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Running Title:

Marine N,-fixer Crocosphaera waterburyi

Abstract

Marine N,-fixing cyanobacteria, including the unicellular genus Crocosphaera, are
considered keystone species in marine food webs. Crocosphaera are globally distributed and
provide new sources of nitrogen and carbon, which fuel oligotrophic microbial.communities and
upper trophic levels. Despite their ecosystem importance, only one pelagic, oligetrophic,
phycoerythrin-rich species, Crocosphaera watsonii, has ever been identified and characterized as
widespread. Herein, we present a new species, named Crocosphaera waterburyi, enriched from
the North Pacific Ocean. C. waterburyi was found to be.phenotypically and genotypically
distinct from C. watsonii, active in situ, distributed-globally, and preferred warmer temperatures
in culture and the ocean. Additionally, C. waterburyi-was detectable in 150- and 4,000-meter
sediment export traps, had a relativelylarger biovolume than C. watsonii, and appeared to
aggregate in the environment and laboratory culture. Therefore, it represents an additional,
previously unknown link between atmospheric CO, and N, gas and deep ocean carbon and

nitrogen export and sequestration.

Keywords: nitrogen fixation, cyanobacteria, oligotrophic oceans, Crocosphaera
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Introduction

N,-fixing cyanobacteria are widespread members of the global oceans and are impactful

on the overall health and function of marine ecosystems [1, 2]. Members of the unicéllular
cyanobacterial genus Crocosphaera are photosynthetic, phycocyanin or phycoerythrin-rich
bacteria that convert N, gas from the atmosphere into bioavailable forms using the enzyme
nitrogenase (encoded by the genes nifH, nifD, and nifK) [2—4]. Currently, Crocosphaera have

been described from various biogeographical regions including ceastal waters and the

oligotrophic oceans [4—6]. The colors of various Crocosphaera are indicative of their ecological

niches, with the phycocyanin-rich species harvestingired light common in benthic coastal
habitats and phycoerythrin-rich strains harvesting blue light available in oligotrophic ocean
waters [7]. The coastal, phycocyanin-rich Crocosphaera species include: Crocosphaera
subtropica, Crocosphaera chwakensis, and Cyanothece sp. BGOO11. Prior to this study, the
phycoerythrin-rich Crocosphaera included only one valid species, Crocosphaera watsonii,
which was the only knowniabundant, unicellular, free-living, N»-fixing cyanobacterium in the
oligotrophic oceansy[2,'5, 6].

C/watsonii generates bioavailable nitrogen (N) and carbon (C) and impacts
biogeochemical cycling in broad regions [2, 4, 6]. New C from Crocosphaera can provide a
resource for upper trophic levels and allows for microbial recycling processes to take place,

whereas new N fuels N-limited phytoplankton that drive the biological C pump [2, 8]. During

summer in the upper euphotic zone of the North Pacific Subtropical Gyre, C. watsonii nifH gene-
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based abundances can be found at higher copy number than other diazotrophs at 9.4 + 0.7 x 10
to 2.8 £ 0.9 x 10° nifH copies per L [9]. Recent work has also shown that Crocosphaera can also
have both direct and indirect impacts on N + C export to the deep ocean [10—14]. Deep C export
is a mitigating factor in the ocean response to rising anthropogenic CO; conditions. Thus,
defining the role that Crocosphaera plays in both production and export will improve
understanding of how the oligotrophic oceans will be impacted by climate change.

In this study, we present the discovery and characterization of an oligotrophic species
within genus Crocosphaera, named Crocosphaera waterburyi Cleveland and-Webb nov. sp.,
(henceforth, C. waterburyi). The C. waterburyi Alani8 enrichment was obtained from
oligotrophic waters in the North Pacific Ocean near Hawaii. Environmental nifH and
metagenomic datasets showed that C. waterburyi was globally,distributed in multiple oceans,
contributed to C + N export, could be present and-active deeper in the water column, exhibited a
warm temperature optimum, and had a relatively lasge biovolume. C. waterburyi cells were also
rod-shaped (vs spherical C. watsonii),~5 um in length by ~2 um wide, phycoerythrin-rich, and
formed large cellular aggregates. The assembled genome of C. waterburyi was comparable in
size and GC content with C. watsonii strains, yet clustered in a distinct clade when compared by
multiple metrics. Our¢haracterization of C. waterburyi shows it as a previously overlooked,

ecologically relevant taxa in oligotrophic ocean regions.

Materials and Methods
Isolation and Cultivation
A single isolate of C. waterburyi, strain Alani8, was enriched during the 2010 10-day R/V

Kilo Moana KM-1013 cruise near Station ALOHA (22° 45'N, 158° 00'W) [15, 16]. The
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enrichment was started from a single, hand-picked 7Trichodesmium colony and incubated in
YBCII media without vitamins [17] at 26°C in a Percival Incubator (Percival Scientific Inc.,
Perry, IA, USA; 12:12 Light:Dark cycle at ~100 pmol m™~ s™"). After about 30 days, the
Trichodesmium colony had lysed, and the culture began to turn orange, suggesting the presence
of a phycoerythrin-rich cyanobacterium. Samples from these enrichments were concentrated,
streaked on parafilm-sealed 1.5% Type VII agarose plates (Sigma-Aldrich, Burlington; MA,),
and incubated as above for >30 days. This process was repeated twice, and single colonies were
picked to obtain unialgal enrichments. Cultures were non-axenic and were maintained in
maximum log growth via weekly transfers to keep heterotrophs in low abundance based on
previous Crocosphaera culturing work [5]. Cultures are available«to order by the name
“Crocosphaera waterburyi” under accession number “CCMP'3753” from the Provasoli-Guillard
National Center for Marine Algae and Microbiota(NCMA\) at Bigelow laboratories

(https://ncma.bigelow.org/).

Wet mount epi-fluorescent and/bright field microscopy with Zeiss DAPI and Cy?3 filters,
a Zeiss AxioStar microscope, and'a Zeiss HBOS50 light source (Zeiss, Oberkochen, Germany)
were used to describe the cellular morphology, cellular biovolume, and pigmentation. Biovolume
was determined usingscell size measurements on ImageJ [18] and pigmentation was further
analyzed with chlorephyll extractions (Supplemental Methods), [19]. Scanning electron
microscopic (SEM) images were also taken to provide higher resolution of cellular morphology
(Supplemental Methods).
Extraction and Sequencing

To concentrate biomass for DNA extraction, 100 mL of mid-log culture was centrifuged

at 13,000 RPM for 2 minutes at 25°C to form a pellet. DNA was then extracted using the Qiagen
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DNeasy PowerBiofilm kit (Qiagen, Germantown, MD, USA) following the manufacturer’s
protocol with the following modifications: after addition of the cell material to the bead beating
tube, the cells were lysed with liquid N, freeze-thaws (5X), tube agitation (3X), and 65°C
overnight Proteinase K (~1ng/uL final concentration in 350 pul of Qiagen buffers MBL and
100uL of FB; VWR International, Radnor, PA, USA) incubation. DNA was quantified using a
Qubit 4 fluorometer (ThermoScientific, Waltham, MA, USA), and 260/280 quality was verified
with a NanoDrop 1,000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).
Library preparation with the NEBNext® DNA Library Prep Kit and PE150 sequencing at a depth
of 1Gbp was completed at Novogene Inc. (Sacramento, CA, USA).
Genome Assembly

The reads were assembled on the open-source web page KBase (KBase.com) following
the public narrative, “Genome Extraction for Shotgun Metagenomic Sequence Data”

(https://narrative.kbase.us/narrative/24019),(see: Supplemental Methods for full pipeline).

Phylogenetic Tree Construction

To place the C. waterburyi genome in context with other near relative genomes available
in GenBank, accessions in order Chroococcales (including families Aphanothecaceae and
Microcystaceae [20])-and genus Cyanothece were obtained from the NCBI assembly site. A
phylogenomic tree with’350 genomes/MAGs was created using the GToTree v1.6.31 workflow
and associated programs [21-26] with Gloeobacter violaceus PCC 7421 (GCA _000011385.1) as
the root. Subsequently, another maximum likelihood tree was created using 35 representative
assemblies closely related to C. waterburyi. The tree used 251 conserved cyanobacterial HMMs

[25] with at least 50% of the HMMs required in each genome to be included in the tree. The
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output tree data from GToTree was piped into IQTree2 using the best model finder method and
1,000 bootstraps to generate the final consensus tree [27, 28].

We additionally used NCBI-blastn to place the C. waterburyi nifH gene in an
environmental context and to create a 16S rRNA gene tree of representative Crocosphaera
isolates. The phylogenetic tree was created using the nifH gene sequences from Crocosphdera
enrichment cultures and 250 nifH gene sequences identified by blastn as having high'identity to
the C. waterburyi nifH gene. For the 16S rRNA gene tree, the C. waterburyi L6S tRNA gene was
assembled from the trimmed reads using Phyloflash [29] and compared to 16S rRNA genes
sequenced from Crocosphaera cultures. The phylogenetic tree pipeline was as follows:
combined sequences for each respective tree were aligned in Geneious [30] using Clustal Omega
1.2.2 [31], trimmed manually, and subsequent nifH and.16S rRINA gene trees were created using
RAXML 8.2.11 [32] with a GTR GAMMA nucleotide model, rapid bootstrapping (1,000
bootstraps), and the maximum likelihood tree algotithm. A world map with the collection
coordinates of nifH amplicon sequences:most closely related to C. waterburyi Alani8 was also
visualized using R packages ggplot2 and tidyverse [33, 34].

Pangenome Analysis

We used the pan genomic pipeline in Anvi’o v7.1 [35, 36] to define the core and
accessory genes of 10 Crocosphaera assemblies, including six C. watsonii strains (WHO0003
(GCA_000235665:2), WH0005 (GCA_001050835.1), WH0402 (GCA_001039635.1), WH8501
(GCA_000167195.1), WH8502 (GCA_001039555.1), WH0401 (GCA_001039615.1)), C.
chwakensis CCY0110 (GCA_000169335.1), C. subtropica ATCC 51142 (GCA_000017845.1),
Cyanothece sp. BG0O011 (GCA _003013815.1), and C. waterburyi. Two environmental MAGs,

Crocosphaera sp. DT 26 (GCA 013215395.1) and Crocosphaera sp. ALOHA ZT 9

$20Z JequieAoN €z uo 1senb Aq gzZHe£8/// L Zerim/olews/a0 "0 L/Iop/8|oile-aoueApe/lawsl/woo dno-olwspese//:sdny wolj papeojumoq



161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

(GCA _022448125.1), were excluded from the pangenome as they were not from isolated
cultures [9, 11, 12, 14, 37, 38] and their physiology has not yet been characterized. All
assemblies, beside C. waterburyi, were obtained from NCBI. Briefly, the genomes were
reformatted and annotated with NCBI-COG20, Pfams v35, KEGG-KOfams v2020-04-27, and
HMMER v3 [25, 39—41] to define the conserved gene content in each assembly. The pangenome
was constructed using an MCL 2 threshold suitable for less-similar genomes [42], andithe
FastANI v1.32 [43] heatmap used an ANI lower threshold of 80% similarity. Genemes,were
ordered by ANI similarity, and gene clusters were aligned and ordered in Anvi’o.v7.1 by
presence or absence in the genomes.
Temperature Profile

C. waterburyi was grown in Percival incubators.at temperatures between 20-38° under
the following conditions: identical 3,000 K warm-white lights at 96 pmol m™ s, 12:12 diel cycle
in YBC II media without vitamins [17]. The'growth,rates of C. waterburyi Alani8 across 20-
38°C and the growth rates of two repreSentative large and small cell C. watsonii strains from a
previous study [5] were compared by normalizing to percent maximal growth (0-100%) to
account for differences in lightdevel and culture medium. More details for these calculations are
available in the Supplemental Methods, as well as additional methods for comparative growth
rate and N,-fixationymeasurements from C. watsonii and C. waterburyi at 26°C.
Environmental Read-Mapping

We used the C. waterburyi, C. watsonii WHO0003, C. chwakensis CCY0110, Cyanothece
sp. BG0011, and C. subtropica ATCC 51142 genomes as targets for read recruiting to 63
metagenome samples from 4,000 m depth in the ALOHA Deep Trap Sequencing project

(PRINA482655; DeLong research group at University of Hawai’i and Simons Collaboration on
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Ocean Processes and Ecology), [11, 12, 14, 38, 44], Station ALOHA 150 m net trap
metagenomes (PRINA358725), [9, 37, 38], GO-SHIP surface metagenomes [45], and
BioGEOTRACES metagenomes [46] to define the range of genus Crocosphaera.

Read recruitment was also done with 934 TaraOceans DNA samples [47—49] to the
complete genomes for UCYN-A1 ALOHA (GCA_000025125.1) and UCYN-A2 CPSB-1
(GCA _020885515.1) and draft genomes for C. waterburyi Alani8 and C. watsonii WH0401
(GCA _001039615.1). The TaraOceans temperature metadata was also obtained from the
European Nucleotide Archive (ENA).

Briefly, the pipeline for read recruitment was as follows: Bowtie2 v2.5.2 mapped reads to
the contig set [50], Samtools v1.9 converted SAMs to BAMs [51},.CoverM v0.6.1 filtered the
BAMs at 98% identity (https://github.com/wwood/CoverM), and Anvi’o v7.1 visualized and
parsed the results [36]. The mean coverage and % reeruitment values were used as metrics of
abundance, and % genomes detection was used forypresence vs absence. For TaraOceans
metagenomes, mean coverages were compared-across surface samples where >1 genome was
present at >1x mean coverage. More detailed interpretations of these different Anvi’o parameters
are available at https://merenlab.org/2017/05/08/anvio-views/ as well as in previous studies [52,
53].

Detection of nifH Gene and Transcripts in the North Pacific Subtropical Gyre

Samples for the determination of diazotroph community composition and activity were
collected during the SCOPE-PARAGON I research expedition in the North Pacific Subtropical
Gyre (NPSQG) July 22-August 5, 2021 (R/V Kilo Moana). Three types of samples were collected:
size fractionated seawater samples (DNA); diel seawater samples (RNA); and samples of

particles sinking out of the euphotic zone (DNA/RNA). All seawater samples were collected

$20Z JequieAoN €z uo 1senb Aq gzZHe£8/// L Zerim/olews/a0 "0 L/Iop/8|oile-aoueApe/lawsl/woo dno-olwspese//:sdny wolj papeojumoq



207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

from three depths, 25 meters, 150 meters, and the deep chlorophyll maximum (DCM: ~135
meters), using Niskin® bottles mounted to a CTD rosette (SeaBird Scientific Bellevue, WA,
USA), and transferred into acid-washed polycarbonate bottles or carboys. Large volume (20 L)
seawater samples were filtered serially using gentle peristaltic pumping through the following
filters: 100 pm nitex mesh (25 mm, MilliporeSigma, Burlington, MA, USA); 20 um
polycarbonate (25 mm; Sterlitech Corp., Auburn, WA, USA) 3.0 um polyester (25 mmn,
Sterlitech Corp., Auburn, WA, USA); and 0.2 um Supor® (25 mm; Pall Corporation, Port
Washington, NY, USA). Diel samples (2.5-4 L) were collected every ~6 hr over30h and filtered
serially through 3.0 pm polyester (25 mm, Sterlitech Corp., Auburn, WA, USA) and 0.2 um
Supor® filters (25 mm; Pall Corporation, Port Washington, NY, WSA), with care taken to keep
filtration times under 30 min.

Sinking particles were collected using surface. tethered net traps (diameter 1.25 m, 50 um
mesh cod end), [54] and deployed at 150 m for 24 he. Upon recovery of the net traps, particles
were gently resuspended in sterile filtered 150 ' m water and split into multiple samples as
previously described [55]. Particle slurries were gently filtered through 0.2-pum pore size Supor®
filters (25 mm; Pall Corporation). All filters were flash frozen in liquid N, and stored at -80°C
until extraction.

DNA and RNA were co-extracted from all samples using the AllPrep DNA/RNA Micro
kit (Qiagen, Germantown, MD, USA) according to the manufacturers’ guidelines with
modifications described previously [56]. RNA extracts were DNase digested using the Turbo
DNA-free kit (Ambion, Austin, TX, USA) to remove any DNA contamination. Then, cDNA was
synthesized with the Superscript IV First-Strand Synthesis System (Invitrogen, Waltham, MA,

USA) primed by universal nifH reverse primers nifH2, nifH3 using reaction conditions as
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previously described [57]. All DNA and RNA extracts were screened for purity using a
NanoDrop spectrophotometer (ThermoScientific, Waltham, MA, USA), and DNA was quantified
using Picogreen® dsDNA Quantitation kit (Molecular Probes, Eugene, OR, USA).

Partial nifH fragments were PCR-amplified using the universal primers nifH1-4 [58, 59]
and sequenced using high throughput amplicon sequencing as detailed previously [60]. Amplicon
sequence variants (ASVs) were defined using the DADA?2 pipeline [61] with customizations
specific to the nifH gene (J. Magasin, https://github.com/jdmagasin/nifH_amplicons DADA2).
Crocosphaera ASVs were identified using blastx against a curated nifH genome.database
(wwwzehr.pmc.ucsc.edu/Genome879/), including ASVs 100% identicalto C. waterburyi and C.

watsonii WH8501 (AADV02000024.1).

Results and Discussion
Morphological and Physiological Characteristics

Following isolation from the North Pacific near Station ALOHA, C. waterburyi
consistently displayed cell morphology and pigmentation that bridged the gap between the
coastal, phycocyanin-rich C. subtropica, C. chwakensis, and Cyanothece sp. BG0011 (CrocoG
hereafter) with the oligotrophic, phycoerythrin-rich C. watsonii. Specifically, C. waterburyi was
rod-shaped and~5 pm long by ~2 um wide like Cyanothece sp. BGO011 (Figure 1A-C), [62].
However,although rod-shaped, they were still similar in cell size to larger cells of the spherical
C. watsonii (~5 um), (Figure 1D) and were shown to be phycoerythrin-rich using DAPI-LP
epifluorescence (Figure 1A). C. waterburyi also formed aggregates in culture (i.e., flocs)
embedded in exopolysaccharides like the coastal Crocosphaera species, and exhibited elongated

rod shapes (Figure 1A-C), [6]. C. waterburyi-like rod shaped, phycoerythrin-rich cells also
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appeared to be present sympatrically with C. watsonii-like ~2-6 um spherical cells in particle

export traps from the North Pacific Ocean over multiple years (Figure 1E-G).

Evolutionary Relationships

A 16S rRNA phylogenetic tree was created using the genes from representative
Crocosphaera isolates (Figure 2A), and a phylogenomic tree was created with 350 genomes
from NCBI assembly within the order Chroococcales and genus Cyanothece te.ensure correct
taxonomic placement of C. waterburyi (Supplemental Figure S1). Following this, a subsequent
tree was made using 35 representative, related taxa to C. waterburyi (Figure 2B). At the 16S
rRNA gene level, C. waterburyi represents a new species closest'to the CrocoG (Figure 2A).
However, phylogenomically, C. waterburyi was more closelytelated to C. watsonii yet still
clustered independently (Figure 2B). C. watsonii-and. C. waterburyi also formed an ‘oceanic’
phylogenomic group within the genus, which is distinct from the coastal CrocoG (Figure 2B).

Different C. watsonii isolates have been shown to display strain-specific differences in
cell size and exopolysaccharide (EPS) production [5, 63]. However, despite these differences, the
C. watsonii strains were all phylogenomically closely related (Figure 2). C. waterburyi
displayed both morphelogical (Figure 1) and strong phylogenetic differences from C. watsonii

(Figure 2A-B),in supportt of our proposal to describe it as a distinct species of Crocosphaera.

Pangenomic Comparisons of Genus Crocosphaera
The full genomic potential and pangenomics of the genus Crocosphaera has never been
characterized. Thus, how gene content varies across the genus, including C. waterburyi, has

never been defined. To ensure that only high-quality genomes were included in the
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Crocosphaera pangenome, CheckM[64] was used to demonstrate that all genomes were >98%
complete, <2% contamination with N50 values between 9,214 and 4,934,271 (Supplemental
Table S1). The draft genome of C. waterburyi, specifically, was found to be high quality at
99.56% complete, 0% contamination, and an N50 of 69,427. The GC content of C. waterburyi
(38.1%) was slightly higher than the C. watsonii strains (37.1 - 37.7%) but comparable to.the
coastal Cyanothece sp. BG0011 genome in the CrocoG subclade (38.2%).

Members of the genus Crocosphaera, despite their wide biogeographical range and habitat
difference (coastal vs oligotrophic), had 2,391 gene clusters in their “genomic core,” (Figure 3).
The core genes were enriched in distinct functions related to the lifestyle.of these organisms,
including N,-fixation, phosphate uptake, iron (III) utilization, phetosynthesis, phycobiliprotein,
and mobile genetic element-related genes (Supplemental Table'S2).

Pangenomic analysis also revealed that membersiof each phylogenomically-defined
Crocosphaera clade had accessory genes found only-in those groups. For example, CrocoG and
C. watsonii subclades each had genes distinct to their groups (each group having 444 and 508
accessory gene clusters, respectively; Figure 3), enriched in different mobile genetic element-
related genes (Supplemental Table S2). C. watsonii also showed sub-grouping at the strain level
with the small cell phenotypes having 46 specific accessory gene clusters in total and the large
cell phenotype having 378 gene clusters (Figure 3). Overall, C. waterburyi was found to have
the largest set of tnique genes with a total of 986 genes and 923 gene clusters (Figure 3),
although 51% lacked annotation by NCBI-COGS, Pfam, and KOfam. These high accessory gene
numbers in C. waterburyi could be due to only one genome being available from this group.
However, broad groupings based on the presence and absence of accessory genes corroborate the

phylogenomic structure. C. waterburyi also shared distinct gene clusters with the CrocoG (154

$20Z JequieAoN €z uo 1senb Aq gzZHe£8/// L Zerim/olews/a0 "0 L/Iop/8|oile-aoueApe/lawsl/woo dno-olwspese//:sdny wolj papeojumoq



299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

gene clusters) and separately with C. watsonii strains (137 gene clusters), (Figure 3; listed in
Supplemental Table 2). Of particular interest were accessory genes found only in C. waterburyi
and the CrocoG; this included mreBCD rod-shape determining proteins predicted to be
responsible for the phenotypic difference in rod vs spherical shape of C. waterburyi and the
CrocoG vs C. watsonii cells. These genes were confirmatory that the rod shape observed in the
CrocoG and C. waterburyi is a true evolutionary difference from C. watsonii.

When further visualized and compared by average nucleotide identity (ANI), (>80% lower
threshold), Crocosphaera were again differentiated into the same 3 subclades: Cowatsonii
strains, the CrocoG, and C. waterburyi. As expected, the six C. watsonii-genomes had high ANI
identity at >98%. However, C. waterburyi was only 82% ANI toall cultured C. watsonii strains
and 80-81% to the CrocoG (Supplemental Table S3). As these values are below both the
suggested intra-species 95% ANI cutoff and the 83%,ANI inter-species value [43], this supports
the species designation of C. waterburyi. In'summary, based on both gene content and % ANI, C.
waterburyi shares features with both theigreen, coastal, and orange, oligotrophic Crocosphaera
subclades.

Although C. waterburyi and C. watsonii have specific conserved genes (Figure 3) and
similar habitats, there-are unique genetic characteristics of each. One prime example was the
presence of a CRISPR-Cas type I-B system in C. waterburyi (Supplemental Figure S2-S3,
Supplemental Table S4) but not in any of the 6 C. watsonii strains. The C. watsonii strains all
encoded only Csa3, which was annotated as a transposase and not a true Cas gene [65]. CRISPR-
cas systems can provide bacteria with immunity against bacteriophage infection [66], and
cyanobacteria frequently have the Type III-B system [67], including the sympatric

cyanobacterium 7richodesmium thiebautii [65]. However, based on analyses with CCTyper [68]
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and Anvi’o [36], C. waterburyi and other closely related single-celled cyanobacteria encode the
Type I-B system (Supplemental Figures S2-S3). With this I-B CRISPR-cas system, C.
waterburyi may be more resistant to cyanophage infection than C. watsonii. However, isolation
of more C. waterburyi strains and additional environmental sequencing efforts are needed to
address this further.

Although several Fe (IIT) and (II) utilization genes (feoAB, afuA, fbpB) were shared by.all
Crocosphaera genomes, accessory Fe (II) utilization feoAB genes were found.to vary between C.
waterburyi, C. watsonii and CrocoG genomes (Figure 3; Core genes; Supplemental Table 2).
This finding is relevant as Fe demand is increased in oligotrophic ocean-diazotrophs relative to
other phytoplankton due to their obligatory Fe requirement of the.metalloenzyme nitrogenase
[1]. For example, C. waterburyi was found to encode a;second,additional Fe (II) transporter via
the maintenance of distinct feo4B genes (Supplemental Table S2, S5). Blastp identified them as
more similar by % identity to feoAB in Gloeocapsa,sp. PCC 73106 (WP_006528539.1,

WP _006528538.1), which are of freshwater origin [69]. This implied a hereditary difference and
potential horizontal gene transfer event. Fe (II) is not common in oxygenated seawater, but its
transport genes were conserved in other “aggregating” oceanic diazotrophs [70, 71]. Therefore, it
is possible that these-extra transporters are important in C. waterburyi aggregates wherein O; is
likely reduced nightly due to respiration.

In summary, Crocosphaera, including C. waterburyi, are overall similar in GC %, genome
size,.and core metabolic features. However, distinct genetic functions, such as differences in Fe
utilization genes and predicted phage immunity, distinguish the oceanic species, C. watsonii and

C. waterburyi, and inform on their individual ecological roles.
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Crocosphaera Biogeography in the Oligotrophic Oceans

The Earth’s oligotrophic oceans are characterized as low-nutrient, high microbial
remineralization regions, and unlike the coastal ocean, these oceanographic ‘deserts’ are vast in
size, comprising >60% of the global oceans [72]. Organisms in these ecosystems rely heavily on
N fixation by diazotrophs, including Crocosphaera, in the euphotic zone to fuel microbial to
upper trophic level productivity [1, 2, 8]. Therefore, determining where oligotrophic
Crocosphaera species are present and active is important for understanding their ¢contributions to
global biogeochemistry.

C. waterburyi and C. watsonii were demonstrated to have morphological and genomic
similarities and differences (Figure 1-3), so culturing experiments,were carried out to compare
their physiologies. C. waterburyi Alani8 and C. watsonii WHO0003 cultures grown at 26°C and
~150 umol m™ s were found to have similar growth,rates’and N, fixation under these
conditions, and they both fixed N; at night (Supplemental Figure S4). Following this, replicate
cultures of C. waterburyi Alani8 were grown from 20-38°C at 96 pmol m™ s in a 12:12 light:
dark cycle to determine its full thermal growth range. These values were compared to those
previously recorded for multiple C./watsonii strains [5]. From this comparison, it was found that
C. waterburyi Alani8-had aiwide thermal optimum (23-34°C), and its growth at 34°C exceeded
that of the two representative large and small cell C. watsonii strains (Figure 4A; Supplemental
Table S6).

To further explore these differences in an ecological context, genomes from the
oligotrophic marine unicellular cyanobacterial diazotrophs, including both Crocosphaera species
and the closely-related cyanobacterial endosymbiont UCYN-A [73], were used to recruit reads

from 934 TaraOceans metagenomes (stations listed in Supplemental Table S7A-B). The surface
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stations where >1 unicellular diazotroph was present at >1x mean coverage was compared to
sampling station temperatures (Figure 4B-C). C. waterburyi Alani8 had the highest mean
coverage at a 29.98 °C station in the Arabian Sea whereas C. watsonii WHO0401 had the highest
mean coverage at a 26.17°C station in the North Pacific Ocean (Figure 4B-C). UCYN-A strains
had the highest mean coverage at 19°C in the South-West Atlantic Ocean (Figure 4B-C). In
addition to TaraOceans, other metagenomes from BioGEOTRACES and GO-SHIP, weretead
recruited to C. watsonii, CrocoG, and C. waterburyi Alani8 genomes. C. watsonii: WH0003 was
present at >25% genome detection in a small number of samples from BioGEOTRACES and
GO-SHIP, but C. waterburyi and the CrocoG were absent (Supplemental Table S7A). Together,
these physiological and environmental data imply that C. watsonii.and UCYN-A are more
successful under modern ocean conditions and have lower thermal optima than C. waterburyi in
culture and the ocean. However, if oligotrophic gyreitemperatures rise consistently over 30°C
during climate change, C. waterburyi may becomewnore abundant in the unicellular
cyanobacteria community and extend its,biogeographical range.

C. watsonii distribution and abundance has been previously well characterized in the
North Pacific Ocean near Statien ALOHA [3, 9, 74], and they have been observed as consistent
members of the bacterial community, particularly during the summer. However, despite being
isolated from the North'Pacific Ocean near Station ALOHA, the abundance and activity of C.
waterburyi were previously uncharacterized in this region.

To.determine C. waterburyi relative abundance in the North Pacific, we utilized a
summer 2021 diel nifH amplicon DNA/RNA dataset collected from the surface, DCM, and 150m
particle traps in the Station ALOHA region. This showed that the C. waterburyi nifH gene had

highest relative abundances, particularly in the 20 and 100 um size fractions, at the DCM, and in
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150 m depth samples (Figure SA-C). As C. waterburyi cells are only ~5 um long (Figure 1),
their presence in larger size fractions (20 and 100 pum) provides evidence that these cells likely
form large aggregates in situ, as has been observed in the TaraOceans metagenomes and in
culture with the Alani8 strain (Figure 1).

Transcripts 100% identical to C. waterburyi nifH were detected in the early evening
(18:15) in the 3-um size fraction at 150 m depth (Figure 5B). However, contrastingly,C.
watsonii nifH transcripts were found at the DCM (130 m), (Figure 5B). C. waterburyi also had a
100% identity match to the uncultivated “Croco_otu3,” recently sequenced from.the North
Pacific, which had higher relative abundance deeper in the euphotic zone (150 m) over ~3 years
of sampling [75]. These findings suggest a potential difference inshow’deep in the water column
these species can exist and remain active. To explore this withicultures, C. waterburyi and C.
watsonii WH0003 were grown under low light (30mmol m™s™") approximating the base of the
euphotic zone near the DCM or directly below. Undet these conditions, C. waterburyi had ~2x
the amount of chlorophyll a cell”! as C/watsonii (Figure 5D), providing a potential mechanism
through which C. waterburyi can temain active deeper in the water column than C. watsonii.
However, further experiments‘and characterization of multiple strains are needed to explore this
trend in more detail,

In addition te these recent datasets, we analyzed historical nifH amplicon data using
blastn and the C. "' Waterburyi isolate nifH gene to determine presence in the North Pacific (C.
waterburyi nifH = 85.3-85.6% identity to the CrocoG and 93.1-93.4% identity to C. watsonii
strains). The top 250 sequences from blastn were then aligned and phylogenetically compared.
The C. waterburyi Alani8 nifH gene clustered with a nifH sequence from the North Pacific

Ocean as well as the South Pacific/Coral Sea (Figure SE; Supplemental Table S8).
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Additionally, the C. waterburyi isolate nifH sequence matched at 100% identity to a nifH
amplicon (Figure SE) sequenced from the Arabian Sea [76], which aligned well with the
TaraOceans biogeography trend (Figure 4B-C). Overall, these data support C. waterburyi’s
presence in the global oceans.

Microscopic data in Figure 1, showed that rod-shaped C. waterburyi-like cells were
found in particle traps in 2010 and 2021, and Station ALOHA nifH data showed that'C,
waterburyi was present and active in the North Pacific (Figure 1; Figure SA-E). Together, these
data suggest that C. waterburyi is a contributor to C + N export in the North Pacific either
through sinking or in zooplankton fecal pellets. To test this further, the C. waterburyi, C.
watsonii, and CrocoG genomes were used to recruit reads from Station ALOHA, North Pacific
4,000 m deep trap metagenomic samples, which had been previously used to assemble and read
recruit to a C. watsonii-like environmental MAG. {11512, 14, 38, 44]. This effort showed that C.
waterburyi and C. watsonii were detected at>25%genome presence across all three years (2014-
2016), whereas the CrocoG were not (Figure 6; Supplemental Table S7A). However, C.
watsonii and C. waterburyi had different % recruitment values across these years, with C.
waterburyi increasing in % reeruitment from 2014 to 2016 and becoming relatively more
abundant across seasons 12016 (Figure 6).

Since both €. waterburyi and C. watsonii were found to be contributors to C + N export,
the biovolume of‘individual cells were measured in cultures grown at low light. These conditions
were.chosen to simulate where Crocosphaera species were transcriptionally active (130-150 m)
but likely sinking out. C. waterburyi was found to have ~2x the biovolume and predicted carbon
content as C. watsonii WH0003 under these growth conditions (Figure 6B). Media type, light

intensity, and temperature can have an effect on cell size differences in C. watsonii [5, 77].
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However, generally, during the years that capsule-shaped C. waterburyi Alani8 was more
abundant in 4,000 m sediment traps, there may have been increased C + N export from genus
Crocosphaera overall. Further work on C. waterburyi abundances on sinking particles will tease
apart C + N export dynamics of this species; this is of particular interest as C fixation and export

by photosynthetic organisms have implications for deep ocean carbon sequestration.

Taxonomic Appendix Crocosphaera waterburyi C.S. Cleveland et E.A. Webb, nov. sp.

Figures 1-6; S1-S4

Diagnosis: The single unicells are shorter capsules when recently divided and elongate when
preparing to divide. The cellular shape contrasts with the closestknown species, Crocosphaera
watsonii, which are spherical in shape.

Description: The single unicells appear orange under,DAPI-LP excitation, which indicates a
phycoerythrin-rich pigmentation. Unicells can become embedded in layers of
exopolysaccharides excreted by the cells,and can form aggregates of 50-100 cells (Figure 1A).
Individual unicells are 4-6 um in length by 2-3 pm wide. Cells can be seen adhering to sides of
culture flasks but can be generally removed back into solution by gentle agitation. Within ~2-5
days after transfers, liquid cultures will take on orange pigmentation, and culture solutions will
become highlyviscous,"When phylogenetically compared to other cultured Crocosphaera, the
16S rRNA gene clustered in a distinct subclade separate from other species. The genome has nif’
genes, nifH which is expressed in the North Pacific Ocean (Figure 4) and fixes atmospheric
nitrogen in culture. The genome also encodes genes for phycobilisome assembly, photosynthesis,

and carbon fixation. Overall health of cultures can be assessed using DAPI-LP epifluorescence
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microscopy; dead or dying cells will appear light green or light blue and healthy cells will still be
orange in color.

Habitat: Pelagic oligotrophic oceans at 0-150 m depth.

Type locality: Station ALOHA, North Pacific Ocean.

Holotype: Alani8 strain, dried and preserved biomass deposited at University of California
Berkeley Herbarium under accession number UC2110199, live cultures maintained attheNCMA
at Bigelow under accession number CCMP 3753.

Reference strain: Crocosphaera waterburyi Alani8.

Etymology: Crocosphaera, Gr. masc. n. krokos, crocus, orange colored; Gr. fem. n. sphaira, ball

or sphere; species waterburyi after John Waterbury, who discovered C. watsonii.

Conclusion

Crocosphaera are keystone species in the marine food web that bring new sources of
organic C + N into low nutrient, oligotrophic ocean regions [2, 4, 5, 9]. In a changing global
climate, understanding these important links in marine microbial communities is essential for
predicting environmental outcomes. Despite being sympatric in ocean gyres, C. waterburyi has
larger cellular biovolume than C. watsonii in low light conditions due to its rod shape, and
therefore, may,be more impactful on C + N export than some Crocosphaera phenotypes in the
North Pagific Ocean. Also, the C. waterburyi culture was found to grow better at high
temperatures than C. watsonii, and environmental genomic read-mapping data corroborated this.
These data suggest that C. waterburyi prefers warmer surface waters.

The discovery of C. waterburyi demonstrates that there is still more to be learned about

oceanic Ny-fixer diversity. This study also highlights the need for more isolation efforts of C.
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waterburyi strains and qPCR surveys to determine their absolute abundance. As well, it warrants
further studies focused broadly on the genus Crocosphaera, both in sinking particles and the
surface ocean, to understand how they may respond and change under anthropogenic warming of

the oceans.
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Figure 1. Pigmentation (A, D) as shown byaDAPI-LP epifluorescence and morphology of C.
waterburyi Alani8 by SEM (B-C). Environmental photos were taken using DAPI-LP excitation
from 75 m depth net traps cells during the 2010 North Pacific RV Kilo Moana KM1013 cruise
from which C. waterburyi was isolated (E-F). White arrows indicate C. waterburyi-like cells
rod-shaped, phycoerythrin-rich cells. C. waterburyi-like cells, visualized by a Cy3 filter, are also
shown attached to sinking particles caught in net traps during the 2021 SCOPE-PARAGON I

research expedition (G).
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Figure 2. The phylogenomictree.of 35 representative cyanobacterial taxa in order

Chroococcales closely telated to' C. waterburyi, (A) and the 16S rRNA gene tree of cultured

Crocosphaera (B). The CrocoG subclade are denoted by green highlighting, C. watsonii by

brown highlighting, and C. waterburyi by orange highlighting in both trees. Bootstrap values

below 70%.are'not shown for either tree. Tree scale is equal to 0.01 for (A) and 1 for (B).
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Figure 4. Thermal optima of C. watsonii,strains and C. waterburyi Alani8 in culture conditions
(A) and extrapolated from environmental metagenomes (B-C). In (A), growth rates are
normalized to % maximal growth for.each temperature and strain, and error bars show standard
error. The mean coverage values'(left y-axis) across TaraOceans samples for representative
marine unicellular-diazetroph strains are shown in (B). In (B), dots on the x-axis indicate all

sample size fractions, samples are ordered by increasing temperature, and the temperature at

each station was overlayed as a black line. The right y-axis shows the temperature scale. In (C),

the foellowing are shown from left to right: total mean coverages for each genome across all
stations, the individual station where each genome had the highest mean coverage (was most
abundant), the station temperature where each genome had the highest mean coverage, and the

station location.
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Figure 5. The nifH gene relative of abundance of C. waterburyi, C. watsonii, and other
diazotrophs in the North Pagific Ocean. Shown are the size-fractionated nifH gene relative

abundance from deployed net traps (A), nifH transcripts from a diel sampling (B), and the nifH

gene presence over four days in 150 m net traps (C). The DCM fell at a depth of 135 m, and data
wasmot-available for one DCM >3-um size fraction sample over the diel sampling (marked with

an “*”). The low light grown (~30 pmol m™ s™") chlorophyll a cell™ for C. watsonii WH0003 and

C. waterburyi Alani8 is shown, and error bars indicate standard error (D). The nifH DNA

phylogeny of 250 NCBI-blastn hits closest to C. waterburyi and the locations where the
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sequences originated are shown in (E). For the world map in (E), the 3 dots indicating sequences
from the Arabian Sea are overlapping in coordinate and are very slightly offset in the map from

their actual coordinates. All exact coordinates are recorded in Supplemental Table S8.
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Figure 6. Read mapping of .C. waterburyi and C. watsonii WH0003 genomes to 4,000 m
sediment trap metagenomic samples from 2014-2016. The % recruitment of mapped reads is
shown for C. watseniiand C. waterburyi (A), (interpretation: of the reads that were mapped, X%
mapped to-C. watsonii and X% mapped to C. waterburyi). The CrocoG were included in the
analysis-but-are not shown here as their % genome detection across all samples was always
<0:4%: In (B), the biovolume and calculated carbon content for representative strains of both

oligotrophic Crocosphaera species are shown, and error bars indicate standard error.
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