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Abstract

1. A central goal at the interface of ecology and conservation is understanding how

the relationship between biodiversity and ecosystem function (B-EF) will shift with
changing climate. Despite recent theoretical advances, studies which examine tem-
poral variation in the functional traits and mechanisms (mass ratio effects and niche

complementarity effects) that underpin the B-EF relationship are lacking.

. Here, we use 13years of data on plant species composition, plant traits, local-

scale abiotic variables, above-ground net primary productivity (ANPP), and cli-
mate from the alpine tundra of Colorado (USA) to investigate temporal dynamics
in the B-EF relationship. To assess how changing climatic conditions may alter the
B-EF relationship, we built structural equation models (SEMs) for 11 traits across
13years and evaluated the power of different trait SEMs to predict ANPP, as well
as the relative contributions of mass ratio effects (community-weighted mean
trait values; CWM), niche complementarity effects (functional dispersion; FDis)
and local abiotic variables. Additionally, we coupled linear mixed effects models
with Multimodel inference methods to assess how inclusion of trait-climate inter-

actions might improve our ability to predict ANPP through time.

. In every year, at least one SEM exhibited good fit, explaining between 19.6% and

57.2% of the variation in ANPP. However, the identity of the trait which best
explained ANPP changed depending on winter precipitation, with leaf area, plant
height and foliar nitrogen isotope content (51°N) SEMs performing best in high,
middle and low precipitation years, respectively. Regardless of trait identity,
CWNWMs exerted a stronger influence on ANPP than FDis and total biotic effects
were always greater than total abiotic effects. Multimodel inference reinforced
the results of SEM analysis, with the inclusion of climate-trait interactions mar-

ginally improving our ability to predict ANPP through time.

. Synthesis. Our results suggest that temporal variation in climatic conditions influ-

ences which traits, mechanisms and abiotic variables were most responsible for
driving the B-EF relationship. Importantly, our findings suggest that future re-

search should consider temporal variability in the B-EF relationship, particularly

in any medium, provided the original work is properly cited and is not used for commercial purposes.
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1 | INTRODUCTION

Global change has drastically altered ecosystem functioning by
shifting patterns of biodiversity through species extinctions,
range shifts and changes in abundance (Cardinale et al., 2012; De
Laender et al., 2016). While early research on the biodiversity-eco-
system function (B-EF) relationship examined how changing lev-
els of species richness might impact ecosystem function (Hooper
et al., 2005; Tilman et al., 2001), recent advances show that func-
tional trait distributions more strongly predict many ecosystem
functions than species richness alone (Cadotte, 2017; Cadotte
et al., 2011; de Bello et al., 2010; Gagic et al., 2015). Despite this
theoretical advance in our understanding of the B-EF relationship,
a recent large-scale experiment in European grasslands revealed
that joint consideration of 41 functional traits was still only able to
explain 12.7% of the variation in 42 ecosystem properties over a
10-year period (van der Plas et al., 2020). However, the same study
showed that within individual years, functional traits were able to
explain up to 32.6% of the variation in those ecosystem functions.
While this discrepancy may be partially attributed to statistical
issues with analysis (Hagan et al., 2023), the stark contrast in ex-
planatory power between within-year and across-year models also
suggests a biological explanation, specifically, that the strength of
the B-EF relationship varies dynamically through time. Critically,
we lack an understanding of what drives temporal variation in the
B-EF relationship as most studies assume that the traits and/or
mechanisms underlying the B-EF relationship are static (but see
Armitage, 2016, 2017; Cardinale et al., 2007; Mori et al., 2017; Qiu
& Cardinale, 2020) or fail to consider how the multiple functional
mechanisms underlying the B-EF relationship operate simultane-
ously (Chiang et al., 2016; Mokany et al., 2008).

One source of temporal variation in the B-EF relationship
may be a shift in which traits best predict ecosystem functions,
leading certain traits to be more important during some years
and unimportant in others depending on environmental condi-
tions. While environmental context dependence in the B-EF re-
lationship has been demonstrated in numerous systems including
benthic macro-invertebrates (Geert Hiddink et al., 2009), mycor-
rhizal fungi (Jonsson et al., 2001) and temperate forests (Ratcliffe
et al., 2017), these studies have generally quantified biodiversity
in terms of taxonomic richness and have examined context de-
pendence across spatial, not temporal, variation in environmental
conditions. In one of the few studies to explore temporal dynam-
ics in the ability of traits to predict ecosystem functions, Bongers

how the predictive power of individual functional traits and abiotic variables may

fluctuate as conditions shift due to climate change.

climate change, growing degree days, height, leaf area, mass ratio effects, niche
complementarity, Niwot Ridge, winter precipitation

et al. (2021) found that, in an experimental forest system, func-
tional diversity metrics for multiple traits became more reliable
predictors of accumulated stand volume as stand age increased.
This temporal shift in the relationship between functional diver-
sity and ecosystem function suggests that the predictive power of
individual functional traits could trade-off in concert with chang-
ing environmental conditions. For example, a single trait may on
average only explain a modest amount of variation in ecosystem
function over long time periods because that trait is only predic-
tive in ‘good’ years (high resource availability) while not being
predictive in ‘bad’ years (low-resource availability) when a differ-
ent trait associated with environmental stress serves as the best
predictor. Considering how temporal fluctuations in environmen-
tal conditions modify the importance of specific traits could help
resolve the seemingly low predictive power of functional traits for
ecosystem functions through time.

A second source of temporal variation may arise from shifts in
the functional mechanisms underlying the B-EF relationship. Two
nonmutually exclusive mechanisms are typically invoked to ex-
plain the B-EF relationship: (1) niche complementarity and (2) mass
ratio effects. Niche complementarity effects posit that ecosystem
functioning should be maximized when species in a community use
resources in complementary ways, leading to more complete and ef-
ficient consumption of the total resource pool. Because functional
traits mediate how species interact with each other and their en-
vironment, communities containing a greater diversity of func-
tional traits (often quantified as functional dispersion [FDis]; see
Cadotte, 2017 and methods below) should be better able to engage
in complementary resource use, thus enhancing their level of func-
tioning (Petchey & Gaston, 2006; Tilman et al., 2001). In contrast,
mass ratio effects focus on how the presence of high performing,
dominant species control ecosystem function. Dominant species
possess specific traits which confer high fitness and determine their
large contributions to functioning; however, these traits should con-
tribute to functioning regardless of individual species identity. Thus,
community average trait values (often quantified as community
weighted means [CWM]; see Cadotte, 2017 and methods below)
can be used to capture relative differences in ecosystem functions
(Grime, 1998).

While a large body of research has focussed on determin-
ing whether niche complementarity or mass ratio effects play a
greater overall role in shaping ecosystem functions (Cardinale
et al.,, 2007; Loreau & Hector, 2001; Wang et al., 2021), these
mechanisms are not mutually exclusive (Chiang et al., 2016;
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Mokany et al., 2008) and their relative importance can shift with
changing environment conditions (Armitage, 2017). Studies have
shown that, in natural systems, mass ratio effects are generally
better predictors of individual ecosystem functions than niche
complementarity effects (Fotis et al., 2018; Mokany et al., 2008;
Needham et al., 2022; Tobner et al., 2016; van der Plas, 2019);
however, research focussed on the stress gradient hypothesis
suggests that the relative importance of these mechanisms may
trade off as species interactions shift along stress/resource gra-
dients (Baert et al., 2018; Bertness & Callaway, 1994; Fugére
et al., 2012; Wang et al., 2013). For example, Wang et al. (2013)
found that in an experimental grassland system, mass ratio effects
tended to better explain net primary production in high-resource/
low-stress environments where competition is thought to be the
dominant interaction among species (Bertness & Callaway, 1994),
while niche complementarity effects became more important in
low-resource/high-stress environments where resource partition-
ing and facilitation are thought to be more prevalent (Bertness
& Callaway, 1994; Wang et al., 2013; Wright et al., 2017). Most
studies demonstrating this trade-off between B-EF mechanisms
have evaluated changes along spatial environmental gradients;
however, similar results should be expected within a site as envi-
ronmental conditions change temporally, with mass ratio effects
generally acting as better predictors of ecosystem function, but
niche complementarity effects becoming more important during
periods of high environmental stress.

Finally, while B-EF research often emphasizes the centrality
of biotic mechanisms in shaping ecosystem functions, temporal
variation in ecosystem functions can also be directly controlled
by fluctuating abiotic conditions. For example, studies have found
that in tundra ecosystems, temperature directly influences rates
of plant litter decomposition, with higher temperatures leading
to faster rates of decomposition independent of litter composi-
tion (Aerts, 2006; Hobbie, 1996). Similarly, short-term drought in
tropical forest systems has been shown to shift biomass allocation
patterns in tree communities from investment in above-ground to
below-ground tissues without inducing shifts in species or func-
tional diversity patterns (Doughty et al., 2014). Ultimately, abiotic
conditions determine both the productive capacity and the biotic
composition of ecosystems, and thus their direct and indirect
influence (i.e. via changes in composition) should be considered
concurrently in any complete assessment of the B-EF relationship
(Brun et al., 2019).

Here, we couple long-term observational data from a natural
system with structural equation models (SEMs) and linear mixed
effects models to disentangle the complex temporal links be-
tween site-level climatic changes, local abiotic conditions, biodi-
versity patterns and ecosystem function (Grace, 2008; Pugesek
et al., 2003). To explore these dynamics, we used 13years of data
(2008, 2010-2021) on local abiotic conditions, plant species com-
position, plant functional traits and above-ground net primary
productivity (ANPP) collected in the alpine tundra of Colorado,
USA, at the Niwot Ridge Long Term Ecological Research (LTER)
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increasing winter precipitation (e.g. precipitation falling between
October and May) and increasing summer temperatures (Bjarke
et al., 2021; Kittel et al., 2015; McGuire et al., 2012). Climatic
changes at Niwot Ridge (and in the Southern Rocky Mountain
region generally) are correlated with shifts in the taxonomic and
functional composition of alpine plant communities (Niwot Ridge
LTER, unpublished data; Huxley & Spasojevic, 2021), making this
an ideal system to disentangle the complex temporal nature of the
B-EF relationship. We predict that: (1) functional traits associated
with plant size (e.g. plant height and leaf area) should generally
best predict ANPP, but the identity of the trait which best predicts
ANPP will change during climatically stressful years with unusu-
ally high winter precipitation or summer temperatures; (2) mass
ratio effects (measured as CWM traits values) will be the primary
driver of ANPP, but during climatically stressful years niche com-
plementarity effects (measured as FDis trait values) will become
relatively more important than mass ratio effects; (3) biotic mech-
anisms (inferred from trait patterns) will generally play a stronger
role in shaping ANPP than local abiotic conditions, but the influ-
ence of abiotic conditions will become more important during cli-
matically stressful years; and (4) considering interactions between
annual climatic conditions climate and biotic/abiotic variables will
improve our ability to predict ANPP through time.

2 | METHODS
2.1 | Studysite

This study uses data collected from alpine tundra on Niwot Ridge
(40.03' N, 105.35' W) in the Front Range of the Rocky Mountains,
approximately 40km West of Boulder, CO, USA, a research site,
which is managed by the Niwot Ridge Long Term Ecological
Research Program (NWT). All data used in this study were collected
and curated by NWT staff or researchers affiliated with NWT and
are available for public use via the NWT Electronic Data Initiative
portal (see ‘Data Availability Statement’ section and associated data
package citations). Niwot Ridge has a very short growing season
(8-10weeks, June-August) and a long winter, leading to an aver-
age annual temperature of -2.2°C and an average annual precipi-
tation of 930mm that predominantly falls as snow (~75%; Bueno
de Mesquita et al., 2021; Kittel et al., 2015; Knowles et al., 2015;
McGuire et al., 2012; Williams et al., 2011). Annual wind speeds on
Niwot Ridge average 8.1 ms *and winds typically blow from west to
east (Litaor et al., 2008). Due to the stark topography and high wind
speeds on Niwot Ridge, snow redistribution via wind is an impor-
tant process for determining where snow accumulates on the land-
scape (Bowman & Seastedt, 2001; Greenland et al., 1984; Williams
et al., 2009). Predictable patterns of snow accumulation generate
high plant beta-diversity, with near-complete species turnover and
differences of up to two orders of magnitude in productivity across
gradients as short as 10m (Spasojevic & Suding, 2012).
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2.2 | Saddle climate data

NWT has maintained continuous, site-level measurements of tem-
perature, precipitation and other climate variables in the ‘Saddle’
area of Niwot Ridge since 1982 (Bjarke et al., 2021). For the pe-
riod of our study (2007-2021), daily mean and instantaneous mini-
mum and maximum temperatures were recorded using a Campbell
Instruments CR23X data logger (2007-2014) and a CR1000 data log-
ger (2014-2021; Morse et al., 2022a). Temperature data quality as-
surance was performed by previous NWT climatologists up through
2014 and has been automated using the GCE Data Toolbox since
September 2014. Daily precipitation was measured using Belfort
weighing-bucket gauge with Alter shield and recorded by mechani-
cal chart (Morse et al., 2022b). The bucket contains antifreeze to
melt snow and prevent collected precipitation from freezing. For
the period of our study (September 2007-August 2021), about 3.7%
of raw temperature data and 13.7% of raw precipitation data were
missing.

Prior to infilling missing data, we performed additional data
quality control of temperature and precipitation data as recom-
mended by Brunet et al. (2006) and Kittel (2009) to screen gross
errors, tolerance tests, temporal coherence and spatial coherence.
We used 24 stations at NWT LTER or in the region for spatial co-
herence checks and infilling. Geographic range of stations from
Saddle are approximately 28 km south to 35km north, 22 km east
to 18km west and 1248 m below to 206 m above. Because of doc-
umented blowing snow issues for precipitation at Saddle (Williams
et al., 1998), precipitation events were reviewed when (1) Saddle
was the only station in the region to record precipitation, (2) the
only station of six at NWT to record precipitation and only 1-3
stations in the region recorded precipitation and (3) Saddle was
the only station at NWT to not record precipitation. Additional
QC removed 0.3% of temperature values and 1.1% of precipitation
values for infilling.

We then followed regression infilling methods for NWT long-
term records established by Kittel et al. (2015). Stations were pri-
oritized in infilling based on geographic and elevational proximity to
Saddle. We applied an overcatch correction factor of daily precip-
itationx0.39 recommended by Williams et al. (1998) for October-
May and four large snow events in the shoulder seasons (e.g. June,
September). The most frequent source stations for infilling Saddle
daily values were the NWT LTER D1 alpine station for precipitation
(informed 36.4% of infill values) and replicate [HMP] instruments at
Saddle (77.8%) for temperature.

After QC and gap-filling, daily temperature data were homog-
enized to account for instrument changes over the electronic re-
cord by adjusting temperature data to the most recent instrument
at Saddle. We used a 1-year overlap period between the outgoing
and incumbent Saddle temperature electronic instruments, as well
as an independent, quality-controlled, gap-filled record spanning the
entire period of instrument changes (AmeriFlux US-NR1) to apply
conservative mean difference adjustments ranging from -0.96 to
-1.5°C. We performed additional inhomogeneity tests for Saddle

temperature and precipitation using R packages RHtestsV4 and
RHtests_dlyPrcp (Wang, 2008a, 2008b; Wang & Feng, 2013), and
Climatol (Guijarro, 2022). No breaks were detected for the study
period that warranted further homogenization based on the station
history (for full Saddle temperature and precipitation datasets see:
White et al., 2023a, 2023b).

Two primary long-term trends have been detected in Niwot
Ridge's climate record: (1) an increase in annual winter precipitation
(Figure 1a) and (2) an increase in the annual number of growing de-
gree days (Figure 1b; Bjarke et al., 2021; Kittel et al., 2015; McGuire
et al.,, 2012). We calculated winter precipitation as the sum of all
daily precipitation measurements recorded between October and
May of the following calendar year. Annual growing degree days,
on the contrary, were calculated as the sum of mean temperatures
for all days where the mean temperature was greater than 0°C for
each ‘ecological year’ (the period starting September 1 and finishing
August 31 of the following year, hereafter referred to simply as year),
as this time frame is more biologically relevant than the calendar
year for alpine plant communities which experience their growing

season between June and August.

2.3 | Saddle plot data

NWT has conducted long-term monitoring of alpine vegetation
using 88 1m? plots located in the Saddle. For each of these plots,
comprehensive data exist on abiotic variables (topographic vari-
ables, snow-depth), biodiversity (species composition, functional
traits) and ecosystem function (ANPP) over a 13-year period: 2008
and 2010-2021. Topography was quantified for each plot using
three measures: elevation, aspect and slope. Elevation was esti-
mated using a Trimble GPS with accuracy of +3m. Aspect was meas-
ured as the direction of a plot's downbhill slope using a compass with
a SIN transformation applied for analysis. Slope was quantified using
the slope tool in ArcGIS 10.1. Snow-depth data were collected dur-
ing irregularly timed snow surveys throughout fall, winter and spring
months (September-June) by NWT technicians using snow poles,
which estimate depth at 10cm intervals (Walker, Morse, & Niwot
Ridge LTER, 2022). Due to the irregular timing of snow-depth meas-
urements throughout the year, we used mean snow-depth values
for the month of May in our analysis as this month consistently con-
tained at least one snow-depth survey (ranging between 1 and 3)
and because May is typically when Niwot Ridge reaches peak snow-
pack (Litaor et al., 2008). Only 1year (2008) lacked May snow-depth
data, and for this year we used snow-depth data collected on April
29,2008.

Plant species composition data for each Saddle plot were
collected using point intercept methods (Walker, Humphries,
et al., 2022). NWT staff mounted a 1m? quadrat containing a
10cmx 10cm string grid on permanent plot corners and then ver-
tically placed a pin flag at each of the 100 grid points, recording
the identity of all species contacting the pin flag and their relative
vertical position within the canopy. For our analyses, we only used
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Ridge from 2008 to 2021. Orange points 5 w00 /
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=4 /
(2008, 2010-2021). (a) Annual winter = / ~" R
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growing degree days (GDD; between (b)
September and August), measured as the 1250 / a—
sum of d?l|y temperatur(?s for days where c \ /
mean daily temperature is greater than ‘351150.
zero; (c) mean above-ground net primary .
productivity (ANPP) measured in grams 10504 /
across all 78 plots; error bars display
standard error of ANPP. 2008 2010 2012 2014 2016 2018 2020
(c)
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FIGURE 2 Structural equation model (SEM) meta-model used as the basis for SEMs across all traits and years. All pathways are based

on research demonstrating causal pathways between topography, snow deposition, functional composition and above-ground net primary
productivity in the alpine zone. ‘Topography’ is a latent variable constructed from elevation, aspect (sine transformed) and slope. Snow-
depth is measured as average snow-depth for the month of May. All SEMs also included a snow—depth2 term (omitted here for visual clarity)
to account for the quadratic relationship between snow-depth and above-ground net primary productivity. Snow-depth? occupies the same
model position as snow-depth; a covariation pathway was included between the two terms. Community-weighted mean trait values were
used as a proxy for mass ratio effects (MR effects), while functional dispersion values were used as a proxy for niche complementarity
effects (NC effects). A covariation term was included between the community weighted means and functional dispersion parameters.
Above-ground net primary productivity was measured as the total annual above-ground vascular biomass harvested in 0.2mx0.5m

quadrats adjacent to each Saddle plot.

species composition data from the top-most ‘hit’ to calculate the
relative abundance of each species in a plot to remain consistent
with previous analyses of NWT's Saddle plot species composition
(Spasojevic et al., 2013).

Above-ground net primary productivity (ANPP) data were
collected by harvesting all nonwoody vascular biomass within
0.2mx0.5m quadrats located near each Saddle plot (Figure 2c).

Harvest locations were selected to replicate species composition
and biomass distributions in each plot and were rotated annu-
ally to prevent overharvesting from any one area (Walker, Smith,
et al., 2022). From 2008 to 2018, two biomass quadrats were har-
vested per Saddle plot; the mean of these harvests was calculated to
produce a single measurement per plot. From 2019 to 2021, a single
biomass quadrat was harvested per plot.
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2.4 | Functional traits

NWT maintains a functional trait database (Spasojevic et al., 2022)
that has trait data for 84.4% of species that have been found in the
Saddle plots and identified to species level, with 55% of those spe-
cies possessing habitat specific trait measurements (e.g. functional
traits for Geum rossii measured independently in moist meadow,
dry meadow and fell field habitats). In total, we have coverage of
at least one trait for 98.3% of the total cover across the 13years of
our study. Eleven traits were included in this study: height, specific
leaf area (SLA), leaf area, chlorophyll content, leaf dry matter con-
tent (LDMC), foliar per cent carbon content, foliar percent nitrogen
content, foliar carbon to nitrogen ratio, foliar carbon isotope values
(513C), foliar nitrogen isotope values (5°N) and stomatal conduct-
ance. Height is indicative of a species' competitive ability for light
(Westoby, 1998). SLA, LDMC, chlorophyll content and leaf chem-
istry traits are related to the leaf economics spectrum, which char-
acterizes a species' capacity for stress tolerance versus resource
acquisition (Osnas et al., 2013; Wright et al., 2004). Leaf area and
stomatal conductance are related to a species' water/energy balance
(Ackerly et al., 2002; Pérez-Harguindeguy et al., 2016). Finally, 51°N
is related to nitrogen uptake rates and N source (Craine et al., 2015).
Trait measurements for each species or species x habitat combina-
tion were collected from at least 10 individuals in accordance with
the protocols outlined in Pérez-Harguindeguy et al. (2016).

Using the trait values from the NWT functional trait database
and the species composition data described in the previous section,
we then used the ‘dbfd’ function from the ‘FD’ package in R version
4.1.1 to calculate single trait FDis, and community-weighted mean
(CWM) trait values for each Saddle plot in every year (Laliberté &
Legendre, 2010; Laliberté et al., 2014; R Core Team, 2021). Critically,
we calculated CWM and FDis values using trait data weighted by
species abundances not biomass to reduce circularity in the predic-
tion of ANPP. In alpine systems, species abundance and biomass are
not likely to be tightly correlated since many highly abundant species
are quite small. Ten plots were discarded from these calculations in
each year because they had either greater than 50% shrub or rock
cover or were subject to long-term experimental snow-depth manip-
ulation. Additional plots were discarded if we did not possess trait
data for at least 80% of the vascular plant cover (plot number varied
by specific trait and year; the number of plots retained for each SEM
can be found in Appendix S1).

2.5 | Structural equation modelling

To explore links between the abiotic environment, biotic func-
tional composition and ecosystem function, we built SEMs for each
traitx year combination (e.g. leaf area SEMs for 2008, 2010, 2011,
etc.). SEMs are useful for modeling complex ecological phenomena
because they allow for the evaluation of both direct and indirect
causal relationships among variables by estimating a global vari-
ance-covariance matrix (Bollen, 1989; Grace, 2006, 2008). All SEMs

in this study used the same meta-model design (Figure 2), based on
a robust body of research on alpine ecosystem dynamics at Niwot
Ridge (Bowman & Seastedt, 2001; Bueno de Mesquita et al., 2018;
Suding et al., 2015; Walker et al., 1993, 1994; Williams et al., 2015).

First, a latent variable representing ‘topography’ was con-
structed using direct measurements of elevation, aspect, and slope.
Our inclusion of ‘topography’ as a latent variable was meant to cap-
ture uncertainty around this concept, as all aspects of topography
(i.e. microtopographic variation) could not be directly measured.
Topography is a major factor determining where snow deposition
occurs on the alpine landscape, so we included a direct path from
topography to snow-depth. Additionally, topography may influence
biodiversity patterns and ANPP directly via factors independent of
snow deposition (e.g. exposure to wind and solar radiation), so we
included direct paths from topography to CWM and FDis trait val-
ues as well as ANPP. Next, we connected snow-depth directly to
both trait metrics and ANPP, as snow deposition has been shown
to influence levels of soil moisture, nutrient availability and growing
season length, which fundamentally control biodiversity and pro-
ductivity patterns (Bowman et al., 2003; Bowman & Seastedt, 2001;
Litaor et al., 2008; Seastedt et al., 2004; Walker et al., 2001). We
also added a snow-depth2 term, with an identical model position
to snow-depth, to account for snow-depth's quadratic relationship
with ANPP where both low and high snow-depths can produce low
levels of ANPP due to moisture limitation and energy limitation, re-
spectively (Walker et al., 1993, 2001).

We then linked our functional trait indices (CWM and FDis) for
each individual trait to ANPP, based on fundamental B-EF theory
showing that ecosystem functions are simultaneously shaped by
the average and variation of community trait values (Cadotte, 2017;
Chiang et al., 2016). While some studies have shown that species
niche differences are best summarized by multitrait models and/or
metrics (Huang et al., 2020; Kraft et al., 2015), we chose to build sep-
arate SEMs for each trait (i.e. each SEM contains the CWM and FDis
values for only one trait), for both biological and statistical reasons.
Biologically, individual traits have been shown to strongly respond to
environmental gradients in the alpine tundra of Niwot Ridge, while
multitrait metrics (e.g. FDis calculated with multiple traits) often show
no pattern due to opposing responses in individual traits (Spasojevic
& Suding, 2012). Furthermore, building SEMs containing metrics for
multiple individual traits is statistically challenging as the inclusion of
multiple additional parameters would greatly exceed rule-of-thumb
estimates for acceptable sample size when using SEMs (10 data
points per observed variable; Bentler & Chou, 1987; Nunnally, 1967).

Finally, we included two covariation terms—one between snow-
depth and snow-depth2 and another between CWM and FDis. These
covariation terms account for the fact that that these variable pairs
are driven by the same causal links within the SEM and are likely
to be correlated (highly correlated in the case of snow-depth and
snow-depth?) but are not causally related to one another. Using this
meta-model structure, we built SEMs that incorporated the CWM
and FDis values of each individual trait for each year. With 11 traits
and 13years of data, we could generate a total of 143 possible SEMs
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across all traits and years. All SEMs were constructed using the ‘la-

vaan’ package in R version 4.0.2 (Rosseel, 2012).

2.6 | Statistical analyses

To evaluate our first prediction that size-related traits would gener-
ally best predict ANPP but that this would change during environ-
mentally stressful years, we assessed the predictive power of our
trait SEMs and how that predictive power changed as function of
winter precipitation and annual growing degree days. We first fil-
tered out any SEMs that did not possess a minimum sample size of
at least 70 plots due to low trait coverage (12 of 13 SEMs featur-
ing stomatal conductance, all 13 removed for consistency). We then
eliminated SEMs that did not converge (i.e. no solution for the global
variance-covariance matrix, 3 SEMs) or contained variables with
negative variances (i.e. Heywood cases, 13 SEMs). Next, we evalu-
ated several fit measures for each SEM including the 42 statistic, the
comparative fit index (CFl), the root mean squared error of approxi-
mation (RMSEA) and the standardized root-mean squared residual
(SRMR). SEMs with ;(2 p-values greater than 0.05, CFl scores greater
than 0.9, RMSEA less than 0.1, and SRMR value less than 0.08 were
interpreted as providing a good fit for the data. Two additional SEMs
failed to meet these fit criteria, leaving 112 SEMs with good fit
across all traits and years (Appendices S1 and S2).

We then determined which of the SEMs with good fit best ex-
plained ANPP in each year by filtering for the trait SEM with the
highest R? value for ANPP in each year (Figure 3a). Importantly, when
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selecting the best fitting SEM in each year, we did not compare all
112 SEMs against one another but instead compared different trait
SEMs within individual years (e.g. comparing 2008 height SEM vs.
2008 leaf area SEM, not 2010 height SEM vs. 2008 leaf area SEM).
For most years, this meant comparing ~10 trait SEMs. Furthermore,
our SEMs were not assembled using any step-wise process of pa-
rameter or path deletion/insertion, which has been shown to be a
problematic because it ignores model selection uncertainty (Mundry
& Nunn, 2009; Whittingham et al., 2006). Instead, we kept model
structure consistent across traits and years and varied only the iden-
tity of the traits used for the CWM and FDis parameters (Figure 2).
Model selection approaches with SEMs have been found to be ro-
bust to model selection uncertainty, but typically involve the com-
parison of Akaike information criterion (AIC) or Bayesian Information
Criterion (BIC) scores, which estimate overall model fit and parsi-
mony (Garrido et al., 2022; Lin et al., 2017). Here, we focussed our
model selection approach on R? values for ANPP instead of AIC or
BIC scores, as we are interested in the identity of trait SEM that best
predicts observed ANPP levels not the trait which provides the best
overall model fit across all pathways. Trait SEMs that possessed the
highest R? value for ANPP in at least 1year are hereafter referred to
as ‘best fitting SEMs’. To determine how changing climate influences
our ability to predict ANPP, we then performed linear regressions
examining how ANPP R? values in our best fitting SEMs varied with
annual winter precipitation (Figure 3b,c) and annual growing degree
days (Appendix S4).

To evaluate our second prediction focussed on mass ratio ef-

fects versus niche complementarity effects and how the relative
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FIGURE 3 (a) Annual winter precipitation (October-May) from 2008 to 2021, shapes show the identity of the trait structural equation
model (SEM) which best predicted above-ground net primary productivity (ANPP) in each year. Panel two shows the relationship between
ANPP R? values and annual winter precipitation for trait SEMs incorporating leaf area (b), height (c), and 8*°N (d). Lines of best fit from linear
regressions between winter precipitation and ANPP are shown for (b-d). Solid lines indicate a significant relationship while dashed lines
indicate a nonsignificant relationship. For height, quadratic linear regression (shown in red) is also included, as this model provided a better

fit than simple linear regression.
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importance of these functional mechanisms might shift with climatic
stress, we examined the path coefficients directly linking CWM and
FDis to ANPP in our best fitting SEMs (Appendix S3). Specifically,
we performed linear regressions to assess how the strength and
magnitude of these path coefficients changed as function of annual
winter precipitation (Figure 4a-c) and annual growing degree days
(Appendix S4).

To assess our third prediction focussed on how biotic mecha-
nisms versus local abiotic conditions determine ANPP and how the
relative importance of these factors might shift with climatic stress,
we compared the total effects of biotic mechanisms and local abi-
otic variables in our best fitting SEMs (Appendix S3). While the total
impacts of CWM and FDis on ANPP can be inferred by examining
only direct path coefficients, both direct and indirect effects must
be considered when determining the total impact of local abiotic
variables on ANPP. Indirect effects are calculated by multiplying the
path coefficients of two or more direct path coefficients. For ex-
ample, to calculate the indirect effect of snow-depth on ANPP via
CWM, we multiplied the coefficient of the path linking snow-depth
to CWM by the coefficient of the path linking CWM to ANPP (i.e.
‘snow-depth to CWM to ANPP’=‘snow-depth to CWM’x‘CWM to
ANPP’). Total effects are then calculated for each abiotic variable
by summing all direct and indirect path coefficients that lead from
snow-depth, snow-depth? or topography to ANPP. For example, to

calculate the total effect of snow-depth on ANPP, we summed all

direct and indirect effects of snow-depth on ANPP (i.e. total effects
of snow-depth=‘snow-depth to ANPP’+‘snow-depth to CWM to
ANPP’ +‘snow-depth to FDis to ANPP’). Here, we use both signifi-
cant and nonsignificant path coefficients in the calculation of total
effects to holistically examine the impact of total abiotic effects.
Importantly, excluding nonsignificant path coefficients would bias
our interpretation by removing years where either direct and/or in-
direct effects are weak. We then compared the magnitude and sign
of each abiotic variable's total effects with the total effects of each
biotic mechanism and performed linear regressions to assess how
the impact of local abiotic variables changed as a function of annual
winter precipitation (Figure 4d-f) and annual growing degree days
(Appendix S3).

Finally, to assess our fourth prediction that considering the in-
teraction between annual climatic conditions and biotic/abiotic
variables would improve our ability to predict ANPP across time, we
analysed our raw data across all years by coupling multimodel infer-
ence using linear mixed effects models with variance partitioning.
To do this, we built a global linear mixed effects model using the
Ime4 package (Bates et al., 2014), which featured ANPP as the re-
sponse variable and trait metrics from our best fitting SEMs (CWM
and FDis), abiotic variables (snow-depth, snow-depth2, slope, as-
pect, elevation, annual winter precipitation) and interaction effects
between each predictor and annual winter precipitation as fixed ef-

fects. Additionally, we included year and plot as random factors to
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FIGURE 4 Total effects (sum of all direct and indirect path coefficients) of biotic and abiotic predictors on above-ground net primary
productivity (ANPP) regressed against annual winter precipitation (mm) for leaf area (a/d), height (b/e), and §'°N (c/f) SEMs. Different colors
indicate the specific predictor variable influencing ANPP; total biotic influences (community weighted means and functional dispersion,
a/b/c) and total abiotic influences (snow-depth, snow-depth?, and topography d/e/f) on top and bottom respectively. Solid lines indicate a
significant relationship between winter precipitation and ANPP, while dashed lines indicate a nonsignificant relationship.
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reflect the fact that each plot was repeatedly sampled across years.
Interaction effects with annual growing degree days were not in-
cluded in the model because neither SEM R? values nor individual
SEM predictors showed significant relationships with this climate
variable during SEM analysis. We then used the ‘dredge’ function
in MuMIn package (Barton, 2020) to create all possible subset mod-
els of the global model and ranked these according to AlCc score
(AIC value corrected for sample size). Next, we selected all mod-
els that were within six AlCc points of the lowest AlICc model (347
models total) and used a model averaging technique known as the
‘zero method’ to calculate average parameter estimates (Grueber
et al., 2011). This method calculates averages by assigning a O value
to parameters when they are missing from subset models. Once we
identified significant predictors, we used the ‘partR2’ function in the
partR2 package (Stoffel et al., 2021) to assess semipartial R? values,
in other words, the amount of variation uniquely explained by signif-
icant effects, for the global model. This approach allowed us to iden-
tify how consideration of significant interactions effects between
climate and biotic/abiotic variables improved our ability to predict

ANPP across time.

3 | RESULTS
3.1 | Bestfit SEMs for ANPP

Of the 112 SEMs that met our filtering criteria, at least one SEM in
every year exhibited good fit; SEMs featuring nine different traits
(8*°N, LDMC, leaf area, height, SLA, percent nitrogen, percent car-
bon, carbon to nitrogen ratio and chlorophyll content) exhibited
good fit in at least 10years (Appendix S1). The identity of the trait
that best predicted ANPP varied across years, with SEMs featuring
leaf area, plant height, and 5'°N best explaining ANPP in 6, 5 and 2
out of 13years, respectively (Figure 3a). Other traits did not meet
the criterion for best fit and were thus excluded from all analyses
discussed below. Importantly, we found that the identity of the
trait SEM that best predicted ANPP varied with the amount of an-
nual winter precipitation (Figure 3a). First, we found that leaf area
SEMs exhibited good fit in 12 out of 13 years and explained 18.1% to
57.2% of the variation in ANPP (mean=237.1%). Moreover, we found
that ANPP R? values in the leaf area SEMs increased with increas-
ing winter precipitation (Figure 3b, FMO=7.128, p=0.024, Adjusted
R?=0.36) indicating greater explanatory power in years with high
winter precipitation. Consequently, leaf area SEMs had the best
fit in the two highest winter precipitation years (2011, 2017) and
failed to converge in the year with the lowest winter precipitation
(2012). Second, plant height SEMs also exhibited good fit in 12 out
of 13years and explained a similar amount of ANPP variation as leaf
area SEMs (mean=35.5%, range=18.6%-54.6%). However, the re-
lationship between ANPP R? values and winter precipitation in these
SEMs was non-linear, with explanatory power reaching its maximum
in average winter precipitation years and low explanatory power in

both low and high winter precipitation years (Figure 3c, quadratic
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linear regression; F2,9:6.35, p=0.019, Adjusted R%?=0.49). The plant
height SEM also failed to converge in the year with the lowest win-
ter precipitation (2012). Finally, 5'°N SEMs exhibited good fit in all
13years but had the lowest average predictive power for ANPP of
the three traits (mean=230.1%, range = 12.8%-47.3%). R? values for
the 5!°N SEMs were not significantly correlated with annual winter
precipitation (Figure 3d); however, 5'°N SEMs had the best fit in the
two lowest winter precipitation years (2012, 2013). No trait SEMs
showed significant relationships between ANPP R? values and an-

nual growing degree days (Appendix S4).

3.2 | SEM biotic (trait) effects on ANPP

We found that the sign and magnitude of biotic effects inferred
from trait-ANPP path coefficients for both CWMs and FDis were
consistent among the best fitting SEMs outlined above (Figure 4a-
c). All SEMs showed CWM trait values exerting large and positive
effects on ANPP (leaf area SEM: mean=0.64, range=0.35 to 1.17;
plant height SEM: mean=0.51, range=0.23 to 0.80; 8'°N SEM:
mean=0.47, range=0.27 to 0.86). In contrast, the influence of FDis
values on ANPP was weaker and generally negative (leaf area SEM:
mean=0.10, range=-0.25 to 0.01; plant height SEM: mean=-0.32,
range=-0.61 to 0.11; §'°N SEM: mean=-0.19, range=-0.39 to
-0.01). We found that some of this variation in the strength of bi-
otic effects (path coefficients) was explained by climatic variation
among years. In leaf area SEMs, the CWM ANPP path coefficients
showed a significant, positive relationship with annual winter pre-
cipitation (Figure 4a; F;10=10.58, p=0.009, Adjusted R?=0.47),
suggesting a stronger relationship in years with greater winter pre-
cipitation. In contrast, leaf area FDis was not significantly related to
winter precipitation and neither plant height nor 8*°N SEMs showed
any significant relationships between biotic effects (either CWM
or FDis—ANPP path coefficients) and annual winter precipitation.
None of the trait SEMs showed significant relationships between
biotic effects and annual growing degree days (Appendix S4).

3.3 | SEM abiotic effects on ANPP

We found that the sign and magnitude of the total effects for each
abiotic variable on ANPP (the sum of all direct and indirect path
coefficients for topography, snow-depth, and snow-depth?) were
relatively consistent across trait SEMs and years (Figure 4d-f).
Across all best fitting SEMs, topography (which significantly posi-
tively covaried with slope and elevation, while aspect was not im-
portant) exerted weak and typically negative influences on ANPP
(leaf area SEM: mean=-0.09, range=-0.47 to 0.06; plant height
SEM: mean=-0.13, range=-0.49 to 0.11; 8'°N SEM: mean=-0.08,
range=-0.31 to 0.10). Snow-depth also exerted weak and typi-
cally negative effects on ANPP across all trait SEMs (leaf area SEM:
mean=-0.09, range=-0.47 to 0.06; plant height SEM: mean=-0.10,
range=-0.46 to 0.18; §°N SEM: mean=-0.07, range=-0.43 to
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0.28). However, in the §'°N SEMs we found a significant negative re-
lationship between the total effect of snow-depth on ANPP and an-
nual winter precipitation (Figure 4f; F1)11=5.92, p=0.033, Adjusted
R?=0.29). Snow-depth2 had the largest and most consistently nega-
tive effect on ANPP (leaf area SEM: mean=-0.32, range=-0.59 to
0.13; plant height SEM: mean=-0.32, range=-0.60 to 0.13; §'°N
SEM: mean=-0.32, range=-0.58 to 0.14). Total effects of snow-
depth, snow-depth?, and topography on ANPP were not significantly
predicted by annual growing degree days (Appendix S4).

3.4 | Climaticinteraction effects

In our global linear mixed effects model, total fixed effects (an) ex-
plained 22.8% of the variation in ANPP while inclusion of random
effects (Rf) boosted the variation explained to 54.7%. Multimodel
inference revealed that CWM of leaf area (p <0.001), CWM of plant
height (p=0.04), FDis of plant height (p<0.001) and snow-depth
(p<0.001) were retained as significant fixed effects, with all these
factors combining to explain a total of 14.3% of the variation in
ANPP and trait metrics alone explaining 13.3%. In addition, interac-
tions between CWM leaf area and annual winter precipitation, as
well as snow-depth and annual winter precipitation, were retained
as significant, explaining an additional 2.5% of the variation in ANPP.
These two interaction effects were retained in all models within the
top 6 AlCc subset, indicating that models which did not include them
received little support. Model coefficients, AICc scores and weights

for subset models can be found in Appendix S5.

4 | DISCUSSION

Recent studies demonstrating that functional traits have weak pre-
dictive power for ecosystem functions through time (van der Plas
et al., 2020) may be the result of temporal variability in the B-EF
relationship, where the individual traits, functional mechanisms
and abiotic variables that best predict ecosystem functions change
with annual variation in climatic conditions. Overall, our results are
consistent with the hypothesis that traits are dynamic predictors of
ecosystem functioning and our analysis revealed that, in an alpine
tundra system, the identity of the trait which best predicted ecosys-
tem function varied with the amount of annual winter precipitation,
while the relative importance of the functional mechanisms (CWM
vs. FDis) and abiotic variables underlying the B-EF relationship re-
mained largely stable. Moreover, multimodel inference with linear
mixed effects models reinforced these results, demonstrating thatin-
teractions between climate and biotic/abiotic variables significantly
affect ANPP across time. However, including these interactions did
not greatly increase our ability to predict ANPP and suggests that, in
this system, taking these climatic context dependencies into account
only modestly improves our understanding of the B-EF relation-
ship. Taken together, our results suggest that that future B-EF re-
search should consider temporal variability in the B-EF relationship,

particularly how the predictive power of individual functional traits
and abiotic variables may fluctuate as climatic conditions shift due to

climate change or in highly variable ecosystems.

4.1 | Best fit SEMs for ANPP

Our finding that trait SEMs related to plant size (leaf area and plant
height) best explained ANPP in 11 of 13years adds to a growing
body of research showing that, across a wide variety of experi-
mental and natural systems, traits related to plant size are often
the best predictors of ANPP (Cadotte, 2017; Chiang et al., 2016;
Gustafsson & Norkko, 2019; Lavorel & Grigulis, 2012). While leaf
area SEMs performed well on average, the predictive power of these
SEMs showed a strong relationship with annual winter precipitation
(Figure 3b). Since leaf area values reflect a species' ability to maintain
water/energy balance (Ackerly et al., 2002; Miller & Stoner, 1979;
Parkhurst & Loucks, 1972), a sustained summer snowpack result-
ing from higher levels of winter precipitation could provide a source
of consistent growing season soil moisture, allowing larger-leaved
species to achieve higher levels of stomatal conductance and/
or photosynthesis (Pattison & Welker, 2014). Thus, in high winter
precipitation years, communities composed of large-leaved species
would be able to fix more carbon and produce more biomass than
normal, exaggerating the already strong relationship between CWM
leaf area and ANPP (Figure 4a). Low winter precipitation years may
produce the opposite phenomenon, where large leaved species are
forced to close their stomata more often due to moisture limitation
and thus produce uncharacteristically low levels of ANPP (Bowman
et al., 1995; Wentz et al., 2019). This minimizes the normally predic-
tive pathway between CWM leaf area and ANPP, leading to failed
model convergence in 2012, the year with the lowest amount of
winter precipitation.

In contrast to leaf area SEMs, the predictive power of plant height
SEMs was maximized in average winter precipitation years and mini-
mized in both low and high winter precipitation years. In these SEMs,
predictive power seemed to change due to small increases in the
magnitude of both CWM and FDis effects, where the mean and
dispersion of plant height exerted slightly larger magnitude effects
on ANPP in average precipitation years (Figure 4b). In low winter
precipitation years, marginally lower magnitude CWM and FDis ef-
fects may result from moisture limitation reducing ANPP in normally
productive plots, a similar mechanism to what we inferred for leaf
area SEMs. However, unlike leaf area SEMs, high winter precipitation
years also dampened plant height CWM and FDis effects on ANPP.
This could result from high winter precipitation leading to a larger,
later melting snowpack reducing ANPP in normally productive plots
via energy limitation. Thus, height SEMs perform best in average
winter precipitation years when neither moisture nor energy are
limiting plots where communities have high mean heights and low
height dispersion.

In the two years with the lowest amount of winter precipitation
(2012 and 2013), the SEMs that best explained ANPP switched
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from size related traits to §'°N. This suggests that while winter
precipitation may control the relationship between size related
traits and ANPP via moisture and energy limitation, 515N trait dis-
tributions are shaping patterns of ANPP through a different mech-
anism, which is not as strongly affected by interannual variation
in climate. While the ecological interpretation of 51°N trait values
is complex, they are broadly thought to reflect the availability of
total nitrogen and variation in nitrogen source (abiotic vs. biotic
sources) and have been found to vary along gradients of N avail-
ability on Niwot Ridge (Craine et al., 2015; Miller & Bowman, 2002;
Spasojevic & Weber, 2021). Since a large fraction of nitrogen in
the alpine zone comes from melting snow, long-term patterns of
snow deposition set the template for the location and type of ni-
trogen found across the landscape (Bowman, 1992). Thus, even in
years with abnormally high or low winter precipitation, nitrogen
availability and source are likely to remain relatively constant. The
longer timescale of response for nitrogen availability may be the
reason that 8'°N SEMs continue to be reasonably predictive of
ANPP regardless of annual winter precipitation levels, while the
predictive power of height and leaf area SEMs varies more directly
with the moisture and energy limitations imposed by fluctuating

levels of winter precipitation.

4.2 | SEM biotic (trait) effects on ANPP

In all best fitting trait SEMs, CWMs exerted a large, positive influ-
ence on ANPP indicating that communities with high average leaf
area, plant height and/or §'°N have the highest levels of ANPP. FDis
effects, on the contrary, were lower magnitude and usually negative,
indicating that communities that contain a greater diversity of trait
values for height, leaf area and 5°N had lower levels of ANPP. Taken
together, our results offer partial support for our second prediction
and add to a growing body of research demonstrating that mass ratio
effects are generally more important than niche complementarity
effects in determining individual ecosystem functions (i.e. not mul-
tifunctionality), particularly in natural systems (Brun et al., 2022;
Cadotte, 2017; Chiang et al., 2016; Fotis et al., 2018; Needham
et al., 2022; van der Plas, 2019).

However, the stability of these two functional mechanisms
across trait SEMs and temporally varying climatic conditions
conflicts with our second prediction that niche complementar-
ity effects would become more important during climatically
stressful years. Moreover, this finding contradicts research from
experimental grassland and forest systems suggesting that niche
complementarity effects tend to exert a more positive impact
on ecosystem functions when environmental conditions become
harsher (Mori, 2018; Wang et al., 2013; but see Jucker et al., 2016
who found strong spatial but weak temporal B-EF context depen-
dency). This may indicate that niche partitioning among species
(i.e. niche differences) is relatively unimportant in determining
ANPP in this alpine ecosystem, and instead, ANPP is primarily
shaped by the presence of dominant species possessing traits,
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which provide a competitive advantage (i.e. hierarchical fitness
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differences) in a specific environmental context (e.g. species with
high leaf area trait values, especially in high winter precipitation
years; Cadotte, 2017). Alternatively, because our plots are distrib-
uted across a fairly large area with high beta-diversity (Spasojevic
et al., 2013; Spasojevic & Suding, 2012), differences in CWM and
FDis trait values among habitat types could be so large that they
mask the positive effects of niche complementarity, which are
acting at finer spatial scales. Our cross-community analysis may
show negative effects of FDis on ANPP because plots positioned
in energy-limited snowbank communities possess high FDis for
size-related traits and very low ANPP, while plots in abiotically
mild moist meadow communities possess low FDis for size related
traits and high ANPP. If instead we were to examine the B-EF re-
lationship at a smaller spatial scale by only using plots within a
single alpine community type, the effects of niche complemen-
tarity might appear to be positive and relatively more important.
For example, facilitation is known to be an important process in
dry, wind-swept fellfield communities where dominant cushion
plants ameliorate microclimatic conditions for subordinate species
(Butterfield et al., 2013; Kikvidze et al., 2015), perhaps generating
a positive relationship between functional dispersion and ANPP
within this community type.

4.3 | SEM abiotic effects on ANPP

The relatively low magnitude of total effects for abiotic variables in
our best fitting SEMs likely results from direct and indirect effects
often displaying opposing signs. For example, in leaf area SEMs, the
direct pathway linking snow-depth and ANPP was strongly nega-
tive, but the indirect pathway through the CWM of leaf area was
positive (Appendices S1 and S2). These contradictory effects con-
firm previous research showing that snow-depth plays an important
but complicated role in determining ANPP and species composition
(Walker et al., 1993), with high snow-depth values lowering ANPP
directly, while simultaneously driving an increase in leaf area CWM
values which then have strong, positive knock-on effects for ANPP.
This example highlights the usefulness of SEMs for B-EF research,
as they are able to disentangle complex relationships, which might
be obscured when using other methods like generalized linear mod-
eling or variance partitioning which do not consider indirect effects
(Grace et al., 2014, 2016).

Only in the 8'°N SEMs did the total effect of an abiotic variable
vary significantly with winter precipitation, with snow-depth exert-
ing a negative effect on ANPP in high winter precipitation years but a
positive effect in low winter precipitation years. This result suggests
that the impacts of snow-depth on ANPP are context dependent. In
years when winter precipitation is high, increasing snow-depth likely
restricts ANPP by limiting the length of the growing season, while in
low winter precipitation years increasing snow-depth boosts ANPP
by alleviating moisture limitation. Importantly, this significant trend
may only be visible in §!°N SEMs because they are the only SEMs,
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which converged in all 13years and possesses a path coefficient
value for the lowest precipitation year (2012) in which snow-depth
exerted a strong positive effect on ANPP. Overall, our SEMs indi-
cate that local abiotic conditions, particularly snow-depth, play an
important and context-dependent role in driving ANPP, but that the
combination of strongly opposed direct and indirect effects lead to

small total effects.

4.4 | Climatic interaction effects

Multimodel inference using data across all years largely rein-
forced our conclusions from SEM analysis, with ANPP once again
significantly correlated with CWM leaf area, CWM height, FDis
height and snow-depth. While 515N trait metrics did not appear
as significant, this is expected given that §}°N SEMs did not per-
form particularly well at predicting ANPP and only became the
model of best fit in 2012 and 2013 due to poor performance for
leaf area and height SEMs in the two lowest precipitation years.
Furthermore, the two variables we found had context-dependent
effects with winter precipitation during SEM analysis, CWM leaf
area and snow-depth (in 8°N SEMs), also showed up as signifi-
cant interaction effects in multimodel inference. However, inclu-
sion of these two interaction effects did not greatly increase our
ability to predict ANPP across time, and total fixed effects in the
global model still explained much less variation in ANPP than the
within-year SEMs (van der Plas et al., 2020). The inability of in-
teraction effects to substantially improve predictive power may
result from the fact that this alpine system is composed of hardy,
long-lived species which may not quickly respond to annual vari-
ation in climatic conditions. While species composition is chang-
ing at Niwot and the Rocky Mountains more broadly (Huxley &
Spasojevic, 2021), these changes are occurring at the scale of dec-
ades (Scharnagl et al., 2019; Spasojevic et al., 2013) and effects on
the B-EF relationship may not be clearly visible over the 13-year
period of our study. Temporal shifts in the B-EF relationship may
be larger in annual communities where species composition can
more quickly change in response to local and/or regional changes
in climatic conditions, leading to immediate cascading impacts on
ecosystem function (Felton et al., 2021; Shaw et al., 2022).

4.5 | Study limitations

Although our results suggest that the explanatory power of the
functional traits underpinning ecosystem functions can vary dy-
namically through time, it is important to acknowledge limita-
tions with our observational approach. First, NWT's Saddle plots
do not equally represent the diversity of community types found
on Niwot Ridge. Certain community types (e.g. fellfield, N=8
plots; wet meadow, N=4 plots) are under-represented, poten-

tially biasing our interpretations of which traits and mechanisms

are most important across the alpine tundra as whole. The low
number of fellfield plots is especially problematic given that facili-
tation and resource partitioning are known to play an important
role in this high stress/low-resource community type (Bertness &
Callaway, 1994; Butterfield et al., 2013). More data from under-
represented community types should be collected so that analy-
ses of the B-EF relationship can be conducted within community
types as well as across them. Second, more detailed trait data
could improve our ability to explain ANPP across the alpine land-
scape. Specifically, incorporating temporal changes in intraspecific
trait variation could be a major way to improve the power of trait-
based approaches for predicting the B-EF relationship through
time. Several studies have found that climatic variation can induce
large shifts in intraspecific trait values, with subsequent impacts
on community-level trait distributions sometimes exceeding the
impact of species composition change (Henn et al., 2018; Jung
et al., 2014). In this study, we used habitat-specific trait means to
capture a degree of spatial intraspecific variation; however, more
detailed trait data collection (e.g. measurements in each year)
could reveal how temporal intra-specific variation might generate
trait-ecosystem function relationships even stronger than those

reported here.

5 | CONCLUSION

In our alpine tundra system, productivity was generally best ex-
plained by traits related to plant size (leaf area and plant height);
however, this trend changed during low winter precipitation years
when §'°N instead best predicted productivity. Without excep-
tion, productivity was better explained by the community average
values of these traits rather than their variation, suggesting that,
while both mechanisms operate simultaneously, mass ratio effects
are relatively more important than niche complementarity in deter-
mining productivity in this system. The total effects of local abiotic
variables on ANPP were relatively small; however, this was due to
complex and contradictory direct and indirect (via trait composition)
effects. Lastly, some biotic and abiotic variables showed context de-
pendent relationships with winter precipitation, and consideration
of these climatic context dependencies marginally improved our
ability to predict ecosystem function through time. Taken together,
our results suggest that consideration of temporal variation in envi-
ronmental conditions and the dynamic nature of trait-environment
relationships can improve our understanding of the biodiversity-

ecosystem function relationship.
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