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ARTICLE INFO ABSTRACT
Keywords: In this paper, we propose a new mathematical model to investigate nosocomial infections caused
Bacterial infection by both antibiotic-sensitive and antibiotic-resistant bacteria. A focus of our modeling study is

Antibiotic resistance

the presence of multiple transmission pathways, including the primary infection, co-infection,
Mathematical modeling

and re-infection from each type of bacteria, and their interplay with each other in the process
of disease spread. We calibrate this model to clinical data and quantify the effects of each
transmission route in the epidemic development and evolution. Our data fitting and numerical
simulation results indicate that resistant bacteria play a more significant role than sensitive
bacteria in shaping the hospital epidemics in our study, highlighting the importance of effective
prevention and intervention strategies for antibiotic-resistant bacteria. We also find that the
primary infection and re-infection have a larger impact than the co-infection on the short-term
and long-term progression of the epidemics.

1. Introduction

Nosocomial infections, which are typically not present at the time of hospital admission but acquired during the process of
receiving medical care, represent a significant threat to public health. Particularly, the emergence of drug-resistant bacterial strains
in healthcare-associated infections has become an increasingly important issue in hospital settings. In the year of 2019 alone, an
estimated 4.95 million deaths occurred that were associated with nosocomial bacterial resistance [1].

Bacteria may develop defense mechanisms against antibiotics through both horizontal gene transfer (i.e., acquisition of new
genetic material from another source) and vertical gene transfer (i.e., biological mutation and natural selection). The presence of
drug-resistant bacteria leads to treatment failures, significantly wasting medical resources and imposing a heavy burden on both
the patients and the healthcare system. Antimicrobial-resistant bacteria can be transmitted in hospitals through the contaminated
environment (air, surfaces, liquids, etc.) and through the direct contact between patients and/or health professionals. The prevalence
of drug-resistant bacteria in critically ill patients is particularly high, especially among those who have prolonged hospital stays,
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who are on mechanical ventilation, and who have long-term central venous catheters and urinary catheters in place [2]. Despite
tremendous prevention and intervention efforts, clinical burden and mortality attributable to antimicrobial resistance are projected
to continuously increase, potentially causing as many as 10 million extra human deaths per year by 2050 [3]. Challenges related
to the control of hospital infections and antibiotic resistance are also extensively discussed in [4-6].

As a means of theoretical investigation, many computational models have been proposed to study the complex mechanisms
of antibiotic resistance and to help design effective control strategies [7,8]. Particularly, compartmental models have been
extensively used [9], following the standard epidemic modeling approach based on systems of differential equations [10-14].
Austin and Anderson [15] published simple mathematical models stemming from the law of mass action to describe the in-
host dynamics of antibiotic treatment and the spread of antibiotic-resistant bacteria in intensive care settings as well as between
hospitals. Techitnutsarut and Chamchod [16] developed a mathematical model for the within-host behavior of bacterial resistance,
incorporating the interaction between sensitive and resistant bacteria. Webb et al. [17] proposed a multi-level model, involving both
the bacterial population at the single host level and the patient population at the hospital level, to analyze the dynamic elements
of resistant and non-resistant bacterial strains in hospital settings. Related compartmental models also include [18,19] and many
others. In addition, stochastic models have been published to study hospital infections involving a small number of patients [20-22].
Among these, Wang and Xiao [22] constructed a stochastic model with direct and indirect bacterial transmission pathways and found
that isolating newly admitted patients was the most effective way to reduce bacterial infections. Furthermore, statistical methods
have also been commonly used to analyze time series data and make inferences in hospital epidemiology [23-27].

Although significant progress has been made through these modeling studies, several important questions concerned with
nosocomial infections and antibiotic-resistant bacteria have not been adequately addressed. For example, how to represent the
interaction between resistant and non-resistant (i.e., sensitive) bacteria that may lead to co-infection and re-infection? What are the
roles played by the primary infection and secondary infection in shaping a bacterial epidemic in a hospital? How to characterize
and quantify the importance of these different transmission routes?

The present paper aims to address these questions by formulating a new compartmental model that incorporates multiple
transmission routes relevant to nosocomial bacterial infections. Our model, which describes the complex interaction between
resistant and sensitive bacteria and the interplay between primary and secondary infections, will quantify the relative importance
of each transmission route in order to inform policy development and infection management. To validate our model, we will use
data collected from the intensive care unit (ICU) of the First Affiliated Hospital of the University of Science and Technology of
China (FHUSTC), with a focus on drug-resistant Acinetobacter baumannii in this study. Acinetobacter baumannii is one of the most
common drug-resistant bacteria in clinical settings, capable of spreading through multiple transmission routes that include primary
infection, co-infection, and re-infection. It can cause infections in the bloodstream, lungs, and urinary tract, severely impacting
patient outcomes [2].

ICU patients in general are those that suffer most from infections due to their existing (chronic/emergent) medical conditions
that typically compromise their immune functions, and due to the high colonization prevalence of drug-resistant pathogens in
the ICUs [28,29]. In an international survey, it was found that 54% of ICU patients overall, and 60% of those in Asia and the
Middle East, had suspected or proven infections, with high prevalence of antibiotic resistance and substantial risk of in-hospital
mortality [30]. Hence, effective prevention and intervention for antibiotic-resistant bacterial infections are extremely important for
the management of ICUs, whose patients represent the most vulnerable population, and can potentially save lives. FHUSTC, with
more than 5000 beds, is the leading hospital in Anhui Province of China and one of the largest hospitals in the entire country.
Bacterial infections, particularly those caused by antibiotic-resistant Acinetobacter baumannii, have been persistent in the ICU of
FHUSTC. We have collected data from the ICU of FHUSTC for years 2022 and 2023 which will be used to calibrate and validate
our mathematical model.

The remainder of this paper is organized as follows. The mathematical formulation of our bacterial infection model is described
in Section 2. Computational results, including parameter estimates through data fitting, numerical tests relevant to short- and long-
term dynamics, and simulation studies based on parameter variation, are presented in Section 3. The paper is concluded with some
discussion in Section 4.

2. Mathematical formulation

We consider two types of bacteria that cause nosocomial infections: one is sensitive to antibiotic treatment, referred to as type
A in our modeling study, and the other is resistant to antibiotic treatment, referred to as type B. Our classifications of type A and
type B are broad, and each of them may contain several subtypes of bacteria.

We will examine the transmission dynamics of both types of bacteria as well as their interplay in the spread of the infection,
and will use data from the ICU of FHUSTC to validate our model. Our empirical observations showed that both type A and type B
bacteria could lead to a significant number of primary infections and that type B infection may protect patients from co-infection
with type A bacteria, but patients with type A infection may still be at risk for co-infection with type B bacteria. Our clinical data also
showed that recovery from infection would protect patients from re-infection with bacteria of the same type but not the different
type. Specifically, we will incorporate the following observations into our model formulation:

» When a patient is infected with type A bacteria, there is a possibility of co-infection with type B bacteria.
» When a patient is infected with type B bacteria, the probability of co-infection with type A bacteria is almost 0.
« After a patient recovers from type A infection, the probability of re-infection with type A bacteria is almost 0.
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+ After a patient recovers from type A infection, the probability of re-infection with type B bacteria is the same as that of a
person who has not been infected by type A bacteria.

+ After a patient recovers from type B infection, the probability of re-infection with type B bacteria is almost 0.

+ After a patient recovers from type B infection, the probability of re-infection with type A bacteria is the same as that of a
person who has not been infected by type B bacteria.

We divide the ICU patient population into nine compartments containing, respectively, susceptible individuals (denoted by ),
individuals with primary infection from type A bacteria (denoted by I)), individuals with primary infection from type B bacteria
(denoted by 1)), individuals with co-infection from both types of bacteria (denoted by I,), individuals with re-infection from type
A bacteria (denoted by I;,), individuals with re-infection from type B bacteria (denoted by I,), recovered individuals from primary
type A infection (denoted by R,)), recovered individuals from primary type B infection (denoted by R,), and recovered individuals
from infection with both types of bacteria (denoted by R,;). Our model includes the following transmission routes:

+ Primary infection with type A bacteria: S — I, — R,

* Primary infection with type B bacteria: S — I, - R,

+ Co-infection with both types of bacteria: S — I, - Iy, = Ry,
+ Re-infection with type A bacteria: R, — I, — Ry,

* Re-infection with type B bacteria: Ry — I, = Ry,

Mathematically, the model is described by the following differential equations:

% =T = pySUg+ Iy + Io) = fiSUy + T} + Iy)) — S,

% = oSy + Iy + Iy) — Por Io(Iy + I} + Iop) — (vp + @)y,

% =B SU, + 1, + Iy) — (ry + o),

% = o oy + I; + 1)) — (ry + @)y,

% = BRIy + Iy + Iy)) — (v + o), @1
dd_itl = Ry, + I} + Iy) — (v, + o)1,

% =yoly — b1 RyUI; + I} + Iy)) — uRy,

% =y 1, = BoR Uy + Iy + 1) — uR;,

d:% = yorlor + volo + 711} — HRy;.

Patients who need intensive care are admitted to the ICU at the influx rate I". We assume that all these patients are susceptible
to the bacterial infection under our consideration. Susceptible individuals contract type A and type B bacteria with the primary
infection rates f, and f;, respectively. Individuals with type A infection may contract type B bacteria at the rate §, and enter
the co-infection class, who may spread both types of bacteria. Individuals with type A infection, type B infection, and co-infection
recover at rates y,, y;, and y,;, respectively. Recovered individuals from type A infection may undergo re-infection with type B
bacteria at the rate §;, and recovered individuals from type B infection may undergo re-infection with type A bacteria at the rate f,,
whereas recovered individuals who have contracted both types of bacteria are protected from re-infection. In addition, susceptible
and recovered individuals may be discharged from the ICU at a rate y, and infected individuals have a disease-induced mortality
rate w that is assumed to be the same for both types of infections.

3. Numerical study
3.1. Model fitting with clinical data

We have collected patient data from the ICU of FHUSTC in two 9-month periods: 1/1/2022-9/30/2022 and 1/1/2023-
9/30/2023, with 272 days in each period. For both years, the vast majority of antibiotic-resistant infections were caused by
Acinetobacter baumannii, which will represent the type B bacteria in our model. The antibiotic-sensitive bacteria related to our
data include Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Klebsiella pneumoniae, etc., and they will be aggregated
into the type A bacteria in our model. The data include the number of patients entering the ICU each day, the number of new cases
for type A and type B infections on a daily basis, and the duration of infection and the length of stay for each patient in the ICU.

Our data show that the average recovery period for type A infection, caused by sensitive bacteria, is about 6 days, which leads
to yy = 1/6 per day. In contrast, type B infection, caused by resistant bacteria, typically lasts longer and the average recovery period
is about 10.5 days. We thus take y; = 1/10.5 per day and y, = 1/10.5 per day. Our data also indicate that the average length of
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Fig. 1. Data for the influx rate I" in 2022 and 2023.

Table 1

Parameters in model (2.1) and their values.
Parameter Description Value
r Influx rate Varied
% Recovery rate of type A bacterial infection 1/6 per day
7 Recovery rate of type B bacterial infection 1/10.5 per day
Yo Recovery rate of co-infection 1/10.5 per day
H Discharge rate 1/5 per day
Bo Primary infection and re-infection rate of type A bacteria Fitted by data
B Primary infection and re-infection rate of type B bacteria Fitted by data
Poi Co-infection rate Fitted by data
® Infection-induced mortality rate Fitted by data

stay in the ICU for patients free of infection (including both susceptible and recovered individuals) is about 5 days. We thus set the
discharge rate as 4 = 1/5 per day. Additionally, since we have detailed data for the daily number of people entering the ICU, we
use that data to determine the influx rate I" which is changing from day to day (see Fig. 1). For both the 9-month periods in 2022
and 2023, I’ varied between O to 6 persons per day. These parameters and their values are listed in Table 1.

The other four model parameters, including the primary infection rates f, and f,, the co-infection rate f,;, and the infection-
induced death rate w, cannot be directly observed from our collected data. Instead, we will estimate their values through model
calibration based on data fitting. In what follows, we will focus on the 9-month data in 2023 and present the fitting and simulation
results. We will briefly discuss the results for the 9-month data in 2022 in Section 3.4.

We fit our model to the daily reported new cases for both type A and type B infections. Our error function is defined as follows

272
YA X4 = Va0 + W2 x50 - Y50 | G.1)
i=1
where Y, (i) and Y(i) denote, respectively, the reported number of new cases from the collected data for type A and type B infections
on the ith day, and X (i) = (S + R) Iy + Iy + Iy;) and X (i) = f,(S + R)(I, + I, + Ioy) + o Io(I; + I, + I,) represent, respectively,
our model predictions for the number of type A and type B new infections on the ith day, 1 <i < 272. Thus, the error function is
a summation of errors for each day in the 9-month period (272 days), with each term being a square sum of the error associated
with type A new cases and that associated with type B new cases. The parameter W is a scaling factor introduced to balance the
two errors, which may be taken as the ratio of the average number of new type A infections and that of type B infections. The least
squares method is applied to minimize the error function and estimate the four parameters f,, #,;, fy, and w.

The fitted parameter values and their 95% confidence intervals are presented in Table 2. We observe that the two primary
infection rates (f, and ;) are at the same order, whereas the co-infection rate (f,) is one order lower. Since f, and f, also
represent the re-infection rates, the results indicate that the primary infection and re-infection play a more important role than
the co-infection. Fig. 2 shows the numerical results for the numbers of new cases and cumulative cases caused by type A and type
B bacteria, based on data fitting. We observe reasonably good agreement between our simulation results and the reported data.

When the influx rate can be treated as a constant (e.g., approximated by its time-averaged value), we may conveniently quantify
the risk of infection using the basic reproduction number associated with the autonomous system. Based on the fitting results, we
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Table 2
Fitted parameter values and confidence intervals based on data in 2023.
Parameter Fitted value 95% Confidence interval
Bo 2.7316E-02 (2.5704E-02, 2.8928E-02)
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Fig. 2. Numerical results for the number of cumulative cases and the number of new cases caused by type A and type B bacteria based on the 272-day data
in 2023.

may estimate the basic reproduction number using the formula derived in Appendix A, Eq. (A.2):
Ry = max(Zy, Hy,) = max(1.1069, 1.1127) = 1.1127, (3.2)

where %, and %, represent the infection risk due to type A and type B bacteria, respectively. Since %, > 1, the indication is that
the infection would persist. Meanwhile, since %, = %, > %, it shows that resistant bacteria (type B) are the stronger force for
the persistence of the nosocomial infection.

Additionally, a sensitivity analysis for the model parameters is conducted in Appendix B. We note, in particular, that the two
primary infection and re-infection rates f, and g, are highly sensitive to both the state variables and the basic reproduction number.
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3.2. Impact of different transmission routes

A distinct feature of our model is that it incorporates multiple transmission routes in the spread of bacterial infection in the
ICU. Specifically, the variables I, and I, represent the result of the primary infection from the two types of bacteria, I, represents
that of co-infection, and I, and I, represent that of re-infection. The total number of active cases at any time is then given by
Io+ 1) + I + Iy + 1.

In order to quantify the impact of these different transmission routes, we have conducted a set of hypothetical tests, presented in
Fig. 3. Each test is concerned with one single transmission pathway, where we remove that specific transmission route and compare
the result with the original scenario in terms of the number of active infections. First, we remove the primary transmission caused
by type A bacteria by setting I;, = 0, while keeping all other components of the model. We then run this reduced model and generate
the curve for the total number of active cases, and plot this curve in Fig. 3(a) together with the result based on the original model.
We observe a significant reduction in the number of active cases, without the contribution from type A bacteria. Second, we remove
the primary transmission caused by type B bacteria by setting /; = 0, and then run the reduced model to generate the curve shown
in Fig. 3(b). Compared to the result in panel (a), we observe an even stronger reduction of the active infection level in panel (b),
indicating again that type B (i.e., resistant) bacteria may play a more important role than type A (i.e., sensitive) bacteria in shaping
the hospital epidemics. Third, Fig. 3(c) shows the result by removing the co-infection (I, = 0), where it can be seen that the impact
of co-infection is weaker than that of the primary infection. Additionally, panels (d), (e) and (f) show the results by removing the
type A re-infection ([, = 0), type B re-infection (I; = 0), and re-infection from both types (I, = I, = 0), respectively. We observe
that the effects of re-infection are somewhere between those of primary infection and co-infection.

Next, we have also studied the impact of each transmission route on the number of cumulative cases. Figs. 4 and 5 display the
results for the cumulative cases due to type A and type B bacteria, respectively. For each figure, the cumulative cases include all
the infected cases from the primary infection, co-infection, and re-infection that are caused by one of the two types of bacteria. In
Fig. 4, we observe that type A primary infection (panel a) plays a dominant role in shaping the cumulative cases associated with
type A bacteria, followed by type A re-infection (panel d) and co-infection (panel c). In contract, type B primary infection (panel
b) and re-infection (panel e) play relatively minor roles in this regard. Fig. 5 shows the opposite, where type B primary infection
(panel b) plays a dominant role in shaping the cumulative cases associated with type B bacteria, followed by type B re-infection
(panel e), while type A primary infection (panel a) and re-infection (panel d) play relatively minor roles.

Furthermore, we have conducted numerical simulation for the long-term dynamics of the model which can be compared to
the mathematical results presented in Appendix A. To that end, we have replaced the variable influx rate I" by its time-averaged
value so that system (2.1) becomes autonomous. We then run the simulation for 2000 days, sufficiently long to quantify the
dynamical behavior at the steady state. Our analysis in Appendix A shows that the autonomous system has a disease-free equilibrium
in the form of X° = (590,0,0,0,0,0,0,0), a type A boundary equilibrium in the form of X4 = (SA,Iéq,O, 0,0,0, RS‘,O, 0), a
type B boundary equilibrium in the form of X2 = (58,0,1 IB ,0,0,0,0, RF,O), and a positive endemic equilibrium in the form of
X* = (S*,Ig,l f,Igl,INg,f ;‘,R(’;,R”I‘,Rgl) > 0. Their specific values under our data setting are given in Eq. (A.6). The numerical
solution for this system converges to the endemic equilibrium X* where the total number of active infections is 0.8018 + 1.5549 +
0.0516 + 0.1013 + 0.1695 = 2.6791, plotted as the red curve in each panel of Fig. 6. This is consistent with the fact that %, > 1 and
Ky > 1.

Setting I, = 0 (i.e., removing type A primary infection) in this autonomous system, we obtain a reduced system which has only
two equilibria, corresponding to the DFE X and the type B boundary equilibrium X # of the original system - see the statement (A1)
in Appendix A. The numerical solution for the reduced system converges to the boundary equilibrium, shown in panel (a) of Fig. 6,
where the total number of active infections is 1.4247 at the equilibrium. Similarly, setting I, = 0 (i.e., removing type B primary
infection) leads to the reduced system whose only two equilibria correspond to the DFE X° and the type A boundary equilibrium
X4 of the original system - see the statement (A2) in Appendix A. As shown in panel (b) of Fig. 6, the numerical solution converges
to an active infection level of 0.7829 associated with the boundary equilibrium. When setting I,; = 0 (i.e., removing co-infection),
the reduced system has four equilibria, the fourth of which is a positive equilibrium X°' unique to the reduced system - see the
statement (A3) in Appendix A. The numerical solution, shown in panel (c), converges to X°' where the total number of active
infections is 0.5085 +1.3027 4 0.0524 + 0.0864 = 1.95 at the equilibrium. Moreover, panels (d), (e) and (f) display the numerical results
by setting I, = 0 (i.e., removing type A re-infection), I, = 0 (i.e., removing type B re-infection), and I, = I; = 0 (i.e., removing both
types of re-infection), respectively. These are stated in (A4), (A5) and (A6) in Appendix A. In each of these scenarios, the reduced
system has four equilibria, including a positive equilibrium which the numerical solution converges to.

Overall, we observe that type B primary infection, caused by the antibiotic-resistant bacteria, has the highest impact on the
disease prevalence in the long run by comparing panel (b) with other panels in Fig. 6. This is consistent with the finding from Fig. 3
on the short-term dynamics. Although the observation from Fig. 6 is based on a constant influx rate, qualitatively similar results
can be expected for time-dependent I’; i.e., effective control of resistant bacteria will be critical in order to push the long-term
prevalence of hospital infections toward a sufficiently low level.

3.3. Simulation with varied parameters
Based on our data fitting results, we have conducted numerical simulation for a period of 8 weeks immediately following the

9-month fitting period as a means to predict the development and evolution of the epidemic. Meanwhile, we have varied several
model parameters in the simulation process so as to explore a range of possible scenarios in the epidemic progression. Specifically,
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Fig. 5. Impact of different transmission routes on the number of cumulative
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Fig. 6. Impact of different transmission routes on the long-term progression of the number of active cases. In the original scenario, the solution converges to
the steady state at 2.6791. In each tested scenario, the solution converges to a different steady state.
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Fig. 7. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting
period in 2023, with the type A transmission rate f§, varied.

we treat the parameter values given in Table 1 as well as those estimated from data fitting (Table 2) as baseline values. We then
focus on the three transmission rates (f,, f; and f,;) and the three recovery rates (y,, 7, and y,,). We perturb each one separately
by +25% and +50% in reference to its base value, while fixing other parameters at their base values. We next run the model and
generate the simulation curves for the number of cumulative cases in the 8-week prediction period (i.e., from day 273 to day 328)
that immediately follow the 9-month (or, 272-day) fitting period. The numerical solution at the end of the fitting period (i.e., day
272) is used as the initial condition to start the simulation for the prediction period.

The simulation results with variations for the transmission rate f, are presented in Fig. 7, where the left and right panels represent
the number of cumulative cases associated with type A and type B bacteria, respectively. We clearly observe that, as f, is increased
by 25% and 50% in reference to its base value, the type A cumulative cases also increase significantly. In contrast, when f, is
decreased by 25%, the number of type A cumulative cases barely increases throughout the prediction period. A further reduction
of f, by 50% produces an even lower cumulative infection level, though the improvement appears to be minor. On the other hand,
the variation of §, has very little impact on the number of type B cumulative cases.

Fig. 8 displays the simulation results with the transmission rate §, varied, where panel (b) exhibits a similar pattern as observed
in Fig. 7(a). However, unlike what happens in Fig. 7(b), panel (a) of Fig. 8 shows that the variation of f, also has a considerable
impact on the number of type A cumulative cases through the interplay between the transmission and spread of the two types of
bacteria. This result is consistent with what we have observed in Section 3.2 and indicates that reducing the transmission rate of
the resistant bacteria can lower the cumulative cases for both type A and type B infections.

Fig. 9 displays the results when the co-infection rate f,, is varied, where we observe that this parameter appears to play a minor
role for the number of cumulative cases in both type A and type B, and the variation of its values has very minor impact on the
prediction outcomes.

Additionally, Figs. 10-12 plot the simulation results when the recovery rates y,, y; and y,, are varied, respectively. In general,
the value of each recovery rate is inversely correlated to the number of cumulative cases as a faster recovery would shorten the
infectious period and reduce the risk of disease spread. We observe that a 25% increase in the type A recovery rate y, would make
the curve of the type A cumulative cases almost flat throughout the 8-week period, while a 50% increase would further push the
curve down though the difference is barely noticeable; see Fig. 10(a). A similar pattern is clear in Fig. 11(b) for the change of the
type B recovery rate y, with respect to the curves of type B cumulative cases. Meanwhile, as shown in Figs. 10(b) and 11(a), the
value of y; has a higher impact on the type A cumulative infections than the value of y, does on the type B cumulative infections.
Finally, we observe from Fig. 12 that the impact of the co-infection recovery rate y,, is more significant on the type A cumulative
cases than that on the type B cumulative cases.

3.4. Fitting and simulation for data in 2022

We acknowledge that the number of infected individuals in our dataset is relatively low, which may give rise to stochastic effects.
To confirm that such random effects do not have a major impact on our fitting and simulation results presented in the previous
sections for the year of 2023, we have also fitted our model to the 9-month data in 2022 collected from the ICU at FHUSTC. The
fitted parameter values and their confidence intervals are presented in Table 3. Meanwhile, numerical results for the numbers of
new cases and cumulative cases are plotted in Fig. 13. Based on the data fitting, the basic reproduction number for the autonomous
system can be evaluated as

Ry = max(Zyy, Ho;) = max(1.0040, 0.9792) = 1.0040. (3.3)
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Fig. 8. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting
period in 2023, with the type B transmission rate f, varied.
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Fig. 9. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting
period in 2023, with the co-infection rate f,, varied.

Table 3

Fitted parameter values and confidence intervals based on data in 2022.

Parameter Fitted value 95% Confidence interval
Po 1.9617E-02 (1.2406E-02, 2.6827E—-02)
B 1.1242E-02 (5.1804E-03, 1.7303E-02)
Poi 7.8415E-03 (0, 2.0510E-02)

0] 6.5349E-03 (0, 4.2839E-02)

We notice that the number of infections (from both type A and type B bacteria) in 2022 is much lower than that in 2023.
Correspondingly, the fitted values of the two primary transmission rates f, and f;, which play a dominant role in shaping the
epidemic, in the year of 2022 are considerably lower than their counterparts in 2023, leading to a lower basic reproduction number
in 2022 than that in 2023. This can be naturally expected, since the first 9 months of 2022 fall into the multi-year period when
the dynamic zero-COVID policy was implemented in China [31]. The contact tracing, mass testing, strict sanitation, and extensive
quarantine practices in accordance with this policy significantly reduced the population’s exposure to pathogens, including not only
SARS-CoV-2 but also other infectious agents such as nosocomial bacteria. Consequently, the transmission and spread of bacterial
infections in the ICU seemed be effectively suppressed during this period. Such control measures appeared to be especially significant
for drug-resistant bacteria as the value of the type B reproduction number %, falls below unity, based on Eq. (3.3). After the end of
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Fig. 10. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting
period in 2023, with the type A recovery rate y, varied.
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Fig. 11. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting
period in 2023, with the type B recovery rate y, varied.

the zero-COVID policy in December 2022, the patients’ exposure to infectious pathogens, especially resistant bacteria, may have been
substantially increased which led to a larger number of cases and higher risk of infection that is measured by the basic reproduction
number %,; see Eq. (3.2). This trend is reflected in our model fitting. In contrast, the infection-induced mortality rate w fitted in
2022 is higher than that fitted in 2023, possibly due to the comorbidity that was more common in the pandemic era (e.g., patients
with both COVID-19 and bacterial infections) and that could lead to more deaths in the ICU.

We have also conducted a series of simulation studies for the 2022 data, and the detailed simulation results are presented in
Appendix C. Comparing the results between 2023 and 2023, we observe qualitatively very similar patterns, indicating that the
dynamical properties and transmission mechanisms from our deterministic model apply to both years. On the other hand, a small
difference is that the variation of f,, for 2022 has a slightly larger impact than that for 2023 on the number of cumulative cases
(compare Figs. C.6 and 9). This is consistent with the fact that the fitted co-infection rate f,, in 2022 has a higher value than its
counterpart in 2023 (compare Table 3 and Table 2). As discussed before, though, the co-infection rate plays a relatively minor role
in the overall epidemic progression.

4. Discussion

We have formulated a mathematical model to investigate nosocomial infections that are caused by antibiotic sensitive and
resistant bacteria. The focus is the presence of multiple transmission routes and their interplay with each other in the process of
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Fig. 12. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting
period in 2023, with the co-infection recovery rate y, varied.
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Fig. 13. Numerical results for the number of new cases and the number of cumulative cases based on the 272-day data in 2022.

disease spread. Our model has incorporated different transmission modes including primary infection, co-infection, and re-infection
for each type of bacteria. Using clinical data collected from the ICU of FHUSTC, we have calibrated our model and conducted
a range of simulation studies. In particular, we have compared and quantified the significance of each transmission route in
the short-term and long-term epidemic development. Our study emphasizes a holistic understanding of the complex dynamics of
nosocomial bacterial infections and a strategic design of control measures taking account of the different roles played by the multiple
transmission pathways.

The simulation results generated in this work highlight the importance of effective prevention and intervention for antibiotic-
resistant bacteria; i.e., type B bacteria in our model. Such bacteria play a more important role than antibiotic-sensitive (i.e., type A)
bacteria in shaping both the short-term and long-term progression of the epidemic, as demonstrated in Section 3.2. Meanwhile, as
shown in Section 3.3, changes of the type B infection and recovery rates have more significant impacts than those of the type
A infection and recovery rates on the number of cumulative cases in the future. These results quantify and confirm empirical
observations from hospitals where resistant bacteria are commonly found to be more difficult to treat and possess higher risk for
infection, compared to sensitive bacteria. We have also found, for both types of bacteria, that primary infection and re-infection
have a larger impact than co-infection in the overall epidemic development and evolution.

Through our predictive simulation in Section 3.3, we have identified that decreasing the type B transmission rate and increasing
the type B recovery rate can effectively reduce the number of infections from both type B and type A bacteria. Practically, it
may be easier to reduce the transmission rate of resistant bacteria through improvement of the hygiene and sanitation practices
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and educational programs in hospitals, through accurate and efficient screening and identification of new positives, and through
necessary quarantine and isolation of infected individuals [32,33]. The effects of some of these control strategies have been
demonstrated through our data fitting for the year of 2022 (see Section 3.4). To boost the recovery rate, however, it may require new
therapeutic strategies to effectively treat those resistant bacteria. It may even demand novel antibiotic drugs whose development is
usually a high-cost, time-consuming process [33]. On the other hand, decreasing the type A transmission rate and increasing the type
A recovery rate are effective in the control of type A infections, but not so much for type B infections. Our numerical results show
that if the type B (or, type A) transmission rate can be reduced by 25%, then the number of type B (or, type A) cumulative cases
would barely increase. Similar effects can be achieved by increasing the respective recovery rates by 25%. We have also found that
the improvement made by even stronger control measures (e.g., reducing a transmission rate by 50%, or increasing a recovery rate
by 50%) is very minor, sometimes barely noticeable. These results could provide quantitative guidelines for healthcare providers and
hospital administrators to properly scale their efforts for nosocomial infection control and epidemic management. The findings also
motivate a more detailed investigation into the effects of managing bacterial infections in hospitals and the costs of implementing
such control measures, and the best balance between the two, which may be achieved through an optimal control study [34].

A limitation of our fitting and simulation results is that the number of infected individuals reported at FHUSTC ICU has remained
relatively low. For such a small epidemic, the stochastic/random effects may play a role, which our deterministic model is unable to
reflect. We have partially addressed this issue by using data from two different years (2022 and 2023) and have found that our model
calibration and data simulation results exhibit similar patterns, providing evidence that the mechanisms of disease transmission and
spread revealed from our deterministic model are applicable to different times. On the other hand, results from 2022 and 2023
fitting and simulation also show some noticeable differences, as discussed in Section 3.4.

This work represents a pilot study for comparing and quantifying multiple transmission routes in the spread of nosocomial
bacterial infections. Our model is coarse-grained by considering only two broad types of bacteria (i.e., sensitive and resistant
bacteria). This simplification allows us to construct a mathematical model incorporating the primary infection, co-infection, and
re-infection from each type of bacteria as well as their detailed interplay with each other, while keeping the total number of
parameters relatively low. Consequently, the model is well manageable, easily fitted to real data, and readily implemented for
predictive simulation. Based on the results from the current work and the availability of more detailed clinical data, refined models
may be developed that take into account multiple bacterial strains in each type of (sensitive and resistant) bacteria and that are
applicable to different hospital settings.
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Appendix A. Dynamical properties of the autonomous system

In system (2.1), all model parameters except the influx rate I" are positive constants. If we assume that I can also be approximated
by a positive constant (such as its average over the time interval of our concern), system (2.1) becomes autonomous and its essential
dynamics can be mathematically analyzed.

Basic reproduction number. The basic reproduction number %,, commonly interpreted as the average number of secondary
cases produced by one infected individual in a susceptible population, describes the transmissibility (or, contagiousness) of infectious
agents. It is one of the fundamental and widely used metrics in epidemiological studies. We derive %, for this model using the
next-generation matrix technique [35]. It is straightforward to work out the disease-free equilibrium (DFE) of the system as

X0 = (% 0,0,0,0,0,0,0, o). (A1)

Let 7 be the non-negative matrix representing the generation of new infections and V the non-singular matrix representing the
transfer of individuals between compartments. Using the DFE, we can easily find

r r r
ﬁOT 0 ﬂ"T ﬂ"7 0 Yo+ @ 0 0 0 0
o &L AL o AL 0 7 +o 0 0 0
7 [z 1z
F=lo o o o of V=[O0 0 ry+o O 0
0 0 0 0 0 0 0 0 y0+a) 0
0 0 0 0 0 0 0 0 0 r+o

The basic reproduction number can then be computed as:

bl 5T )

R = 1= Hoo. Hor) = Uy + @)
%y p(;‘-v ) maX(@ooa 1]01) max(ﬂ(y0+a)), Uy + o)

(A.2)
where p denotes the spectral radius of the next-generation matrix 7V~!. The basic reproduction number here is the maximum of
o and Z,; which represent the risk of infection associated with type A and type B bacteria, respectively.

Equilibrium solutions. Through direct algebraic manipulations, we find this system has the following equilibria:

» When %, < 1 (i.e., Zy, < 1 and %, < 1), the DFE X? is the only equilibrium.
* When %, > 1, there exists a type A boundary equilibrium

A _ A JA JA JA FA FA pA pA pA
X4 = (S48 a0 15 I8 IR R RYLRY) (A.3)

where type B infection is not present, with

Yo + @ r " Yol
0 A A 0 A A FA FA A A
= I —_ I =12 =1 _IO_RI_ROI_O'

54 = - £ =
ﬂ() 0 ﬂO SA ﬁ() 0 u" 1 01 1

* When %, > 1, there exists a type B boundary equilibrium

B _ B B B B 7B 7B pB pB pB
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where type A infection is not present, with
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+ When %, > 1 and %, > 1, there exists a positive endemic equilibrium:

X* = (815,17, 15, I T RS R RS ) > 0. (A.5)

The first three statements are straightforward to verify. Using the expressions for %, and Z%,, in Eq. (A.2), it is also easy to
observe that I#* > 0 when %, > 1, and I? > 0 when %, > 1. Thus, the two boundary equilibria X and X are both biologically
feasible. The proof of the fourth statement, however, involves extremely tedious algebraic manipulations. Instead, we have chosen
to numerically demonstrate the results, with details given below.

Using the parameter values presented in Tables 1 and 2 based on the data in 2023, we have numerically calculated all the four
equilibria of the system, where %, > 1 and %, > 1 from Eq. (3.2). Keeping four decimal places, these equilibrium points are given
by

X0 = (6.8315,0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000),
X4 = (6.1716,0.7829, 0.0000, 0.0000, 0.0000, 0.0000, 0.6524, 0.0000, 0.0000),
X B = (6.1394,0.0000, 1.4247, 0.0000, 0.0000, 0.0000, 0.0000, 0.6784, 0.0000),
X* =(5.3753,0.8018, 1.5549,0.0516,0.1013, 0.1695, 0.5858, 0.6550, 0.1897).

(A.6)
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We have also found that the positive endemic equilibrium X* is unique. At the endemic level, I} = 1.5549 > I7 = 0.8018, and
I ;= 0.1695 > f(’)" = 0.1013, indicating that the primary infection and re-infection caused by the resistant bacteria dominate the
long-term disease prevalence.

In parallel with the numerical tests for the impact of different transmission pathways (see Section 3.2), we can remove one
transmission route at each time to obtain a reduced autonomous system, and then compute its equilibrium solutions. Through
numerical calculations, we have the following statements:

(A1) When I, = 0, the reduced system has only two equilibria, corresponding to the DFE X° and type B boundary equilibrium X?
of the original autonomous system.

(A2) When I, =0, the reduced system has only two equilibria, corresponding to the DFE X° and type A boundary equilibrium X“
of the original autonomous system.

(A3) When I, = 0, the reduced system has four equilibria. The first three correspond to the DFE X, and the boundary equilibria
X4 and X2 of the original system, and the fourth one is a positive equilibrium given by

X% = (5.7576,0.5085, 1.3027, 0.0524, 0.0864, 0.3818,0.5762, 0.0848). (A7)

(A4) When [, = 0, the reduced system has four equilibria. The first three correspond to X,,, X4 and X? of the original system, and
the fourth one is a positive equilibrium given by (6.0394, 0.1032, 1.4460, 0.0055,0.0185,0.0771,0.6785,0.0114).

(A5) When I, =0, the reduced system has four equilibria. The first three correspond to X,,, X and X2 of the original system, and
the fourth one is a positive equilibrium given by (5.9631, 0.7929, 0.4000, 0.0118,0.0230, 0.6399,0.1711, 0.0248).

(A6) When I = I| = 0, the reduced system has four equilibria. The first three correspond to X,,, X4 and X ® of the original system,
and the fourth one is a positive equilibrium given by (6.0752,0.2886,1.0451,0.0110, 0.2219,0.4781, 0.0053).

These results provide a basis to verify the numerical tests conducted in Section 3.2 regarding the long-term dynamics.
Appendix B. Sensitivity analysis for model parameters

We have conducted a sensitivity analysis for the parameters in system (2.1) to quantify their impact on the model outcomes.
We utilize the methodology presented in [36] for computing the relative sensitivity of each parameter with respect to the state
variables.

We introduce the notations:

S - T
X =(8.1y, I}, Iy, Ip, I;, Ry, R\, Ry ), EB.1)

a= (B, B Bor» @, 70s7’1s701s14)T,

and

I = oSUy+ Iy + Io) = BiSU, + 1, + 1) — uS
BoSUy + Iy + Iy)) — Bo1 Iy, + I} + 1) — (vy + @)

BSUy + 1 + Io) = (ry + o)
or Loy + 1y + 1)) = (v + @)1y

F(X,a) = BoR Uy + Iy + Iy)) — (g + @)1y . (B.2)
BiRyU| + 1) + In) — (v + o)
Yolo = BiRoUy + I} + Iop) — Ry
rily = BoRyUg + Iy + Iop) — R,

vorlor + volo + 1 1y = uRyy

Then system (2.1) can be written as the following vector form:

dx
o= F(X,a). (B.3)

Let X; and F; denote the ith component of X and F, respectively, for 1 < i < 9, and a; denote the jth component of « for
1 < j <8. Taking the partial derivative of the ith equation in system (B.3) with respect to «;, we obtain

d 0X; _JF 9x  OF

A% 0N 90X 0% i< 1<j<8 B.4

dioa, " 0X 0w, ' oa, ' ! B4
The state variables X;(r) and sensitivity functions %(1) can be solved by combining Egs. (B.3) and (B.4). We have applied a

fourth-order Runge-Kutta method to solve this combined system in both the fitting periods of 2023 and 2022. The sensitivity of

each parameter a; with respect to the state variables is then defined as its maximum relative sensitivity in terms of all variables X;:

Sensitivity of a; = aX"(r) % 1<j<8 (B.5)
en511v1y0 aj—m[_ax mtax|aaj X[(I)) s S J=So. .
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Table B.1
Parameter sensitivities with respect to the state variables based on data in 2023.

N I, I, Iy, Iy I, Ry R, Ry, Sensitivity
bo 2.12E+00 6.28E+00 9.51E-01 6.65E+00 6.49E+00 6.48E+00 6.14E+00 2.22E+00 6.28E+00 6.65E+00
A 1.85E+00 1.52E+00 4.75E+00 4.06E+00 5.57E+00 4.53E+00 2.64E+00 4.51E+00 4.43E+00 5.57E+00
Por 1.44E-01 2.99E-01 1.70E-01 1.41E+00 4.57E-01 3.91E-01 2.49E-01 1.45E-01 5.35E-01 1.41E+00
0] 7.66E—02 1.57E-01 1.59E-01 2.81E-01 2.95E-01 2.50E-01 1.20E-01 1.41E-01 2.48E-01 2.95E-01
Yo 2.03E+00 8.41E+00 7.07E-01 7.46E+00 8.64E+00 6.17E+00 6.64E+00 1.78E+00 6.31E+00 8.64E+00
7 1.91E+00 1.41E+00 6.78E+00 5.39E+00 6.37E+00 6.39E+00 2.44E+00 5.39E+00 5.09E+00 6.78E+00
Yo 2.94E-01 8.85E-01 3.08E-01 3.30E+00 1.12E+00 1.06E+00 7.93E-01 2.33E-01 1.07E+00 3.30E4+00
u 1.84E+00 7.11E+00 5.29E+00 1.04E+01 1.18E+01 1.04E+01 6.97E+00 5.75E+00 1.17E+01 1.18E+01

Table B.2
Parameter sensitivities with respect to the state variables based on data in 2022.

S I, I, I Iy I, R, R, Ry, Sensitivity
Bo 2.81E+00 1.06E+01 3.26E+00 1.38E+01 1.40E+01 1.33E+01 9.94E+00 2.53E+00 1.33E+01 1.40E+01
A 1.74E+00 1.67E+00 7.98E+00 8.85E+00 1.02E+01 9.09E+00 1.99E+00 7.65E+00 9.08E+00 1.02E+01
Por 2.54E-01 6.41E-01 6.76E-01 2.32E+00 1.43E+00 1.24E+00 5.51E-01 6.21E-01 1.59E+00 2.32E+00
® 2.65E-01 7.50E-01 8.72E-01 1.64E+00 1.67E+00 1.54E+00 6.48E-01 8.02E-01 1.56E+00 1.67E+00
Yo 2.47E+00 1.12E+01 3.32E+00 1.42E+01 1.47E+01 1.26E+01 9.41E+00 2.62E+00 1.30E+01 1.47E+01
7 1.59E+00 1.86E+00 8.97E+00 9.84E+00 1.02E401 1.04E+01 1.66E4+00 7.54E4+00 9.40E+00 1.04E+01
Yo1 5.54E-01 1.69E+00 1.18E+00 4.25E+00 2.95E+00 2.74E+00 1.52E+00 1.05E+00 2.86E+00 4.25E+00
H" 2.73E+00 1.23E+01 1.12E+01 2.27E+01 2.42E+01 2.24E+01 1.20E+01 1.13E+01 2.36E+01 2.42E+01

Table B.3
Parameter sensitivities with respect to the basic reproduction number based on data in 2023.
R Ry, Sensitivity
Bo 1.00E+00 0.00E+00 1.00E+00
B 0.00E+00 1.00E+00 1.00E+00
Por 0.00E+00 0.00E+00 0.00E+00
w 1.14E-02 1.97E-02 1.97E-02
Yo 9.89E-01 0.00E+00 9.89E-01
7 0.00E+00 9.80E-01 9.80E-01
Yo1 0.00E+00 0.00E+00 0.00E+00
U 1.00E+00 1.00E+00 1.00E+00

Table B.4
Parameter sensitivities with respect to the basic reproduction number based on data in 2022.
R R Sensitivity
Bo 1.00E+00 0.00E+00 1.00E+00
A 0.00E+00 1.00E+00 1.00E+00
Por 0.00E+00 0.00E+00 0.00E+00
® 3.77E-02 6.42E-02 6.42E-02
Yo 9.62E-01 0.00E+00 9.62E-01
7 0.00E+00 9.36E-01 9.36E-01
Yo1 0.00E+00 0.00E+00 0.00E+00
H" 1.00E+00 1.00E+00 1.00E+00

The relative sensitivity results based on data in 2023 and 2022 are presented in Tables B.1 and B.2, respectively.
Meanwhile, we have also computed the relative sensitivity of each parameter with respect to the basic reproduction number %,
of the autonomous system. Using Eq. (A.2) and noting that

0%y, :< r . A Y AP T} >T

o Ko+ @) 7 urg+ R ptptw? T iR + o) B.6)
oy _ <0 r G __ AL KL AT >T

o Tun+ @) e’ u e’ pR( + o)

the relative sensitivities of each parameter «; in terms of %, and %, can then be easily obtained, the maximum of which will give
the sensitivity of «; with respect to %, 1 < j < 8. The relative sensitivity results based on data in 2023 and 2022 are presented in
Tables B.3 and B.4, respectively.

Appendix C. Simulation results based on data in 2022
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Fig. C.1. Impact of different transmission routes on the number of active cases based on data in 2022.
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Fig. C.2. Impact of different transmission routes on the number of cumulative cases caused by type A bacteria based on data in 2022.
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Fig. C.3. Impact of different transmission routes on the number of cumulative cases caused by type B bacteria based on data in 2022.
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Fig. C.4. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting
period in 2022, with the type A transmission rate f§, varied.
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Fig. C.5. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting
period in 2022, with the type B transmission rate g, varied.
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Fig. C.6. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting
period in 2022, with the co-infection rate g, varied.
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Fig. C.7. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting
period in 2022, with the type A recovery rate y, varied.
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Fig. C.8. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting
period in 2022, with the type B recovery rate y, varied.
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Fig. C.9. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting
period in 2022, with the co-infection recovery rate y,, varied.

Here we present our numerical simulation results based on the 2022 data. Figs. C.1-C.3 show the impact of each transmission
route on the number of active cases and the number of cumulative cases, corresponding to Figs. 3-5 for the 2023 data. Meanwhile,
Figs. C.4-C.9 display the model predictions for the cumulative infections when the three transmission rates and three recovery rates
are varied, as analogues to Figs. 7-12 for 2023.
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