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AbstractÐSurface codes provide a promising path towards
large-scale fault-tolerant quantum computers. However, outside
the difficulty in engineering qubits, their theoretical realization
is hindered by a number of technical implementation details,
including the initialization of an encoded quantum state on
contemporary quantum computers. We propose a solution to
overcome these challenges by utilizing recent theoretical devel-
opments in measurement-induced quantum steering. An encoded
quantum state is prepared by repeatedly performing the following
steps: (1) entangling qubits via a specifically chosen operation, (2)
performing measurement on some of the qubits, and (3) resetting
the measured qubits’ states. We demonstrate our results using
numerical simulations of surface codes, noting convergence of
state fidelity, and commenting on choices for parameter selection.

I. INTRODUCTION

Quantum computers can solve a number of key problems

exponentially faster than their classical counterparts. Examples

include the famous Shor’s algorithm for factoring prime num-

bers [1], Grover’s search for finding a needle in a haystack

[2], as well as the quantum algorithm for solving a system

of linear equations [3]. Qubits (quantum bits) can be in an

arbitrary combination of states (superposition), and entangled

states can not be expressed in terms of individual qubit states.

The enhanced computational ability is driven by the key

quantum mechanical property of entanglement. Unfortunately

in reality, qubits also entangle with unwanted degrees-of-

freedom (the environment), leading to decoherence and a loss

of information [4], [5]. In other words, the quantum computer

must satisfy two conflicting requirements. Qubits need to be

externally controlled, measured, and entangled. On the other

hand, qubits must be isolated from their environment to avoid

unwanted entanglement. As a result of these conflicts, quantum

computers will be noisy, where errors propagate and grow

during the execution.

A. State-of-the-Art

Fortunately, the invention of quantum error-correcting codes

(ECC) provides a realistic path towards fault-tolerant quantum

computing. ECC have three main requirements: (1) provide an

encoding of physical qubits to logical qubits, (2) the ability

to detect when an error has occurred, and (3) a mechanism

to correct the logical qubit. In other words, by creatively

entangling several physical qubits as one logical qubit, errors

can be detected and corrected. As a particular promising

example, surface codes (Figure 1) build logical qubits by

assuming topological features of physical qubits [6], [7].

Specifically, surface codes assume the physical layout of qubits

is given by a lattice. Experimentally realizing an engineered
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Fig. 1: The surface code is defined on a square lattice. Two key

operators, Av and Bp, define the codespace of the lattice. A

logical qubits is encoded by spreading the information across

all the qubits on the lattice. Logical gates XL and ZL are

defined as non-trivial loops around the lattice, and act on the

protected logical qubits.

system that satisfies the surface code is a difficult and ongo-

ing problem. However, recent experiments have successfully

demonstrated surface code implementation by ªsimulatingº

the code on programmable quantum processors, such as on

Rydberg atoms [8] and superconducting qubits [7]. Two key

steps are performed to prepare the computer for surface code

simulation. The first step is to reset the computer to a fiducial,

all-zeros, state ± either by waiting for the qubits to naturally

decay, or by measuring, classically reading, and correcting

the qubits. The second key step is to apply highly calibrated

(single and entangling) gates to the all-zeros state to prepare

the simulated state of a surface code. Specifically, a quantum

circuit Uprep is applied to n-qubits in the fiducial state |0⟩
which then simulates a surface code state |G⟩ = Uprep |0⟩⊗n

.

Throughout this paper, we will refer to these initial steps as

preparing the surface code. Existing approaches ± including

ªrepeat until successº [9] ± have two practical limitations:

(i) they require many gates (area overhead) to initialize the

surface code, and (ii) they require many measurements (timing

overhead) to ascertain high fidelity of the initial state.

B. Research Contributions

We propose a mechanism to prepare the surface code by

exploiting the behavior that arise from quantum measure-

ment. Quantum Steering (QS), as first coined by SchrÈodinger,

is a puzzling phenomenon in quantum mechanics whereby

measurements on one system influences the state of another

entangled system [6]. Recent works theoretically define under

which physical conditions a quantum-mechanical system may

be steered [10] and experimentally demonstrated on contempo-

rary quantum computers [11]. We utilize these advancements

to construct a steering protocol that prepares a surface code.

As a brief visualization, Figure 2 represents the steering proto-

col as a quantum circuit, where a special entangling operation



U is repeatedly applied alongside measurement. The end result

is that from an arbitrary initial state, a desired state is prepared.

In this paper, we develop the necessary ingredients to realize

the steering protocol and prepare surface codes. Specifically,

this paper makes the following major contributions:

1) Proposes an algorithm that can generate quantum cir-

cuits U to satisfy conditions for quantum steering.

2) Presents two methods to construct the groundstate of the

surface code (quantum steering and hybrid approach).

The rest of the paper is organized as follows. Section II

provides the relevant background on quantum steering and

surface codes. Section III provides the problem formulation.

Section IV describes our proposed framework for quantum

steering of surface codes. Section V presents the experimental

results. Finally, Section VI concludes the paper.

II. THEORETICAL BACKGROUND

In this section, we first introduce quantum computing and

noise models. Next, we provide background on quantum error

correction and surface codes.

A. Quantum Computing

Qubits are the fundamental building blocks of quantum

computers. The state |ψ⟩ of a qubit lives in a 2-dimensional

complex-Hilbert space and can be expressed as |ψ⟩ = α |0⟩+
β |1⟩ where |α|2 + |β|2 = 1. Measuring a qubit yields ª0º or

ª1º with probability |a|2 or |b|2 respectively. Several qubits

may be combined to form a larger state space of size 2n

where n is the number of qubits. A quantum gate U (and in

general a quantum circuit U ) acts on a collection of qubits to

transform it to another state U |ψ⟩ (U |ψ⟩). The Solovay-Kiteav

theorem guarantees that any (ϵ-close) quantum circuit can be

built using a small set of universal quantum gates [12]. The

main challenge, unfortunately, is that real quantum computers

are prone to noise that scales with the number of qubits ±

resulting in unreliable physical qubits and gates [13].

B. Noise Models

Quantum noise can be generally labeled as either coherent,

incoherent, or decoherent. Coherent noise occurs when an

intended gate U is perturbed, resulting in Ũ = U · U where

U is a small unitary offset. Similarly, incoherent noise occurs

when the intended gate U is stochastically perturbed, resulting

in many possibilities for Ũ = {U · U0, U · U1, · · · , U · Un}
depending on a classical probability distribution governing the

chance of U i occurring. Both coherent and incoherent noise

can be mitigated using advanced (optimal) control techniques,

such as dynamical decoupling [14]. Decoherent noise, how-

ever, occurs when information is lost to the environment,

making the error irreversible. Unlike coherent and incoher-

ent noise, decoherent noise requires advanced techniques to

mitigate the errors, i.e. quantum error correction.

To represent a general quantum process, including the

effect of noise, it is convenient to use the density matrix

representation of quantum states:

ρ =
∑

i

pi |ψi⟩ ⟨ψi| ,

where pi gives the probability of |ψi⟩ occurring. A general

quantum process (e.g. quantum noise), E , is then given as a

map on density matrices ρ′ = E(ρ). As an example, in this

formalism a quantum gate U acting on a density matrix ρ is

expressed as E(ρ) = UρU †.

C. Quantum Error Correction

Two key facts make traditional classical codes inapplicable

for quantum computers: (a) measurement collapses the state of

a qubit, and (b) by the no-cloning theorem, information cannot

be copied. Instead, quantum error correcting codes spread the

information of one logical qubit across many high-entangled

physical qubits. Errors are detected using syndrome measure-

ments, where many-qubit measurements are performed such

that it does not destroy the information encoded in the logical

qubit. If an error is detected, operations corresponding to

the type of error is used to revert the error. In other words,

an error-correcting code E, will ideally undo the action of

a noisy process E and return the original density matrix:

E(ρ′) = E ◦ E(ρ) = ρ.

Quantum error correcting codes depend on a number of key

parameters, such as: the number of physical qubits necessary,

the number of encoded logical qubits, and the maximum

physical error rates threshold [15], [16]. It is an open and

active area of research to find the optimal set of parameters

needed for error correction ± particularly with respect to

optimizing the physical error rate thresholds. Currently, surface

codes are considered as an uncontested leader in terms of error

correction [17].

D. Surface Codes

Surface codes are defined on a plane lattice. As depicted

in Figure 1, qubits are placed on each edge of a square

in the lattice. The encoding of logical qubits are based on

two important operators that perform simple local operations.

These are known as vertex and plaquette operators, and are

defined as follows:

Av =
∏

i∈v

Zi and Bp =
∏

i∈p

Xi,

where Av enacts the Pauli-Z rotation on each qubit around a

vertex v, and Bp enacts the Pauli-X rotation on each qubit that

make up a plaquette p. All these terms mutually commute,

[As, Bp] = 0, and so a state |ψ⟩ can be defined to be a

simultaneous eigenstate of both terms

∀s : As |ψ⟩ = |ψ⟩ ∀p : Bp |ψ⟩ = |ψ⟩ .

The state |ψ⟩ defines the codespace of the code. Logical

operators are then defined to operate within the codespace,

and hence logical qubits are realized.

To complete the description of logical states, we can inspect

the surface code in a physical sense. The Hamiltonian for a

surface code is defined as

Ĥsurface = −
∑

i∈v

Ai −
∑

i∈p

Bi. (1)



The purpose of the Hamiltonian is to measure the energy of

a system. The groundstate |G⟩, which has the lowest energy,

can be defined in terms of projection operators

|G⟩ = 1

4







∏

i∈v

(I+Ai) +
∏

i∈p

(I+Bi)







|ψ⟩ . (2)

This tells us that for any state |ψ⟩ we may bring the system

to the groundstate by appropriately applying the projection

operators (I+Ai) and (I+Bi). By definition, the groundstate

is an encoding for a logical qubit. The space of the logical

qubits is then defined as

|00⟩L = |G⟩ , |01⟩L = X̄1 |00⟩L (3)

|10⟩L = X̄2 |00⟩L , |11⟩L = X̄1X̄2 |00⟩L (4)

where X̄1 and X̄2 are logical operators which are defined

in terms of non-trivial ªcyclesº on the lattice as depicted in

Figure 1.

III. PROBLEM FORMULATION

We first describe the theory of measurement-induced quan-

tum steering. Next, we discuss how to apply quantum steering

for error correction using surface codes.

A. Measurement-induced Quantum Steering

One of the key features of quantum mechanics is entan-

glement. An interesting situation occurs when two particles

are maximally entangled and one of the particles is measured.

The result of measuring the second particle is then predictable.

Bell’s inequality gives a mathematical constraint to how the

outcomes of the two measurements are correlated [18]. Quan-

tum steering refers to a situation where measurements are

conducted on part of an entangled state, and steer the other

part of the state [19]. The theory of measurement-induced

quantum steering specifies the form of entanglement necessary

to prepare a state through measurements of another system

[10], [20], [21].

n = 1 n = 2 n = N

1

|0⟩
1

|0⟩
. . . 1

|0⟩

. . .

D: |0⟩
U U U

|0⟩

S: ρS |ψ⊕⟩

Fig. 2: The circuit visualization of the quantum steering

protocol. Detectors are prepared in a fixed state, |0⟩, and

system qubits may be in arbitrary (mixed) states. Repeatedly

applying an operation U , measuring, and resetting the detector,

causes the system qubit to converge to a desired state |ψ⊕⟩.

Figure 2 shows the measurement-induced quantum steer-

ing protocol as a circuit. Suppose we have detector qubits

initialized to the state |0⟩ and system qubits in an arbitrary

state ρS . We wish to steer ρS to a desired state, particularly

the groundstate of a surface code |G⟩. Measurement-induced

quantum steering involves the following:

1) Couple the detector qubits and system qubits with a

composite unitary operator U . The state of the detector-

system after the n-th application of the unitary evolution

is ρn+1 = U (|0⟩ ⟨0| ⊗ ρnS)U†.

2) The detector qubits are then decoupled from the system

± the statistics of measurement are averaged out ± giving

the density state of the system as:

ρn+1
S = TrA

[

ρn+1
]

= TrA
[

U (|0⟩ ⟨0| ⊗ ρnS)U†] (5)

3) The detector qubits are reinitialized to their initial states,

|0⟩, and the steps are repeated.

The goal is to steer the system state to a desired state |ψS⊕⟩,
and hence the dynamics of U should be chosen such that with

each iteration the state moves closer to the desired state:

⟨ψS⊕| ρn+1
S |ψS⊕⟩ ≥ ⟨ψS⊕| ρnS |ψS⊕⟩ (6)

Throughout this paper we will be deriving U such that in-

equality is satisfied to steer to the groundstate |G⟩.

B. Preparation of Surface Codes using Quantum Steering

As outlined in Section II-D, the groundstate of the surface

code Hamiltonian defines the encoding of our logical qubits.

As shown in Equation 2, the groundstate may be initialized by

applying projection operators to an arbitrary state. However,

the realization of these projection operators is not so clear. A

straightforward approach is to assume that qubits are already

initialized to |0⟩⊗n
. Then Equation 2 simplifies to

|G⟩ =
∏

i∈p

I+Bi√
2

|00 . . . 0⟩ =
∏

i∈p

Ui|00 . . . 0⟩.

In other words, we now have a unitary operator Ui which

can be performed on a quantum computer, to prepare the

groundstate for a surface code ± and importantly, encode our

logical qubits. To visualize the action of Ui, consider a single

group of four qubits, hence the groundstate is

U |0⟩⊗4
=

(I+X1X2X3X4)√
2

|0⟩⊗4
=

1√
2

(

|0⟩⊗4
+ |1⟩⊗4

)

.

This generalized Greenberger±Horne±Zeilinger (GHZ) state

can be generated using Hadamard and CNOT gates. However,

this only works if the initial state of the quantum computer is

known, i.e. the initial state is |0000⟩. In general this condition

may not be true, hence requiring careful initialization of the

quantum computer. In other words, if a quantum computer is in

some arbitrary state |ψ⟩, then the steps necessary to prepare the

surface code looks like: |ψ⟩ reset−−−→ |0⟩⊗n Ui−→ |G⟩. We show in

Section IV a method for performing groundstate initialization

by going directly from |ψ⟩ steer−−−→ |G⟩, without relying on the

condition that the initial state is known.

IV. QUANTUM STEERING OF SURFACE CODES

Figure 3 provides an overview of our proposed approach

compared to the existing approach. Our objective is to im-

plement a mechanism to prepare the groundstate |G⟩ which

defines the logical state |00⟩L. Our implementation consists of

two major tasks. The first task is outlined in Algorithm 1 that



performs detector initialization. Line 1-4 compute an orthogo-

nal space to the surface code’s groundstate |G⟩⊥. Subsequently

lines 5-11 produce projection operators that connect to the

orthogonal groundstate and are used to derive the quantum

circuit to implement the steering. The second task performs

quantum steering to prepare the groundstate |G⟩, as outlined

in Section III-A. In a repeated fashion, detector and system

qubits are acted upon by the quantum circuit, detector qubits

are measured, and then the detector qubits are reinitialized.

Qubit 
Reset

Hadamard
Gates CNOT Gates

Detector
Initialization

Steering
Operation 

Proposed Quantum Steering

Existing Approach

Prepared
Surface Code 

Detector
Initialization

Steering
Operation CNOT Gates

Proposed (Hybrid)

Fig. 3: Surface code preparation using the existing approach

versus our proposed quantum steering approach. We also

explore a hybrid approach that requires only two qubits for

steering followed by application of CNOT gates.

We investigate two different approaches of applying the

Quantum Steering (QS) implementation. The first implemen-

tation is a hybrid approach, utilizing QS to steer a single qubit

into a superposition and then applying traditional CNOT gates

to obtain |G⟩. Our second implementation directly applies QS

to all the qubits of the surface code to prepare the groundstate.

A. Hybrid Quantum Steering Protocol

We begin by investigating the simplest form of quantum

steering which consists of two qubits: the detector qubit and

the system qubit. Unlike the existing approach, where the

qubits are prepared to |0⟩ followed by an application of a

Hadamard gate and CNOT gates, our simple protocol replaces

the |0⟩ initialization and Hadamard gate but still relies on a

subsequent application of CNOT gates.

The target state for the system qubit is |+⟩ = 1√
2
(|0⟩+ |1⟩).

We utilize active reset to prepare the detector qubit in the

state |0⟩. To construct the steering Hamiltonian, we (a) have

the operator U†
s |+⟩ = |−⟩ = 1√

2
(|0⟩ − |1⟩) that maps to the

orthogonal space of |+⟩ and (b) the operator Od |0⟩ = |1⟩ that

maps to orthogonal space of the detector’s state |0⟩. Now, the

two operators U†
s = |−⟩ ⟨+| and Od = |1⟩ ⟨0| produce

Ĥ = |1⟩ ⟨0| ⊗ |+⟩ ⟨−|+ h.c.. (7)

The Hamiltonian describes the dynamics of the two-qubit

system and, in this case, is swapping the detector’s qubit

space with the system’s qubit space. The two-qubit quantum

circuit is then given as a matrix-exponential of the Hamiltonian

U = exp
(

−iJĤ
)

for some coupling strength J .

We are now ready to prepare the groundstate of the surface

code. First, we employ quantum steering, which consists of:

(a) entangling a detector and system qubit with the quantum

circuit U , (b) measuring the detector qubits, and (c) re-

initializing the detector qubit. After N repetitions, the state

of the system qubit converges, yielding the final detector-

system state as |0⟩D |+⟩S . Because only two qubits are used,

we can simultaneously prepare several qubits on the surface

code via QS, and therefore, prepare a general state in the

form |ψsurface⟩ = |0⟩ |+⟩ ⊗ |0⟩ |+⟩ . . . |0000⟩. After several

qubits are prepared, we apply a sequence of CNOT gates

to entangle all qubits on the surface code to obtain the

groundstate |ψsurface⟩ = |G⟩.

B. Proposed Quantum Steering Protocol

In the previous section, we replaced the Hadamard gate

and initial state preparation of |0⟩⊗n
by a simple two-qubit

quantum steering protocol. However, we still required CNOT

gates to finish the entanglement. In this section, we develop

the steering protocol that removes the explicit CNOT step, and

instead inherently entangles the system and directly prepares

the groundstate |G⟩ . The target state for the surface code is

the generalized GHZ state:

|ψ⊕⟩ = |G⟩ = 1√
2

(

|0⟩⊗n
+ |1⟩⊗n

)

.

The states orthogonal to the target state are represented as

|G⟩⊥, which is a subspace of dimension 2n − 1. Similar to

the previous section, we utilize active reset to prepare detector

qubits in the state |0⟩. To construct the Hamiltonian we have

the following: (a) operators Uk†
s that connect the desired

groundstate |G⟩ to a k-th state in the orthogonal subspace

|G⟩⊥, and (b) the operator Od |0⟩ = |1⟩ that connects the

detector’s state to the orthogonal state. The Hamiltonian is

Ĥ =
∑

k

|1⟩ ⟨0| ⊗ Uk
s + h.c.. (8)

Consequently, the unitary operator is given as U =

exp
(

−iJĤ
)

, which is compiled into a quantum circuit U
using standard techniques such as [22].

To prepare the groundstate of the surface code we now have

a straightforward procedure: (a) perform the quantum circuit

U , (b) measure the detector qubits, and (c) reinitialize the

detector qubits to |0⟩ via active reset. After N repetitions

the overall state of the surface code will converge to the

groundstate, |ψsurface⟩ → |G⟩.

V. EXPERIMENTS

In this section we experimentally investigate our approach

in preparing the groundstate |G⟩ of the surface code. We first

outline the experimental setup. Next, we present the results.

A. Experimental Setup

We explore the two implementations via simulations of

surface codes, one with 17 qubits, and one with 4 qubits.

Modern quantum toolchains, particularly Qiskit [23] and Cirq



Fig. 4: Utilizing single-qubit quantum steering, and applying CNOT gates after, we prepare the groundstate |G⟩ of the surface

code. (a) The qubits in the surface code are given in a random initial state. (b) Three steps in the steering are shown where

the qubits in the surface code converge to a superposition 1√
2
(|0⟩+ |1⟩). (c) Entangling CNOT gates are applied to finalize

the groundstate of the surface code.

Algorithm 1: Steering Circuit

Output: Quantum circuit U
Input: Surface code groundstate |G⟩
Input: Detector state: |D⟩

1 Find |G⟩⊥:

2 Prepare projection operator: P = I− |G⟩ ⟨G|
3 Define the space: S = I− P

4 Solve for the nullspace: |G⟩⊥ = null(S)

5 Prepare U :

6 Find operators that connect to orthogonal spaces

7 for k = 1 to dim(|G⟩⊥) do

8 Ok
d = |D⟩⊥ ⟨D|

9 Uk
s = |G⟩

〈

Gk
∣

∣

⊥

10 Ĥ =
∑

k O
k
d |D⟩ ⟨D| ⊗ Uk

s + h.c.

11 Solve for U = exp
(

−iJĤ
)

12 Done

[24], are used to prepare the quantum circuits U for steering,

as well as to conduct simulations. Full state-vector simulations

are performed, correctly evolving density matrices through

measurement and state re-initialization.

The groundstate of a surface code is such that the expecta-

tion values of all vertex and plaquette operators equal to one,

⟨Av⟩ = ⟨Bp⟩ = 1. Hence, we calculate the expectation values

of all the operators and record them to track the evolution

throughout simulation. ReCirq [25] is used to visualize the

expectation values on a surface code.

B. Results for Two-Qubit Protocol

We construct a surface code with 2 rows and 3 columns,

consisting of 17 qubits. Representative qubits are chosen, as

done in [7], to be prepared into the state |+⟩. Neighboring

qubits to the representative qubits are selected to act as

detectors. Equation 7 is used to construct a quantum circuit

that will steer the representative qubits to |+⟩ with the help of

the detector qubits. All the representative qubits are steered

simultaneously. Figure 6a visualizes the convergence of a

single steered qubit on the Bloch sphere.

Figure 4 visualizes the expectation value of the surface code

throughout the steering procedure. The initial state of all the

qubits on the surface code is chosen at randomly (Haar ran-

dom), and therefore may contain both separable and entangled

states. The steering procedure is then invoked, preparing all

the representative qubits to the state |+⟩. Finally, CNOT gates

are applied to complete the surface code initialization.

C. Results for Many-Qubit Protocol

To showcase the steering of many qubits, we simulate

a four-qubit surface code. The quantum circuit that drives

the steering is defined by several operators as shown in

Equation 8, and steer the overall state of the surface code to

the groundstate. The orthogonal space, |G⟩⊥, has dimension

24−1 = 15, and hence we require 15 Us operators to connect

the state |G⟩ to each of the 15 states in the orthogonal space.

We prepare a random four-qubit mixed state and simulate the

state until it convergences to the groundstate. Figure 5a shows

the evolution of a mixed state, where the elements in the

orthogonal space vanish, and the groundstate is maximized.

Figure 5b visualizes the expectation values of the surface code.

Figure 5c showcases the convergence of the diagonal elements

of the density matrix, ⟨G| ρ |G⟩.
For various number of qubits, Figure 6b shows the number

of iterations necessary to obtain a fidelity of F > 0.999 given

the coupling strength J . Because the desired groundstate is

pure, the fidelity is computed as Tr(ρ · |G⟩ ⟨G|) for a given ρ.

We note that the fastest convergence occurs when J = π/2,

requiring only one iteration of the protocol. However, we

note that the number of iterations is correlated with the

strength of entanglement induced by the circuit U . Therefore,

depending on the underlying quantum hardware, it may be

beneficial to lower the entanglement strength and perform

several repetitions of U . Examples would include photonic-

based quantum computers where entangling operations are

difficult to implement, but qubits have long coherence times

[26], [27].

D. State Preparation Time

The time it takes to run K circuits and gather N shots

(experiment repetitions) for each circuit is [28]

τ (x) = NK
(

τ
(x)
reset + τ

(x)
delay + ⟨τcirc⟩+ τmeas

)

,

where τ
(x)
reset and τ

(x)
delay are reset and post-measurement delay

times. The superscript (x) indicates standard (s) or quantum



(a) Density Matrix

(b) Surface code visualization

(c) Evolution
Fig. 5: Subsystem of four qubits that are steered directly to

the groundstate |G⟩. (a) The density matrix of the four qubits

in the basis spanned by the desired groundstate |G⟩ and the

orthogonal complement |G⟩⊥ as a colormap. The orthogonal

elements decay, while the groundstate is maximized. (b) Vi-

sualization of the corresponding expectation values of Av and

Bp for the four-qubit surface code. (c) The evolution of the

diagonal elements of the density matrix shows convergence to

the groundstate |G⟩.

(a)
(b)

Fig. 6: (a) Bloch sphere visualization of a single qubit starting

in random initial states (black) and converging to |+⟩. (b)

Number of iterations, N , needed to achieve fidelity of F >
0.999 given coupling strength J for various number of qubits.

steering (qs) approach. The speedup is therefore calculated as

τ (s)/τ (qs) which is independent on K and N .

We use data given by IBM Quantum to approximate the

associated times respectively. The standard reset time is ap-

proximated as τ
(s)
reset = 0µs, whereas τ

(qs)
reset = 4µs since we

utilize an active-reset to reset a qubit. The repetition delay

is τ
(s)
delay = 250µs, which is the default value that is roughly

twice the lifetimes of qubits. For the quantum steering, we

approximate the waiting time as τ
(qs)
delay = 1µs. Using these

approximations, Figure 7 approximates the time necessary to

initialize the groundstate |G⟩. The simple quantum steering

protocol based on two qubits has slightly shorter time com-

pared to the existing approach. Most of the overhead in time

arises from the post-application of CNOT gates. The proposed

steering protocol is expensive at first, but begins to outperform

the existing approach for larger quantum computers. This is

due to the fact that existing approach requires many CNOT

gates to initialize the surface code, while the QS approach

directly applies the steering operation in one direct step

(we assume the fastest version with N=1). Furthermore, the

existing approach requires many measurements to ascertain

high fidelity in the initial state |0⟩⊗n
.

Fig. 7: Comparison of the three different approaches to

initializing the surface code. The existing approach utilizes

expensive resets, Hadamard gates, and CNOT gates. The two-

qubit quantum steering (hybrid) slightly reduces the cost of

reset, and replaces the Hadamard gate. Finally, the proposed

quantum steering directly prepares the state.

VI. CONCLUSION AND FUTURE WORK

While surface codes are a promising error correcting code

for large-scale fault-tolerant computation, their encoding heav-

ily relies on fine-tuned calibrations of a quantum computer

to correctly orchestrate the state. This directly translates to

significant area (requires many CNOT gates) and timing over-

head (requires a computer reset). We proposed two quantum

algorithms for initializing the states in a surface code via

quantum steering. Both algorithms prepare the groundstate

and logical states of a surface code irrespective on the

initial quantum computer’s state. Experimental results using

simulations of surface codes, and starting in random initial

states, demonstrated that our approach is scalable and correctly

prepares the encoding for logical qubits. This work can be used

as a stepping stone for preparing key states in other quantum

error correction schemes for reliable quantum computing.

In the future, we aim to refine these algorithms, boost their

efficiency and reduce overheads. We plan to widen the scope

of our research to explore the application of quantum steering-

based algorithms across various types of error-correcting

codes, thus broadening our methodology’s potential. Addition-

ally, we are keen on assessing the viability of implementing

these algorithms on actual quantum hardware. An exciting

possibility we foresee is leveraging steering as a new quantum

error-correcting code, much like the Petz fully recovery map

[29]. This could even extend to the implementation of quantum

gates via steering across a parameter space [30]. We plan to

delve deeper into the theoretical basis of our approach, with the

aim of better understanding the quantum dynamics involved

and unearthing more avenues for optimization.
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