

Functions and Regulation of *HAM* Family Genes in Meristems During Gametophyte and Sporophyte Generations

Yuan Geng^{1,2} | Chong Xie^{1,2} | Cankui Zhang^{2,3} | Xing Liu^{2,4} | Yun Zhou^{1,2}

¹Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA | ²Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA | ³Department of Agronomy, Purdue University, West Lafayette, Indiana, USA | ⁴Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA

Correspondence: Yun Zhou (zhouyun@purdue.edu)

Received: 17 August 2024 | **Revised:** 10 October 2024 | **Accepted:** 3 November 2024

Funding: This funding support from the NSF IOS 1931114 grant and NIH R01GM143268 grant (both to Y.Z.), as well as the NSF EDGE IOS-1923557 grant (to C.Z. and Y.Z.).

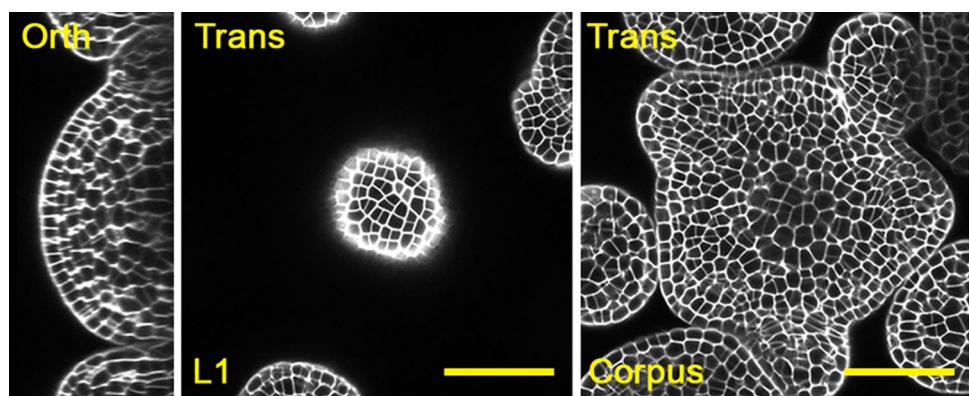
Keywords: gametophyte | GRAS-domain | meristem | microRNA

ABSTRACT

A fascinating feature of land plants is their ability to continually initiate new tissues and organs throughout their lifespan, driven by a pool of pluripotent stem cells located in meristems. In seed plants, various types of meristems are initiated and maintained during the sporophyte generation, while their gametophytes lack meristems and rely on sporophyte tissues for growth. In contrast, seed-free vascular plants, such as ferns, develop meristems during both the sporophyte and gametophyte generations, allowing for the independent growth of both generations. Recent findings have highlighted both conserved and lineage-specific roles of the HAIRY MERISTEM (HAM) family of GRAS-domain transcriptional regulators in various meristems throughout the land plant lifecycle. Here, we review and discuss how *HAM* genes maintain meristem indeterminacy in both sporophytes and gametophytes, with a focus on studies performed in two model species: the flowering plant *Arabidopsis thaliana* and the fern *Ceratopteris richardii*. Additionally, we summarize the crucial and tightly regulated functions of the microRNA171 (miR171)-HAM regulatory modules, which define HAM spatial patterns and activities during meristem development across various meristem identities in land plants.

1 | Introduction

Meristems in land plants consist of groups of undifferentiated stem cells capable of continuous division. They share conserved functions, maintaining their undifferentiated state while continually producing daughter cells that eventually differentiate into various tissues and organs (Heidstra and Sabatini 2014; Kean-Galeno, Lopez-Arredondo, and Herrera-Estrella 2024; Meyerowitz 1997). Land plants undergo an alternation of generations, comprising the sexual gametophyte phase and the asexual sporophyte phase (Bowman 2022; Jill Harrison 2017).


They develop different types of meristems at various phases of their lifecycle (Bowman 2022; Jill Harrison 2017). In seed plants, meristems are exclusively initiated and maintained during the sporophyte generation, such as shoot apical meristems (SAMs), which are responsible for producing above-ground tissues (Gaillochet and Lohmann 2015; Heidstra and Sabatini 2014; Meyerowitz 1997). Gametophytes of seed plants grow dependently on their sporophyte tissues and lack any meristems or stem cells (Li and Ma 2002; McCormick 2004; Yadegari, 2004). Unlike seed plants, ferns—vascular plants that propagate by spores instead of seeds—develop meristems

This is an open access article under the terms of the [Creative Commons Attribution](#) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Author(s). *Plant, Cell & Environment* published by John Wiley & Sons Ltd.

during both the sporophyte and gametophyte generations (Imaichi 2013; Plackett, Di Stilio, and Langdale 2015). Apical meristems in fern sporophytes have structures and morphology different from their counterparts in seed plants but share similar functions (Plackett, Di Stilio, and Langdale 2015). Additionally, during the gametophyte phase, ferns develop multicellular meristems, which are responsible for producing sex organs and sustaining the indeterminate growth of gametophytes until fertilization (Banks 1999; Imaichi 2013; Plackett, Di Stilio, and Langdale 2015; Wu et al. 2023; Wu et al. 2021; Wu et al. 2022).

Understanding how meristems remain undifferentiated during plant growth and development has been a long-standing question in the field. Over the last 20 years, several key regulators and associated pathways have been isolated and analyzed, primarily in models of flowering plants (angiosperms) (Gaillochet and Lohmann 2015; Han, Liu, and Zhou 2020b; Kitagawa and Jackson 2019; Lindsay, Swentowsky, and Jackson 2024). Among them, the *HAIRY MERISTEM* (*HAM*) gene was initially identified and characterized in Petunia. It was named after the mutant phenotype exhibiting ectopic formation of hair-like structures (trichomes) on shoot meristems (Stuurman, Jäggi, and Kuhlemeier 2002), suggesting a role for *HAM* in maintaining meristems in an undifferentiated state. After then, molecular genetic studies in several other angiosperm species demonstrated the conserved and essential role of the *HAM* family GRAS-domain transcription factors in meristem maintenance (Engstrom et al. 2011; Geng et al. 2021b; Schulze et al. 2010; Zhou et al. 2015; Zhou et al. 2018). In this review, we focus on recent advances in understanding the functions of *HAM* in various meristems throughout the plant lifecycle and how *HAM* activity is restricted by the conserved miRNA171 (miR171) family (Geng et al. 2021b; Geng et al. 2024; Geng, Yan, and Zhou 2022; Geng and Zhou 2021a, 2021b; Han et al. 2020a; Han, Liu, and Zhou 2020b). Our discussion here is primarily based on studies in meristems from two model systems: the flowering plant *Arabidopsis thaliana* (hereafter referred to as *Arabidopsis*) and the fern model *Ceratopteris richardii* (hereafter referred to as *Ceratopteris*). We also summarize the *HAM* gene family and the miR171-HAM regulatory modules in land plants, and discuss future perspectives and new directions in this field.

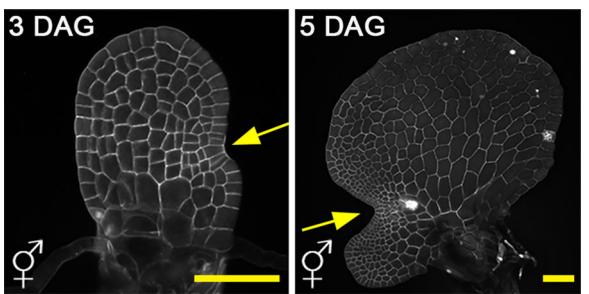
FIGURE 1 | Confocal images of the *Arabidopsis* shoot apical meristem (SAM). Panels from left to right: an orthogonal view of an *Arabidopsis* SAM, a transverse section view of the L1 layer, and a transverse section view of the corpus/L3 layer in the same SAM. Scale bars: 50 μ m. Gray: cell wall stain. [Color figure can be viewed at wileyonlinelibrary.com]

2 | *HAM* gene family in Land Plants

HAM family homologs are widely present across many lineages of land plants, including bryophytes, lycophytes, ferns, gymnosperms, and angiosperms (Engstrom et al. 2011; Geng et al. 2021b). This suggests that the origin of the *HAM* gene family likely predates the divergence of land plants (Geng et al. 2021b). Comprehensive phylogenetic analysis has demonstrated that in many non-angiosperm lineages, such as mosses, lycophytes, ferns, and gymnosperms, the *HAM* family is maintained with low copy numbers, typically consisting of only one or two members in each species. However, the *HAM* family members have significantly expanded in angiosperm lineages (Engstrom et al. 2011; Geng et al. 2021b). In angiosperms, *HAM* homologs are categorized into two distinct groups, Type I and Type II, likely derived from a whole-genome duplication (WGD) event in a common ancestor of angiosperms (Albert et al. 2013; Geng et al. 2021b). Type II *HAM* members are retained in all examined angiosperm species, while Type I *HAM* members appear to have been independently lost in several orders of monocots (Geng et al. 2021b). Additionally, the *HAM* gene family has undergone relatively recent duplication events in several angiosperm lineages, leading to further expansions of this family. For example, there are only two *HAM* homologs—one Type I (*AmHAM1*) and one Type II (*AmHAM2*)—in *Amborella trichopoda*, which is the sole living sister species to all other angiosperms and shows no evidence of recent genome duplications (Albert et al. 2013). In contrast, up to nine *HAM* homologs have been identified in the *Musa acuminata* (banana) genome, which have undergone three rounds of lineage specific-WGDs (D'Hont et al. 2012).

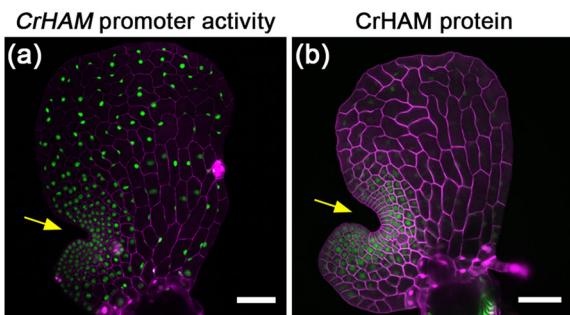
3 | *HAM* Regulates Shoot Meristem Development During the Sporophyte Phase in Angiosperms

An *Arabidopsis* SAM consists of three clonally distinct layers (Figure 1). The outermost layer (L1) gives rise to the epidermis, while the underlying layer (L2) gives rise to the sub-epidermis. The entire area beneath the L2 is the corpus, or L3 layer, where cells contribute to forming inner corpus tissues (Figure 1). Based on distinct cell fates and behaviors, the SAM can also be divided into different functional zones. Notably, a constant


number of stem cells are maintained undifferentiated in the central zone (CZ) through a WUSCHEL (WUS)-CLAVATA (CLV) feedback loop (Fletcher 2018; Schoof et al. 2000; Somssich et al. 2016).

Arabidopsis has four HAM members: three Type II (HAM1, HAM2, and HAM3) and one Type I (HAM4) (Engstrom et al. 2011; Geng et al. 2021b; Han et al. 2020a). Type II HAMs play roles in maintaining the WUS-CLV3 feedback loop and sustaining the indeterminacy of shoot stem cell niches (Geng et al. 2021b; Han et al. 2020a; Han, Liu, and Zhou 2020b; Schulze et al. 2010; Zhou et al. 2015; Zhou et al. 2018). Specifically, HAM1 and HAM2 are expressed in the deeper layers of the SAM and function as interacting cofactors of WUS to regulate downstream targets and promote stem cell proliferation (Zhou et al. 2015). In the upper layers of the SAM, where *CLV3* is highly expressed, HAM1 and HAM2 are largely absent (Zhou et al. 2018). In the *ham123* mutant, the *CLV3* expression shifts from the upper to the deeper layers of the SAM (Geng et al. 2021b; Han et al. 2020a; Schulze et al. 2010; Zhou et al. 2018). Experimental results and computational simulations (Gruel et al. 2018; Liu, Shpak, and Hong 2020; Zhou et al. 2018) support a working model in which HAM, along with WUS, determines the localization of *CLV3* expression in the SAM (Han, Liu, and Zhou 2020b; Zhou et al. 2018). WUS activates *CLV3* expression in the CZ where HAM is absent but is unable to do so in the deeper layers where HAM is present. In addition, during the formation of new axillary meristems, HAM forms a concentration gradient that shifts the *CLV3* expression from the inner to the upper layers (Zhou et al. 2018). In the *ham123* mutant, *CLV3* remains in the inner layers, aligning with defects in axillary bud development (Engstrom et al. 2011; Geng et al. 2021b; Schulze et al. 2010; Wang et al. 2010; Zhou et al. 2018).

In several other angiosperm species, Type II *HAM* genes share conserved functions in maintaining SAMs and promoting axillary meristem formation (David-Schwartz et al. 2013; Hendelman et al. 2016; Schulze et al. 2010; Stuurman, Jäaggi, and Kuhlemeier 2002; Wang et al. 2010; Zhou et al. 2015; Zhou et al. 2018). For example, a mutation in the *CaHAM* gene in pepper (*Capsicum annuum*) leads to early termination of SAMs and arrested axillary shoots, similar to the phenotype displayed by *ham* loss-of-function mutants in Petunia and Arabidopsis (David-Schwartz et al. 2013). Consistently, in cross-species complementation studies, Type II *HAM* members from a monocot (rice) and two dicot species (pepper and soybean) rescued the developmental defects of Arabidopsis *ham123* (Geng et al. 2021b). Notably, the ability to maintain meristem indeterminacy in Arabidopsis shoot meristems has also been preserved in both Type I and Type II HAM from Amborella (the sister species to all other angiosperms) and in HAM members from non-angiosperms, such as the gymnosperm *Larix kaempferi*, the fern Ceratopteris, the lycophyte *Selaginella moellendorffii*, and the moss *Physcomitrium patens* (Geng et al. 2021b).


4 | HAM Regulates Meristem Development During the Gametophyte Phase in Ferns

Unlike seed plants, fern gametophytes are autotrophic, free-living, and grow independently of their sporophytes. Similar to

FIGURE 2 | Initiation and establishment of multicellular meristems in Ceratopteris gametophytes. Confocal images of two hermaphroditic gametophytes at 3 and 5 days after germination (DAG). Yellow arrows indicate meristems at early (left) and late (right) developmental stages. Scale bars: 100 μ m. Gray: cell wall stain. [Color figure can be viewed at wileyonlinelibrary.com]

many fern taxa, the model fern Ceratopteris is homosporous, producing only one type of spore. During the haploid gametophyte phase, the genetically identical spores of Ceratopteris can develop into one of two sex types—male or hermaphrodite—depending on the influence of the pheromone antheridiogen (Banks 1999; Banks, Hickok, and Webb 1993; Hickok, Warne, and Slocum 1987). Antheridiogens from various fern taxa have been characterized, and so far, the identified antheridiogens from several fern species share structural similarities with gibberellic acids (Hickok, Warne, and Slocum 1987; Banks 1999; Banks, Hickok, and Webb 1993; Tanaka et al. 2014; Yamane 1998). In the presence of antheridiogen, a Ceratopteris spore develops into an amheristic male, lacking any meristem, with almost all the cells eventually differentiating into sperm-producing antheridia (Hickok, Warne, and Slocum 1987; Banks 1999; Banks, Hickok, and Webb 1993). In contrast, when cultivated in isolation without exogenous antheridiogen, a Ceratopteris spore develops into a largely expanded, meristic hermaphrodite, characterized by a multicellular meristem, several egg-producing archegonia, and a few sperm-producing antheridia (Banks 1999; Hickok, Warne, and Slocum 1987) (Figure 2). The multicellular meristem is crucial for Ceratopteris hermaphrodite development, as it maintains continuous cell division activity within the meristem region, contributing to prothallus expansion. Additionally, the meristem constantly triggers adjacent cells to initiate and form archegonia, which bear eggs for fertilization (Banks 1999; Geng, Yan, and Zhou 2022). Interestingly, within a gametophyte population, once a hermaphrodite establishes itself and initiates the meristem, it begins producing and secreting antheridiogen into the environment (Hickok, Warne, and Slocum 1987; Banks 1999; Banks, Hickok, and Webb 1993). This pheromone triggers neighboring late-germinating, sexually undetermined gametophytes to develop as males and promotes antheridium formation (Hickok, Warne, and Slocum 1987; Banks 1999; Banks, Hickok, and Webb 1993; Tanaka et al. 2014; Yamane 1998). Meanwhile, the hermaphrodite becomes insensitive to both endogenous and exogenous antheridiogen, preventing its conversion to a male in the presence of antheridiogen (Banks 1999; Banks, Hickok, and Webb 1993). This strategy, employed by many fern species including Ceratopteris, promotes outcrossing and enhances genetic diversity within populations. It also prevents all individuals in the same population from becoming males, thereby ensuring efficient sexual

FIGURE 3 | *CrHAM* expression patterns in *Ceratopteris* gametophytes. Confocal images of hermaphroditic gametophytes expressing the miR171-insensitive transcriptional reporter *pCrHAM::H2B-GFP* (a) and the miR171-sensitive translational reporter *pCrHAM::YPET-CrHAM* (b). (a) Merged channels of GFP (green) and cell wall stain (magenta). (b) Merged channels of YFP (green) and cell wall stain (magenta). Yellow arrows indicate meristems. Scale bars: 100 μ m. [Color figure can be viewed at wileyonlinelibrary.com]

reproduction and species maintenance. While this phenomenon is intriguing, the underlying molecular mechanism had been a puzzle for more than three decades (Banks, Hickok, and Webb 1993; Hickok, Warne, and Slocum 1987).

Fortunately, publicly available genomic and transcriptomic resources (Geng et al. 2021a; Marchant et al. 2022), the development of transient and stable transformation systems in *Ceratopteris* (Bui et al. 2015; Plackett et al. 2014), and the establishment of noninvasive confocal live-imaging systems (Geng, Yan, and Zhou 2022), have greatly facilitated gene functional studies in *Ceratopteris* (Bui et al. 2017; Plackett, Di Stilio, and Langdale 2015; Plackett et al. 2018). A recent study on the *Ceratopteris* HAM family gene (hereafter referred to as *CrHAM*) has helped solve the puzzle and uncover the role of the multicellular meristem in the sex type specification (Geng et al. 2024). Specifically, on the same days after germination (DAG), *CrHAM* exhibits significantly higher expression in *Ceratopteris* hermaphrodites compared to males (Geng et al. 2024). The *CrHAM* protein preferentially accumulates in the multicellular meristem during its initiation and establishment in *Ceratopteris* hermaphrodites but is excluded from differentiated organs such as sperm-producing antheridia in males. Once the meristem is fully established in hermaphrodites, *CrHAM* is restricted to the meristem (Geng et al. 2024) (Figure 3).

The *CrHAM* loss-of-function knockdown (KD) transgenic lines in *Ceratopteris* display developmental defects during the gametophyte phase and an increased male-to-hermaphrodite ratio, both of which are closely related to the identity and activity of multicellular meristems in hermaphrodites. Specifically, while *CrHAM* KD males are morphologically comparable to wild-type (WT) males, *CrHAM* KD hermaphrodites exhibit reduced meristem size and disturbed meristem notch, with increased or even ectopic formation of antheridia (Geng et al. 2024). In the presence of antheridiogen, cells within or adjacent to the meristem of *CrHAM* KD gametophytes differentiate into antheridia, leading to the conversion of a significant number of hermaphrodites to males in the population (Geng et al. 2024). This finding is consistent with quantitative assays

showing that *CrHAM* KD gametophytes increase sensitivity to exogenous antheridiogen (Geng et al. 2024). Additionally, *CrHAM* sustains meristem cell division and proliferation independent of antheridiogen. In the absence of exogenous antheridiogen, *CrHAM* KD hermaphrodites display reduced division activity, total cell number, and gametophyte size compared to WT hermaphrodites at the same DAG. These findings support a working model that *CrHAM*, specifically localized in meristems, sustains cell division and represses antheridiogen-induced male differentiation programming, thereby maintaining meristem identity and promoting hermaphrodite development. Transcriptomic profiling of different sex types and genotypes at two developmental stages of gametophytes further demonstrates that *CrHAM* maintains meristem indeterminacy and hermaphrodite identity by integrating multiple conserved regulatory pathways, including transcriptional cascades, cell wall modification, auxin biosynthesis, and CLV peptide signals (Geng et al. 2024). Interestingly, during the gametophyte phase of *Physcomitrium*, another seed-free model, *PpGRAS12* (a *Physcomitrium HAM* homolog) may also act as a positive regulator of meristem development, as overexpression of *PpGRAS12* leads to overproliferation of apical meristems on each gametophore (Beheshti et al. 2021). All these findings suggest a conserved role of HAM members in regulating meristems in both gametophytes and sporophytes.


5 | microRNA171 (miR171): Conserved Regulators in Shaping HAM Patterns and Confining HAM Functions

MicroRNA171 (miRNA171) is a group of small noncoding RNAs whose precursors are encoded by *MICRORNA171* (*MIR171*) genes (Han and Zhou 2022; Llave et al. 2002b; Reinhart et al. 2002; Zhu et al. 2015). In *Arabidopsis*, all three Type II HAM genes (*HAM1-3*) contain identical 21-nt miR171 binding sites (5'-GATATTGGCGCGCTCAATCA-3'), through which miR171 specifically recognizes and mediates the cleavage of *HAM1-3* transcripts (Llave et al. 2002a; Llave et al. 2002b; Rhoades et al. 2002; Wang et al. 2010; Takanashi et al. 2018). Consistently, gain-of-function (such as ectopic expression) of *AtMIR171* in *Arabidopsis* results in reduced HAM levels and phenotypes resembling the *ham123* loss-of-function, including disorganized shoot meristem structures, aberrant *CLV3* expression domains, and arrested axillary branches (Wang et al. 2010; Zhou et al. 2018). In *Arabidopsis* SAMs, the *MIR171* genes are directly activated by the L1-specific transcription factors *ATML1* and its close homolog *PDF2* (Han et al. 2020c). As a result, mature miR171 is synthesized exclusively in the epidermal layer (L1) and moves downward over a limited distance, leading to the cleavage of Type II HAM transcripts in the upper layers of SAMs (Han et al. 2020c). This creates a concentration gradient of miR171 from the epidermis to the inner layers, which defines an inverse concentration gradient of Type II HAM members along the apical-basal axis in the SAMs (Han et al. 2020c). Notably, a miR171-insensitive *HAM2* fluorescent transcriptional reporter is ubiquitously activated in all cell layers of SAMs (Han et al. 2020c). In contrast, the fluorescence signal of a miR171-sensitive *HAM2* translational reporter is absent in the L1 but strong in the inner layers of SAMs (Han et al. 2020c).

Phylogenetic studies have revealed that the 21-nt miR171 binding sites are highly conserved within the coding sequences of *HAM* members across non-angiosperm lineages and in the majority of Type II *HAM* genes in angiosperms (Engstrom et al. 2011; Geng et al. 2021b). In contrast, in Type I *HAM* genes, the miR171 binding sites show diversification, with a few exceptions in species such as Amborella, *Nelumbo nucifera* and *Vitis vinifera* (Engstrom et al. 2011; Geng et al. 2021b). In parallel, *MIR171* family members are widespread across various land plant lineages, and mature miR171 sequences from different species display high levels of similarity (Cuperus, Fahlgren, and Carrington 2011; Geng et al. 2024; Han and Zhou 2022; Zhu et al. 2015). For instance, in 14 land plant species, including angiosperms and non-angiosperms, miR171 sequences share 11 invariant nucleotides positions out of 21 (Geng et al. 2024). Additionally, overexpression of *MIR171* genes in tomato (*Solanum lycopersicum*) and rice (*Oriza sativa*) leads to the silencing of Type II *HAM* homologs and disrupts meristem development (Fan et al. 2015; Hendelman et al. 2016), providing evidence of a functional miR171-HAM regulatory cascade across angiosperm lineages.

In the fern *Ceratopteris* genome, we recently identified two *CrMIR171* genes, *CrMIR171B* and *CrMIR171C* (Geng et al. 2024). Products of these two genes are predicted to form stem-loop pri-miRNA structures that are highly comparable to those produced by Arabidopsis *MIR171B* and *MIR171C*, respectively. The mature *CrmiR171b* and *CrmiR171c* also share nearly identical sequences with Arabidopsis miR171b/c (Geng et al. 2024). Consistently, *CrmiR171b* and *CrmiR171c* are highly complementary to the miR171-binding site within the *CrHAM* transcript, which, surprisingly, remains identical to that in all three Arabidopsis Type II *HAM* genes (Geng et al. 2021b; Geng et al. 2024). More importantly, ectopic activation of *CrMIR171B* leads to a significant reduction of the *CrHAM* level in transgenic *Ceratopteris* gametophytes. These gametophytes display phenotypes similar to those observed in *CrHAM* loss-of-function transgenic gametophytes, such as the reduced expression of downstream targets, an increased male-to-hermaphrodite ratio in the population, reduced meristem size, and disturbed prothallus expansion in hermaphrodites (Geng et al. 2024).

In a previous study, confocal imaging results demonstrated that the conserved miR171-binding site in *CrHAM* can be recognized by Arabidopsis miR171, which is sufficient to establish an apical-basal concentration gradient of YPET-CrHAM in Arabidopsis SAMs when expressed under the control of the ubiquitously expressed Arabidopsis *HAM2* promoter (Geng et al. 2021b). During the gametophyte phase in *Ceratopteris*, the miR171-insensitive *CrHAM* transcriptional reporter is ubiquitously expressed in the prothalli at different developmental stages (Geng et al. 2024; Geng, Yan, and Zhou 2022) (Figure 3a). In contrast, the miR171-sensitive *CrHAM* translational reporter shows differential expression patterns, preferably accumulating in the meristems during initiation and proliferation, and eventually being restricted within the meristem once it is fully established in gametophytes (Geng et al. 2024) (Figure 3b). The direct comparison of these two reporters under the control of the same *CrHAM* promoter reveals miR171 activity in *Ceratopteris* gametophytes (Geng et al. 2024) (Figure 3a,b). Interestingly, in the moss *Physcomitrium*, a miR171-insensitive reporter of *PpGRAS12* also shows an expression pattern

FIGURE 4 | Diagrams illustrating HAM functions in the Arabidopsis SAM (sporophyte phase) and the *Ceratopteris* multicellular meristem (gametophyte phase). In both meristems, *HAM* family genes maintain meristem indeterminacy. The miR171-HAM regulatory cascade defines the HAM expression domains in both meristems. Red indicates HAM protein localization patterns. [Color figure can be viewed at wileyonlinelibrary.com]

different from that of a miR171-sensitive reporter (Beheshti et al. 2021). Altogether, these results suggest the miR171 family likely plays a conserved role in shaping HAM patterns and restricting HAM activity in land plants (Figure 4).

6 | Future Perspectives

Over the past several years, significant advances have been made in understanding the role of the *HAM* family in meristem development and its spatial and temporal regulation by miR171 throughout various stages of the plant life cycle. However, several major questions and challenges remain to be resolved.

First of all, current data suggest that while *HAM* family members maintain conserved or even interchangeable functions as meristem regulators in various lineages (Geng et al. 2021b; Han et al. 2020a), they appear to involve different downstream genes and signaling pathways in distinct meristems (Geng et al. 2024; Zhou et al. 2015; Zhou et al. 2018). It will be worthwhile and exciting to determine the molecular mechanisms by which HAM gates through different targets and pathways to achieve the same goal—keeping meristems from differentiation—in different types of meristems across species (Figure 4). In addition, similar to previous works focusing on Arabidopsis SAMs (Han et al. 2020c; Zhou et al. 2018), developing new computational models to predict and simulate complex signaling circuits centered on miR171-HAM in various meristem identities, including those in the haploid gametophyte phase of *Ceratopteris*, will provide comprehensive and quantitative insights into the evolution and functions of this conserved regulatory module in land plants. Moreover, studies in both Arabidopsis and *Ceratopteris* have demonstrated that HAM patterns in meristems are primarily determined by miR171 (Figure 4) (Geng et al. 2024; Han et al. 2020c). Understanding how *MIR171* genes and mature miR171 are dynamically regulated throughout life cycles and among different plant lineages deserves future attention. More broadly, considering the essential roles of HAM in keeping meristem undifferentiated, fine-tuning *MIR171* activity through modifications in their transcriptional regulators or cis-regulatory elements within their promoters could efficiently alter meristem size and

activity. This, in turn, could positively impact shoot architectures and biomass production during the sporophyte phase, as well as sexual reproduction during the gametophyte phase.

Acknowledgments

We apologize to colleagues whose work could not be cited in this review due to space constraints. We acknowledge funding support from the NSF IOS 1931114 grant and NIH R01GM143268 grant (both to Y.Z.), as well as the NSF EDGE IOS-1923557 grant (to C.Z. and Y.Z.).

Conflicts of Interest

Authors declare no competing interests.

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

Albert, V. A., W. B. Barbazuk, C. W. de Pamphilis, Amborella Genome Project, et al. 2013. "The Amborella Genome and the Evolution of Flowering Plants." *Science* 342, no. 6165: 1241089. <https://doi.org/10.1126/science.1241089>.

Banks, J. A. 1999. "Gametophyte Development in Ferns." *Annual Review of Plant Physiology and Plant Molecular Biology* 50: 163–186. <https://doi.org/10.1146/annurev.arplant.50.1.163>.

Banks, J. A., L. Hickok, and M. A. Webb. 1993. "The Programming of Sexual Phenotype in the Homosporous Fern *Ceratopteris Richardii*." *International Journal of Plant Sciences* 154, no. 4: 522–534. <https://doi.org/10.1086/297135>.

Beheshti, H., C. Strotbek, M. A. Arif, A. Klingl, O. Top, and W. Frank. 2021. "PpGRAS12 Acts as a Positive Regulator of Meristem Formation in *Physcomitrium Patens*." *Plant Molecular Biology* 107: 293–305. <https://doi.org/10.1007/s11103-021-01125-z>.

Bowman, J. L. 2022. "The Origin of a Land Flora." *Nature Plants* 8, no. 12: 1352–1369. <https://doi.org/10.1038/s41477-022-01283-y>.

Bui, L. T., A. R. Cordle, E. E. Irish, and C.-L. Cheng. 2015. "Transient and Stable Transformation of *Ceratopteris richardii* Gametophytes." *BMC Research Notes* 8, no. 1: 214. <https://doi.org/10.1186/s13104-015-1193-x>.

Bui, L. T., D. Pandzic, C. E. Youngstrom, et al. 2017. "A Fern *Aintegumenta* Gene Mirrors Baby Boomin Promoting Apogamy In-*Ceratopteris Richardii*." *The Plant Journal* 90, no. 1: 122–132. <https://doi.org/10.1111/tpj.13479>.

Cuperus, J. T., N. Fahlgren, and J. C. Carrington. 2011. "Evolution and Functional Diversification of MIRNA Genes." *The Plant Cell* 23, no. 2: 431–442. <https://doi.org/10.1105/tpc.110.082784>.

David-Schwartz, R., Y. Borovsky, H. Zemach, and I. Paran. 2013. "Ca-HAM Is Autoregulated and Regulates Castm Expression and is Required for Shoot Apical Meristem Organization in Pepper." *Plant Science* 203–204: 8–16. <https://doi.org/10.1016/j.plantsci.2012.12.011>.

D'Hont, A., F. Denoeud, J.-M. Aury, et al. 2012. "The Banana (*Musa Acuminata*) Genome and the Evolution of Monocotyledonous Plants." *Nature* 488, no. 7410: 213–217. <https://doi.org/10.1038/nature11241>.

Engstrom, E. M., C. M. Andersen, J. Gumulak-Smith, et al. 2011. "Arabidopsis Homologs of the Petunia HAIRY MERISTEM Gene are Required for Maintenance of Shoot and Root Indeterminacy." *Plant Physiology* 155, no. 2: 735–750. <https://doi.org/10.1104/pp.110.168757>.

Fan, T., X. Li, W. Yang, K. Xia, J. Ouyang, and M. Zhang. 2015. "Rice osa-miR171c Mediates Phase Change from Vegetative to Reproductive Development and Shoot Apical Meristem Maintenance By Repressing Four Osham Transcription Factors." *PLoS One* 10, no. 5: e0125833–e0125833. <https://doi.org/10.1371/journal.pone.0125833>.

Fletcher, J. C. 2018. "The CLV-WUS Stem Cell Signaling Pathway: A Roadmap to Crop Yield Optimization." *Plants* 7, no. 4: 87. <https://doi.org/10.3390/plants7040087>.

Gaillochet, C., and J. U. Lohmann. 2015. "The Never-Ending Story: From Pluripotency to Plant Developmental Plasticity." *Development* 142, no. 13: 2237–2249. <https://doi.org/10.1242/dev.117614>.

Geng, Y., C. Cai, S. A. M. McAdam, J. A. Banks, J. H. Wisecaver, and Y. Zhou. 2021a. "A De Novo Transcriptome Assembly of *Ceratopteris Richardii* Provides Insights Into the Evolutionary Dynamics of Complex Gene Families in Land Plants." *Genome Biology and Evolution* 13, no. 3: evab042. <https://doi.org/10.1093/gbe/evab042>.

Geng, Y., L. Guo, H. Han, et al. 2021b. "Conservation and Diversification of HAIRY MERISTEM Gene Family in Land Plants." *Plant J* 106, no. 2: 366–378. <https://doi.org/10.1111/tpj.15169>.

Geng, Y., C. Xie, A. Yan, et al. 2024. "A Conserved Gras-Domain Transcriptional Regulator Links Meristem Indeterminacy to Sex Determination in *Ceratopteris* Gametophytes." *Current Biology* 34, no. 15: 3454–3472.e7. <https://doi.org/10.1016/j.cub.2024.06.064>.

Geng, Y., A. Yan, and Y. Zhou. 2022. "Positional Cues and Cell Division Dynamics Drive Meristem Development and Archegonium Formation in *Ceratopteris* Gametophytes." *Communications Biology* 5, no. 1: 650. <https://doi.org/10.1038/s42003-022-03627-y>.

Geng, Y., and Y. Zhou. 2021a. "HAM Gene Family and Shoot Meristem Development." *Frontiers in Plant Science* 12: 800332. <https://doi.org/10.3389/fpls.2021.800332>.

Geng, Y., and Y. Zhou. 2021b. "N-Terminal Region is Required for Functions of the HAM Family Member." *Plant Signaling & Behavior* 16, no. 10: 1940001. <https://doi.org/10.1080/15592324.2021.1940001>.

Gruel, J., J. Deichmann, B. Landrein, T. Hitchcock, and H. Jönsson. 2018. "The Interaction of Transcription Factors Controls the Spatial Layout of Plant Aerial Stem Cell Niches." *NPJ Systems Biology and Applications* 4, no. 1: 36. <https://doi.org/10.1038/s41540-018-0072-1>.

Han, H., Y. Geng, L. Guo, et al. 2020a. "The Overlapping and Distinct Roles of HAM Family Genes in *Arabidopsis* Shoot Meristems." *Front Plant Sci* 11: 541968. <https://doi.org/10.3389/fpls.2020.541968>.

Han, H., X. Liu, and Y. Zhou. 2020b. "Transcriptional Circuits in Control of Shoot Stem Cell Homeostasis." *Current Opinion in Plant Biology* 53: 50–56. <https://doi.org/10.1016/j.pbi.2019.10.004>.

Han, H., A. Yan, L. Li, et al. 2020c. "A Signal Cascade Originated From Epidermis Defines Apical-Basal Patterning of *Arabidopsis* Shoot Apical Meristems." *Nature Communications* 11, no. 1: 1214. <https://doi.org/10.1038/s41467-020-14989-4>.

Han, H., and Y. Zhou. 2022. "Function and Regulation of microRNA171 in Plant Stem Cell Homeostasis and Developmental Programming." *International Journal of Molecular Sciences* 23, no. 5: 2544.

Heidstra, R., and S. Sabatini. 2014. "Plant and Animal Stem Cells: Similar Yet Different." *Nature Reviews Molecular Cell Biology* 15, no. 5: 301–312. <https://doi.org/10.1038/nrm3790>.

Hendelman, A., M. Kravchik, R. Stav, W. Frank, and T. Arazi. 2016. "Tomato HAIRY MERISTEM Genes are Involved in Meristem Maintenance and Compound Leaf Morphogenesis." *Journal of Experimental Botany* 67, no. 21: 6187–6200. <https://doi.org/10.1093/jxb/erw388>.

Hickok, L. G., T. R. Warne, and M. K. Slocum. 1987. "Ceratopteris Richardii: Applications for Experimental Plant Biology." *American Journal of Botany* 74, no. 8: 1304–1316. <https://doi.org/10.1002/j.1537-2197.1987.tb08743.x>.

Imaichi, R. (2013). REVIEW A New Classification of the Gametophyte Development of Homosporous Ferns, Focusing on Meristem Behaviour.

Jill Harrison, C. 2017. "Development and Genetics in the Evolution of Land Plant Body Plans." *Philosophical Transactions of the Royal Society B: Biological Sciences* 372, no. 1713: 20150490. <https://doi.org/10.1098/rstb.2015.0490>.

Kean-Galeno, T., D. Lopez-Arredondo, and L. Herrera-Estrella. 2024. "The Shoot Apical Meristem: An Evolutionary Molding of Higher Plants." *International Journal of Molecular Sciences* 25, no. 3: 1519. <https://doi.org/10.3390/ijms25031519>.

Kitagawa, M., and D. Jackson. 2019. "Control of Meristem Size." *Annual Review of Plant Biology* 70, no. 2019: 269–291. <https://doi.org/10.1146/annurev-applant-042817-040549>.

Li, W., and H. Ma. 2002. "Gametophyte Development." *Current Biology* 12, no. 21: R718–R721. [https://doi.org/10.1016/S0960-9822\(02\)01245-9](https://doi.org/10.1016/S0960-9822(02)01245-9).

Lindsay, P., K. W. Swentowsky, and D. Jackson. 2024. "Cultivating Potential: Harnessing Plant Stem Cells for Agricultural Crop Improvement." *Molecular Plant* 17, no. 1: 50–74. <https://doi.org/10.1016/j.molp.2023.12.014>.

Liu, Z., E. D. Shpak, and T. Hong. 2020. "A Mathematical Model for Understanding Synergistic Regulations and Paradoxical Feedbacks in the Shoot Apical Meristem." *Computational and Structural Biotechnology Journal* 18: 3877–3889. <https://doi.org/10.1016/j.csbj.2020.11.017>.

Llave, C., K. D. Kasschau, M. A. Rector, and J. C. Carrington. 2002a. "Endogenous and Silencing-Associated Small RNAs in Plants[W]." *The Plant Cell* 14, no. 7: 1605–1619. <https://doi.org/10.1105/tpc.003210>.

Llave, C., Z. Xie, K. D. Kasschau, and J. C. Carrington. 2002b. "Cleavage of Scarecrow-Like Mrna Targets Directed by a Class of Arabidopsis miRNA." *Science* 297, no. 5589: 2053–2056. <https://doi.org/10.1126/science.1076311>.

Marchant, D. B., G. Chen, S. Cai, et al. 2022. "Dynamic Genome Evolution in a Model Fern." *Nature Plants* 8, no. 9: 1038–1051. <https://doi.org/10.1038/s41477-022-01226-7>.

McCormick, S. 2004. "Control of Male Gametophyte Development." *The Plant Cell Online* 16, no. suppl-1: S142–S153. <https://doi.org/10.1105/tpc.016659>.

Meyerowitz, E. M. 1997. "Genetic Control of Cell Division Patterns in Developing Plants." *Cell* 88, no. 3: 299–308. [https://doi.org/10.1016/S0092-8674\(00\)81868-1](https://doi.org/10.1016/S0092-8674(00)81868-1).

Plackett, A. R., S. J. Conway, K. D. Hewett Hazelton, E. H. Rabbinowitsch, J. A. Langdale, and V. S. Di Stilio. 2018. "Leafy Maintains Apical Stem Cell Activity During Shoot Development in the Fern *Ceratopteris Richardii*." *eLife* 7: e39625. <https://doi.org/10.7554/eLife.39625>.

Plackett, A. R. G., L. Huang, H. L. Sanders, and J. A. Langdale. 2014. "High-Efficiency Stable Transformation of the Model Fern Species *Ceratopteris Richardii* Via Microparticle Bombardment." *Plant Physiology* 165, no. 1: 3–14. <https://doi.org/10.1104/pp.113.231357>.

Plackett, A. R. G., V. S. Di Stilio, and J. A. Langdale. 2015. "Ferns: the Missing Link in Shoot Evolution and Development." *Frontiers in Plant Science* 6: 972. <https://doi.org/10.3389/fpls.2015.00972>.

Reinhart, B. J., E. G. Weinstein, M. W. Rhoades, B. Bartel, and D. P. Bartel. 2002. "Micrornas in Plants." *Genes & Development* 16, no. 13: 1616–1626. <https://doi.org/10.1101/gad.1004402>.

Rhoades, M. W., B. J. Reinhart, L. P. Lim, C. B. Burge, B. Bartel, and D. P. Bartel. 2002. "Prediction of Plant Microrna Targets." *Cell* 110, no. 4: 513–520. [https://doi.org/10.1016/s0092-8674\(02\)00863-2](https://doi.org/10.1016/s0092-8674(02)00863-2).

Schoof, H., M. Lenhard, A. Haecker, K. F. X. Mayer, G. Jürgens, and T. Lax. 2000. "The Stem Cell Population of *Arabidopsis* Shoot Meristems Is Maintained By a Regulatory Loop Between the CLAVATA and WUSCHEL GGenes." *Cell* 100, no. 6: 635–644. [https://doi.org/10.1016/S0092-8674\(00\)80700-X](https://doi.org/10.1016/S0092-8674(00)80700-X).

Schulze, S., B. N. Schäfer, E. A. Parizotto, O. Voinnet, and K. Theres. 2010. "LOST MERISTEMS Genes Regulate Cell Differentiation of Central Zone Descendants in *Arabidopsis* Shoot Meristems." *The Plant Journal* 64, no. 4: 668–678. <https://doi.org/10.1111/j.1365-313X.2010.04359.x>.

Somssich, M., B. I. Je, R. Simon, and D. Jackson. 2016. "CLAVATA-WUSCHEL Signaling in the Shoot Meristem." *Development* 143, no. 18: 3238–3248. <https://doi.org/10.1242/dev.133645>.

Stuurman, J., F. Jäggi, and C. Kuhlemeier. 2002. "Shoot Meristem Maintenance is Controlled by a Gras-Gene Mediated Signal From Differentiating Cells." *Genes & Development* 16, no. 17: 2213–2218. <https://doi.org/10.1101/gad.230702>.

Takanashi, H., H. Sumiyoshi, M. Mogi, Y. Hayashi, T. Ohnishi, and N. Tsutsumi. 2018. "miRNAs Control HAM1 Functions at the Single-Cell-Layer Level and are Essential for Normal Embryogenesis in *Arabidopsis*." *Plant Molecular Biology* 96: 627–640.

Tanaka, J., K. Yano, K. Aya, et al. 2014. "Antheridiogen Determines Sex in Ferns via a Spatiotemporally Split Gibberellin Synthesis Pathway." *Science* 346: 469–473. <https://doi.org/10.1126/science.1259923>.

Wang, L., Y. X. Mai, Y. C. Zhang, Q. Luo, and H. Q. Yang. 2010. "MicroRNA171c-Targeted *Scl6-IIi*, *Scl6-IIIi*, and *Scl6-IVi* Genes Regulate Shoot Branching in *Arabidopsis*." *Molecular Plant* 3, no. 5: 794–806. <https://doi.org/10.1093/mp/ssq042>.

Wu, X., X. Liu, S. Zhang, and Y. Zhou. 2023. "Cell Division and Meristem Dynamics in Fern Gametophytes." *Plants* 12, no. 1: 209.

Wu, X., A. Yan, S. A. M. McAdam, J. A. Banks, S. Zhang, and Y. Zhou. 2021. "Timing of Meristem Initiation and Maintenance Determines the Morphology of Fern Gametophytes." *Journal of Experimental Botany* 72, no. 20: 6990–7001. <https://doi.org/10.1093/jxb/erab307>.

Wu, X., A. Yan, X. Yang, J. A. Banks, S. Zhang, and Y. Zhou. 2022. "Cell Growth Dynamics in Two Types of Apical Meristems in Fern Gametophytes." *The Plant Journal* 111, no. 1: 149–163. <https://doi.org/10.1111/tpj.15784>.

Yadegari, R. 2004. "Female Gametophyte Development." *The Plant Cell Online* 16: S133–S141. <https://doi.org/10.1105/tpc.018192>.

Yamane, H. 1998. "Fern Antheridiogens." In *International Review of Cytology*, edited by K. W. Jeon (184, 1–32). Academic Press.

Zhou, Y., X. Liu, E. M. Engstrom, et al. 2015. "Control of Plant Stem Cell Function by Conserved Interacting Transcriptional Regulators." *Nature* 517, no. 7534: 377–380. <https://doi.org/10.1038/nature13853>.

Zhou, Y., A. Yan, H. Han, et al. 2018. "HAIRY MERISTEM With WUSCHEL Confines CLAVATA3 Expression to the Outer Apical Meristem Layers." *Science* 361, no. 6401: 502–506. <https://doi.org/10.1126/science.aar8638>.

Zhu, X., X. Leng, X. Sun, et al. 2015. "Discovery of Conservation and Diversification of miR171 Genes by Phylogenetic Analysis Based on Global Genomes." *The Plant Genome* 8, no. 2: plantgenome2014.10.0076. <https://doi.org/10.3835/plantgenome2014.10.0076>.