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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The ecology of forest ecosystems depends on the composition of trees. Capturing fine-

grained information on individual trees at broad scales provides a unique perspective on for-

est ecosystems, forest restoration, and responses to disturbance. Individual tree data at

wide extents promises to increase the scale of forest analysis, biogeographic research, and

ecosystem monitoring without losing details on individual species composition and abun-

dance. Computer vision using deep neural networks can convert raw sensor data into pre-

dictions of individual canopy tree species through labeled data collected by field

researchers. Using over 40,000 individual tree stems as training data, we create landscape-

level species predictions for over 100 million individual trees across 24 sites in the National

Ecological Observatory Network (NEON). Using hierarchical multi-temporal models fine-

tuned for each geographic area, we produce open-source data available as 1 km2 shapefiles

with individual tree species prediction, as well as crown location, crown area, and height of

81 canopy tree species. Site-specific models had an average performance of 79% accuracy

covering an average of 6 species per site, ranging from 3 to 15 species per site. All predic-

tions are openly archived and have been uploaded to Google Earth Engine to benefit the

ecology community and overlay with other remote sensing assets. We outline the potential

utility and limitations of these data in ecology and computer vision research, as well as strat-

egies for improving predictions using targeted data sampling.

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002700 July 16, 2024 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Weinstein BG, Marconi S, Zare A,

Bohlman SA, Singh A, Graves SJ, et al. (2024)

Individual canopy tree species maps for the

National Ecological Observatory Network. PLoS

Biol 22(7): e3002700. https://doi.org/10.1371/

journal.pbio.3002700

Academic Editor: Andrew J. Tanentzap, University

of Cambridge, UNITED KINGDOM

Received: November 3, 2023

Accepted: June 5, 2024

Published: July 16, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pbio.3002700

Copyright: © 2024 Weinstein et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The predictions,

training data crops and shapefiles with predicted

training crowns are available at https://zenodo.org/

records/10926344. A web visualization is available

https://orcid.org/0000-0002-2176-7935
https://doi.org/10.1371/journal.pbio.3002700
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002700&domain=pdf&date_stamp=2024-07-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002700&domain=pdf&date_stamp=2024-07-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002700&domain=pdf&date_stamp=2024-07-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002700&domain=pdf&date_stamp=2024-07-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002700&domain=pdf&date_stamp=2024-07-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002700&domain=pdf&date_stamp=2024-07-16
https://doi.org/10.1371/journal.pbio.3002700
https://doi.org/10.1371/journal.pbio.3002700
https://doi.org/10.1371/journal.pbio.3002700
http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/records/10926344
https://zenodo.org/records/10926344


Introduction

Broadscale tree taxonomic data is essential for forest management, conservation planning, eco-

system service modeling, and biodiversity research. Historically, collection of tree species data

has largely relied on (1) field-censused plots ranging from dozens of individuals to several

thousand trees [1] that provide high-quality data, but can only be monitored over small areas

for each plot; and (2) satellite-based predictions of community-level taxonomic diversity,

which can be made continuously over broad scales, but lack detailed information on individual

trees [2]. Individual tree predictions from high-resolution airborne data complement these

approaches by creating a bridge between high-quality, but spatially restricted, field data (e.g.,

[3]), and spatially continuous, but low-resolution data, from satellite or airborne sensors [4].

The spatial coverage of high-resolution airborne imagery from planes and UAVs allows a

broader view of forest ecology over areas from dozens to 10,000s of hectares [5,6]. Access to

these data can complement field data and global satellite monitoring to facilitate the assess-

ment of forest structure and dynamics and how they respond to ecological processes, human

management, and global change [7].

Individual tree detection is a long-standing task for remote sensing of the environment as it

provides information on the densities of individual trees for large areas. Predicting the location

of individual trees (e.g., [8–10]), as well delineating the extent of tree crowns (e.g., [11]), is

essential in many remote-sensing workflows and has been a rich area of algorithmic research

(see reviews by [12,13]). Deep learning algorithms using a combination of human-labeled

imagery and field-based geospatial data have become the standard tool for tree detection for

airborne RGB data [14–16]. The challenge for deep learning algorithms for tree detection is

collecting sufficient training data to capture the variation in tree crown shape when applied

across land-use and forest types.

After individual tree crowns have been delineated, the next step towards airborne forest

inventories is to assign each crown a taxonomic label [17]. Dozens of models have been pro-

posed using classical image processing [18], feature-based machine learning [19,20], and deep

learning [21–23] but it is unclear if they are successful when applied to a variety of ecosystems

with differences in tree density, abundance distributions, and spectral backgrounds. Given the

very low sample sizes of training data in most studies, it is difficult to capture the range of spe-

cies present and the spectral representations for each species. One proposed solution to this is

using an ensemble of multiple time points of airborne imagery to improve within-site perfor-

mance [24]. Sample size issues are magnified by class imbalance since the dominant taxa in

many systems comprises more than 50% of training data and can thousands of times more

common than the rarer species in the dataset. This imbalance makes it difficult to train large

neural network models and create rigorous evaluation datasets [17].

Combining tree delineation and species classification to create broad scale tree maps is fur-

ther complicated by the interaction between workflow components. RefAU : Pleasecheckwhetherthechangesmadeinthesentencearecorrect:[25] reported that spe-

cies classification decreased by more than 20% when moving from pixel-level to individual

tree crown-level predictions. Changes in illumination during multiple days of remote-sensing

data collection hampers generalization and species mapping has largely occurred at single

flight line scales (e.g., [21]), or supported by terrestrial data in urban environments [26]. The

changes in local species abundance over large areas contributes to further mismatch between

training data and predicted landscapes at wide extents. Ref [27] proposed an approach to

addressing these limitations by using a flexible hierarchical model structure that uses simple

rules to define a series of models to create an ensemble species prediction. This approach uses

both multiple views of the same crown across years, as well as a hierarchical structure to reduce

the effect of species imbalance. It was effective at expanding the number of species that could
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to preview predictions over RGB imagery: https://

visualize.idtrees.org/. A csv file per site was

uploaded to Google Earth engine and a public link

is available as a FeatureCollection. For example,

‘https://code.earthengine.google.com/?asset=

users/benweinstein2010/RMNP ’ is the RMNP,

Rocky Mountain National Park, predictions. For

more on using NEON data and earth engine, see

https://www.neonscience.org/resources/learning-

hub/tutorials/intro-aop-gee-image-collections. The

code used in this manuscript is available both as an

archive resource on zenodo (https://zenodo.org/

records/10689811) and as a github repository

(https://github.com/weecology/DeepTreeAttention).
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be accurately classified at a single National Ecological Observatory Network (NEON) site but

has yet to be tested and applied across sites with a diversity of forest types. Here, we apply the

tree delineation and species classification workflow proposed for a single site in [27] to sites

across the United States and assess its performance in order to provide data for ecological and

computer vision research.

The NEON provides an opportunity to advance our regional scale understanding of forests

by collecting open-access, high-resolution airborne remote-sensing data over 10,000s of hect-

ares [28]. NEON collects standardized terrestrial and airborne data at dozens of sites across

the US, creating an ideal situation for constructing landscape scale maps of canopy tree species

for ecological research. Our aim is to generate individual canopy tree crown maps to support

the ongoing forest, ecosystem, natural history, community science, and wildlife research pro-

grams at NEON sites [29–32]. Here, we combine airborne RGB, hyperspectral, and LiDAR

data, to predict 100 million canopy tree locations for 81 species within 24 NEON sites across

the US using machine learning models to predict crown position, species identity, health sta-

tus, and height for individual trees visible in the canopy (Fig 1). Our work extends the crown

location dataset published in [33] by adding predictions of species identity and alive/dead clas-

sification. The addition of species labels significantly expands the utility of this dataset for bio-

diversity research and natural resource management.

Materials and methods

Airborne sensor data

The NEON airborne observation platform (AOP) collects remote-sensing data on an annual

basis during leaf-on conditions for all sites. For each site, data is collected at peak greenness to

reduce variation due to phenological differences [28]. We used 4 NEON data products: (1)

orthorectified camera mosaic (“RGB” NEON ID: DP3.30010.001); (2) ecosystem structure

(“Canopy Height Model” NEON ID: DP3.30015.001); (3) hyperspectral surface reflectance

(“HSI” NEON ID: DP1.30006.001); and (4) vegetation structure (NEON ID: DP1.10098.001).

Fig 1. Conceptual workflow for species prediction at each NEON site. The fig is modified from [27].

https://doi.org/10.1371/journal.pbio.3002700.g001
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All data were downloaded in August 2022 and were the RELEASE form [34]. The 10 cm RGB

data were used to predict tree crown locations necessary for associating field labels and sensor

data during model development. RGB data were also used to identify dead trees during our

prediction workflow. The 1 m canopy-height model was used to determine which field col-

lected data were likely to be visible from the air, as well as to define a 3 m minimum tree height

threshold during the prediction workflow. The HSI data is used to differentiate tree species

based on spectral reflectance. The HSI data spanned approximately 420 to 2,500 nm with a

spectral sampling interval of 5 nm producing a total of 426 bands. NEON provides orthorecti-

fied images with a pixel size of 1 m2 in 1 km2 tiles that are georectified and aligned with the

RGB and Canopy-Height-Model. For more information on hyperspectral data processing and

calibration, see NEON technical document NEON.DOC.001288.

Field-based species labels

The NEON Vegetation Structure dataset is a collection of tree stem points within fixed-area

field plots; plot locations are allocated across sites according to a stratified random, spatially

balanced design [35]. All trees in sampled areas with a stem diameter >10 cm are mapped and

measured for diameter, height, health status, and species identity. Building on this NEON

dataset, we contacted researchers at each NEON site to find as many mapped stems as possible

outside the NEON woody vegetation sampling plots. We collected 22,072 additional canopy

trees from a variety of sources, including several large ForestGEO plots co-located at NEON

sites [1] and public data [36]. We followed the taxonomic hierarchy used by NEON except for

genus-only, subspecies, and variety labels.

To connect species information from ground-based stem points with the airborne sensor

data, we adopted a heuristic data filtering approach (Fig 2). We began with raw stem data for

41,036 individuals. We removed stems that were labeled as dead or broken, did not have a spe-

cies label, or were less than 3 m in field-measured height. Whenever DBH was available, stems

less than 10 cm were discarded. We then compared the field-measured height to the height of

the LiDAR-derived canopy model at the stem point for the closest available year. If the differ-

ence between the LiDAR-derived and field height was more than 4 m, we discarded the stem.

We then overlaid these height-filtered points to crown bounding box predictions made from

the DeepForest RGB algorithm. If more than 1 height-filtered point fell within the predicted

canopy crown box, we selected the tallest point using the canopy height model since this was

most likely to be the dominant tree in the canopy. The shorter tree stems that overlapped the

bounding box were discarded. If a point did not overlap with any bounding box, we created a

1 m buffer around the point to serve as a crown box. We refer to these crowns as “fixed boxes,”

and these were only included in training data, but never in testing data due to lower confi-

dence in associating species labels and sensor pixels. Finally, if there less than 3 matched stems

per species at a site, the species and its stems were removed for that site. After these steps, there

were 31,736 points remaining to be used for model training and validation. Ref [20] used a

portion of these training data to compare local versus global models for each site. Because of

the differences in evaluation approaches, a precise comparison between [20] and this article is

not possible. We emphasize that the focus of this article is on the publication of the crowns

dataset rather than a comparison of a bounding box multi-temporal deep learning approach

versus the pixel-based ensemble of machine learning classifiers presented in [20]

For predictions to be maximally useful, they should cover the dominant canopy tree species

that occur within a site. There is a tradeoff between the filtering steps described above to strive

for accurate matches with canopy trees versus a desire to include as many species as possible.

We compared our final filtered data to all field-collected tree species to assess the proportion
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PLOS Biology | https://doi.org/10.1371/journal.pbio.3002700 July 16, 2024 4 / 21

https://doi.org/10.1371/journal.pbio.3002700


of field-estimated tree species richness at the site captured by the model. We calculated the

proportion comparing image-predicted species data to: (1) all species—every record in the

field collected data with at least 2 samples; (2) canopy species—the data filtered to 3 m height

and labeled as visible in the canopy in NEON field-surveys; (3) individuals—the proportion of

individuals in the training data captured by the species in the model. For example, if we had

100 individuals in a geographic site in the original field data, with 97 individuals coming from

species A and 3 individuals from species B, and the model only contained species A, the pro-

portion of species covered would be 0.5, but the proportion of individuals would be 0.97.

Crown prediction

The DeepForest algorithm used in this work was first proposed in [37] using a combination of

hand-annotated tree crown delineations and large-scale synthetic pretraining data using

Fig 2. Example workflow for filtering stem data to associate with crown pixel area. Size of the dots in panels b and d are proportional to the

individual tree DBH.

https://doi.org/10.1371/journal.pbio.3002700.g002
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LiDAR-derived tree locations; [16,38] compared the performance of tree detection algorithms

across NEON sites and released the DeepForest model as an open-source python package with

an average recall of 72%. Recall was measured using intersection-over-union, a common

object detection metric, with a threshold for overlap of 0.4 for a positive match between pre-

dicted crown box and hand annotation. In [33], we released a dataset of 100 million crowns

and calculated the performance of our workflow in matching crown predictions to individual

trees by scoring the proportion of field stems that fall within a prediction. Field stems can only

be applied to 1 prediction, so if 2 predictions overlap over a field stem, only one is considered a

positive match. The average stem recall was 69.4%, with better performance in well-spaced

western forests, and weaker performance in alpine conifer forests. DeepForest has been used

widely outside of NEON sites [10,26,39,40] with accuracies generally mirroring approximately

70% for fine-tuned models from independent analysis [41].

We follow the workflow described in [33] with tree crowns less than 3 m maximum height

in the LiDAR-derived canopy height model removed. Each predicted crown in the RGB imag-

ery had a unique ID, predicted crown location, crown area, and confidence score from the

DeepForest tree detection model. Following tree detection, we classified each predicted crown

as “Alive” or “Dead” based on the RGB data. Presented in [27], this Alive-Dead model is a 2

class resnet-50 deep learning neural network trained on hand-annotated images from across

all NEON sites. During prediction, the location of each predicted crown was cropped and

passed to the Alive-Dead model for labeling as Alive (0) or Dead (1) with a confidence score

for each class. Combining the information from the crown prediction, alive/dead prediction,

and species classification, we release shapefiles for each 1 km NEON HSI tile that has overlap-

ping RGB and LiDAR data (Table 1).

Species prediction

To train species classification models, we opted to build a different model for each NEON site

to create the best possible set of species predictions for downstream ecological analysis. To

Table 1. Data available for each predicted crown. Crowns are organized into 1 km shapefiles with UTM projection

and follow the naming scheme from NEON’s AOP data, with a geographic index at the top left corner. For sites with

fewer than 5 species, the broadleaf and conifer labels are not available, as they are largely redundant with the species

present and were all modeled jointly.

Column

name

Definition

Geometry A 4 pointed bounding box location in UTM coordinates.

indiv_id A unique crown identifier that combines the year, site, and geoindex of the NEON airborne tile

(e.g., 732000_4707000). The UTM coordinate is the northwest corner of the tile.

sci_name The full Latin name of predicted species aligned with NEON’s taxonomic nomenclature.

ens_score The confidence score of the species prediction. This score is the output of the multi-temporal model

for the ensemble hierarchical model.

bleaf_taxa Highest predicted category for the broadleaf model.

bleaf_score The confidence score for the broadleaf taxa submodel.

oak_taxa Highest predicted category for the oak model.

dead_label A 2 class alive/dead classification based on the RGB data. 0 = Alive/1 = Dead.

dead_score The confidence score of the Alive/Dead prediction.

site_id The 4 letter code for the NEON site. See for site locations.

conif_taxa Highest predicted category for the conifer model.

conif_score The confidence score for the conifer taxa submodel.

dom_taxa Highest predicted category for the dominant taxa mode submodel.

dom_score The confidence score for the dominant taxa submodel.

https://doi.org/10.1371/journal.pbio.3002700.t001
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classify each predicted crown tree crown to species, we use the 1-m hyperspectral data and a

multi-temporal hierarchical model. Ref [27] found that a hierarchical model outperforms a flat

model by improving rare species accuracy. The hierarchical model organizes tree species into

submodels, allowing each model to learn better features related to distinguishing similar clas-

ses. The submodels also allow species that are well sampled to be separated from poorly sam-

pled species, thereby reducing the effect of class imbalance in favoring common species [42].

Within each submodel, we combine predictions for each year of available sensor data to reduce

the potential overfitting and bias due to georectification of ground-truth trees and image

acquisition conditions. The top model predicts “Broadleaf,” “Conifer” and optionally the dom-

inant tree species class at that site based on its frequency in the training data. A species was

considered “dominant” if it consisted of more than 40% of the training samples. Without this,

common machine learning approaches will predict most samples as the dominant class regard-

less of spectral signal. After prediction in the first subgroup, samples that are predicted as

“Broadleaf” are then passed to the Broadleaf submodule, and samples that are predicted as

“Conifer” are then passed to the Conifer submodule. This structure was maintained for the

majority of sites, but we did allow some site-specific customization. For example, at the Ord-

way Swisher Biological Station, Florida (OSBS) site, the many similar oak congenerics were

split off into their own oak submodule within the broadleaf submodule.

Each submodule consists of a 2D spectral attention block (Fig 1) with 3 convolutional layers

and a max pooling spectral attention layer following [43]. Batch normalization is used to nor-

malize layer weights after each convolution. This spectral attention block was repeated for

each year of airborne sensor data to create an ensemble model. For example, if there are 4

years of available hyperspectral data for a geographic location, we predicted 4 classification

outputs and then combined them to create the final prediction. This assumes that canopy trees

at each geographic location are unlikely to change species label among years at short time

scales [44]. A weighted average among all years was used to create the sample prediction for

each crown. This relative weight among years was a learned parameter for each submodel.

Despite multiple publications that highlight performance gains through multi-modal data

fusion in remote-sensing classification [45,46] we did not find significant improvements when

adding the 10 cm RGB data to species classification (Fig A in S1 File), but continue to believe it

will have a role in distinguishing similar species.

For each site, we pretrained the hierarchical model using data from all sites, but only

including the species at the focal site. We then fine-tuned this model using samples only at the

target site. We experimented with a single NEON-wide model across all sites, but found con-

sistently worse performance, especially for rare species (Fig B in S1 File). For each site, we pre-

trained for 200 epochs, decreasing the learning rate of each submodel based on performance

on the focal site test data. We then fine-tuned this model with the available annotations at the

target site for 200 epochs. Learning rates differed among submodules, with the dominant class

and conifer submodules having an initial learning rate of 10e-5, and the broadleaf model start-

ing at 10e-4. We allowed batch size to vary between 12 and 24 depending on the site to account

for differences in class imbalance and dataset size.

To determine the evaluation accuracy of species predictions, we developed a train-test split

with a minimum of 10 samples per class. To minimize the potential effect of spatial autocorre-

lation in hyperspectral signature between training and test datasets, we adopted a spatial block

approach [17]. All samples within a NEON plot or within a 40-m grid for the non-NEON con-

tributed data were assigned to training or test. We performed this assignment iteratively until

the minimum number of samples per class were in the test dataset. The remaining samples

were used to train the model. For each site, we evaluated the accuracy and precision of each

species. To get the site-level score, we used both micro-averaged accuracy and macro-averaged
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accuracy. Micro-averaging weights all samples the same, and therefore, is largely driven by the

performance of the common species. Macro-average weights all species the same, giving greater

importance to the rare species as compared to their frequency in the dataset. We also computed

the accuracy of the higher order taxonomic labels (e.g., “Broadleaf” versus “Conifer”), which

may be useful to downstream applications in which coarser categories are sufficient.

Results

We developed individual canopy tree species predictions for 81 species at 24 NEON sites

(Table 2). To visualize the predictions and overlapping RGB data, see visualize.idtrees.org.

There was an average of 6.56 species per site, with a maximum of 15 species (Harvard Forest,

Massachuesetts) and minimum of 3 (Delta Junction, Alaska and San Joaquin Experimental

Range, California). Compared to reference species lists filtered for canopy species, the crown

dataset covered 47.5% of the total species richness for trees �10 cm dbh represented in the ref-

erence list at the sites (Fig 3). These species account for an average of 85.0% of the stems �10

cm dbh from the forest plot data at the NEON sites. The average model had a micro-averaged

accuracy of 78.8% and a macro-accuracy of 75.8% (Table 2). Sites with more data generally

performed well, with a general pattern of decreasing species-level accuracy with fewer data

(Fig 4). Consistent with previous work, the highest performing sites, including Teakettle Can-

yon, CA (TEAK), Niwot Ridge Colorado (NIWO), and Yellowstone National Park, Wyoming

(YELL), were dominated by conifers and had relatively low species diversity [20]. Models per-

formed more poorly in southern broadleaf forests, such Talladega National Forest, Alabama

Table 2. Evaluation scores for each NEON site included in the dataset. Sites are ranked from highest to lowest micro accuracy.

Site, state Forest description Micro

accuracy

Macro

accuracy

Species Train samples Test samples

SJER, CA Oak Savannah 1.00 1.00 3 47 27

GRSM, NC Southern Hardwoods 0.90 0.89 3 200 29

TEAK, CA Western Conifer 0.82 0.83 7 713 67

BONA, AK Riparian and Taiga 0.82 0.74 4 584 103

STEI, MI Northern Hardwoods 0.80 0.83 6 283 82

NIWO, CO Alpine Conifer 0.80 0.77 4 852 46

YELL, WY Western Conifer 0.80 0.83 3 390 10

SERC, MD Southern Hardwood 0.80 0.68 11 816 287

DELA, AL Southern Hardwood 0.79 0.79 7 166 72

DEJU, AK Taiga 0.79 0.78 3 571 52

UNDE, WI Northern Hardwood 0.79 0.79 13 547 178

SOAP, CA Western Conifer 0.78 0.78 4 223 37

MLBS, VA Southern Hardwood 0.78 0.75 5 363 54

TREE, MI Northern Hardwood 0.78 0.72 15 643 168

WREF, WA Western Conifer 0.76 0.66 4 598 97

TALL, AL Southern Hardwood 0.76 0.72 6 250 125

HARV, MA Northern Hardwood 0.76 0.57 15 9,782 1,194

OSBS, FL Oak Savannah, 0.73 0.63 14 3,293 240

CLBJ, TX Oak Savannah 0.73 0.73 3 187 30

BLAN, VA Riparian 0.72 0.73 8 271 79

LENO, AL Southern Hardwood 0.71 0.71 3 74 28

RMNP, CO Alpine Conifer 0.70 0.70 7 671 99

BART, VT Northern Hardwood 0.68 0.66 7 514 125

UKFS, KT Southern Hardwood, Riparian 0.60 0.60 8 204 85

https://doi.org/10.1371/journal.pbio.3002700.t002
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(TALL) and Smithsonian Environmental Research Center, Maryland (SERC), with higher bio-

diversity, closed canopy structure, and/or low data coverage per species. The most abundant

species at a site typically had the highest accuracy, with lower accuracy for rarer species (Fig 4).

Applying the best model for each site to all available airborne tiles, we predicted

103,441,970 trees with an average of 4.31 million trees per site. Of the 24 sites, 17 are heavily

forested with near continuous canopy cover. Sites vary in both area and forest density, with

the smallest size in San Joaquin Valley, CA (SJER) with 0.85 million trees predicted, and the

largest site in TreeHaven, Wisconsin with 7.1 million trees predicted. The sites with the most

predicted trees tend to have high species diversity at local scales with complex, overlapping

crown boundaries (Fig 5). Patterns of biodiversity are highly scale dependent with grouping of

similar species in local areas and complex patterns of species patches at broader scales within

the same site (Fig 6). Ranking the predicted species abundance for each site, the most predicted

species represented approximately 60% of crown classifications (Fig 7). The dominant species

was slightly less abundant in the southern broadleaf sites with 30% to 40% of crowns belonging

to the most commonly predicted species. Viewing the predictions at the largest spatial extents,

there is a broad range of species presence patterns, from sites showing highly mixed species to

sites with distinct autocorrelation and species patterns at all spatial scales (Fig 8).

Fig 3. The proportion of species included in the model for each site compared to species with at least 2 records in the field-collected data. We calculated

the proportion compared to: (1) all species—every record in the field collected data with at least 2 samples; 2) canopy species—the data filtered to 3 m height

and labeled as visible in the canopy in NEON field-surveys; 3) individuals—the proportion of individuals in the training data captured by the species in the

model. For example, the BART model has 35% of species found during field surveys, 46% of the species judged to be in the canopy, but these species represent

over 97% of the sampled individuals at the site. For a complete list of each species in the model and the canopy-filtered data, see Table A in S1 File. The dashed

line is the mean number of species across sites for both species and individual proportions. The underlying data for this figure can be found in supplemental

data “S1 Data.”

https://doi.org/10.1371/journal.pbio.3002700.g003
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Discussion

We used a multi-step deep learning workflow to generate individual level canopy tree species

predictions continuously across large landscapes in a diverse array of forest types at sites

within the NEON. The result is an extensive dataset on individual canopy tree species distribu-

tion that can be used for studying large-scale forest ecology, used as a baseline dataset for guid-

ing field sampling, and integrated into larger scale remote sensing tasks as training data for

satellite-based models. These data will inform a broad array of research programs, for example,

community ecologists can study the patterns of species distributions as a function of

Fig 4. Rank order abundance and evaluation accuracy for each species for each NEON site aggregated by forest type. A binomial classification model was

fit for each forest type to relate the rank order abundance of each species and evaluation accuracy. Each point is 1 species within 1 NEON site model. Point size

is relative to the abundance of the species at the individual site in the training data. The underlying data for this figure can be found in supplemental data “S2

Data.”

https://doi.org/10.1371/journal.pbio.3002700.g004
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environmental and biotic interactions [47,48], the phylogenetic structure of tree assemblages

[49], and scale dependance of species plant communities [50]; ecosystem scientists can

improve estimates of biomass using species-specific allometry [7,51], and foresters can mea-

sure impacts of habitat disturbance and landscape history [52,53]. To facilitate the broad use of

this dataset, we have uploaded the dataset to Google Earth Engine, which provides tools and

computational resources that facilitate large-scale data analysis integrating numerous remote-

sensing assets that are collectively stored in the Earth Engine catalog.

The species classification models used to generate this dataset generally performed well

with the accuracy for most common species ranging from 75% to 85% at well-sampled, diverse

sites. Repeating a general model architecture for tree species prediction across a broad array of

sites, revealed several general tendencies in the accuracy of predicted tree crowns including:

(1) decreased accuracy with an increasing number of species; (2) higher accuracy at sites with

more open canopy structure; and (3) a general tendency of higher performance for conifer

over broadleaf species. This led to geographic patterns in accuracy even among sites in similar

ecosystems, with northern broadleaf sites in general having better accuracy than the more

diverse southern broadleaf sites. As local species diversity increases, classification errors are

Fig 5. Example tree detections and species labels for 4 NEON sites with closed canopy deciduous forests.

https://doi.org/10.1371/journal.pbio.3002700.g005
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more likely due to increased numbers of model parameters (leading to potential overfitting),

greater complexity in splitting similar species, and increased frequency of neighboring trees

being from different species resulting in pollution of crown edge pixels. High local turnover

may also decrease accuracy because it makes training data taken from a subset of the predicted

region less representative of the total biodiversity and spectral background. For example,

unique habitats in the remote sensing footprint appear to be more well sampled by NEON’s

terrestrial plot design [35] in “Northern Broadleaf” forests than in “Southern Broadleaf” for-

ests, likely due to the northern forests being more admixed.

Data derived from airborne remote sensing should be seen as a complement to, not a

replacement for, field data. While the dataset will facilitate capturing dynamics at scales infea-

sible for ground-based surveys, we stress that the data are imperfect predictions that can, and

should, be improved with increased data collection and model exploration. Because of the

nature of the airborne data, the dataset only includes crowns in the top layer of the canopy

(sunlit tree crowns), and users should be careful when calculating stand-level metrics such as

abundance, crown area, or DBH and comparing them to ground-data that includes smaller

subcanopy trees. Compared to field surveys, the canopy dataset will include fewer trees, with a

bias towards large trees. Comparing the predicted canopy count and ground counts for the

NEON field plots, the average undercount at each site was 8.51 individuals (range -2.45, 22.85)

Fig 6. Overview from Bartlett Experimental Forest, New Hampshire (BART) showing 4,352,930 tree predictions for 7 species at 3 spatial scales. The

location of NEON sampling plots and the NEON boundary are shown in the top left image.

https://doi.org/10.1371/journal.pbio.3002700.g006
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(Fig C and Table C in S1 File). There will also be fewer species represented in the dataset than

observed in the field, in part because subcanopy only species are explicitly excluded from the

model (Fig 3).

In addition to the restriction to canopy trees, each part of the workflow has associated

uncertainty and tradeoffs in defining fixed labels. DeepForest, the crown detection algorithms,

has been evaluated against hand-annotated imagery [16], field-stem recall [33], and images-

drawn by observers on tablets directly in the field [54], and consistently found to have roughly

70% to 75% accuracy for crown delineation. Errors occur due to over segmentation (1 tree is

identified as multiple trees), under segmentation (2 or more trees are identified as a single

tree), and imprecisely defined crown edges. In general, counts of canopy trees on a landscape

are often more accurate (because over and under segmentation errors cancel out), but detailed

boundaries and crown area are less accurate. Beyond tree detection, the alive/dead label should

be interpreted as provisional since trees can lose leaves due to a variety of causes such as insect

defoliation in 1 year, but ultimately recover over time [55]. Species predictions are also uncer-

tain, and while they include the most common species at each site, they still fail to include sev-

eral species that do occur in the canopy (Fig 3). The discrepancy between canopy species in the

filtered field dataset and species predicted in our model is a result of several factors. Some

Fig 7. Rank order abundance for the predicted crown species labels for each site. The most commonly predicted species is rank 1, the second most

commonly predicted species is rank 2, etc. Each point represents a species predicted at a site. For species identity and totals per site, see Table A in S1 File.

The underlying data for this figure can be found in supplemental data “S3 Data.”

https://doi.org/10.1371/journal.pbio.3002700.g007
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canopy species are rare and thus have too few samples in our dataset to be included. This may

be due to species that are common but only in rare habitats or are rare throughout a broad

area of each site. On the other hand, some species may be common, but are shorter statured

species that tend to mostly be in the subcanopy or only rarely reach in the canopy. When they

do reach the canopy, the crowns are very small, providing poor spectral signature. Some can-

opy species are rare (either throughout the entire region or only occurring in rare habitats)

and thus have too few samples to be modeled.

Given the uncertainties inherent in creating large-scale species maps, it is important to con-

sider potential approaches for incorporating this uncertainty in analyses involving this and

similar datasets. Ref [27] outlined multiple options for incorporating model uncertainty when

using the data in downstream analysis. We compared data uncertainty through multiple train-

ing and test splits, model uncertainty by repeatedly training the model from the same training

data, and prediction uncertainty using a multinomial draw of the confusion matrix to generate

predicted counts for each species within a single site. While this is a useful first step, ultimately

hierarchical models that can directly incorporate model uncertainty should be developed to

improve downstream ecological analyses of remote sensing based data (e.g., [56]). Calibrating

confidence scores using held-out data from training or test is an important step in this direc-

tion [57], but there was insufficient data to set aside for this purpose while maintaining less

common species in the model. This will be a common limitation in ecological studies where

the limited data can be crucial for improving model accuracy and incorporating rarer species.

Fig 8. Overview of multiple sites spanning a broad range of forest types. Site names, from top left to bottom right, Smithsonian Environmental Research

Center (SERC), Harvard Forest (HARV), Lyndon B. Johnson National Grassland (CLBJ), Rocky Mountain National Park (RMNP), University of Notre Dame

Environmental Research Center (UNDE), Teakettle Canyon (TEAK).

https://doi.org/10.1371/journal.pbio.3002700.g008
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Post hoc corrections of predicted counts (e.g., [58]) or models that account for multiple types

of uncertainty will be crucial in making robust predictions at larger spatial extents going

forward.

The process of making predictions for 100 million trees across a broad range of habitat

types helped identify areas for improvement in computer vision needed to address obstacles in

assembling tree maps at massive scales. The main obstacle to improving model accuracy is the

availability of training data. We have found that targeted sampling can yield 10% to 20%

improvements in accuracy, and significantly broaden the number of species included in the

model predictions, with only a few days or weeks of field work (Box 1). The simplest form of

data needed is a geospatial point of a tree stem (precise enough to ensure it falls within a pre-

dicted crown box) and its species label. Data collection should focus on less common species,

since more data on common species will have limited impact on model performance. Strate-

gies for prioritizing new data collection include: (1) using expert knowledge to identify areas

containing underrepresented species; (2) using the model confusion matrix and predictions

from the initial model to select species with unexpected confusion patterns, such as underrep-

resented species that are not visually similar that are confused by the model (a possible indica-

tor of spectra being polluted by neighboring trees); and (3) sampling individuals with low

confidence scores for their species predictions indicating either poor model performance or a

species not included in the model.

There are also areas for improvement in associating tree stems with crown pixels. Our mod-

els perform better in open forests with low diversity, where spacing among trees improves

crown delineation and fewer species reduces the chance of neighboring tree species polluting

the spectral signature. This can be partially overcome by using crown polygons drawn on a

tablet in the field, rather than relying on stem points taken by a GPS. Even a limited number of

these crown polygons could allow the adoption of “weak labeling” approaches common in

computer vision that rely on access to a small number of confident samples and a larger set of

less confident samples.

One of the reasons additional data collections can be beneficial is that compared to the typi-

cal computer vision application, the data sample sizes of the classes used in these models are

extremely low. Therefore the emerging area of research on “few shot learning,” in which foun-

dation models are used to predict new classes with only 1 to 5 samples, may be a useful avenue

Box 1. In-depth examination of new data collection to improve
models

To increase the species coverage and accuracy of these models, we need additional data

collection at each NEON site. Here, we outline one effort by N.G. Swenson and V.E.

Rubio to improve the model at the University of Notre Dame Environmental Research

Center (UNDE) site through targeted data collection (Fig 9). The original model had

67.8% micro-accuracy, 61.6% macro-accuracy, and included 12 species. Overlaying the

predictions over a recently mapped forestry plot, 3 areas of need were identified: (1) sev-

eral key species were missing from current predictions; (2) there was overprediction of

Fraxinus nigra compared to the abundance expected by field researchers; (3) there was

high confusion between 2 closely related Populus species. Using these goals to target

trees, data on an additional 157 stems of 12 species were collected along easy to access

roads and forest edges. After training the model on the additional stems, the micro-aver-

aged accuracy increased from 67.8% to 77.7% and the macro-averaged accuracy

increased from 61.6% to 79.1% while adding an additional species to the test dataset.
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for further improving tree species predictions (e.g., [59]). In the extreme, the task of zero-shot

learning [59,60], or unknown class detection, in which the model can identify classes not

included in training, will help address the challenge of identifying individuals not included in

the models and have utility in rapid applying models trained on NEON data to new areas. This

approach is limited by our current modeling design since the site-level model approach limits

portability, and the hierarchical organization can be cumbersome to apply in new regions and

as new species are added. While we chose this approach because it currently produces the

most accurate predictions and therefore the best resulting dataset, a single NEON-wide model

that is robust to class imbalance, but maintains good separability among co-occurring species,

would be a major step forward.

Extending the models used in our workflow to non-NEON sites will be important in broad-

ening access to high-quality tree species prediction. There is considerable interest in develop-

ing species predictions for large areas using high-resolution satellites and UAVs with low-cost

hyperspectral sensors. Using NEON data as a source for training data to project into these

coarser resolution data has large benefits since the NEON data is both high spectral and spatial

resolution. This kind of “Domain adaptation” is an open challenge in computer vision, with

The accuracies of the 2 closely related Populus species increased from 66% and 54% to

72% and 82%, respectively.

Fig 9. Original versus re-trained model predictions for UNDE. New sample trees were collected in the field without

guidance from the predictions. The outline color is the original label, the filled shade is the revised label. The 2 Tsuga
canadensis (top center) and the field samples were correctly predicted in the original model. The Betula allenghensis
field samples were split. The tree on the right was correctly predicted in both models. The tree on the left was originally

predicted as Acer rubrum but was correctly predicted in the revised model. Overall, most labels do not change among

models, with only a small number of trees changing labels. For example, several trees that were originally predicted as

Acer rubrum have been revised, and a single Picea glauca was revised to A. rubrum in the top left.

https://doi.org/10.1371/journal.pbio.3002700.g009
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many proposed approaches to try to align either the input data or learned features among dis-

parate sensors or geographic areas [61]. The ample unlabeled airborne data at NEON opens

the possibility of a combination of supervised and unsupervised learning to increase transfer-

ability among geographic sites, spectral resolutions, and spatial scales. In conjunction with

automated methods for data collection, these approaches will move the community towards

airborne classification models for tree species that can generalize across sampling events, geog-

raphy, and acquisition hardware.

As the number of researchers working at NEON sites increases, the diversity of overlapping

datasets will foster richer areas of understanding for forest ecology and ecosystem functioning.

The goal of this work was to provide initial predictions for canopy trees at the landscape scale

to document the broad pattern of tree species distributions, which in turn influence ecological

communities and nutrient cycling. Combining these data with organismal surveys, fine-scaled

environmental data, and landscape history will bring greater insights into the mechanisms

underlying forest distribution and function. NEON’s on-going data collection will allow these

maps to be updated both in terms of geographic coverage, as well as temporal change in species

abundance and individual traits.

Supporting information

S1 Data. The underlying data for Fig 3.

(CSV)

S2 Data. The underlying data for Fig 4.

(CSV)

S3 Data. The underlying data for Fig 7.

(CSV)

S4 Data. The underlying data for Fig B in S1 File.

(CSV)

S5 Data. The underlying data for Fig C in S1 File.

(CSV)

S1 File. Supplemental materials. Table A. Species included in each model for each NEON

site. The number of samples (n) for each species in the canopy filtered data. To be included in

the model, a species needs to have at least 10 training samples and 10 test samples at a site in

the final filtered data. The number of predicted trees at each site, the proportion of total pre-

dictions at the site, and the rank abundance of each species is shown. Fig A. An example

model architecture for data fusion between 1 m HSI data and 10 cm RGB for tree species clas-

sification. In this example, a batch of crowns (n = 20), each with an HSI and RGB pair, is run

through the network to jointly predict tree classes (n = 10). The RGB model was a resnet-50

pretrained backbone, a common RGB architecture for image-classification. The HSI architec-

ture was the same spectral attention network used throughout the rest of the paper. The 2 fea-

tures were min-max normalized separately before combined and a joint classifier was used to

predict tree species classes. Table B. Experiments comparing RGB, HSI, and joint model for a

single NEON site (OSBS). The experiments were done without the hierarchical model or

multi-temporal ensemble approaches to highlight the difference solely from source data type.

Fig B. Comparison of site-level performance for modeling workflows that use training data

solely from a single site (“per-site”) and pool training data across all sites “NEON-wide.”

Micro averaged recall is the proportion of correctly predicted ground truth stems. Macro-aver-

aged recall is the average recall per species, thereby weighing all species equally regardless of
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abundance. Several sites (JERC, MOAB, SCBI) lacked site-level predictions because the sample

size per species at the individual site was too low. For the underlying data, see S4 Data. Fig C.

Predicted canopy trees versus the count of all field measured trees in the NEON Woody Vege-

tation Structure plots. For each NEON site, the number of tree detections in the prediction

data is compared to the number of field-measured detections for that NEON subplot. For the

underlying data, see S5 Data. Table C. Mean differences between predicted and observed

counts, and RMSE for a generalized linear model with Poisson link function between field-

measured counts of all trees and predicted canopy tree count (Fig C in S1 File).

(DOCX)
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bon content: The role of tree composition and tree diversity. Remote Sens Environ. 2023; 284:113333.

https://doi.org/10.1016/j.rse.2022.113333

8. Freudenberg M, Nölke N, Agostini A, Urban K, Wörgötter F, Kleinn C. Large Scale Palm Tree Detection

in High Resolution Satellite Images Using U-Net. Remote Sens. 2019; 11:312. https://doi.org/10.3390/

rs11030312

9. Zamboni P, Junior JM, Silva J de A, Miyoshi GT, Matsubara ET, Nogueira K, et al. Benchmarking

Anchor-Based and Anchor-Free State-of-the-Art Deep Learning Methods for Individual Tree Detection

in RGB High-Resolution Images. Remote Sens. 2021; 13:2482. https://doi.org/10.3390/rs13132482

10. Velasquez-Camacho L, Etxegarai M, de-Miguel S. Implementing Deep Learning algorithms for urban

tree detection and geolocation with high-resolution aerial, satellite, and ground-level images. Comput

Environ Urban Syst. 2023; 105:102025. https://doi.org/10.1016/j.compenvurbsys.2023.102025

11. Aubry-Kientz M, Dutrieux R, Ferraz A, Saatchi S, Hamraz H, Williams J, et al. A Comparative Assess-

ment of the Performance of Individual Tree Crowns Delineation Algorithms from ALS Data in Tropical

Forests. Remote Sens. 2019; 11:1086. https://doi.org/10.3390/rs11091086

12. Pulido D, Salas J, Rös M, Puettmann K, Karaman S. Assessment of Tree Detection Methods in Multi-

spectral Aerial Images. Remote Sens. 2020; 12:2379. https://doi.org/10.3390/rs12152379

13. Ke Y, Quackenbush LJ. A review of methods for automatic individual tree-crown detection and delinea-

tion from passive remote sensing. Int J Remote Sens. 2011; 32:4725–4747. https://doi.org/10.1080/

01431161.2010.494184

14. Bosch M. DetecTree: Tree detection from aerial imagery in Python. JOSS. 2020; 5:2172. https://doi.

org/10.21105/joss.02172

15. Schiefer F, Kattenborn T, Frick A, Frey J, Schall P, Koch B, et al. Mapping forest tree species in high

resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS J Photogramm

Remote Sens. 2020; 170:205–215. https://doi.org/10.1016/j.isprsjprs.2020.10.015

16. Weinstein BG, Marconi S, Aubry-Kientz M, Vincent G, Senyondo H, White EP. DeepForest: A Python

package for RGB deep learning tree crown delineation. Methods Ecol Evol. 2020; 11:1743–1751.

https://doi.org/10.1111/2041-210X.13472

17. Fassnacht FE, Latifi H, Stereńczak K, Modzelewska A, Lefsky M, Waser LT, et al. Review of studies on

tree species classification from remotely sensed data. Remote Sens Environ. 2016; 186:64–87. https://

doi.org/10.1016/j.rse.2016.08.013

18. Seeley MM, Vaughn NR, Shanks BL, Martin RE, König M, Asner GP. Classifying a Highly Polymorphic

Tree Species across Landscapes Using Airborne Imaging Spectroscopy. Preprints. 2023. https://doi.

org/10.20944/preprints202307.1570.v1

19. Maschler J, Atzberger C, Immitzer M. Individual Tree Crown Segmentation and Classification of 13

Tree Species Using Airborne Hyperspectral Data. Remote Sens. 2018; 10:1218. https://doi.org/10.

3390/rs10081218

20. Marconi S, Weinstein BG, Zou S, Bohlman SA, Zare A, Singh A, et al. Continental-scale hyperspectral

tree species classification in the United States National Ecological Observatory Network. Remote Sens

Environ. 2022; 282:113264. https://doi.org/10.1016/j.rse.2022.113264

21. Fricker GA, Ventura JD, Wolf JA, North MP, Davis FW, Franklin J. A Convolutional Neural Network

Classifier Identifies Tree Species in Mixed-Conifer Forest from Hyperspectral Imagery. Remote Sens.

2019; 11:2326. https://doi.org/10.3390/rs11192326

22. La Rosa LEC, Sothe C, Feitosa RQ, de Almeida CM, Schimalski MB, Oliveira DAB. Multi-task fully con-

volutional network for tree species mapping in dense forests using small training hyperspectral data.

ISPRS J Photogramm Remote Sens. 2021; 179:35–49. https://doi.org/10.1016/j.isprsjprs.2021.07.001

PLOS BIOLOGY NEON tree species maps

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002700 July 16, 2024 19 / 21

https://doi.org/10.1111/gcb.16302
https://doi.org/10.1111/gcb.16302
http://www.ncbi.nlm.nih.gov/pubmed/35703577
https://doi.org/10.3390/rs15020521
https://doi.org/10.1038/s41586-022-05653-6
https://doi.org/10.1038/s41586-022-05653-6
http://www.ncbi.nlm.nih.gov/pubmed/36859581
https://doi.org/10.1126/sciadv.adh4097
https://doi.org/10.1126/sciadv.adh4097
http://www.ncbi.nlm.nih.gov/pubmed/37713489
https://doi.org/10.1016/j.rse.2022.113333
https://doi.org/10.3390/rs11030312
https://doi.org/10.3390/rs11030312
https://doi.org/10.3390/rs13132482
https://doi.org/10.1016/j.compenvurbsys.2023.102025
https://doi.org/10.3390/rs11091086
https://doi.org/10.3390/rs12152379
https://doi.org/10.1080/01431161.2010.494184
https://doi.org/10.1080/01431161.2010.494184
https://doi.org/10.21105/joss.02172
https://doi.org/10.21105/joss.02172
https://doi.org/10.1016/j.isprsjprs.2020.10.015
https://doi.org/10.1111/2041-210X.13472
https://doi.org/10.1016/j.rse.2016.08.013
https://doi.org/10.1016/j.rse.2016.08.013
https://doi.org/10.20944/preprints202307.1570.v1
https://doi.org/10.20944/preprints202307.1570.v1
https://doi.org/10.3390/rs10081218
https://doi.org/10.3390/rs10081218
https://doi.org/10.1016/j.rse.2022.113264
https://doi.org/10.3390/rs11192326
https://doi.org/10.1016/j.isprsjprs.2021.07.001
https://doi.org/10.1371/journal.pbio.3002700


23. Veras HFP, Ferreira MP, da Cunha Neto EM, Figueiredo EO, Corte APD, Sanquetta CR. Fusing multi-

season UAS images with convolutional neural networks to map tree species in Amazonian forests. Ecol

Inform. 2022; 71:101815. https://doi.org/10.1016/j.ecoinf.2022.101815

24. Onishi M, Ise T. Explainable identification and mapping of trees using UAV RGB image and deep learn-

ing. Sci Rep. 2021; 11:903. https://doi.org/10.1038/s41598-020-79653-9 PMID: 33441689

25. Lee J, Cai X, Lellmann J, Dalponte M, Malhi Y, Butt N, et al. Individual Tree Species Classification From

Airborne Multisensor Imagery Using Robust PCA. IEEE J Sel Top Appl Earth Obs Remote Sens. 2016;

9:2554–2567. https://doi.org/10.1109/JSTARS.2016.2569408

26. Kwon R, Ryu Y, Yang T, Zhong Z, Im J. Merging multiple sensing platforms and deep learning empow-

ers individual tree mapping and species detection at the city scale. ISPRS J Photogramm Remote

Sens. 2023; 206:201–221. https://doi.org/10.1016/j.isprsjprs.2023.11.011

27. Weinstein BG, Marconi S, Graves SJ, Zare A, Singh A, Bohlman SA, et al. Capturing long-tailed individ-

ual tree diversity using an airborne imaging and a multi-temporal hierarchical model. Remote Sens Ecol

Conserv. 2023; 9:656–670. https://doi.org/10.1002/rse2.335

28. Musinsky J, Goulden T, Wirth G, Leisso N, Krause K, Haynes M, et al. Spanning scales: The airborne

spatial and temporal sampling design of the National Ecological Observatory Network. Methods Ecol

Evol. 2022; 13:1866–1884. https://doi.org/10.1111/2041-210X.13942

29. Kampe TU, Johnson BR, Kuester MA, Keller M. NEON: the first continental-scale ecological observa-

tory with airborne remote sensing of vegetation canopy biochemistry and structure. JARS. 2010;

4:043510. https://doi.org/10.1117/1.3361375

30. Egli L, LeVan KE, Work TT. Taxonomic error rates affect interpretations of a national-scale ground bee-

tle monitoring program at National Ecological Observatory Network. Ecosphere. 2020; 11:e03035.

https://doi.org/10.1002/ecs2.3035

31. Ayres E, Colliander A, Cosh MH, Roberti JA, Simkin S, Genazzio MA. Validation of SMAP Soil Moisture

at Terrestrial National Ecological Observatory Network (NEON) Sites Show Potential for Soil Moisture

Retrieval in Forested Areas. IEEE J Sel Top Appl Earth Obs Remote Sens. 2021; 14:10903–10918.

https://doi.org/10.1109/JSTARS.2021.3121206

32. Lombardozzi DL, Wieder WR, Sobhani N, Bonan GB, Durden D, Lenz D, et al. Overcoming barriers to

enable convergence research by integrating ecological and climate sciences: the NCAR–NEON system

Version 1. Geosci Model Dev. 2023; 16:5979–6000. https://doi.org/10.5194/gmd-16-5979-2023

33. Weinstein BG, Marconi S, Bohlman SA, Zare A, Singh A, Graves SJ, et al. A remote sensing derived

data set of 100 million individual tree crowns for the National Ecological Observatory Network. eLife.

2021; 10:e62922. https://doi.org/10.7554/eLife.62922 PMID: 33605211

34. NEON (National Ecological Observatory Network). High-resolution orthorectified camera imagery

mosaic (DP3.30010.001). RELEASE-2023. 2023. https://doi.org/10.48443/67by-mq58

35. Barnett DT, Duffy PA, Schimel DS, Krauss RE, Irvine KM, Davis FW, et al. The terrestrial organism and

biogeochemistry spatial sampling design for the National Ecological Observatory Network. Ecosphere.

2019; 10:e02540. https://doi.org/10.1002/ecs2.2540

36. Veblen T, Andrus R, Chai R. Permanent forest plot data from 1982–2019 at Niwot Ridge. Environmental

Data Initiative. 2021. https://doi.org/10.6073/pasta/48fa11a8f5bc6541b0472bc3fd4c0c71

37. Weinstein BG, Marconi S, Bohlman S, Zare A, White E. Individual Tree-Crown Detection in RGB Imag-

ery Using Semi-Supervised Deep Learning Neural Networks. Remote Sens. 2019; 11:1309. https://doi.

org/10.3390/rs11111309

38. Weinstein BG, Marconi S, Bohlman SA, Zare A, White EP. Cross-site learning in deep learning RGB

tree crown detection. Ecol Inform. 2020; 56:101061. https://doi.org/10.1016/j.ecoinf.2020.101061

39. Reiersen G, Dao D, Lütjens B, Klemmer K, Amara K, Steinegger A, et al. ReforesTree: A Dataset for

Estimating Tropical Forest Carbon Stock with Deep Learning and Aerial Imagery. arXiv. 2022. Avail-

able from: http://arxiv.org/abs/2201.11192.

40. Kapil R, Marvasti-Zadeh SM, Goodsman D, Ray N, Erbilgin N. Classification of Bark Beetle-Induced

Forest Tree Mortality using Deep Learning. arXiv. 2022. Available from: http://arxiv.org/abs/2207.

07241.

41. Gan Y, Wang Q, Iio A. Tree Crown Detection and Delineation in a Temperate Deciduous Forest from

UAV RGB Imagery Using Deep Learning Approaches: Effects of Spatial Resolution and Species Char-

acteristics. Remote Sens. 2023; 15:778. https://doi.org/10.3390/rs15030778

42. Liu Z, Miao Z, Zhan X, Wang J, Gong B, Yu SX. Large-Scale Long-Tailed Recognition in an Open

World. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long

Beach, CA, USA: IEEE; 2019. p. 2532–2541. https://doi.org/10.1109/CVPR.2019.00264

PLOS BIOLOGY NEON tree species maps

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002700 July 16, 2024 20 / 21

https://doi.org/10.1016/j.ecoinf.2022.101815
https://doi.org/10.1038/s41598-020-79653-9
http://www.ncbi.nlm.nih.gov/pubmed/33441689
https://doi.org/10.1109/JSTARS.2016.2569408
https://doi.org/10.1016/j.isprsjprs.2023.11.011
https://doi.org/10.1002/rse2.335
https://doi.org/10.1111/2041-210X.13942
https://doi.org/10.1117/1.3361375
https://doi.org/10.1002/ecs2.3035
https://doi.org/10.1109/JSTARS.2021.3121206
https://doi.org/10.5194/gmd-16-5979-2023
https://doi.org/10.7554/eLife.62922
http://www.ncbi.nlm.nih.gov/pubmed/33605211
https://doi.org/10.48443/67by-mq58
https://doi.org/10.1002/ecs2.2540
https://doi.org/10.6073/pasta/48fa11a8f5bc6541b0472bc3fd4c0c71
https://doi.org/10.3390/rs11111309
https://doi.org/10.3390/rs11111309
https://doi.org/10.1016/j.ecoinf.2020.101061
http://arxiv.org/abs/2201.11192
http://arxiv.org/abs/2207.07241
http://arxiv.org/abs/2207.07241
https://doi.org/10.3390/rs15030778
https://doi.org/10.1109/CVPR.2019.00264
https://doi.org/10.1371/journal.pbio.3002700


43. Hang R, Li Z, Liu Q, Ghamisi P, Bhattacharyya SS. Hyperspectral Image Classification With Attention-

Aided CNNs. IEEE Trans Geosci Remote Sens. 2021; 59:2281–2293. https://doi.org/10.1109/TGRS.

2020.3007921

44. Busing RT. Tree mortality, canopy turnover, and woody detritus in old cove forests of the southern

Appalachians. Ecology. 2005; 86:73–84. https://doi.org/10.1890/04-0410

45. Liao W, Van Coillie F, Gao L, Li L, Zhang B, Chanussot J. Deep Learning for Fusion of APEX Hyper-

spectral and Full-Waveform LiDAR Remote Sensing Data for Tree Species Mapping. IEEE Access.

2018; 6:68716–68729. https://doi.org/10.1109/ACCESS.2018.2880083

46. Sumbul G, Cinbis RG, Aksoy S. Multisource Region Attention Network for Fine-Grained Object Recog-

nition in Remote Sensing Imagery. IEEE Trans Geosci Remote Sens. 2019; 57:4929–4937. https://doi.

org/10.1109/TGRS.2019.2894425

47. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martı́nez-Meyer E, Nakamura M, et al. Ecological

Niches and Geographic Distributions (MPB-49). Ecological Niches and Geographic Distributions (MPB-

49). Princeton University Press; 2011. https://doi.org/10.1515/9781400840670
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