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A B S T R A C T

In this paper, we propose a new mathematical model to investigate nosocomial infections caused

by both antibiotic-sensitive and antibiotic-resistant bacteria. A focus of our modeling study is

the presence of multiple transmission pathways, including the primary infection, co-infection,

and re-infection from each type of bacteria, and their interplay with each other in the process

of disease spread. We calibrate this model to clinical data and quantify the effects of each

transmission route in the epidemic development and evolution. Our data fitting and numerical

simulation results indicate that resistant bacteria play a more significant role than sensitive

bacteria in shaping the hospital epidemics in our study, highlighting the importance of effective

prevention and intervention strategies for antibiotic-resistant bacteria. We also find that the

primary infection and re-infection have a larger impact than the co-infection on the short-term

and long-term progression of the epidemics.

1. Introduction

Nosocomial infections, which are typically not present at the time of hospital admission but acquired during the process of

eceiving medical care, represent a significant threat to public health. Particularly, the emergence of drug-resistant bacterial strains

n healthcare-associated infections has become an increasingly important issue in hospital settings. In the year of 2019 alone, an

stimated 4.95 million deaths occurred that were associated with nosocomial bacterial resistance [1].

Bacteria may develop defense mechanisms against antibiotics through both horizontal gene transfer (i.e., acquisition of new

genetic material from another source) and vertical gene transfer (i.e., biological mutation and natural selection). The presence of

drug-resistant bacteria leads to treatment failures, significantly wasting medical resources and imposing a heavy burden on both

the patients and the healthcare system. Antimicrobial-resistant bacteria can be transmitted in hospitals through the contaminated

environment (air, surfaces, liquids, etc.) and through the direct contact between patients and/or health professionals. The prevalence

of drug-resistant bacteria in critically ill patients is particularly high, especially among those who have prolonged hospital stays,
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who are on mechanical ventilation, and who have long-term central venous catheters and urinary catheters in place [2]. Despite
tremendous prevention and intervention efforts, clinical burden and mortality attributable to antimicrobial resistance are projected
to continuously increase, potentially causing as many as 10 million extra human deaths per year by 2050 [3]. Challenges related
to the control of hospital infections and antibiotic resistance are also extensively discussed in [4–6].

As a means of theoretical investigation, many computational models have been proposed to study the complex mechanisms
f antibiotic resistance and to help design effective control strategies [7,8]. Particularly, compartmental models have been
xtensively used [9], following the standard epidemic modeling approach based on systems of differential equations [10–14].
ustin and Anderson [15] published simple mathematical models stemming from the law of mass action to describe the in-
ost dynamics of antibiotic treatment and the spread of antibiotic-resistant bacteria in intensive care settings as well as between
ospitals. Techitnutsarut and Chamchod [16] developed a mathematical model for the within-host behavior of bacterial resistance,

incorporating the interaction between sensitive and resistant bacteria. Webb et al. [17] proposed a multi-level model, involving both
the bacterial population at the single host level and the patient population at the hospital level, to analyze the dynamic elements
of resistant and non-resistant bacterial strains in hospital settings. Related compartmental models also include [18,19] and many
others. In addition, stochastic models have been published to study hospital infections involving a small number of patients [20–22].
Among these, Wang and Xiao [22] constructed a stochastic model with direct and indirect bacterial transmission pathways and found
that isolating newly admitted patients was the most effective way to reduce bacterial infections. Furthermore, statistical methods
have also been commonly used to analyze time series data and make inferences in hospital epidemiology [23–27].

Although significant progress has been made through these modeling studies, several important questions concerned with
nosocomial infections and antibiotic-resistant bacteria have not been adequately addressed. For example, how to represent the
interaction between resistant and non-resistant (i.e., sensitive) bacteria that may lead to co-infection and re-infection? What are the
roles played by the primary infection and secondary infection in shaping a bacterial epidemic in a hospital? How to characterize
and quantify the importance of these different transmission routes?

The present paper aims to address these questions by formulating a new compartmental model that incorporates multiple
transmission routes relevant to nosocomial bacterial infections. Our model, which describes the complex interaction between
resistant and sensitive bacteria and the interplay between primary and secondary infections, will quantify the relative importance
of each transmission route in order to inform policy development and infection management. To validate our model, we will use
data collected from the intensive care unit (ICU) of the First Affiliated Hospital of the University of Science and Technology of
China (FHUSTC), with a focus on drug-resistant Acinetobacter baumannii in this study. Acinetobacter baumannii is one of the most
common drug-resistant bacteria in clinical settings, capable of spreading through multiple transmission routes that include primary
infection, co-infection, and re-infection. It can cause infections in the bloodstream, lungs, and urinary tract, severely impacting
patient outcomes [2].

ICU patients in general are those that suffer most from infections due to their existing (chronic/emergent) medical conditions
that typically compromise their immune functions, and due to the high colonization prevalence of drug-resistant pathogens in
the ICUs [28,29]. In an international survey, it was found that 54% of ICU patients overall, and 60% of those in Asia and the
Middle East, had suspected or proven infections, with high prevalence of antibiotic resistance and substantial risk of in-hospital
mortality [30]. Hence, effective prevention and intervention for antibiotic-resistant bacterial infections are extremely important for
the management of ICUs, whose patients represent the most vulnerable population, and can potentially save lives. FHUSTC, with
more than 5000 beds, is the leading hospital in Anhui Province of China and one of the largest hospitals in the entire country.
Bacterial infections, particularly those caused by antibiotic-resistant Acinetobacter baumannii, have been persistent in the ICU of
HUSTC. We have collected data from the ICU of FHUSTC for years 2022 and 2023 which will be used to calibrate and validate
ur mathematical model.

The remainder of this paper is organized as follows. The mathematical formulation of our bacterial infection model is described
n Section 2. Computational results, including parameter estimates through data fitting, numerical tests relevant to short- and long-
erm dynamics, and simulation studies based on parameter variation, are presented in Section 3. The paper is concluded with some
iscussion in Section 4.

. Mathematical formulation

We consider two types of bacteria that cause nosocomial infections: one is sensitive to antibiotic treatment, referred to as type
in our modeling study, and the other is resistant to antibiotic treatment, referred to as type B. Our classifications of type A and

ype B are broad, and each of them may contain several subtypes of bacteria.
We will examine the transmission dynamics of both types of bacteria as well as their interplay in the spread of the infection,

nd will use data from the ICU of FHUSTC to validate our model. Our empirical observations showed that both type A and type B
acteria could lead to a significant number of primary infections and that type B infection may protect patients from co-infection
ith type A bacteria, but patients with type A infection may still be at risk for co-infection with type B bacteria. Our clinical data also

howed that recovery from infection would protect patients from re-infection with bacteria of the same type but not the different
ype. Specifically, we will incorporate the following observations into our model formulation:

• When a patient is infected with type A bacteria, there is a possibility of co-infection with type B bacteria.
• When a patient is infected with type B bacteria, the probability of co-infection with type A bacteria is almost 0.
2

• After a patient recovers from type A infection, the probability of re-infection with type A bacteria is almost 0.
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• After a patient recovers from type A infection, the probability of re-infection with type B bacteria is the same as that of a
person who has not been infected by type A bacteria.

• After a patient recovers from type B infection, the probability of re-infection with type B bacteria is almost 0.
• After a patient recovers from type B infection, the probability of re-infection with type A bacteria is the same as that of a

person who has not been infected by type B bacteria.

We divide the ICU patient population into nine compartments containing, respectively, susceptible individuals (denoted by 𝑆),
individuals with primary infection from type A bacteria (denoted by 𝐼0), individuals with primary infection from type B bacteria
(denoted by 𝐼1), individuals with co-infection from both types of bacteria (denoted by 𝐼01), individuals with re-infection from type
A bacteria (denoted by 𝐼0), individuals with re-infection from type B bacteria (denoted by 𝐼1), recovered individuals from primary
type A infection (denoted by 𝑅0), recovered individuals from primary type B infection (denoted by 𝑅1), and recovered individuals
from infection with both types of bacteria (denoted by 𝑅01). Our model includes the following transmission routes:

• Primary infection with type A bacteria: 𝑆 → 𝐼0 → 𝑅0
• Primary infection with type B bacteria: 𝑆 → 𝐼1 → 𝑅1
• Co-infection with both types of bacteria: 𝑆 → 𝐼0 → 𝐼01 → 𝑅01
• Re-infection with type A bacteria: 𝑅1 → 𝐼0 → 𝑅01
• Re-infection with type B bacteria: 𝑅0 → 𝐼1 → 𝑅01

Mathematically, the model is described by the following differential equations:
𝑑𝑆
𝑑𝑡

= 𝛤 − 𝛽0𝑆(𝐼0 + 𝐼0 + 𝐼01) − 𝛽1𝑆(𝐼1 + 𝐼1 + 𝐼01) − 𝜇𝑆,

𝑑𝐼0
𝑑𝑡

= 𝛽0𝑆(𝐼0 + 𝐼0 + 𝐼01) − 𝛽01𝐼0(𝐼1 + 𝐼1 + 𝐼01) − (𝛾0 + 𝜔)𝐼0,

𝑑𝐼1
𝑑𝑡

= 𝛽1𝑆(𝐼1 + 𝐼1 + 𝐼01) − (𝛾1 + 𝜔)𝐼1,

𝑑𝐼01
𝑑𝑡

= 𝛽01𝐼0(𝐼1 + 𝐼1 + 𝐼01) − (𝛾01 + 𝜔)𝐼01,

𝑑𝐼0
𝑑𝑡

= 𝛽0𝑅1(𝐼0 + 𝐼0 + 𝐼01) − (𝛾0 + 𝜔)𝐼0,

𝑑𝐼1
𝑑𝑡

= 𝛽1𝑅0(𝐼1 + 𝐼1 + 𝐼01) − (𝛾1 + 𝜔)𝐼1,

𝑑𝑅0
𝑑𝑡

= 𝛾0𝐼0 − 𝛽1𝑅0(𝐼1 + 𝐼1 + 𝐼01) − 𝜇𝑅0,

𝑑𝑅1
𝑑𝑡

= 𝛾1𝐼1 − 𝛽0𝑅1(𝐼0 + 𝐼0 + 𝐼01) − 𝜇𝑅1,

𝑑𝑅01
𝑑𝑡

= 𝛾01𝐼01 + 𝛾0𝐼0 + 𝛾1𝐼1 − 𝜇𝑅01.

(2.1)

Patients who need intensive care are admitted to the ICU at the influx rate 𝛤 . We assume that all these patients are susceptible
o the bacterial infection under our consideration. Susceptible individuals contract type A and type B bacteria with the primary
nfection rates 𝛽0 and 𝛽1, respectively. Individuals with type A infection may contract type B bacteria at the rate 𝛽01 and enter
he co-infection class, who may spread both types of bacteria. Individuals with type A infection, type B infection, and co-infection
ecover at rates 𝛾0, 𝛾1, and 𝛾01, respectively. Recovered individuals from type A infection may undergo re-infection with type B
acteria at the rate 𝛽1, and recovered individuals from type B infection may undergo re-infection with type A bacteria at the rate 𝛽0,
hereas recovered individuals who have contracted both types of bacteria are protected from re-infection. In addition, susceptible
nd recovered individuals may be discharged from the ICU at a rate 𝜇, and infected individuals have a disease-induced mortality
ate 𝜔 that is assumed to be the same for both types of infections.

. Numerical study

.1. Model fitting with clinical data

We have collected patient data from the ICU of FHUSTC in two 9-month periods: 1/1/2022–9/30/2022 and 1/1/2023–
/30/2023, with 272 days in each period. For both years, the vast majority of antibiotic-resistant infections were caused by
cinetobacter baumannii, which will represent the type B bacteria in our model. The antibiotic-sensitive bacteria related to our
ata include Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Klebsiella pneumoniae, etc., and they will be aggregated
nto the type A bacteria in our model. The data include the number of patients entering the ICU each day, the number of new cases
or type A and type B infections on a daily basis, and the duration of infection and the length of stay for each patient in the ICU.

Our data show that the average recovery period for type A infection, caused by sensitive bacteria, is about 6 days, which leads
o 𝛾0 = 1∕6 per day. In contrast, type B infection, caused by resistant bacteria, typically lasts longer and the average recovery period
3

s about 10.5 days. We thus take 𝛾1 = 1∕10.5 per day and 𝛾01 = 1∕10.5 per day. Our data also indicate that the average length of
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Fig. 1. Data for the influx rate 𝛤 in 2022 and 2023.

Table 1

Parameters in model (2.1) and their values.

Parameter Description Value

𝛤 Influx rate Varied

𝛾0 Recovery rate of type A bacterial infection 1/6 per day

𝛾1 Recovery rate of type B bacterial infection 1/10.5 per day

𝛾01 Recovery rate of co-infection 1/10.5 per day

𝜇 Discharge rate 1/5 per day

𝛽0 Primary infection and re-infection rate of type A bacteria Fitted by data

𝛽1 Primary infection and re-infection rate of type B bacteria Fitted by data

𝛽01 Co-infection rate Fitted by data

𝜔 Infection-induced mortality rate Fitted by data

stay in the ICU for patients free of infection (including both susceptible and recovered individuals) is about 5 days. We thus set the

discharge rate as 𝜇 = 1∕5 per day. Additionally, since we have detailed data for the daily number of people entering the ICU, we
se that data to determine the influx rate 𝛤 which is changing from day to day (see Fig. 1). For both the 9-month periods in 2022

and 2023, 𝛤 varied between 0 to 6 persons per day. These parameters and their values are listed in Table 1.

The other four model parameters, including the primary infection rates 𝛽0 and 𝛽1, the co-infection rate 𝛽01, and the infection-

induced death rate 𝜔, cannot be directly observed from our collected data. Instead, we will estimate their values through model

calibration based on data fitting. In what follows, we will focus on the 9-month data in 2023 and present the fitting and simulation

results. We will briefly discuss the results for the 9-month data in 2022 in Section 3.4.

We fit our model to the daily reported new cases for both type A and type B infections. Our error function is defined as follows

272∑
𝑖=1

{[
𝑋𝐴(𝑖) − 𝑌𝐴(𝑖)

]2 +𝑊 2[𝑋𝐵(𝑖) − 𝑌𝐵(𝑖)
]2}

, (3.1)

where 𝑌𝐴(𝑖) and 𝑌𝐵(𝑖) denote, respectively, the reported number of new cases from the collected data for type A and type B infections

on the 𝑖th day, and 𝑋𝐴(𝑖) = 𝛽0(𝑆 +𝑅1)(𝐼0 + 𝐼0 + 𝐼01) and 𝑋𝐵(𝑖) = 𝛽1(𝑆 +𝑅0)(𝐼1 + 𝐼1 + 𝐼01) + 𝛽01𝐼0(𝐼1 + 𝐼1 + 𝐼01) represent, respectively,
ur model predictions for the number of type A and type B new infections on the 𝑖th day, 1 ≤ 𝑖 ≤ 272. Thus, the error function is
summation of errors for each day in the 9-month period (272 days), with each term being a square sum of the error associated

ith type A new cases and that associated with type B new cases. The parameter 𝑊 is a scaling factor introduced to balance the

wo errors, which may be taken as the ratio of the average number of new type A infections and that of type B infections. The least

quares method is applied to minimize the error function and estimate the four parameters 𝛽0, 𝛽1, 𝛽01, and 𝜔.

The fitted parameter values and their 95% confidence intervals are presented in Table 2. We observe that the two primary

nfection rates (𝛽0 and 𝛽1) are at the same order, whereas the co-infection rate (𝛽01) is one order lower. Since 𝛽0 and 𝛽1 also

epresent the re-infection rates, the results indicate that the primary infection and re-infection play a more important role than

he co-infection. Fig. 2 shows the numerical results for the numbers of new cases and cumulative cases caused by type A and type

bacteria, based on data fitting. We observe reasonably good agreement between our simulation results and the reported data.

When the influx rate can be treated as a constant (e.g., approximated by its time-averaged value), we may conveniently quantify
he risk of infection using the basic reproduction number associated with the autonomous system. Based on the fitting results, we
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Table 2

Fitted parameter values and confidence intervals based on data in 2023.

Parameter Fitted value 95% Confidence interval

𝛽0 2.7316E−02 (2.5704E−02, 2.8928E−02)
𝛽1 1.5825E−02 (1.5824E−02, 1.5825E−02)
𝛽01 3.5193E−03 (1.9075E−03, 5.1312E−03)
𝜔 1.9162E−03 (1.9141E−03, 1.9182E−03)

Fig. 2. Numerical results for the number of cumulative cases and the number of new cases caused by type A and type B bacteria based on the 272-day data

in 2023.

may estimate the basic reproduction number using the formula derived in Appendix A, Eq. (A.2):

R0 = max(R00, R01) = max(1.1069, 1.1127) = 1.1127, (3.2)

where R00 and R01 represent the infection risk due to type A and type B bacteria, respectively. Since R0 > 1, the indication is that
he infection would persist. Meanwhile, since R0 = R01 > R00, it shows that resistant bacteria (type B) are the stronger force for

the persistence of the nosocomial infection.

Additionally, a sensitivity analysis for the model parameters is conducted in Appendix B. We note, in particular, that the two

primary infection and re-infection rates 𝛽 and 𝛽 are highly sensitive to both the state variables and the basic reproduction number.
0 1
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3.2. Impact of different transmission routes

A distinct feature of our model is that it incorporates multiple transmission routes in the spread of bacterial infection in the
CU. Specifically, the variables 𝐼0 and 𝐼1 represent the result of the primary infection from the two types of bacteria, 𝐼01 represents
hat of co-infection, and 𝐼0 and 𝐼1 represent that of re-infection. The total number of active cases at any time is then given by
0 + 𝐼1 + 𝐼01 + 𝐼0 + 𝐼1.

In order to quantify the impact of these different transmission routes, we have conducted a set of hypothetical tests, presented in
ig. 3. Each test is concerned with one single transmission pathway, where we remove that specific transmission route and compare
he result with the original scenario in terms of the number of active infections. First, we remove the primary transmission caused
y type A bacteria by setting 𝐼0 = 0, while keeping all other components of the model. We then run this reduced model and generate

the curve for the total number of active cases, and plot this curve in Fig. 3(a) together with the result based on the original model.
e observe a significant reduction in the number of active cases, without the contribution from type A bacteria. Second, we remove

he primary transmission caused by type B bacteria by setting 𝐼1 = 0, and then run the reduced model to generate the curve shown
n Fig. 3(b). Compared to the result in panel (a), we observe an even stronger reduction of the active infection level in panel (b),
ndicating again that type B (i.e., resistant) bacteria may play a more important role than type A (i.e., sensitive) bacteria in shaping
he hospital epidemics. Third, Fig. 3(c) shows the result by removing the co-infection (𝐼01 = 0), where it can be seen that the impact
f co-infection is weaker than that of the primary infection. Additionally, panels (d), (e) and (f) show the results by removing the
ype A re-infection (𝐼0 = 0), type B re-infection (𝐼1 = 0), and re-infection from both types (𝐼0 = 𝐼1 = 0), respectively. We observe
hat the effects of re-infection are somewhere between those of primary infection and co-infection.

Next, we have also studied the impact of each transmission route on the number of cumulative cases. Figs. 4 and 5 display the
esults for the cumulative cases due to type A and type B bacteria, respectively. For each figure, the cumulative cases include all
he infected cases from the primary infection, co-infection, and re-infection that are caused by one of the two types of bacteria. In
ig. 4, we observe that type A primary infection (panel a) plays a dominant role in shaping the cumulative cases associated with
ype A bacteria, followed by type A re-infection (panel d) and co-infection (panel c). In contract, type B primary infection (panel
) and re-infection (panel e) play relatively minor roles in this regard. Fig. 5 shows the opposite, where type B primary infection
panel b) plays a dominant role in shaping the cumulative cases associated with type B bacteria, followed by type B re-infection
panel e), while type A primary infection (panel a) and re-infection (panel d) play relatively minor roles.

Furthermore, we have conducted numerical simulation for the long-term dynamics of the model which can be compared to
he mathematical results presented in Appendix A. To that end, we have replaced the variable influx rate 𝛤 by its time-averaged

value so that system (2.1) becomes autonomous. We then run the simulation for 2000 days, sufficiently long to quantify the
dynamical behavior at the steady state. Our analysis in Appendix A shows that the autonomous system has a disease-free equilibrium
in the form of 𝑋0 =

(

𝑆0, 0, 0, 0, 0, 0, 0, 0, 0
)

, a type A boundary equilibrium in the form of 𝑋𝐴 =
(

𝑆𝐴, 𝐼𝐴0 , 0, 0, 0, 0, 𝑅
𝐴
0 , 0, 0

)

, a
type B boundary equilibrium in the form of 𝑋𝐵 =

(

𝑆𝐵 , 0, 𝐼𝐵1 , 0, 0, 0, 0, 𝑅
𝐵
1 , 0

)

, and a positive endemic equilibrium in the form of
𝑋∗ =

(

𝑆∗, 𝐼∗0 , 𝐼
∗
1 , 𝐼

∗
01, 𝐼

∗
0 , 𝐼

∗
1 , 𝑅

∗
0 , 𝑅

∗
1 , 𝑅

∗
01
)

> 0. Their specific values under our data setting are given in Eq. (A.6). The numerical
solution for this system converges to the endemic equilibrium 𝑋∗ where the total number of active infections is 0.8018 + 1.5549 +
0.0516 + 0.1013 + 0.1695 = 2.6791, plotted as the red curve in each panel of Fig. 6. This is consistent with the fact that R00 > 1 and
R01 > 1.

Setting 𝐼0 = 0 (i.e., removing type A primary infection) in this autonomous system, we obtain a reduced system which has only
two equilibria, corresponding to the DFE 𝑋0 and the type B boundary equilibrium 𝑋𝐵 of the original system - see the statement (A1)
in Appendix A. The numerical solution for the reduced system converges to the boundary equilibrium, shown in panel (a) of Fig. 6,
where the total number of active infections is 1.4247 at the equilibrium. Similarly, setting 𝐼1 = 0 (i.e., removing type B primary
infection) leads to the reduced system whose only two equilibria correspond to the DFE 𝑋0 and the type A boundary equilibrium
𝑋𝐴 of the original system - see the statement (A2) in Appendix A. As shown in panel (b) of Fig. 6, the numerical solution converges
o an active infection level of 0.7829 associated with the boundary equilibrium. When setting 𝐼01 = 0 (i.e., removing co-infection),
he reduced system has four equilibria, the fourth of which is a positive equilibrium 𝑋01 unique to the reduced system - see the
tatement (A3) in Appendix A. The numerical solution, shown in panel (c), converges to 𝑋01 where the total number of active
nfections is 0.5085+1.3027+0.0524+0.0864 = 1.95 at the equilibrium. Moreover, panels (d), (e) and (f) display the numerical results
y setting 𝐼0 = 0 (i.e., removing type A re-infection), 𝐼1 = 0 (i.e., removing type B re-infection), and 𝐼0 = 𝐼1 = 0 (i.e., removing both
ypes of re-infection), respectively. These are stated in (A4), (A5) and (A6) in Appendix A. In each of these scenarios, the reduced
ystem has four equilibria, including a positive equilibrium which the numerical solution converges to.

Overall, we observe that type B primary infection, caused by the antibiotic-resistant bacteria, has the highest impact on the
isease prevalence in the long run by comparing panel (b) with other panels in Fig. 6. This is consistent with the finding from Fig. 3

on the short-term dynamics. Although the observation from Fig. 6 is based on a constant influx rate, qualitatively similar results
can be expected for time-dependent 𝛤 ; i.e., effective control of resistant bacteria will be critical in order to push the long-term
prevalence of hospital infections toward a sufficiently low level.

3.3. Simulation with varied parameters

Based on our data fitting results, we have conducted numerical simulation for a period of 8 weeks immediately following the
9-month fitting period as a means to predict the development and evolution of the epidemic. Meanwhile, we have varied several
6

model parameters in the simulation process so as to explore a range of possible scenarios in the epidemic progression. Specifically,
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Fig. 3. Impact of different transmission routes on the number of active cases based on data in 2023.
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Fig. 4. Impact of different transmission routes on the number of cumulative cases caused by type A bacteria based on data in 2023.
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Fig. 5. Impact of different transmission routes on the number of cumulative cases caused by type B bacteria based on data in 2023.
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Fig. 6. Impact of different transmission routes on the long-term progression of the number of active cases. In the original scenario, the solution converges to

he steady state at 2.6791. In each tested scenario, the solution converges to a different steady state.
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Fig. 7. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting

period in 2023, with the type A transmission rate 𝛽0 varied.

we treat the parameter values given in Table 1 as well as those estimated from data fitting (Table 2) as baseline values. We then

focus on the three transmission rates (𝛽0, 𝛽1 and 𝛽01) and the three recovery rates (𝛾0, 𝛾1 and 𝛾01). We perturb each one separately
y ±25% and ±50% in reference to its base value, while fixing other parameters at their base values. We next run the model and

enerate the simulation curves for the number of cumulative cases in the 8-week prediction period (i.e., from day 273 to day 328)

hat immediately follow the 9-month (or, 272-day) fitting period. The numerical solution at the end of the fitting period (i.e., day

72) is used as the initial condition to start the simulation for the prediction period.

The simulation results with variations for the transmission rate 𝛽0 are presented in Fig. 7, where the left and right panels represent
he number of cumulative cases associated with type A and type B bacteria, respectively. We clearly observe that, as 𝛽0 is increased
by 25% and 50% in reference to its base value, the type A cumulative cases also increase significantly. In contrast, when 𝛽0 is
decreased by 25%, the number of type A cumulative cases barely increases throughout the prediction period. A further reduction

of 𝛽0 by 50% produces an even lower cumulative infection level, though the improvement appears to be minor. On the other hand,

he variation of 𝛽0 has very little impact on the number of type B cumulative cases.
Fig. 8 displays the simulation results with the transmission rate 𝛽1 varied, where panel (b) exhibits a similar pattern as observed

n Fig. 7(a). However, unlike what happens in Fig. 7(b), panel (a) of Fig. 8 shows that the variation of 𝛽1 also has a considerable
mpact on the number of type A cumulative cases through the interplay between the transmission and spread of the two types of

acteria. This result is consistent with what we have observed in Section 3.2 and indicates that reducing the transmission rate of

he resistant bacteria can lower the cumulative cases for both type A and type B infections.

Fig. 9 displays the results when the co-infection rate 𝛽01 is varied, where we observe that this parameter appears to play a minor
ole for the number of cumulative cases in both type A and type B, and the variation of its values has very minor impact on the

rediction outcomes.

Additionally, Figs. 10–12 plot the simulation results when the recovery rates 𝛾0, 𝛾1 and 𝛾01 are varied, respectively. In general,
the value of each recovery rate is inversely correlated to the number of cumulative cases as a faster recovery would shorten the

infectious period and reduce the risk of disease spread. We observe that a 25% increase in the type A recovery rate 𝛾0 would make
he curve of the type A cumulative cases almost flat throughout the 8-week period, while a 50% increase would further push the

urve down though the difference is barely noticeable; see Fig. 10(a). A similar pattern is clear in Fig. 11(b) for the change of the

type B recovery rate 𝛾1 with respect to the curves of type B cumulative cases. Meanwhile, as shown in Figs. 10(b) and 11(a), the
value of 𝛾1 has a higher impact on the type A cumulative infections than the value of 𝛾0 does on the type B cumulative infections.
Finally, we observe from Fig. 12 that the impact of the co-infection recovery rate 𝛾01 is more significant on the type A cumulative
cases than that on the type B cumulative cases.

3.4. Fitting and simulation for data in 2022

We acknowledge that the number of infected individuals in our dataset is relatively low, which may give rise to stochastic effects.

To confirm that such random effects do not have a major impact on our fitting and simulation results presented in the previous

sections for the year of 2023, we have also fitted our model to the 9-month data in 2022 collected from the ICU at FHUSTC. The

fitted parameter values and their confidence intervals are presented in Table 3. Meanwhile, numerical results for the numbers of

new cases and cumulative cases are plotted in Fig. 13. Based on the data fitting, the basic reproduction number for the autonomous

system can be evaluated as
R0 = max(R00, R01) = max(1.0040, 0.9792) = 1.0040. (3.3)
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Fig. 8. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting

period in 2023, with the type B transmission rate 𝛽1 varied.

Fig. 9. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting

period in 2023, with the co-infection rate 𝛽01 varied.

Table 3

Fitted parameter values and confidence intervals based on data in 2022.

Parameter Fitted value 95% Confidence interval

𝛽0 1.9617E−02 (1.2406E−02, 2.6827E−02)
𝛽1 1.1242E−02 (5.1804E−03, 1.7303E−02)
𝛽01 7.8415E−03 (0, 2.0510E−02)
𝜔 6.5349E−03 (0, 4.2839E−02)

We notice that the number of infections (from both type A and type B bacteria) in 2022 is much lower than that in 2023.

orrespondingly, the fitted values of the two primary transmission rates 𝛽0 and 𝛽1, which play a dominant role in shaping the
pidemic, in the year of 2022 are considerably lower than their counterparts in 2023, leading to a lower basic reproduction number

n 2022 than that in 2023. This can be naturally expected, since the first 9 months of 2022 fall into the multi-year period when

he dynamic zero-COVID policy was implemented in China [31]. The contact tracing, mass testing, strict sanitation, and extensive

uarantine practices in accordance with this policy significantly reduced the population’s exposure to pathogens, including not only

ARS-CoV-2 but also other infectious agents such as nosocomial bacteria. Consequently, the transmission and spread of bacterial

nfections in the ICU seemed be effectively suppressed during this period. Such control measures appeared to be especially significant

falls below unity, based on Eq. (3.3). After the end of
or drug-resistant bacteria as the value of the type B reproduction number R01
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Fig. 10. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting

period in 2023, with the type A recovery rate 𝛾0 varied.

Fig. 11. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting

period in 2023, with the type B recovery rate 𝛾1 varied.

the zero-COVID policy in December 2022, the patients’ exposure to infectious pathogens, especially resistant bacteria, may have been

substantially increased which led to a larger number of cases and higher risk of infection that is measured by the basic reproduction

number R0; see Eq. (3.2). This trend is reflected in our model fitting. In contrast, the infection-induced mortality rate 𝜔 fitted in

2022 is higher than that fitted in 2023, possibly due to the comorbidity that was more common in the pandemic era (e.g., patients

with both COVID-19 and bacterial infections) and that could lead to more deaths in the ICU.

We have also conducted a series of simulation studies for the 2022 data, and the detailed simulation results are presented in

Appendix C. Comparing the results between 2023 and 2023, we observe qualitatively very similar patterns, indicating that the

dynamical properties and transmission mechanisms from our deterministic model apply to both years. On the other hand, a small

difference is that the variation of 𝛽01 for 2022 has a slightly larger impact than that for 2023 on the number of cumulative cases

(compare Figs. C.6 and 9). This is consistent with the fact that the fitted co-infection rate 𝛽01 in 2022 has a higher value than its

counterpart in 2023 (compare Table 3 and Table 2). As discussed before, though, the co-infection rate plays a relatively minor role

in the overall epidemic progression.

4. Discussion

We have formulated a mathematical model to investigate nosocomial infections that are caused by antibiotic sensitive and

resistant bacteria. The focus is the presence of multiple transmission routes and their interplay with each other in the process of
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Fig. 12. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting

period in 2023, with the co-infection recovery rate 𝛾01 varied.

Fig. 13. Numerical results for the number of new cases and the number of cumulative cases based on the 272-day data in 2022.

disease spread. Our model has incorporated different transmission modes including primary infection, co-infection, and re-infection

for each type of bacteria. Using clinical data collected from the ICU of FHUSTC, we have calibrated our model and conducted

a range of simulation studies. In particular, we have compared and quantified the significance of each transmission route in

the short-term and long-term epidemic development. Our study emphasizes a holistic understanding of the complex dynamics of

nosocomial bacterial infections and a strategic design of control measures taking account of the different roles played by the multiple

transmission pathways.

The simulation results generated in this work highlight the importance of effective prevention and intervention for antibiotic-

esistant bacteria; i.e., type B bacteria in our model. Such bacteria play a more important role than antibiotic-sensitive (i.e., type A)

acteria in shaping both the short-term and long-term progression of the epidemic, as demonstrated in Section 3.2. Meanwhile, as

shown in Section 3.3, changes of the type B infection and recovery rates have more significant impacts than those of the type

A infection and recovery rates on the number of cumulative cases in the future. These results quantify and confirm empirical

observations from hospitals where resistant bacteria are commonly found to be more difficult to treat and possess higher risk for

infection, compared to sensitive bacteria. We have also found, for both types of bacteria, that primary infection and re-infection

have a larger impact than co-infection in the overall epidemic development and evolution.

Through our predictive simulation in Section 3.3, we have identified that decreasing the type B transmission rate and increasing

the type B recovery rate can effectively reduce the number of infections from both type B and type A bacteria. Practically, it
may be easier to reduce the transmission rate of resistant bacteria through improvement of the hygiene and sanitation practices
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and educational programs in hospitals, through accurate and efficient screening and identification of new positives, and through
necessary quarantine and isolation of infected individuals [32,33]. The effects of some of these control strategies have been
demonstrated through our data fitting for the year of 2022 (see Section 3.4). To boost the recovery rate, however, it may require new
herapeutic strategies to effectively treat those resistant bacteria. It may even demand novel antibiotic drugs whose development is
sually a high-cost, time-consuming process [33]. On the other hand, decreasing the type A transmission rate and increasing the type
recovery rate are effective in the control of type A infections, but not so much for type B infections. Our numerical results show

hat if the type B (or, type A) transmission rate can be reduced by 25%, then the number of type B (or, type A) cumulative cases
ould barely increase. Similar effects can be achieved by increasing the respective recovery rates by 25%. We have also found that

he improvement made by even stronger control measures (e.g., reducing a transmission rate by 50%, or increasing a recovery rate
y 50%) is very minor, sometimes barely noticeable. These results could provide quantitative guidelines for healthcare providers and
ospital administrators to properly scale their efforts for nosocomial infection control and epidemic management. The findings also
otivate a more detailed investigation into the effects of managing bacterial infections in hospitals and the costs of implementing

uch control measures, and the best balance between the two, which may be achieved through an optimal control study [34].
A limitation of our fitting and simulation results is that the number of infected individuals reported at FHUSTC ICU has remained

elatively low. For such a small epidemic, the stochastic/random effects may play a role, which our deterministic model is unable to
eflect. We have partially addressed this issue by using data from two different years (2022 and 2023) and have found that our model
alibration and data simulation results exhibit similar patterns, providing evidence that the mechanisms of disease transmission and
pread revealed from our deterministic model are applicable to different times. On the other hand, results from 2022 and 2023
itting and simulation also show some noticeable differences, as discussed in Section 3.4.

This work represents a pilot study for comparing and quantifying multiple transmission routes in the spread of nosocomial
acterial infections. Our model is coarse-grained by considering only two broad types of bacteria (i.e., sensitive and resistant
acteria). This simplification allows us to construct a mathematical model incorporating the primary infection, co-infection, and
e-infection from each type of bacteria as well as their detailed interplay with each other, while keeping the total number of
arameters relatively low. Consequently, the model is well manageable, easily fitted to real data, and readily implemented for
redictive simulation. Based on the results from the current work and the availability of more detailed clinical data, refined models
ay be developed that take into account multiple bacterial strains in each type of (sensitive and resistant) bacteria and that are

pplicable to different hospital settings.
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Appendix A. Dynamical properties of the autonomous system

In system (2.1), all model parameters except the influx rate 𝛤 are positive constants. If we assume that 𝛤 can also be approximated
by a positive constant (such as its average over the time interval of our concern), system (2.1) becomes autonomous and its essential
dynamics can be mathematically analyzed.

Basic reproduction number. The basic reproduction number R0, commonly interpreted as the average number of secondary
cases produced by one infected individual in a susceptible population, describes the transmissibility (or, contagiousness) of infectious
agents. It is one of the fundamental and widely used metrics in epidemiological studies. We derive R0 for this model using the
next-generation matrix technique [35]. It is straightforward to work out the disease-free equilibrium (DFE) of the system as

𝑋0 =
(𝛤
𝜇
, 0, 0, 0, 0, 0, 0, 0, 0

)

. (A.1)

Let  be the non-negative matrix representing the generation of new infections and  the non-singular matrix representing the
transfer of individuals between compartments. Using the DFE, we can easily find

 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛽0𝛤
𝜇 0 𝛽0𝛤

𝜇
𝛽0𝛤
𝜇 0

0 𝛽1𝛤
𝜇

𝛽1𝛤
𝜇 0 𝛽1𝛤

𝜇

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,  =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛾0 + 𝜔 0 0 0 0

0 𝛾1 + 𝜔 0 0 0

0 0 𝛾01 + 𝜔 0 0

0 0 0 𝛾0 + 𝜔 0

0 0 0 0 𝛾1 + 𝜔

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The basic reproduction number can then be computed as:

R0 = 𝜌
(

−1) = max
(

R00, R01
)

= max
(

𝛽0𝛤
𝜇(𝛾0 + 𝜔)

,
𝛽1𝛤

𝜇(𝛾1 + 𝜔)

)

, (A.2)

where 𝜌 denotes the spectral radius of the next-generation matrix −1. The basic reproduction number here is the maximum of
00 and R01 which represent the risk of infection associated with type A and type B bacteria, respectively.
Equilibrium solutions. Through direct algebraic manipulations, we find this system has the following equilibria:

• When R0 < 1 (i.e., R00 < 1 and R01 < 1), the DFE 𝑋0 is the only equilibrium.
• When R00 > 1, there exists a type A boundary equilibrium

𝑋𝐴 =
(

𝑆𝐴, 𝐼𝐴0 , 𝐼
𝐴
1 , 𝐼

𝐴
01, 𝐼

𝐴
0 , 𝐼

𝐴
1 , 𝑅

𝐴
0 , 𝑅

𝐴
1 , 𝑅

𝐴
01
)

(A.3)

where type B infection is not present, with

𝑆𝐴 =
𝛾0 + 𝜔
𝛽0

, 𝐼𝐴0 = 𝛤
𝛽0𝑆𝐴 −

𝜇
𝛽0

, 𝑅𝐴
0 =

𝛾0𝐼𝐴0
𝜇

, 𝐼𝐴1 = 𝐼𝐴01 = 𝐼𝐴1 = 𝐼𝐴0 = 𝑅𝐴
1 = 𝑅𝐴

01 = 0.

• When R01 > 1, there exists a type B boundary equilibrium

𝑋𝐵 =
(

𝑆𝐵 , 𝐼𝐵0 , 𝐼
𝐵
1 , 𝐼

𝐵
01, 𝐼

𝐵
0 , 𝐼

𝐵
1 , 𝑅

𝐵
0 , 𝑅

𝐵
1 , 𝑅

𝐵
01
)

(A.4)

where type A infection is not present, with

𝑆𝐵 =
𝛾1 + 𝜔
𝛽1

, 𝐼𝐵1 = 𝛤
𝛽1𝑆𝐵 −

𝜇
𝛽1

, 𝑅𝐵
1 =

𝛾1𝐼𝐵1
𝜇

, 𝐼𝐵0 = 𝐼𝐵01 = 𝐼𝐵0 = 𝐼𝐵1 = 𝑅𝐵
0 = 𝑅𝐵

01 = 0.

• When R00 > 1 and R01 > 1, there exists a positive endemic equilibrium:

𝑋∗ =
(

𝑆∗, 𝐼∗0 , 𝐼
∗
1 , 𝐼

∗
01, 𝐼

∗
0 , 𝐼

∗
1 , 𝑅

∗
0 , 𝑅

∗
1 , 𝑅

∗
01
)

> 0. (A.5)

The first three statements are straightforward to verify. Using the expressions for R00 and R01 in Eq. (A.2), it is also easy to
observe that 𝐼𝐴0 > 0 when R00 > 1, and 𝐼𝐵1 > 0 when R01 > 1. Thus, the two boundary equilibria 𝑋𝐴 and 𝑋𝐵 are both biologically
easible. The proof of the fourth statement, however, involves extremely tedious algebraic manipulations. Instead, we have chosen
o numerically demonstrate the results, with details given below.

Using the parameter values presented in Tables 1 and 2 based on the data in 2023, we have numerically calculated all the four
quilibria of the system, where R00 > 1 and R01 > 1 from Eq. (3.2). Keeping four decimal places, these equilibrium points are given
y

𝑋0 = (6.8315, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000),

𝑋𝐴 = (6.1716, 0.7829, 0.0000, 0.0000, 0.0000, 0.0000, 0.6524, 0.0000, 0.0000),

𝑋𝐵 = (6.1394, 0.0000, 1.4247, 0.0000, 0.0000, 0.0000, 0.0000, 0.6784, 0.0000),
∗

(A.6)
16

𝑋 = (5.3753, 0.8018, 1.5549, 0.0516, 0.1013, 0.1695, 0.5858, 0.6550, 0.1897).
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We have also found that the positive endemic equilibrium 𝑋∗ is unique. At the endemic level, 𝐼∗1 = 1.5549 > 𝐼∗0 = 0.8018, and
̃∗
1 = 0.1695 > 𝐼∗0 = 0.1013, indicating that the primary infection and re-infection caused by the resistant bacteria dominate the
ong-term disease prevalence.

In parallel with the numerical tests for the impact of different transmission pathways (see Section 3.2), we can remove one
transmission route at each time to obtain a reduced autonomous system, and then compute its equilibrium solutions. Through
numerical calculations, we have the following statements:

(A1) When 𝐼0 = 0, the reduced system has only two equilibria, corresponding to the DFE 𝑋0 and type B boundary equilibrium 𝑋𝐵

of the original autonomous system.
(A2) When 𝐼1 = 0, the reduced system has only two equilibria, corresponding to the DFE 𝑋0 and type A boundary equilibrium 𝑋𝐴

of the original autonomous system.
(A3) When 𝐼01 = 0, the reduced system has four equilibria. The first three correspond to the DFE 𝑋0 and the boundary equilibria

𝑋𝐴 and 𝑋𝐵 of the original system, and the fourth one is a positive equilibrium given by

𝑋01 = (5.7576, 0.5085, 1.3027, 0.0524, 0.0864, 0.3818, 0.5762, 0.0848). (A.7)

(A4) When 𝐼0 = 0, the reduced system has four equilibria. The first three correspond to 𝑋0, 𝑋𝐴 and 𝑋𝐵 of the original system, and
the fourth one is a positive equilibrium given by (6.0394, 0.1032, 1.4460, 0.0055, 0.0185, 0.0771, 0.6785, 0.0114).

(A5) When 𝐼1 = 0, the reduced system has four equilibria. The first three correspond to 𝑋0, 𝑋𝐴 and 𝑋𝐵 of the original system, and
the fourth one is a positive equilibrium given by (5.9631, 0.7929, 0.4000, 0.0118, 0.0230, 0.6399, 0.1711, 0.0248).

(A6) When 𝐼0 = 𝐼1 = 0, the reduced system has four equilibria. The first three correspond to 𝑋0, 𝑋𝐴 and 𝑋𝐵 of the original system,
and the fourth one is a positive equilibrium given by (6.0752, 0.2886, 1.0451, 0.0110, 0.2219, 0.4781, 0.0053).

hese results provide a basis to verify the numerical tests conducted in Section 3.2 regarding the long-term dynamics.

ppendix B. Sensitivity analysis for model parameters

We have conducted a sensitivity analysis for the parameters in system (2.1) to quantify their impact on the model outcomes.
e utilize the methodology presented in [36] for computing the relative sensitivity of each parameter with respect to the state

ariables.
We introduce the notations:

𝑋 =
(

𝑆, 𝐼0, 𝐼1, 𝐼01, 𝐼0, 𝐼1, 𝑅0, 𝑅1, 𝑅01
)𝑇 ,

𝛼 =
(

𝛽0, 𝛽1, 𝛽01, 𝜔, 𝛾0, 𝛾1, 𝛾01, 𝜇
)𝑇 ,

(B.1)

nd

𝐹 (𝑋, 𝛼) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛤 − 𝛽0𝑆(𝐼0 + 𝐼0 + 𝐼01) − 𝛽1𝑆(𝐼1 + 𝐼1 + 𝐼01) − 𝜇𝑆

𝛽0𝑆(𝐼0 + 𝐼0 + 𝐼01) − 𝛽01𝐼0(𝐼1 + 𝐼1 + 𝐼01) − (𝛾0 + 𝜔)𝐼0
𝛽1𝑆(𝐼1 + 𝐼1 + 𝐼01) − (𝛾1 + 𝜔)𝐼1

𝛽01𝐼0(𝐼1 + 𝐼1 + 𝐼01) − (𝛾01 + 𝜔)𝐼01
𝛽0𝑅1(𝐼0 + 𝐼0 + 𝐼01) − (𝛾0 + 𝜔)𝐼0
𝛽1𝑅0(𝐼1 + 𝐼1 + 𝐼01) − (𝛾1 + 𝜔)𝐼1
𝛾0𝐼0 − 𝛽1𝑅0(𝐼1 + 𝐼1 + 𝐼01) − 𝜇𝑅0

𝛾1𝐼1 − 𝛽0𝑅1(𝐼0 + 𝐼0 + 𝐼01) − 𝜇𝑅1

𝛾01𝐼01 + 𝛾0𝐼0 + 𝛾1𝐼1 − 𝜇𝑅01

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (B.2)

hen system (2.1) can be written as the following vector form:
𝑑𝑋
𝑑𝑡

= 𝐹 (𝑋, 𝛼) . (B.3)

Let 𝑋𝑖 and 𝐹𝑖 denote the 𝑖th component of 𝑋 and 𝐹 , respectively, for 1 ≤ 𝑖 ≤ 9, and 𝛼𝑗 denote the 𝑗th component of 𝛼 for
≤ 𝑗 ≤ 8. Taking the partial derivative of the 𝑖th equation in system (B.3) with respect to 𝛼𝑗 , we obtain

𝑑
𝑑𝑡

𝜕𝑋𝑖
𝜕𝛼𝑗

=
𝜕𝐹𝑖
𝜕𝑋

⋅
𝜕𝑋
𝜕𝛼𝑗

+
𝜕𝐹𝑖
𝜕𝛼𝑗

, 1 ≤ 𝑖 ≤ 9, 1 ≤ 𝑗 ≤ 8. (B.4)

The state variables 𝑋𝑖(𝑡) and sensitivity functions 𝜕𝑋𝑖
𝜕𝛼𝑗

(𝑡) can be solved by combining Eqs. (B.3) and (B.4). We have applied a
ourth-order Runge–Kutta method to solve this combined system in both the fitting periods of 2023 and 2022. The sensitivity of
ach parameter 𝛼𝑗 with respect to the state variables is then defined as its maximum relative sensitivity in terms of all variables 𝑋𝑖 :

Sensitivity of 𝛼𝑗 = max
(

max ||
𝜕𝑋𝑖 (𝑡)

𝛼𝑗
|

|

)

, 1 ≤ 𝑗 ≤ 8. (B.5)
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Table B.1
Parameter sensitivities with respect to the state variables based on data in 2023.

𝑆 𝐼0 𝐼1 𝐼01 𝐼0 𝐼1 𝑅0 𝑅1 𝑅01 Sensitivity

𝛽0 2.12E+00 6.28E+00 9.51E−01 6.65E+00 6.49E+00 6.48E+00 6.14E+00 2.22E+00 6.28E+00 6.65E+00
𝛽1 1.85E+00 1.52E+00 4.75E+00 4.06E+00 5.57E+00 4.53E+00 2.64E+00 4.51E+00 4.43E+00 5.57E+00
𝛽01 1.44E−01 2.99E−01 1.70E−01 1.41E+00 4.57E−01 3.91E−01 2.49E−01 1.45E−01 5.35E−01 1.41E+00
𝜔 7.66E−02 1.57E−01 1.59E−01 2.81E−01 2.95E−01 2.50E−01 1.20E−01 1.41E−01 2.48E−01 2.95E−01
𝛾0 2.03E+00 8.41E+00 7.07E−01 7.46E+00 8.64E+00 6.17E+00 6.64E+00 1.78E+00 6.31E+00 8.64E+00
𝛾1 1.91E+00 1.41E+00 6.78E+00 5.39E+00 6.37E+00 6.39E+00 2.44E+00 5.39E+00 5.09E+00 6.78E+00
𝛾01 2.94E−01 8.85E−01 3.08E−01 3.30E+00 1.12E+00 1.06E+00 7.93E−01 2.33E−01 1.07E+00 3.30E+00
𝜇 1.84E+00 7.11E+00 5.29E+00 1.04E+01 1.18E+01 1.04E+01 6.97E+00 5.75E+00 1.17E+01 1.18E+01

Table B.2
Parameter sensitivities with respect to the state variables based on data in 2022.

𝑆 𝐼0 𝐼1 𝐼01 𝐼0 𝐼1 𝑅0 𝑅1 𝑅01 Sensitivity

𝛽0 2.81E+00 1.06E+01 3.26E+00 1.38E+01 1.40E+01 1.33E+01 9.94E+00 2.53E+00 1.33E+01 1.40E+01
𝛽1 1.74E+00 1.67E+00 7.98E+00 8.85E+00 1.02E+01 9.09E+00 1.99E+00 7.65E+00 9.08E+00 1.02E+01
𝛽01 2.54E−01 6.41E−01 6.76E−01 2.32E+00 1.43E+00 1.24E+00 5.51E−01 6.21E−01 1.59E+00 2.32E+00
𝜔 2.65E−01 7.50E−01 8.72E−01 1.64E+00 1.67E+00 1.54E+00 6.48E−01 8.02E−01 1.56E+00 1.67E+00
𝛾0 2.47E+00 1.12E+01 3.32E+00 1.42E+01 1.47E+01 1.26E+01 9.41E+00 2.62E+00 1.30E+01 1.47E+01
𝛾1 1.59E+00 1.86E+00 8.97E+00 9.84E+00 1.02E+01 1.04E+01 1.66E+00 7.54E+00 9.40E+00 1.04E+01
𝛾01 5.54E−01 1.69E+00 1.18E+00 4.25E+00 2.95E+00 2.74E+00 1.52E+00 1.05E+00 2.86E+00 4.25E+00
𝜇 2.73E+00 1.23E+01 1.12E+01 2.27E+01 2.42E+01 2.24E+01 1.20E+01 1.13E+01 2.36E+01 2.42E+01

Table B.3
Parameter sensitivities with respect to the basic reproduction number based on data in 2023.

R00 R01 Sensitivity

𝛽0 1.00E+00 0.00E+00 1.00E+00
𝛽1 0.00E+00 1.00E+00 1.00E+00
𝛽01 0.00E+00 0.00E+00 0.00E+00
𝜔 1.14E−02 1.97E−02 1.97E−02
𝛾0 9.89E−01 0.00E+00 9.89E−01
𝛾1 0.00E+00 9.80E−01 9.80E−01
𝛾01 0.00E+00 0.00E+00 0.00E+00
𝜇 1.00E+00 1.00E+00 1.00E+00

Table B.4
Parameter sensitivities with respect to the basic reproduction number based on data in 2022.

R00 R01 Sensitivity

𝛽0 1.00E+00 0.00E+00 1.00E+00
𝛽1 0.00E+00 1.00E+00 1.00E+00
𝛽01 0.00E+00 0.00E+00 0.00E+00
𝜔 3.77E−02 6.42E−02 6.42E−02
𝛾0 9.62E−01 0.00E+00 9.62E−01
𝛾1 0.00E+00 9.36E−01 9.36E−01
𝛾01 0.00E+00 0.00E+00 0.00E+00
𝜇 1.00E+00 1.00E+00 1.00E+00

The relative sensitivity results based on data in 2023 and 2022 are presented in Tables B.1 and B.2, respectively.
Meanwhile, we have also computed the relative sensitivity of each parameter with respect to the basic reproduction number R0

f the autonomous system. Using Eq. (A.2) and noting that

𝜕R00
𝜕𝛼

=
(

𝛤
𝜇(𝛾0 + 𝜔)

, 0, 0, −
𝛽0𝛤

𝜇(𝛾0 + 𝜔)2
, −

𝛽0𝛤
𝜇(𝛾0 + 𝜔)2

, 0, 0, −
𝛽0𝛤

𝜇2(𝛾0 + 𝜔)

)𝑇
,

𝜕R01
𝜕𝛼

=
(

0, 𝛤
𝜇(𝛾1 + 𝜔)

, 0, −
𝛽1𝛤

𝜇(𝛾1 + 𝜔)2
, 0, −

𝛽1𝛤
𝜇(𝛾1 + 𝜔)2

, 0, −
𝛽1𝛤

𝜇2(𝛾1 + 𝜔)

)𝑇
,

(B.6)

the relative sensitivities of each parameter 𝛼𝑗 in terms of R00 and R01 can then be easily obtained, the maximum of which will give
the sensitivity of 𝛼𝑗 with respect to R0, 1 ≤ 𝑗 ≤ 8. The relative sensitivity results based on data in 2023 and 2022 are presented in
Tables B.3 and B.4, respectively.

Appendix C. Simulation results based on data in 2022
18
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Fig. C.1. Impact of different transmission routes on the number of active cases based on data in 2022.
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Fig. C.2. Impact of different transmission routes on the number of cumulative cases caused by type A bacteria based on data in 2022.
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Fig. C.3. Impact of different transmission routes on the number of cumulative cases caused by type B bacteria based on data in 2022.
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Fig. C.4. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting

period in 2022, with the type A transmission rate 𝛽0 varied.

Fig. C.5. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting

period in 2022, with the type B transmission rate 𝛽1 varied.



Z. Cheng et al.
Fig. C.6. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting

period in 2022, with the co-infection rate 𝛽01 varied.

Fig. C.7. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting

period in 2022, with the type A recovery rate 𝛾0 varied.
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Fig. C.8. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting

period in 2022, with the type B recovery rate 𝛾1 varied.

Fig. C.9. Model predictions for the number of cumulative cases in an 8-week period (i.e., from day 273 to day 328) immediately following the 272-day fitting

period in 2022, with the co-infection recovery rate 𝛾01 varied.

Here we present our numerical simulation results based on the 2022 data. Figs. C.1–C.3 show the impact of each transmission

oute on the number of active cases and the number of cumulative cases, corresponding to Figs. 3–5 for the 2023 data. Meanwhile,

igs. C.4–C.9 display the model predictions for the cumulative infections when the three transmission rates and three recovery rates

re varied, as analogues to Figs. 7–12 for 2023.
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