.8% and a macro-accuracy of 75.8% (Table 2). Sites with more data generally
performed well, with a general pattern of decreasing species-level accuracy with fewer data
(Fig 4). Consistent with previous work, the highest performing sites, including Teakettle Can-
yon, CA (TEAK), Niwot Ridge Colorado (NIWO), and Yellowstone National Park, Wyoming
(YELL), were dominated by conifers and had relatively low species diversity [20]. Models per-
formed more poorly in southern broadleaf forests, such Talladega National Forest, Alabama

Table 2. Evaluation scores for each NEON site included in the dataset. Sites are ranked from highest to lowest micro accuracy.

Site, state Forest description Micro Macro Species Train samples Test samples
accuracy accuracy
SJER, CA Oak Savannah 1.00 1.00 3 47 27
GRSM, NC Southern Hardwoods 0.90 0.89 3 200 29
TEAK, CA Western Conifer 0.82 0.83 7 713 67
BONA, AK Riparian and Taiga 0.82 0.74 4 584 103
STEI, MI Northern Hardwoods 0.80 0.83 6 283 82
NIWO, CO Alpine Conifer 0.80 0.77 4 852 46
YELL, WY Western Conifer 0.80 0.83 3 390 10
SERC, MD Southern Hardwood 0.80 0.68 11 816 287
DELA, AL Southern Hardwood 0.79 0.79 7 166 72
DEJU, AK Taiga 0.79 0.78 3 571 52
UNDE, WI Northern Hardwood 0.79 0.79 13 547 178
SOAP, CA Western Conifer 0.78 0.78 4 223 37
MLBS, VA Southern Hardwood 0.78 0.75 5 363 54
TREE, MI Northern Hardwood 0.78 0.72 15 643 168
WREF, WA Western Conifer 0.76 0.66 4 598 97
TALL, AL Southern Hardwood 0.76 0.72 6 250 125
HARV, MA Northern Hardwood 0.76 0.57 15 9,782 1,194
OSBS, FL Oak Savannah, 0.73 0.63 14 3,293 240
CLBJ, TX Qak Savannah 0.73 0.73 3 187 30
BLAN, VA Riparian 0.72 0.73 8 271 79
LENO, AL Southern Hardwood 0.71 0.71 3 74 28
RMNP, CO Alpine Conifer 0.70 0.70 7 671 99
BART, VT Northern Hardwood 0.68 0.66 7 514 125
UKEFS, KT Southern Hardwood, Riparian 0.60 0.60 8 204 85

https://doi.org/10.1371/journal.pbio.3002700.t002
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Fig 3. The proportion of species included in the model for each site compared to species with at least 2 records in the field-collected data. We calculated
the proportion compared to: (1) all species—every record in the field collected data with at least 2 samples; 2) canopy species—the data filtered to 3 m height
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model. For example, the BART model has 35% of species found during field surveys, 46% of the species judged to be in the canopy, but these species represent
over 97% of the sampled individuals at the site. For a complete list of each species in the model and the canopy-filtered data, see Table A in S1 File. The dashed
line is the mean number of species across sites for both species and individual proportions. The underlying data for this figure can be found in supplemental
data “S1 Data.”

https://doi.org/10.1371/journal.pbio.3002700.9003

(TALL) and Smithsonian Environmental Research Center, Maryland (SERC), with higher bio-
diversity, closed canopy structure, and/or low data coverage per species. The most abundant
species at a site typically had the highest accuracy, with lower accuracy for rarer species (Fig 4).

Applying the best model for each site to all available airborne tiles, we predicted
103,441,970 trees with an average of 4.31 million trees per site. Of the 24 sites, 17 are heavily
forested with near continuous canopy cover. Sites vary in both area and forest density, with
the smallest size in San Joaquin Valley, CA (SJER) with 0.85 million trees predicted, and the
largest site in TreeHaven, Wisconsin with 7.1 million trees predicted. The sites with the most
predicted trees tend to have high species diversity at local scales with complex, overlapping
crown boundaries (Fig 5). Patterns of biodiversity are highly scale dependent with grouping of
similar species in local areas and complex patterns of species patches at broader scales within
the same site (Fig 6). Ranking the predicted species abundance for each site, the most predicted
species represented approximately 60% of crown classifications (Fig 7). The dominant species
was slightly less abundant in the southern broadleaf sites with 30% to 40% of crowns belonging
to the most commonly predicted species. Viewing the predictions at the largest spatial extents,
there is a broad range of species presence patterns, from sites showing highly mixed species to
sites with distinct autocorrelation and species patterns at all spatial scales (Fig 8).
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https://doi.org/10.1371/journal.pbio.3002700.9004

Discussion

We used a multi-step deep learning workflow to generate individual level canopy tree species

predictions continuously across large landscapes in a diverse array of forest types at sites
within the NEON. The result is an extensive dataset on individual canopy tree species distribu-
tion that can be used for studying large-scale forest ecology, used as a baseline dataset for guid-
ing field sampling, and integrated into larger scale remote sensing tasks as training data for
satellite-based models. These data will inform a broad array of research programs, for example,
community ecologists can study the patterns of species distributions as a function of
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https://doi.org/10.1371/journal.pbio.3002700.9005

environmental and biotic interactions [47,48], the phylogenetic structure of tree assemblages
[49], and scale dependance of species plant communities [50]; ecosystem scientists can
improve estimates of biomass using species-specific allometry [7,51], and foresters can mea-
sure impacts of habitat disturbance and landscape history [52,53]. To facilitate the broad use of
this dataset, we have uploaded the dataset to Google Earth Engine, which provides tools and
computational resources that facilitate large-scale data analysis integrating numerous remote-
sensing assets that are collectively stored in the Earth Engine catalog.

The species classification models used to generate this dataset generally performed well
with the accuracy for most common species ranging from 75% to 85% at well-sampled, diverse
sites. Repeating a general model architecture for tree species prediction across a broad array of
sites, revealed several general tendencies in the accuracy of predicted tree crowns including:
(1) decreased accuracy with an increasing number of species; (2) higher accuracy at sites with
more open canopy structure; and (3) a general tendency of higher performance for conifer
over broadleaf species. This led to geographic patterns in accuracy even among sites in similar
ecosystems, with northern broadleaf sites in general having better accuracy than the more
diverse southern broadleaf sites. As local species diversity increases, classification errors are
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https://doi.org/10.1371/journal.pbio.3002700.9006

more likely due to increased numbers of model parameters (leading to potential overfitting),
greater complexity in splitting similar species, and increased frequency of neighboring trees
being from different species resulting in pollution of crown edge pixels. High local turnover
may also decrease accuracy because it makes training data taken from a subset of the predicted
region less representative of the total biodiversity and spectral background. For example,
unique habitats in the remote sensing footprint appear to be more well sampled by NEON’s
terrestrial plot design [35] in “Northern Broadleaf” forests than in “Southern Broadleaf” for-
ests, likely due to the northern forests being more admixed.

Data derived from airborne remote sensing should be seen as a complement to, not a
replacement for, field data. While the dataset will facilitate capturing dynamics at scales infea-
sible for ground-based surveys, we stress that the data are imperfect predictions that can, and
should, be improved with increased data collection and model exploration. Because of the
nature of the airborne data, the dataset only includes crowns in the top layer of the canopy
(sunlit tree crowns), and users should be careful when calculating stand-level metrics such as
abundance, crown area, or DBH and comparing them to ground-data that includes smaller
subcanopy trees. Compared to field surveys, the canopy dataset will include fewer trees, with a
bias towards large trees. Comparing the predicted canopy count and ground counts for the
NEON field plots, the average undercount at each site was 8.51 individuals (range -2.45, 22.85)
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(Fig C and Table C in S1 File). There will also be fewer species represented in the dataset than
observed in the field, in part because subcanopy only species are explicitly excluded from the
model (Fig 3).

In addition to the restriction to canopy trees, each part of the workflow has associated
uncertainty and tradeoffs in defining fixed labels. DeepForest, the crown detection algorithms,
has been evaluated against hand-annotated imagery [16], field-stem recall [33], and images-
drawn by observers on tablets directly in the field [54], and consistently found to have roughly
70% to 75% accuracy for crown delineation. Errors occur due to over segmentation (1 tree is
identified as multiple trees), under segmentation (2 or more trees are identified as a single
tree), and imprecisely defined crown edges. In general, counts of canopy trees on a landscape
are often more accurate (because over and under segmentation errors cancel out), but detailed
boundaries and crown area are less accurate. Beyond tree detection, the alive/dead label should
be interpreted as provisional since trees can lose leaves due to a variety of causes such as insect
defoliation in 1 year, but ultimately recover over time [55]. Species predictions are also uncer-
tain, and while they include the most common species at each site, they still fail to include sev-
eral species that do occur in the canopy (Fig 3). The discrepancy between canopy species in the
filtered field dataset and species predicted in our model is a result of several factors. Some
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canopy species are rare and thus have too few samples in our dataset to be included. This may
be due to species that are common but only in rare habitats or are rare throughout a broad
area of each site. On the other hand, some species may be common, but are shorter statured
species that tend to mostly be in the subcanopy or only rarely reach in the canopy. When they
do reach the canopy, the crowns are very small, providing poor spectral signature. Some can-
opy species are rare (either throughout the entire region or only occurring in rare habitats)
and thus have too few samples to be modeled.

Given the uncertainties inherent in creating large-scale species maps, it is important to con-
sider potential approaches for incorporating this uncertainty in analyses involving this and

similar datasets. Ref [27] outlined multiple options for incorporating model uncertainty when
using the data in downstream analysis. We compared data uncertainty through multiple train-
ing and test splits, model uncertainty by repeatedly training the model from the same training
data, and prediction uncertainty using a multinomial draw of the confusion matrix to generate
predicted counts for each species within a single site. While this is a useful first step, ultimately
hierarchical models that can directly incorporate model uncertainty should be developed to
improve downstream ecological analyses of remote sensing based data (e.g., [56]). Calibrating
confidence scores using held-out data from training or test is an important step in this direc-
tion [57], but there was insufficient data to set aside for this purpose while maintaining less
common species in the model. This will be a common limitation in ecological studies where
the limited data can be crucial for improving model accuracy and incorporating rarer species.
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Post hoc corrections of predicted counts (e.g., [58]) or models that account for multiple types
of uncertainty will be crucial in making robust predictions at larger spatial extents going
forward.

The process of making predictions for 100 million trees across a broad range of habitat
types helped identify areas for improvement in computer vision needed to address obstacles in
assembling tree maps at massive scales. The main obstacle to improving model accuracy is the
availability of training data. We have found that targeted sampling can yield 10% to 20%
improvements in accuracy, and significantly broaden the number of species included in the
model predictions, with only a few days or weeks of field work (Box 1). The simplest form of
data needed is a geospatial point of a tree stem (precise enough to ensure it falls within a pre-
dicted crown box) and its species label. Data collection should focus on less common species,
since more data on common species will have limited impact on model performance. Strate-
gies for prioritizing new data collection include: (1) using expert knowledge to identify areas
containing underrepresented species; (2) using the model confusion matrix and predictions
from the initial model to select species with unexpected confusion patterns, such as underrep-
resented species that are not visually similar that are confused by the model (a possible indica-
tor of spectra being polluted by neighboring trees); and (3) sampling individuals with low
confidence scores for their species predictions indicating either poor model performance or a
species not included in the model.

There are also areas for improvement in associating tree stems with crown pixels. Our mod-
els perform better in open forests with low diversity, where spacing among trees improves
crown delineation and fewer species reduces the chance of neighboring tree species polluting
the spectral signature. This can be partially overcome by using crown polygons drawn on a
tablet in the field, rather than relying on stem points taken by a GPS. Even a limited number of
these crown polygons could allow the adoption of “weak labeling” approaches common in
computer vision that rely on access to a small number of confident samples and a larger set of
less confident samples.

One of the reasons additional data collections can be beneficial is that compared to the typi-
cal computer vision application, the data sample sizes of the classes used in these models are
extremely low. Therefore the emerging area of research on “few shot learning,” in which foun-
dation models are used to predict new classes with only 1 to 5 samples, may be a useful avenue

Box 1. In-depth examination of new data collection to improve
models

To increase the species coverage and accuracy of these models, we need additional data
collection at each NEON site. Here, we outline one effort by N.G. Swenson and V.E.
Rubio to improve the model at the University of Notre Dame Environmental Research
Center (UNDE) site through targeted data collection (Fig 9). The original model had
67.8% micro-accuracy, 61.6% macro-accuracy, and included 12 species. Overlaying the
predictions over a recently mapped forestry plot, 3 areas of need were identified: (1) sev-
eral key species were missing from current predictions; (2) there was overprediction of
Fraxinus nigra compared to the abundance expected by field researchers; (3) there was
high confusion between 2 closely related Populus species. Using these goals to target
trees, data on an additional 157 stems of 12 species were collected along easy to access
roads and forest edges. After training the model on the additional stems, the micro-aver-
aged accuracy increased from 67.8% to 77.7% and the macro-averaged accuracy
increased from 61.6% to 79.1% while adding an additional species to the test dataset.
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The accuracies of the 2 closely related Populus species increased from 66% and 54% to
72% and 82%, respectively.
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Fig 9. Original versus re-trained model predictions for UNDE. New sample trees were collected in the field without
guidance from the predictions. The outline color is the original label, the filled shade is the revised label. The 2 Tsuga
canadensis (top center) and the field samples were correctly predicted in the original model. The Betula allenghensis
field samples were split. The tree on the right was correctly predicted in both models. The tree on the left was originally
predicted as Acer rubrum but was correctly predicted in the revised model. Overall, most labels do not change among
models, with only a small number of trees changing labels. For example, several trees that were originally predicted as
Acer rubrum have been revised, and a single Picea glauca was revised to A. rubrum in the top left.

https://doi.org/10.1371/journal.pbio.3002700.9009

for further improving tree species predictions (e.g., [59]). In the extreme, the task of zero-shot
learning [59,60], or unknown class detection, in which the model can identify classes not
included in training, will help address the challenge of identifying individuals not included in
the models and have utility in rapid applying models trained on NEON data to new areas. This
approach is limited by our current modeling design since the site-level model approach limits
portability, and the hierarchical organization can be cumbersome to apply in new regions and
as new species are added. While we chose this approach because it currently produces the
most accurate predictions and therefore the best resulting dataset, a single NEON-wide model
that is robust to class imbalance, but maintains good separability among co-occurring species,
would be a major step forward.

Extending the models used in our workflow to non-NEON sites will be important in broad-
ening access to high-quality tree species prediction. There is considerable interest in develop-
ing species predictions for large areas using high-resolution satellites and UAVs with low-cost
hyperspectral sensors. Using NEON data as a source for training data to project into these
coarser resolution data has large benefits since the NEON data is both high spectral and spatial
resolution. This kind of “Domain adaptation” is an open challenge in computer vision, with
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many proposed approaches to try to align either the input data or learned features among dis-
parate sensors or geographic areas [61]. The ample unlabeled airborne data at NEON opens
the possibility of a combination of supervised and unsupervised learning to increase transfer-
ability among geographic sites, spectral resolutions, and spatial scales. In conjunction with
automated methods for data collection, these approaches will move the community towards
airborne classification models for tree species that can generalize across sampling events, geog-
raphy, and acquisition hardware.

As the number of researchers working at NEON sites increases, the diversity of overlapping
datasets will foster richer areas of understanding for forest ecology and ecosystem functioning.
The goal of this work was to provide initial predictions for canopy trees at the landscape scale
to document the broad pattern of tree species distributions, which in turn influence ecological
communities and nutrient cycling. Combining these data with organismal surveys, fine-scaled
environmental data, and landscape history will bring greater insights into the mechanisms
underlying forest distribution and function. NEON’s on-going data collection will allow these
maps to be updated both in terms of geographic coverage, as well as temporal change in species
abundance and individual traits.

Supporting information

S$1 Data. The underlying data for Fig 3.
(CSV)

$2 Data. The underlying data for Fig 4.
(CSV)

$3 Data. The underlying data for Fig 7.
(CSV)

$4 Data. The underlying data for Fig B in S1 File.
(CSV)

S5 Data. The underlying data for Fig C in S1 File.
(CSV)

S1 File. Supplemental materials. Table A. Species included in each model for each NEON
site. The number of samples (1) for each species in the canopy filtered data. To be included in
the model, a species needs to have at least 10 training samples and 10 test samples at a site in
the final filtered data. The number of predicted trees at each site, the proportion of total pre-
dictions at the site, and the rank abundance of each species is shown. Fig A. An example
model architecture for data fusion between 1 m HSI data and 10 cm RGB for tree species clas-
sification. In this example, a batch of crowns (n = 20), each with an HSI and RGB pair, is run
through the network to jointly predict tree classes (n = 10). The RGB model was a resnet-50
pretrained backbone, a common RGB architecture for image-classification. The HSI architec-
ture was the same spectral attention network used throughout the rest of the paper. The 2 fea-
tures were min-max normalized separately before combined and a joint classifier was used to
predict tree species classes. Table B. Experiments comparing RGB, HSI, and joint model for a
single NEON site (OSBS). The experiments were done without the hierarchical model or
multi-temporal ensemble approaches to highlight the difference solely from source data type.
Fig B. Comparison of site-level performance for modeling workflows that use training data
solely from a single site (“per-site”) and pool training data across all sites “NEON-wide.”
Micro averaged recall is the proportion of correctly predicted ground truth stems. Macro-aver-
aged recall is the average recall per species, thereby weighing all species equally regardless of
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abundance. Several sites (JERC, MOAB, SCBI) lacked site-level predictions because the sample
size per species at the individual site was too low. For the underlying data, see S4 Data. Fig C.
Predicted canopy trees versus the count of all field measured trees in the NEON Woody Vege-
tation Structure plots. For each NEON site, the number of tree detections in the prediction
data is compared to the number of field-measured detections for that NEON subplot. For the
underlying data, see S5 Data. Table C. Mean differences between predicted and observed
counts, and RMSE for a generalized linear model with Poisson link function between field-
measured counts of all trees and predicted canopy tree count (Fig C in S1 File).
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