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Abstract

Despite the tremendous potential of tin oxide (SnO;) as an anode material, irreversible
capacity loss due to the sluggish kinetics and structural pulverization as a result of the substantial
volume alteration during redox reactions limits its use in lithium-ion batteries. The typical
layered design of an electrode consisting of binder and conductive additive can lower the
practical capacity of high-capacity electrode materials. We synthesized a binder and conductive
additive-free, self-standing core-shell vertically-aligned carbon nanotubes (VACNTs)-SnO:
anode (SnO>2-VACNTS) on 3D nickel foam using plasma-enhanced chemical vapor deposition
and wet chemical method. The SnO2-VACNTs exhibited excellent cyclability with a specific
capacity of 1512 mAh g'at 0.1 A gl after 100 cycles and 800 mAh g'at 1 A g! after 200
cycles. The ultra-fine SnO; particles (< 5 nm) shortened the Li* diffusion paths into the bulk
electrode and alleviated the volume alteration by lowering the strains during the redox reactions.
Also, proper inter-tube distance between individual SnO2-VACNTs buffered the volume
instability and offered better electrolyte accessibility. Direct connection of VACNTSs with the

current collector ensured an uninterrupted electron conducting path between the current collector



and active material, thus offering more efficient charge transportation kinetics at the

electrode/electrolyte interfaces.
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1. Introduction

The importance of lithium-ion batteries (LIBs) has increased ever since the
commercialization of LIB comprised of lithium cobalt oxide (LiCoO:) cathode paired with hard-
carbon (C) anode by Sony Inc. in 1991 [1] due to their high energy and power density, broader
operating temperature range, low self-discharge rate, and an absence of memory effect [2, 3].
Nonetheless, the ever-increasing use of LIBs in household appliances to sophisticated modern
devices, including but not limited to electric vehicles (EVs), demands novel LIB electrodes with
improved electrochemical properties and performances suitable for delivering high energy and
power densities with negligible safety issues. Most commercial LIBs comprise graphite as an
active anode material, which has a theoretical capacity of 372 mAh g'!' [4, 5]. However, the state-
of-the-art LIBs have already attained the maximum specific capacity of graphite anodes and
hence do not offer any significant improvement in energy density. Therefore, an alternate anode

to the graphite is essential for high-performing LIBs.

Metal oxides such as tin oxide (SnQO>) [6], iron oxide (Fe203) [7], cobalt oxide (Co0304)
[8], copper oxide (CuO) [9], iron titanium oxide (Fe2TiOs) [10], and heterostructured nickel-iron

oxide (NiFe>O4/Feo.64Nio36) [11] are regarded as promising candidates to substitute the



commercial graphite anode because of their high theoretical capacity. Among them, SnO> has
attracted much attention recently due to its impressive theoretical specific capacity of 1493 mAh
g1 [12], cost-effectiveness, and good environmental compatibility. The Li" storage mechanism
of SnO; comprises two stages. First, upon initial charge (conversion reaction), SnO; transforms
to Sn and Li>O according to the following reaction [13].
SnO, +4Li" + 4e” — Sn + 2Li,O (1)

Subsequent lithiation of the SnO; (alloying reaction) corresponds to the following reversible
phase transformation reactions [13].

Sn+xLi'+xe < Li,Sn  (0<x<4.4) (2)
The first reaction (Eq. 1) is considered to be electrochemically irreversible. Hence, the maximum
capacity of the SnO; is challenging to achieve. Some reports [14-16] suggested that the
conversion reaction can become partially reversible if the SnO> size is reduced to less than 10
nm, while others [17, 18] reported that the SnO> nanoparticles are electrochemically irreversible.
These findings indicate that the nano size of the SnO particles is not solely responsible for the
reversibility and cannot ensure a maximum reversible capacity. It is important to recognize other
key factors closely linked to the electrochemical reactions that can facilitate optimum Li"
storage; for example, creating an uninterrupted electron conducting path between the current
collector and the active material can be a key to achieving high capacity, excellent rate
capability, and cycling life. An easy access to electrolyte for the active material during
lithiation/delithiation is another important factor affecting the Li" storage capacity of the active
material. It is reported that nanoporous carbon matrix used as additives in metal oxide electrodes
played important roles in rate capability and cycling life because of its high conductivity and its

ability to facilitate easy electrolyte distribution due to the nanoporous structure [19, 20].



Carbon nanotubes (CNTs) are regarded as remarkable additive materials due to their
excellent electrical and thermal conductivity for improving energy conversion, storage
capacities, and charge transferability of active materials [21]. Furthermore, CNTs, including
carbon nanofibers, have also been credited as excellent anode materials due to their one-
dimensional tubular morphology, large surface area, short Li" diffusion path, and high electrical
and thermal conductivity [22-25]. Moreover, due to their tubule structure and high flexibility,
CNTs can be excellent hosts for high-capacity active materials. For instance, nanoparticles,
including SnO3, can be coated on the CNT’s outer wall, creating a core (CNTs)-shell (layer of
SnOy) structure (SnO2-CNTs) [26, 27]. Due to this unique structure, SnO>-CNTs core-shell can
absorb considerable stress resulting from active material pulverization during the
lithiation/delithiation procedure. Several reports have shown excellent Li" storage properties of
SnO,-CNTs composite nanomaterial as the anode of LIBs [28-30]. However, the conventional
bilayer design of the electrode, where a binder is used to glue active materials to a current
collector, limits achieving the maximum capacity of SnO> electrodes. Reports have shown that
the layered design of the LIB anode can reduce the practical capacity by ~47% [31]. Therefore,
besides limiting the SnO; size below the critical threshold (<10 nm) and understanding the
subsequent structural evolution during the electrochemical reaction, the electrode material’s
uninterrupted electron conducting path and high electrolyte accessibility are essential in
achieving the maximum reversible capacity of SnO2 and hence for the future commercialization

of SnO;-based anodes.

It is reported that tin (Sn), germanium (Ge), and silicon (Si) coated on free-standing
vertically-aligned carbon nanotubes (VACNTS) can significantly improve the Li* storage by

offering effective strain accommodation and electrolyte access due to the regular pore



morphology and inter-tube space of the VACNTSs array [32-35]. It is important to note that the
VACNTs arrays in these reports were synthesized using catalyst-buffer bilayers on top of the
current collector surface, and hence, the VACNT arrays cannot be classified as directly grown on
the current collector. In addition, the bilayer materials add extra impurities to the active
materials, which may complicate the electrochemical redox reaction by causing parasitic
reactions. We proposed that a direct synthesis of VACNTSs on current collectors (such as a Ni
foam) and the high conductivities of VACNTs will reduce the electrical contact resistance
between VACNTSs and current collectors, which will enhance the charge transfer and facilitate
effective heat dissipation caused by resistive heating. Furthermore, an array of VACNTs with a
finite space between individual tubes can alleviate the stress resulting from volume alteration
during the lithiation/delithiation reactions. Therefore, an electrode designed by growing
VACNTs directly on the current collector and then coating the VACNTSs with a layer of ultra-
fine high-capacity electrode material such as SnO2 nanoparticles without any binder could be an

excellent LIB anode material with high energy capacity.

In this work, free-standing VACNT arrays have been grown directly on 3D nickel foam
using a plasma-enhanced chemical vapor deposition method. The as-synthesized VACNTSs have
been coated with a layer of SnO2 nanoparticles (SnO2-VACNTSs) to form core-shell structured
hybrid material free of any binder. Then, the material was tested for its electrochemical lithiation
property as the anode in coin-type lithium-ion half cells. The electrochemical Li" storage
performance of the SnO2-VACNTSs anode has been measured, and assessed by comparing it with
the SnO»-coated Ni foam and pristine VACNTSs synthesized on Ni foam. Furthermore, the
excellent electrochemical Li" storage performance of the SnO>-VACNTS anode has been

explained in detail using electrode impedance evolution with the electrode cycle age. Moreover,



the correlation between the microstructure and the electrochemical properties of the anode

material has also been explained thoroughly.
2. Experimental
2.1 Electrodes preparation

Vertically aligned carbon nanotubes (VACNTSs) were synthesized on nickel foam (Ni,
99.99% by wt., Alfa Aesar) using plasma-enhanced chemical vapor deposition (PECVD). The
apparatus and synthesis procedure details are described in our previous work [36]. In brief,
circular disks of a diameter of about 10 mm were punched out from as-received Ni foam (1.6
mm thick) and immersed sequentially in ultrasonic baths of isopropyl alcohol and acetone, each
for 10 minutes. The cleaned Ni foam disks were placed into the PECVD system and then
pumped down to the pressure of 0.01 Torr. The VACNT synthesis procedure was performed at
600 °C for 6 minutes using C2H> (25 scem) as carbon precursor gas diluted with NH3 (400 sccm).
Also, the synthesis procedure was carried out at the pressure of 7 Torr and in the presence of a
d.c. plasma of power 70 W to ensure the alignment of CNTs. Tin oxide (SnO2) coated VACNTs
(SnO2-VACNTSs) composite electrodes were fabricated using a wet-chemical method [26]. First,
the VACNTSs on Ni foam were functionalized using HNO3 (20%) for 15 minutes. Before the
final coating procedure, a precursor solution was formulated by dissolving 1 g of anhydrous tin
(IT) chloride (SnCl, 98%, Alfa Aesar) in 80 mL DI water and 1.4 mL HCI (38%). Then, the
functionalized VACNTSs were coated with SnO; nanoparticles by submerging them into the
precursor solution for 9 hours. The weight of the SnO2-VACNTS anodes (active material for Li*
storage) was in the range of 1.02 — 1.21 mg cm™. This weight refers to the weight of VACNTSs
synthesized for 6 minutes and the weight of SnO; coated for 9 hours. However, in order to

increase the areal capacity of the SnO2-VACNTSs anode for use in full cell performance test, the



VACNT growth time and SnO; coating time were increased to 20 minutes and 18 hours,
respectively, which resulted in the SnO2-VACNTSs weight of ~1.7 mg cm™. For comparison
purposes, bare Ni foams were coated with SnO» using a similar procedure, but the Ni foams were
treated with Ozone for 30 minutes to remove any contaminants before being immersed in the
precursor solution for SnO» coating. Finally, the SnO>-coated electrodes were removed from the
precursor solution and dried out overnight at 95 °C. The weight of the active material (SnO>)

coated on the Ni foam was ~1 mg cm™ from a 9-hour coating process.

Furthermore, the cathode was fabricated by using commercial LiNio.sMno.1C00.102
(Lithium Nickel Manganese Cobalt Oxide, NMCS811) microparticles. First, an N-
methylpyrrolidone (NMP, anhydrous, 99.5%, Sigma-Aldrich)-based slurry composed of 90 wt%
NMC (MTI Corp.), 2.5 wt% carbon nanotubes (ACS Materials), 2.5 wt% Super P conductive
carbon (MTI Corp.), and 5 wt% polyvinylidene fluoride (PVDF) binder (MTI Corp.) was
prepared by mixing at 320 rpm for 30 minutes using a vacuum mixture. Then, the resulting slurry
was coated onto carbon-coated (thickness 1 um) aluminum foil (thickness 15 um) using a doctor
blade calibrated to provide active material loading of ~15 mg cm™, an equivalent nominal areal
capacity of ~3 mAh cm™. The electrode foil was dried at room temperature for 2 hours and 110
°C for 12 hours in a vacuum oven. The cathode was calendered at 90 °C to a target thickness of

~60 um using a heated calendering machine.
2.2 Materials characterization

The surface morphology of VACNT arrays, SnO; layer coated on Ni foam (the sample
will be termed as SnO; hereafter), and SnO2-VACNTSs were characterized using a field emission
scanning electron microscope (SEM, JEOL JSM—-6330F). The surface morphology of the Ni

foam was analyzed using atomic force microscopy (AFM). The nanostructure, chemical



composition, and crystal structure analysis of VACNTSs and SnO,-VACNTSs were performed
using a transmission electron microscope (TEM) operated at an accelerating voltage of 300 k'V.
Thermogravimetric analysis (TGA) of the materials was accomplished using the
thermogravimetric-differential scanning calorimetry analysis (TG/DSC, SDT Q600 V20.9,
USA). All experiments were performed under airflow and a temperature increase of 10 "C/min.
In order to prepare the sample for the TGA experiments, the as-synthesized SnO>-VACNTs were
detached from the Ni foam using an IPA ultrasonic bath for 10 minutes. The possible Ni
remanent in the SnO2-VACNTS/IPA solution was carefully removed by using a strong bar
magnet, and the SnO2-VACNTSs were filtered out from the resulting solution. Then, the SnO»-
VACNTs were dried overnight at 100 °C before the TGA experiment. Crystal structure and
defect analysis of the as-synthesized materials were performed using X-ray diffraction (Siemens
Diffraktometer D5000, Cu (Ka), A= 1.54 A, 0.02° step size, 20° to 80° range, 2°/min speed) and
Raman spectroscopy (Ar', L = 632.8 nm). A Fourier transform infrared spectrometer (Jasco,
FTIR-4100) was used to analyze functional groups on the VACNTSs and SnO2-VACNTs. The
chemical state of each element in the electrode was analyzed using X-ray photoelectron
spectroscopy. The core level spectra were measured using a monochromated Al (Ka)) X-ray

source and a PHOIBOS 150 energy analyzer, both from SPECS.
2.3 Lithium-ion cell assembly and electrochemical measurements

Electrochemical properties of the as-synthesized materials were studied using CR2032
coin-type half cells with a lithium foil (3860 mAh g'') as the counter and reference electrode.
Lithium hexafluorophosphate solution (1M LiPFs) in ethylene carbonate and diethyl carbonate
(EC:DEC, 1:1, vol. %) was used as an electrolyte, and Celgard polypropylene films were used as

electrode separators. A symmetric test cell with identical working and counter electrodes of



lithium foil (10 mm diameter) was used to evaluate and isolate the interfacial electrochemical
properties of the working electrode from the counter/reference electrodes. In addition, a coin-
type full cell was fabricated in an anode overhang configuration with a slightly bigger anode area
(diameter 13 mm) compared to that of the cathode (diameter 12 mm) and electrodes overlapped
area was used while calculating the areal capacity of the cell. However, the anode and cathode
were of the same diameter (12 mm) in the case of the three-electrode cell. The specific capacities
of the half cells were calculated based on the weight of active materials. For further clarification,
the specific capacities of the SnO>-VACNTSs half cells were calculated based on the combined
weight of VACNTs and SnO;. The electrochemical properties were measured at room
temperature (~23 °C) using a NEWARE battery tester, Gamry reference 3000 potentiostat, and

Arbin battery cycler.

3. Results and discussion

3.1 Structural and compositional properties

3.1.1 AFM analysis

Vertically aligned carbon nanotube (VACNT) arrays were grown directly on catalytic 3D
Ni foam without any external catalysts. The use of catalytic metal substrates such as Ni foam for
synthesizing VACNTSs facilitates the evolution of the catalytically active growth spots (nano-
hills) on the substrate surface, which further initiates on-site disintegration of hydrocarbon
precursor gas and the diffusion of carbon atoms into the catalytic sites, i.e., nano-hills [36].
Carbon atoms precipitate on the nano-sized catalyst surface upon supersaturation and lead to the
formation of CNTs after graphitization [37]. To understand the growth of VACNTSs on the
catalytic substrate, the surface evolution of the Ni foam due to the heat treatment, under similar

conditions used for VACNTSs growth except carbon precursor gas, was analyzed using SEM and

9



AFM images (see Figs. S1(a-c)). Three-dimensional AFM images (Fig. S1(b)) revealed a
relatively smooth surface of the pristine Ni foam with a mean roughness R, = 53.68 nm, whereas
the AFM image (Fig. S1(c)) after the heat treatment revealed a much rougher surface with R, =
105 nm. This result confirmed that uniform catalyst sites (nano-hills) formed on the Ni foam
surface due to the application of heat in the presence of reducing gas (NH3) catalyzed the

nucleation and growth of VACNT arrays.
3.1.2 SEM analysis

Figs. 1(a-c) show low to high magnification SEM images of Ni foam coated with SnOx.
The SEM images revealed the rough surface of Ni foam due to the non-uniform coating with

macroscopic SnO; particles. As shown in the inset of Fig. 1(c), the energy-dispersive X-ray
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Fig. 1. SEM images of SnO, and SnO,-VACNTSs on Ni foam at low to high magnification. (a-c) SnO;
coated on Ni foam, (d-f) VACNTSs grown on Ni foam, and (g-i) SnO, coated on VACNTs. The inset in

panel (¢) represents the EDS spectrum measured on the surface of SnO, coated on Ni foam.

spectroscopy (EDS) measured on the surface of Ni foam confirmed that the particles on the
surface are SnO». The Ni signal in the spectrum is from the Ni foam substrate. The ozone
treatment of the Ni foam may have assisted in creating some functional groups on the surface,
which could facilitate the coating of SnO> on the Ni foam. Figs. 1(d-f) show low to high
magnification SEM images of vertically aligned and uniform arrays of CNTs grown on the Ni
foam. The diameter of VACNTSs was in the range of 150-270 nm, whereas the length was ~5 pm
long. Figs. 1(g-i) display low to high magnification SEM images of uniquely bundled SnO»-
VACNT arrays in which the VACNT tips touch each other. These bundles were formed by the

solution phase SnO; coating process.
3.1.3 TEM analysis

TEM image, as shown in Figs. 2(a, b), revealed a “bamboo-like” morphology of as-
synthesized VACNTSs with a catalyst nanoparticle anchored at the top end of the tubular structure
[37]. As shown in the inset of Fig. 2(b), the lattice fringes in the CNT wall are separated by 0.34
nm in the VACNT wall, suggesting the multi-walled structure of CNTs. The high-resolution
TEM image of the tip of VACNT, as shown in Fig. 2(c), revealed crystal lattice planes separated
by 0.21 nm, which corresponds to the (111) lattice plane of face-centered cubic Ni crystal, as
expected. This result indicates that the VACNTs were grown directly from the Ni foam. The
direct connection between the VACNTSs and Ni foam is expected to benefit the electron transfer
between them. When poor electrical conducting material, such as SnO», is coated on the

VACNTS’ surface, the VACNTSs will also improve the electron transfer between the SnO, and Ni
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substrate. The distinct diffraction spots of the particle entrapped at the VACNT apex (upper-right
inset of Fig. 2(c)) can be assigned to (020), (111), and (111) planes of face-centered cubic Ni
crystal along the [101] zonal axis, which confirmed that the nanoparticle encapsulated inside the
CNT is a single crystalline Ni particle. The EDS spectrum displayed in the inset of Fig. 2(c)
further corroborated the particle at the CNT tip as a Ni metal. Furthermore, the peaks related to C

and Cu in the spectrum occurred due to the VACNT wall and TEM holder, respectively.
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Fig. 2. TEM characterization of the as-synthesized VACNT (a-c) and SnO,-VACNT (d-f) samples. (a)

and (b) are low and high magnification images of a VACNT. The inset in panel (b) represents a high-
resolution TEM image of the VACNT wall. (c¢) High-resolution TEM image showing an interfacial region

between the VACNT wall and the catalyst particle. The upper-right and lower-left insets in panel (c)
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represent the SAD and EDS of the Ni anchored at the VACNT apex. (d, ¢) Low and high magnification
TEM images of a SnO,-VACNT showing that the VACNT was coated with a layer of SnO»-
nanoparticles. The inset in panel (d) represents a schematic showing the core-shell structure of the SnO,-
VACNT. (f) High-resolution TEM image of the SnO; nanoparticles of a SnO,-VACNT. The upper-right
and lower-left insets in panel (f) are the SAD and EDS of the SnO; nanoparticles.

TEM images, as shown in Figs. 2(d, e), show a core-shell structure formed with the core
of VACNT and a shell of a thin layer (~20 nm) of SnO nanoparticles. For clarity, a schematic
showing the core-shell structure of the SnO,-VACNT is presented in the inset of Fig. 2(d). The
TEM images (Figs. 2(e, f)) clearly show that the coating consists of a multilayer of SnO>
nanoparticles. A single layer of SnO nanoparticles coating can be considered ideal regarding an
efficient reversible electrochemical lithiation/delithiation of the SnO; nanoparticles. However, it
is desirable to increase the content of the SnO» nanoparticles for practical applications, such as
for high-energy-density LIBs. This means that there should be a fine balance between the coating
thickness and the content of the SnO> nanoparticles for optimum performance of the SnO»-
VACNTs electrode. Although it is out of the scope of this work, it is imperative to determine the
optimal content of the SnO; nanoparticles in the SnO2-VACNTs electrode for future practical
applications. The high-resolution TEM image in Fig. 2(f) confirmed the crystalline phase of
SnO; nanoparticles with distinct crystal planes isolated by 0.33 nm, which can be assigned to the
(110) lattice plane of the tetragonal SnO: (t-SnO») crystal. Furthermore, the EDS of the SnO»-
VACNT, the upper-right inset of Fig. 2(f), shows circular diffraction rings which can be indexed
as (110), (101), and (210) lattice planes associated with the polycrystalline t-SnO». The
occurrence of EDS peaks related to Sn, O, and C (lower-left inset of Fig. 2(f)) further confirmed

the specimen as the SnO2-VACNT core-shell. Moreover, the EDS peaks related to Ni and Cu can
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be assigned to the catalyst particle (Ni from Ni foam) anchored at the VACNT tip and TEM grid,

respectively.

3.1.4 TGA analysis

In order to determine the weight percentage of SnO» nanoparticles on the SnO>-VACNTSs
composite electrode, TGA analysis was performed, and the results are presented in Fig. 3(a). The
TGA profiles of VACNTSs and SnO>-VACNTSs demonstrated weight loss as a result of moisture
elimination up to 400 °C. However, SnO2-VACNTs exhibited more significant weight loss,
attributed to the solution-based SnO> coating process. The VACNTs demonstrated a slight
weight reduction at ~435 °C due to the oxidation of amorphous carbon formed on the VACNTSs
during the synthesis process. Most of the weight loss of the VACNTSs occurred in the
temperature range of 520 °C — 605 °C. On the other hand, the SnO2-VACNTSs material showed a
significant weight reduction at ~537 °C corresponding to the loss of the VACNTSs. This result
suggests that pristine VACNTs were more stable than the VACNTSs in the SnO2-VACNTSs
because the VACNTSs in the SnO2-VACNTSs have more defects suffered from the SnO>-coating
process [38]. It has been verified that SnO> (~10 nm) nanopowder can show thermal stability up
to 900 °C [39]. Therefore, the final residual after 800 °C of both samples should include only the
dry mass of SnO», any impurities, and Ni particles initially encapsulated in the VACNTSs tip, as
all the carbonaceous species, such as CNTs and amorphous carbon, should be burnt off by 700
°C [40]. The TGA spectra revealed that the weight percentage of SnO> nanoparticles was ~40%
of the total weight of SnO2-VACNTSs, which was obtained by subtracting the final remaining

weight of the VACNTSs from the final residual weight of SnO>-VACNTSs after 800 °C.

3.1.5 Raman spectroscopy and XRD analysis
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Raman spectra displayed in Fig. 3(b) revealed an increase in the Ip/Ig ratio from 1.12 to
1.18, where Ip and Ig represent the intensity of D-band and G-band, respectively. This result
indicates that the SnO» coating increased the defects on the VACNTSs [41]. The defects were
created on the VACNTSs of the SnO>-VACNTSs sample due to the acid treatment of the VACNTSs
prior to SnO; coating. It has been reported that the presence of defects on the surfaces and tips of
CNTs, such as vacancies, dangling bonds, edge dislocations, and functionalization sites, can
serve as extra sites for Li" intercalation and adsorption, thereby increasing their lithium storage
capacity [42]. In addition, it has also been reported that defects in the CNTs can lower the energy
barrier for the Li" diffusion process [43]. These results indicate that the defective VACNTS in the
SnO>-VACNTSs anode can potentially improve the overall electrochemical lithiation properties of
the SnO2-VACNTSs anode. Furthermore, the functionalization of the VACNTSs with oxygen-
containing functional groups was essential for promoting the SnO; coating procedure. Moreover,
as shown in Fig. 3(c), the crystal structure of VACNTSs and SnO2-VACNTSs was investigated by
XRD. The XRD spectrum of the SnO,-VACNTSs demonstrates the peaks related to crystal planes
at 20 positions of ~26.6°, 33.9°, 42.6°, and 51.4°. These peak positions can be assigned to (110),
(101), (210), and (211) planes of the t-SnO> crystal. This result is consistent with the above TEM
results and those reported in a publication [44]. In the XRD spectra shown in Fig. 3(c), the peaks

at ~26° and 42° correspond to the graphitic C signal from VACNTs.
3.1.6 FTIR analysis

As shown in Fig. 3(d), FTIR spectra were used to determine the functional groups
present on the VACNTs treated with HNO3 only and coated with SnO> nanoparticles. It has been
reported that treatment with a strong oxidizing agent such as HNO3 can create different

functional groups at the defect sites of CNTs [45]. The wide-survey FTIR spectra between 4000

15



a 0.2
( )100 Lo (b) — Sn0:-VACNTs i
75 J | o2 — VACNTSs D band G band
50 { [ 04
_ 25 {—r1Ga [ 06 =
53 ——— TGA (VACNTS) 1.8%[ 0.8 E &
-~ ] -1 N
= S E
=) 02 = =&
2100 - = £
— F 0 S =5
2 15 z =
- 02 1/1,=1.12
50 4 04 =1
95 {—— DTGA oy
—— TGA (Sn0,-VACNTS) -
0 T T T T T — -0.8 v T v ' v T
25 150 275 400 525 650 775 800 100 1200 1400 1600 1800 2000
Temperature °C 0 Raman shift (cm™)
(c) (d)
¢ t-Sn0:
VO(”“’ ve / }'
(101) _ 645509
(210) 211 e\i Sn-0/
—_ ¢ 0 . FA SR @ Sn-OH
5 (002) SnO:-VACNTS g
& v 8
£ g e =0 N
5] 1 -CH, C=H N-H, -5
= Ele N o .o
CH2/CH3,
c-0,
VACNTS Sn0x-VACNTS -
—— VACNTs -
20 30 40 50 60 70 80 4000 3500 3000 2500 2000 1500 1000 500
20 (degree) Wave number(cm)
(e)
O1s
&
) o
- g P
£ ] 2 . 27 7 &
g c S a =% b
= | & o 4
i W
1200 900 600 300 ' ' 0
Binding energy (eV)
Y
() Sn 3d5/2 (2 Ols (h) Cls
2 Sn 3d3/2 & 2
=] —
— >, b
ey £ £
‘& g S
g E =
E =
504 496 488 480 538 536 534 532 530 528 294 291 288 285 282
Binding energy (eV) Binding energy (eV) Binding energy (eV)
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wide-survey and (f-h) high-resolution XPS spectra of SnO,-VACNTs.
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cm™ and 500 cm™ of both samples exhibited signals related to the C=C, C=0, C-N, and N-H
stretching vibrations. In detail, peaks at wave number positions ~3790 cm™', 2319 cm’!, and 1256
cm! are related to N-H and C-N bonds and can be accredited to adsorbed H,O and NH3 on the
VACNT wall [46]. Moreover, the signals related to the .CH and C=H band stretching vibrations
can be observed at 2901 cm™ and 2844 cm!, respectively [47]. The peaks at ~1730 cm™ and
1633 cm! can be assigned to the carboxyl (C=0) group and graphene layer (C=C) of VACNTs
[45, 48, 49]. Furthermore, the band stretching signals at 1445 cm™!, 1359 cm™, 1096 cm™, and
804 cm™! are related to the CHo/CH3, C—C, C—O, and —OH group, respectively [50]. The
composite material comprised of SnO; and carbon materials was further confirmed by the

presence of signals at ~3716 cm™!, 645 cm™, and 579 cm™ [47, 51].
3.1.7 XPS analysis

The surface chemical constituents of the SnO2-VACNTSs were studied using XPS, as
shown in Figs. 3(e-h). A wide-survey XPS spectrum of the SnO2-VACNTs (Fig. 3(e)) revealed
the presence of C, O, and Sn (3p, 3d, and 4d). The prominent peaks of Sn and O suggested the
existence of SnO> nanoparticles, whereas the C signal can be attributed to the VACNTs. In
addition, the intense peaks of Si are ascribed to the Si substrate on which a thin layer of the
SnO>-VACNTSs was deposited for the XPS measurements. The high-resolution Sn, O, and C
peaks were analyzed to explain the chemical valence of elements in the SnO2-VACNTSs. As
shown in Fig. 3(f), the Sn 3d core level spectrum of SnO> demonstrated two distinct peaks
centered at 487.7 and 496.2 eV corresponding to Sn 3ds2 and Sn 3ds/2 levels of the energy
splitting reported for SnO, [52], respectively. This result can be attributed to the Sn** valence
state in the tetragonal rutile structure of the SnO; crystal [53]. The binding energy values for the

spin-orbit splitting of the Sn 3d level are in close agreement with the binding energy values
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reported in the literature [52-55]. Detailed analysis of XPS spectra of O 1s for the SnO»-
VACNTs is shown in Fig. 3(g). The high-resolution spectra revealed the presence of oxygen in
three chemically nonequivalent states, represented by three well-fitted peaks in the spectrum of
O Is. The peak at a binding energy of 531.3 eV can be ascribed to oxygen in the composition of
SnO:z (i.e., O of Sn0) [53]. Furthermore, the XPS peaks at 532 and 533.5 eV correspond to
oxygen in the O=C and O—C=0 bonds, respectively, which can be attributed to the oxidation of
VACNT sections uncoated by SnO; nanoparticles [53]. Fig. 3(h) shows the high-resolution XPS
spectrum of C 1s, which consists of four well-fitting peaks centered at 284.9, 285.7, 287.4, and
290.2 eV corresponding to the C—C, O—-C, C=0, and O=C—-O groups, which are in agreement

with the previous reports [52, 56].
3.2 Electrochemical lithiation properties
3.2.1 Electrochemical properties test in half-cell configuration

The electrochemical Li" storage properties of SnO2 and SnO,-VACNTSs were investigated
using cyclic voltammetry (CV) between 0.01 and 3 V (vs. Li/Li") for five cycles, as shown in
Figs. 4(a, b). The cell potential was swept at a constant scan rate of 0.2 mV s, and the
corresponding current was recorded. Sharp irreversible reduction peak at ~1.08 V for SnO> and
~0.81 V for SnO2-VACNTs during the first cycle suggested the solid electrolyte interphase (SEI)
formation on the electrode surface due to the decomposition of organic solvents such as EC and
DEC. The reduction peaks can also be related to the initial irreversible reduction of SnO> to Sn
and Li>O (Eq. 1) [57]. The reversible reduction peak at ~0.56 V for the SnO- can be attributed to
the alloying of Li with Sn. However, this reduction peak emerged at a much lower voltage of
~0.27 V for the SnO2-VACNTSs anode. Another reduction peak for the SnO2 anode was detected

in the range of ~1.5 — 1.67 V, and interestingly, both the peak position and intensity were
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decreased with the CV cycles. The reversible oxidation peaks at ~1.05 V, 1.41 V, and 2.29 V for
the SnO2 anode can be assigned to the dealloying of LixSn (Eq. 2) [58] and oxidation of Sn™2.
Similar to the reversible reduction peak, these reversible oxidation peaks for the SnO2-VACNTSs
anode were observed at lower potentials of ~0.67, 1.32, and 2.01 V, respectively, compared to
those for the SnO» anode. The shift of these peak positions toward the lower potential side for the
SnO,»-VACNTSs anode may be attributed to the lower impedance of the anode compared to the
SnO; anode, as shown in the 1% and 5" impedance spectra in Figs. 5(a, b). The SnO2-VACNTs
anode exhibited stable CV cycles after the first cycle in terms of peak positions and area under
the curves, which may indicate long-term cycle stability with good capacity retention. It is well
known that CNTs are also electrochemically active materials for Li* storage. A detailed
description of the CV and galvanostatic charge/discharge potential profiles of VACNTSs anodes
measured in half-cell configurations is provided in Fig. S2 (Supplementary Information).
Furthermore, we also conducted an in-situ TEM experiment to understand the lithiation process
of the SnO2-VACNTSs anode and a detailed explanation is provided in Fig. S3 and S4

(Supplementary Information).

Figs. 4(c, d) show the galvanostatic lithiation/delithiation potential profiles of SnO; and
Sn0,-VACNTs at different cycles measured at a current density of 0.1 A g'! between cut-off
potentials of 0.01 V and 3 V (vs. Li/Li"). The first lithiation and delithiation capacities for the
SnO; electrode were 3080 mAh g'! and 2160 mAh g'!, respectively. Also, the first lithiation and
delithiation capacities for the SnO,-VACNTSs anode were 3530 mAh g! and 2360 mAh g’!,
respectively. Theoretical calculations have implied that reversible capacity exceeding a LiC»
stoichiometry [59, 60], which is equivalent to >1116 mAh g'!, is achievable for CNTs [61]. Also,

considering the theoretical specific capacity of SnO; as 1493 mAh g! [12], the theoretical
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specific capacity of the SnO2-VACNTS can be calculated as 1267 mAh g™'. That means that the

experimental capacities of the SnO>-VACNTSs exceeded the theoretical limit significantly. It is

strange, in general, for an electrode to show a higher capacity than the theoretical limit; however,
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Fig. 4. (a, b) Cyclic voltammograms of SnO, and SnO,-VACNTS scanned at 0.2 mV s between 0.01 and
3 V. (c, d) Galvanostatic charge/discharge potential profiles of SnO, and SnO,-VACNTs at the current
density of 0.1 A g! between 0.01 to 3 V. (e) Cyclability and rate performance tests of SnO», VACNTSs,
and Sn0,-VACNTSs anodes. (f) Cycling performance of the VACNTSs and SnO,-VACNTS anodes at a

high current density of 1 A g\,

such an anomaly has been encountered in the past only in the case of ultrafine (typically < 10
nm) SnO> nanoparticle-based anodes [62, 63]. This anomaly can be accredited to the interfacial
storage of Li" at the phase boundaries of ultrafine SnO> nanoparticles. Theoretical calculations
and experimental results have shown that nanocomposites composed of extremely fine
nanoparticles with high surface area-to-volume ratios can demonstrate extra lithium storage
capacity [64, 65]. Because the size of the SnO2 nanoparticles in the SnO2-VACNTSs composite
was only ~5 nm, they possess an extremely high interfacial surface-to-volume ratio and, thus, a
great potential for interfacial Li" storage. Furthermore, it should also be noted that the defects on
the VACNTs created due to the acid treatment (see Section 3.1.5) and the high surface-to-
volume ratio of the VACNTs may have provided extra lithium storage capacity. On the other
hand, the absence of VACNTSs and the difference in SnO, morphology may have led to a lower

initial capacity of the SnO2 anode compared to the SnO2-VACNTs composite anode.

Both electrodes showed initial coulombic efficiencies of about 70%. The specific
capacities of both electrodes dropped significantly in the second cycle, suggesting poor capacity
retention due to irreversible capacity loss. A plateau at ~1.1 V in the first lithiation curve of the
SnO; anode is associated with the SEI and amorphous Li>O matrix formation, and another
plateau at ~0.5 V can be related to the alloying of Li with Sn metal [66-68]. In contrast, a plateau

at ~1.4 V in the first lithiation curve of the SnO,-VACNTSs anode may be ascribed to the
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irreversible reduction of oxygen-containing surface species on VACNTSs [67]. Also, the plateau
that emerged at ~0.8 V can be accredited to the formation of SEI and amorphous Li>O. These
results agree well with the results obtained from the CV measurement, although a reduction peak
related to the plateau at ~1.4 V in the first lithiation curve of the SnO>-VACNTSs was not
observed in the first CV cycle. The potential profiles at different cycles for the SnO; anode
displayed continuous capacity degradation as the cycle increased. However, the SnO>-VACNTSs

anode exhibited improved stability compared to the SnO; anode.

The long-term cycle stability test of the pristine VACNTSs, SnO2, and SnO2-VACNTs
anodes was assessed for 100 cycles of lithiation and delithiation at a current density of 0.1 A g™!
followed by rate performance tests after 100 cycles, and the results are shown in Fig. 4(e). The
VACNTSs anode displayed excellent cyclability with a delithiation capacity of ~535 mAh g’!
after 100 cycles, which is ~4% degradation in delithiation capacity with respect to the first cycle.
In contrast, the SnO> anode showed continuous capacity decay with a low delithiation capacity
of ~327 mAh g! after 100 cycles. The SnO,-VACNTSs anode displayed considerably more stable
cycle performance than the SnO> anode with a high delithiation capacity of ~1512 mAh g! after
100 cycles. It should be noted that the SnO>-VACNTSs anode also suffered significant capacity
fading during the first 20 cycles, but it became stable after the first 20 cycles. The initial poor
cyclability of the SnO2-VACNTSs anode may be attributed to the significant volume alteration
and pulverization of SnO nanoparticles, which led to the detachment of the SnO> nanoparticles
poorly bonded to the VACNT wall. In addition, this significant capacity fading during the initial
cycles may also be attributed to the coating of SnO- on the bare area of Ni foam where VACNTs
were not present. The SnO- coated on Ni foam can be easily detached from the Ni foam due to

the pulverization during the lithiation/delithiation process. The poor cycle stability of the SnO>
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anode, as shown in Fig. 4(e), further supports this hypothesis. Furthermore, VACNTSs and SnO»-
VACNTSs anode materials demonstrated excellent rate capability, as shown in Fig. 4(e). At
current densities 0f 0.2, 0.5, 1,2, and 5 A g’!, the reversible capacities of the SnO2-VACNTs
were ~1382, 1137, 895, 625, and 449 mAh g’!, respectively. Also, the rate performance exhibited
that the SnO,-VACNTSs anode retained ~83 % of its reversible capacity at 0.1 A g'! compared to
the specific capacity at the 100" cycle at the same rate, as shown in Fig. 4(e). In contrast, the
SnO, anode exhibited poor rate performance, as shown in Fig. 4(e). In addition, the SnO»-
VACNTs anode showed a stable long-term cycling test with a capacity retention of ~60% and a
specific capacity of 813 mAh g! at a high rate of 1 A g'! after 200 cycles, as shown in Fig. 4(f).
Although the capacity retention is lower, the specific capacity of the SnO2-VACNTSs anode at the
200" cycle at the current rate of 1 A g™! is better or comparable compared to similar electrodes
reported in the literature [69-71]. Furthermore, Table 1 compares the half-cell performance of

the SnO,-VACNTSs anode with similar anodes reported in various literature.

Table 1. Half-cell performance comparison of the SnO,-VACNTSs anode with similar anodes reported in

various literature.

SnO; Half cell performance
Active material size Cycle Sp. capacity (mAh g) Ref.

(nm) Current rate

number (n)  at n" cycle

SnO; 3-8 200 1425 0.1Ag! [12]
SnO; 3-8 350 1062 1Ag! [12]
SnO; 3-10 40 760 0.1Ag! [72]
Sn-CNF 100 200 774 08Ag! [73]
SnO,@CNTs 4 200 1192 0223 A g! [74]
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Fe-doped SnO» 7-8 50 600 0.05A g'! [63]

Sb-doped SnO,-rGO 3 100 813 1.249 A g'! [75]
F-doped SnO,-rGO 5 200 1439 02Ag! [62]
Sn0,-VACNTs 5 100 1512 0.1Ag! This work
SnO,-VACNTSs 5 200 813 1Ag! This work

AC impedance measurements of the different electrodes were carried out using
electrochemical impedance spectroscopy (EIS). The impedance measurements were conducted in
the potentiostatic mode using a sine wave of 5 mV amplitude between 100 kHz and 50 mHz
frequency range. The impedance measurements were carried out at different
lithiation/delithiation cycles to understand the impedance evolution of electrodes with cycle age.
For a fair comparison between different cycles and samples, cells were completely delithiated
first and rested for three hours for cell stabilization before the EIS measurements. Figs. 5(a, b)
show Nyquist plots of the SnO2 and SnO2-VACNTs at different cycle ages. The intercept by the
EIS spectrum on the Z’ axis at high frequencies corresponds to the equivalent series resistance
(Rs) related to the total resistance of the electrolyte, separator, and electrical contacts. The spectra
also comprise a small semicircle at high frequencies followed by a larger semicircle in the high-
to-medium frequency region. Furthermore, the plots show another semicircle in the medium-to-
low frequency region, which becomes more prominent as the cell ages (after the 5 cycle), and a
straight line inclined to the real axis (Z’ axis) at low frequencies. The high-frequency semicircle
with a small diameter can be attributed to the impedance related to the SEI (Cski, Rser) developed
on the electrode surface due to the electrolyte reduction, while the second semicircle with a
larger diameter can be attributed to the impedance related to the charge transfer through double

layer (Cpr, Ret) during the lithiation/delithiation reaction [76-78]. An interesting feature of the
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impedance spectra shown in Fig. 5(a, b) is the presence of the third semicircle in the medium-to-

low frequency region. The origin of this semicircle in the EIS spectra is discussed in detail in the

following paragraphs. Also, the straight line at the low-frequency region of the impedance

spectrum is related to the lithium diffusion process within the electrode [79]. In addition, it

should be noted that the size of the semicircles, particularly those related to the charge transfer,

decreased significantly until the S0 cycle for both electrodes. After the S0 cycle, it increased

substantially up to the 100" cycle for the SnO» cell. However, for SnO,-VACNTs, the

semicircles related to the charge transfer and the SEI were almost unchanged from the 50™ cycle
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- EIS spectra of (a) SnO, (b) SnO.-VACNTs, and (c) lithium-lithium symmetric cell measured at
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to the 100" cycle, as shown in Fig. 5(b), indicating stable SEI and efficient charge transfer
process without a significant increase in the impedance. In this case, it should be noted that the
half-cell impedance represents the combination of the interfacial properties of both the working
electrode and the lithium counter electrode. Therefore, the EIS spectrum of a half cell does not

correctly characterize the interfacial properties of a single working electrode [80, 81].

In order to accurately evaluate and isolate the interfacial electrochemical properties of the
working electrode from the counter/reference electrode, a symmetric test cell with identical
working and counter electrodes of lithium foil was used [80]. The lithium symmetric cell was
polarized (charged and discharged for 30 minutes each) using a current density of 0.1 mA ¢cm™,
and EIS measurements were carried out at various cycles, as shown in Fig. 5(¢). The impedance
spectra comprise a small semicircle at high frequencies related to the SEI, a large semicircle in
the high-to-medium frequency region related to the charge transfer, another semicircle in the
medium-to-low frequency (~20 — 1.6 Hz) region, and a Warburg diffusion region. Interestingly,
the small semicircle in the medium-to-low frequency region emerged only after the first cycle
and gradually evolved with the cell age. Regarding its frequency range and evolution with the
cell aging, this result implies that the third semicircle in the EIS can be related to the surface
morphology evolution-driven reaction kinetics on the lithium electrode. During the initial few
cycles, lithium preferentially deposits on the lithium electrode surface as mossy dendrites that
increase the surface area, offering lower-impedance pathways for charged particles [82]. As a
result, charge transfer resistance significantly decreased until the 20th cycle (Fig. 5(c)). As the
cell ages, these mossy dendrites can be mechanically detached and electrically isolated from the
bulk lithium surface, creating a tortuous interphase layer (TIL) [54], different from the SEI,

between the bulk lithium surface and electrolyte. This TIL can limit mass transport (observable
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at low frequencies) during cell cycling, and hence, the third semicircle in the EIS spectrum can

be associated with this phenomenon.

In addition, the impedance of the symmetric cell stabilized after the 20 cycle and
remained similar afterward. Therefore, the decrease in the overall impedance of SnO; and SnO»-
VACNTs half cells during the initial 20 cycles can be attributed partially to the lithium counter
electrode. Furthermore, the EIS of the symmetric cell at the 20" cycle (Fig. 5(d)) is selected to
estimate the contribution of the lithium counter electrode in the impedances of SnO> and SnO»-
VACNTS half cells. The symmetric cell consists of two similar lithium-electrolyte interfaces.
Hence, the impedance of the symmetric cell represents a doubling of a single lithium electrode.
The values of circuit components obtained by fitting the EIS spectrum of the symmetric cell at
the 20" cycle using an equivalent circuit model (ECM) (inset of Fig. 5(d)) are presented in

Table 2.

The ECM comprises serial resistance (Rs), representing the cell’s ohmic resistance, and
three parallel resistor-constant phase element (R-Q) networks, corresponding to three semicircles
in the measured EIS spectra. The ECM uses constant phase elements to simulate depressed
semicircles in the EIS spectra [83]. An R-Q parallel network can be estimated with a resistor-
capacitor (R-C) parallel network, and the capacitances related to the different electrochemical

events in the electrode (Csg1, CpL, CLi) can be calculated using the following equation.|
C=[(R*Q)""I/R 3)
where a is a constant with values between 0 and 1 [84].

Table 2. Element values obtained by fitting the EIS spectra of SnO,, SnO,-VACNTs, and Li-Li

symmetric cells using the ECM shown in the inset of Fig. 5(d).
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Electrode Cycle ks Rawr - Com Rer Co R Cu Dol (em®
@ ©@ @®Hh ©@ whH (@ (mF) s
SnO;
20 4.11 1495 0.24 1829 11.82 2386 6.08 43 %101
50 321 1375 0.26 16.54 9.94 30.88  3.89 1.9 x 101
100 4.89 1222 0.30 35.64 6.35 37.99 7.54 3.9 x 10"
SnO,-VACNTSs
20 3.81 8.10 048 2533 12,57  10.73 453 1.2 x 10"
50 416 556 0.46 17.65 18.08 12.37 6.80 2.2 %1012
100 434 538 042 18.49 2129 1344 7.03 2.5 %1012
Li-Li
20 449 3.05 1.78 1741  17.12  4.76 12.55 2.5 %1012

Figs. 5(e, f) show the experimental and fitted impedance spectra of SnO> and SnO»-

VACNTs at the 20, 50%, and 100" cycles using the ECM, and fitting parameters are shown in

Table 2. The table shows that resistances, Rsgr and Rer, decreased after the 20" cycle up to the

50" cycle for both electrodes, which can be ascribed to the decomposition of the electrolyte on

the electrode surface that generates protons, which in turn enhances the conductivity, lowering

the impedance of the passivated film and charge transfer [81]. After the 50" cycle, the Rsgr and

Rcr increased significantly for the SnO: electrode. This increase can be attributed to the

continuous SEI formation and the active material (SnO;) detachment from the Ni foam due to

continuous and significant volume alteration and pulverization during the lithiation/delithiation

process [85]. The continuous capacity fading during the cyclability test and poor rate

performance at the high current density, as shown in Fig. 4(e), are in agreement with the

increased SnO; electrode resistances.
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On the other hand, the Rsgr and Rer values remained nearly similar from the 50" to 100"
cycles for the SnO2-VACNTS electrode, and Rcr is significantly smaller compared to the SnO»
electrode at the 100™ cycle, indicating fast electron transport and faradaic reactions at the
electrode surface assisted by highly conductive VACNTs, strong adhesion of SnO; nanoparticles
on the VACNTs aided by the functional groups on the VACNTSs wall, and direct connection of
VACNTs to the current collector (Ni foam). As a result, the SnO>-VACNTs electrode exhibited a
much better cycle stability and rate performance than the SnO, electrode. Also, it should be
noted that the capacity fading of the SnO2-VACNTs during the first few cycles (Figs. 4(e, f)) can
be ascribed to the resistance increase due to the formation and continuous thickening of SEI
along with the loss of SnO; active materials. In contrast, the Ry; increased continuously from the
20" to the 100" cycle for both electrodes. Furthermore, it should also be noted that the time
constants corresponding to the third semicircle (Rpi*CLi) for the SnO2 and SnO2-VACNTs half
cells are higher than that for the symmetric lithium-lithium cell. These results indicate that the
third semicircles in the frequency range of ~20 — 1.6 Hz in EIS spectra of the SnO> and SnO»-
VACNTSs may not have originated solely due to the lithium counter electrode, and working
electrodes may have contributed to the evolution of the third semicircle. This complicates the
isolation of the working electrode impedance entirely from the counter electrode impedance and

requires more in-depth study.

Furthermore, the solid-state diffusion property of SnO; and SnO,-VACNTs electrodes
was studied using the Li* diffusion coefficient (Dri") given by the following equations [86].
DL = (R? T?)/(2A% n* F* C? 64?) (4)
where R (8.314 J mol™! K'!) is the gas constant, T (298 K) is the absolute room temperature, A
(0.785 cm?) is the area of the electrode, n (4.4, regarding Sn alloying with Li up to a maximum
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theoretical limit of Li2»Sns [87]) is the number of electrons per species reaction during the
oxidation/reduction reaction, F (96500 C mol™) is the Faraday constant, Gy is the Warburg's
impedance coefficient, and C (0.001 mol cm™) is the molar concentration of Li* ions. The values
of ow were determined by fitting the experimental data using Warburg’s element in the ECM, as
shown in the inset of Fig. 5(d). The Li* diffusion coefficients of SnO,, SnO>-VACNTSs, and
lithium-lithium symmetric cells calculated using eq. (4) are presented in Table 2. The table
shows that the Li" diffusion coefficients of the SnO>,-VACNTS electrode are significantly higher
than that of the SnO; electrode. This result suggests that the ultra-fine SnO> particles (< 5 nm)
coated on VACNTSs with proper inter-tube distance and better electrolyte accessibility could

provide more favorable Li" transportation kinetics and shorten the Li" diffusion pathway at the

(a) Cycling

Cycling

Fig. 6. Schematic representation of morphological changes in SnO (thin film, macro-particles, and

nanoparticles on VACNTS) electrodes due to electrochemical cycling.
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electrode/electrolyte interfaces. Since Li" diffusion is directly related to the rate capability of the
electrode, higher reversible capacities with remarkable stability of SnO,-VACNTs at higher
current densities (Figs. 4(e, f)) further indicate the faster Li" transportation kinetics and shorter

Li" diffusion pathway compared to the SnO; electrode.

The Li" storage performance of the SnO,-VACNTSs anode can be described using a
schematic, as shown in Fig. 6. The SnO; electrode undergoes a large volume change during the
lithiation process, leading to fracture in bulk or micron/macro-sized materials (Figs. 6(a, b))
[88]. Due to this, materials lose connection with the current collector. As a result, electrodes face
severe capacity decay as electronic charge carriers should move through interparticle contact
areas, as shown in Figs. 6(a, b). Previous reports have recommended a materials-dependent
critical particle size below which particles do not pulverize upon lithiation [89]. In addition,
binders used for active materials coating on the current collector can seriously undermine the
electrode's overall conductivity and add extra weight (so-called dead weight) to the electrode. In
contrast, in the case of SnO,-VACNTs electrodes, VACNTSs were synthesized directly on the
catalytic metal current collector substrate (3D Ni foam). Each VACNT coated with SnO; NPs
was electrically connected to the metallic current collector, so all the SnO2-VACNT nanowires
contributed to the capacity. Also, the VACNTSs have direct one-dimensional electronic pathways
(Fig. 6(c)), ensuring efficient charge transport to individual SnO2 NPs, which can be very
important for the high-rate performance of the electrode. Furthermore, an array structure with a
regular space between the SnO2-VACNT nanowires can effectively accommodate the large
volume changes due to efficient strain relaxation and significantly improve the electrolyte

accessibility during the lithiation/delithiation process.
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3.2.2 Cyecling test in full-cell configuration

In order to understand the practical applicability of the SnO,-VACNTSs as an anode for
LIBs, we assembled a coin-type full cell composed of the SnO>-VACNTSs anode and a
LiNiMnCoO> (NMC) cathode with the positive-to-negative electrode capacity ratio (P/N) of
~1.1. The physical morphology characterization of the NMC cathode by SEM and its
electrochemical properties in the half-cell configuration are presented in Supplementary
Information (Section 4, Fig. S5). A low initial coulombic efficiency (ICE < 80%), which is most
prevalent in alloying/dealloying-type electrodes, is one of the reasons for preventing these types
of electrodes in practical applications. The low ICE requires an excessive amount of cathode
materials (>10%—15% even for typical graphite anodes) to overcome the low ICE of the anode,
resulting in a significant decrease in energy density [90]. A few methods, such as electrolyte
optimization and pre-lithiation of the anode by direct contact with lithium metal, have been
proposed to improve the ICE of the alloying/dealloying-type anodes composed of nanoparticles
[90, 91]. However, the SnO>-VACNTS electrode in this work was pre-lithiated in a half-cell for
three cycles prior to assembly of the full cell to reduce the effect of the poor ICE. Furthermore,
the potential profiles of the SnO,-VACNTSs anode (vs. reference), NMC cathode (vs. reference),
and full cell were measured using a three-electrode coin-type cell with a lithium reference

electrode to determine the cutoff potentials of the full cell, as shown in Fig. 7(a).
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Fig. 7. (a) Current and potential profiles of the SnO,-VACNTSs anode (vs. Li reference), NMC cathode
(vs. Li reference) and full cell during the charge/discharge of a three-electrode cell. (b) Charge/discharge
potential profiles during different cycles and (c) long-term cycling test of the SnO,-VACNTs/NMC full

cell.

Fig. 7(b) shows the charging and discharging potential profiles of the full cell at different
cycles within the potential range of 1.5-4.2 V. During the charging stage, a constant current
(CC) of 3.5 mA cm™ was applied until the cell potential reached 4.2 V and then the cell potential
was kept constant (CV) until the current reduced to 0.5 mA cm™. In contrast, the cell was
discharged using the constant current (CC) of 3.5 mA cm™ until the cell potential decreased to
1.5 V. The first cycle areal charge and discharge capacities of the full cell were 2.83 mAh cm™
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and 2.63 mAh cm, respectively, with an ICE of ~91%, which is much higher than the ICE the
SnO,2-VACNTSs anode measured in half-cell and can be attributed to the prelithiation.
Furthermore, the first areal discharge capacity of the cell is about an industrially acceptable areal
capacity level (~3 mAh g!) [92]. However, the areal capacity rapidly decreased by ~29% after
50 cycles, retained the areal capacity of ~47% after 200 cycles and only ~20% after 500 cycles,
as shown in Figs. 7(c), which is significantly low and indicates that the cyclability of the SnO>-
VACNTSs anode must be improved for future practical applications. One of the possible reasons
for this rapid capacity fade of the SnO2-VACNTs/NMC full cell can be the detachment of SnO»
nanoparticles from the VACNTSs due to the high charging rate of 2.06 A g (or 3.5 mA cm?).
The anode active material loading was significantly increased by increasing the VACNTSs growth
time and SnO; coating time for the full cell testing compared to the anode for half cell testing.
The increase in coating time may have increased the SnO> coating thickness, making it weakly
bonded to the VACNT and vulnerable to detaching from the host VACNT. In addition, it should
be noted that the full cell achieved 80, 90, and 100% state of charge in 38, 43, and 56 minutes,
respectively, as shown in Fig. S6 (Supplementary Information). This result indicates that the
SnO2-VACNTs anode may have potential applications in future fast-charging high-energy-

density LIBs.
3.3 Anode aging analysis

The SnO2-VACNTSs anode morphology after 500 fast-charged cycles in the full-cell
configuration was examined using SEM spectroscopy. As shown in Figs. 8(a, b), the spongy,
porous, and aligned morphology of SnO>-VACNTSs remained intact on the Ni foam substrate
even after the extended cycling test. This result suggests that VACNTSs were strongly connected

to the Ni foam current collector as they were directly synthesized on the Ni metal substrate. This
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inherent connection between the current collector (Ni foam) and active materials (SnO»-

VACNTsS) is crucial for developing a binder-free anode. Furthermore, signals related to C, Sn,

and O in the SEM-EDS elemental mapping (Figs. 8(c-e) and Fig. 8(h)) demonstrate the uniform

Intensity (arb.)

10 pm LR Energy (keV)

Fig. 8. (a, b) Low and high magnification SEM images, (c-h) SEM-EDS mapping (C, Sn, O, P, F, and
their overlap) images, and (i) corresponding EDS spectrum of the SnO,-VACNTSs anode after 500 cycles
tested in the full-cell.

distribution of the active materials and are still available in the electrode even after the long
cycling for further electrochemical Li* storage reaction. As shown in Figs. 8(f-h), the signals P
and F should be from the SEI and LiPFs electrolyte remanents, although the electrode was

thoroughly cleaned using DMC before taking SEM images. Also, the Ni and Al signals, as
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shown in Fig. 8(i), can be attributed to the Ni foam substrate and SEM sample holder,
respectively.

The excellent performance of the SnO,-VACNTSs anodes can be ascribed to the following
factors: (1) 3D Ni foam host for 1D VACNTs array with the regular pore (inter-VACNTSs space)
for better electrolyte accessibility; (2) ultra-fine SnO» nanoparticles, facilitating the Li" diffusion
and enhancing the reversible electrochemical lithiation/delithiation reaction; (3) highly
conductive VACNTSs host for high-capacity SnO, materials (SnO2-VACNTSs core-shell
structure), increasing conductivity and alleviating electrode pulverization from volume
expansion; and (4) innate connection between VACNTSs and current collector (binder-free
anode), facilitating uninterrupted electron conduction during charge/discharge cycling.
Therefore, the SnO2-VACNTS are promising anode materials for high energy and power density
LIBs, although the large initial irreversible capacity loss and cycle instability require further

improvement.
4. Conclusions

VACNT arrays have been synthesized directly on 3D Ni foam using the PECVD method
to develop free-standing, binder-free VACNTSs anode materials. The high-capacity SnO»-
VACNTs core-shell anode was developed by coating the VACNTSs wall with ultrafine SnO>
nanoparticles using a wet-chemical method. The electrochemical properties of the SnO2 and
Sn02-VACNTSs anodes were measured using lithium-ion coin cells in a half-cell configuration.
The core-shell structured SnO»-VACNTSs exhibited excellent Li" storage properties with a high
specific capacity of ~1512 mAh g after 100 cycles at a current rate of 0.1 A g'. The SnO»-
VACNTSs anode also demonstrated long-term cycle stability for 200 cycles at a current density of

1 A g'! with a reversible capacity of about 800 mAh g'! with excellent coulombic efficiencies.
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The excellent Li* storage properties of the SnO>-VACNTS can be attributed to the ultra-fine
SnO; particles (< 5 nm) that shortened the diffusion routes of Li" and mitigated the volume
alteration by minimizing the strains during the Li" alloying and dealloying. Also, proper inter-
tube distance between individual SnO>-VACNTSs buffered the volume instability and offered
better electrolyte accessibility during the lithiation/delithiation process. Furthermore, the direct
connection of VACNTSs to the Ni foam current collector ensured an uninterrupted electron
conducting path between the current collector and active material, thereby offering more
efficient charge transport kinetics at the electrode/electrolyte interfaces. Furthermore, the as-
synthesized SnO2-VACNTSs anode was assessed in a full cell by pairing with an NMC cathode to
understand its practical applications. The strategy presented in this work for synthesizing the
three-dimensional SnO2-VACNTSs anode material may pave the way for developing high-

performance LIBs.
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Highlights

Highlights
e We developed a binder and conductive additive-free anode for lithium-ion batteries.
e The anode is a core-shell VACNTs-SnO» array directly coupled to a current collector.
e The anode exhibited a high sp. capacity of ~1.5Ah g'! at a rate of 0.1 A g’
e A high rate cyclability was tested for 200 cycles at a rate of 1 A g’

e The reason for excellent performance was the special morphology of the anode.
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Abstract

Despite the tremendous potential of tin oxide (SnO;) as an anode material, irreversible
capacity loss due to the sluggish kinetics and structural pulverization as a result of the substantial
volume alteration during redox reactions limits its use in lithium-ion batteries. The typical
layered design of an electrode consisting of binder and conductive additive can lower the
practical capacity of high-capacity electrode materials. We synthesized a binder and conductive
additive-free, self-standing core-shell vertically-aligned carbon nanotubes (VACNTs)-SnO:
anode (SnO>2-VACNTS) on 3D nickel foam using plasma-enhanced chemical vapor deposition
and wet chemical method. The SnO2-VACNTs exhibited excellent cyclability with a specific
capacity of 1512 mAh g'at 0.1 A gl after 100 cycles and 800 mAh g'at 1 A g! after 200
cycles. The ultra-fine SnO; particles (< 5 nm) shortened the Li* diffusion paths into the bulk
electrode and alleviated the volume alteration by lowering the strains during the redox reactions.
Also, proper inter-tube distance between individual SnO2-VACNTs buffered the volume
instability and offered better electrolyte accessibility. Direct connection of VACNTSs with the

current collector ensured an uninterrupted electron conducting path between the current collector
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and active material, thus offering more efficient charge transportation kinetics at the

electrode/electrolyte interfaces.
Keywords:

Lithium-ion batteries (LIBs); Vertically aligned CNTs; SnO, nanoparticles; Binder-free anode;

Electrochemical Impedance Spectroscopy (EIS).
*Corresponding author: Tel: +1 (305)348-7257, E-mail: Wenzhi.Li@fiu.edu (Wenzhi Li)
1. Introduction

The importance of lithium-ion batteries (LIBs) has increased ever since the
commercialization of LIB comprised of lithium cobalt oxide (LiCoO:) cathode paired with hard-
carbon (C) anode by Sony Inc. in 1991 [1] due to their high energy and power density, broader
operating temperature range, low self-discharge rate, and an absence of memory effect [2, 3].
Nonetheless, the ever-increasing use of LIBs in household appliances to sophisticated modern
devices, including but not limited to electric vehicles (EVs), demands novel LIB electrodes with
improved electrochemical properties and performances suitable for delivering high energy and
power densities with negligible safety issues. Most commercial LIBs comprise graphite as an
active anode material, which has a theoretical capacity of 372 mAh g'!' [4, 5]. However, the state-
of-the-art LIBs have already attained the maximum specific capacity of graphite anodes and
hence do not offer any significant improvement in energy density. Therefore, an alternate anode

to the graphite is essential for high-performing LIBs.

Metal oxides such as tin oxide (SnQO>) [6], iron oxide (Fe203) [7], cobalt oxide (Co0304)
[8], copper oxide (CuO) [9], iron titanium oxide (Fe2TiOs) [10], and heterostructured nickel-iron

oxide (NiFe>O4/Feo.64Nio36) [11] are regarded as promising candidates to substitute the
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commercial graphite anode because of their high theoretical capacity. Among them, SnO> has
attracted much attention recently due to its impressive theoretical specific capacity of 1493 mAh
g1 [12], cost-effectiveness, and good environmental compatibility. The Li" storage mechanism
of SnO; comprises two stages. First, upon initial charge (conversion reaction), SnO; transforms
to Sn and Li>O according to the following reaction [13].
SnO, +4Li" + 4e” — Sn + 2Li,O (1)

Subsequent lithiation of the SnO; (alloying reaction) corresponds to the following reversible
phase transformation reactions [13].

Sn+xLi'+xe < Li,Sn  (0<x<4.4) (2)
The first reaction (Eq. 1) is considered to be electrochemically irreversible. Hence, the maximum
capacity of the SnO; is challenging to achieve. Some reports [14-16] suggested that the
conversion reaction can become partially reversible if the SnO> size is reduced to less than 10
nm, while others [17, 18] reported that the SnO> nanoparticles are electrochemically irreversible.
These findings indicate that the nano size of the SnO particles is not solely responsible for the
reversibility and cannot ensure a maximum reversible capacity. It is important to recognize other
key factors closely linked to the electrochemical reactions that can facilitate optimum Li"
storage; for example, creating an uninterrupted electron conducting path between the current
collector and the active material can be a key to achieving high capacity, excellent rate
capability, and cycling life. An easy access to electrolyte for the active material during
lithiation/delithiation is another important factor affecting the Li" storage capacity of the active
material. It is reported that nanoporous carbon matrix used as additives in metal oxide electrodes
played important roles in rate capability and cycling life because of its high conductivity and its

ability to facilitate easy electrolyte distribution due to the nanoporous structure [19, 20].
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Carbon nanotubes (CNTs) are regarded as remarkable additive materials due to their
excellent electrical and thermal conductivity for improving energy conversion, storage
capacities, and charge transferability of active materials [21]. Furthermore, CNTs, including
carbon nanofibers, have also been credited as excellent anode materials due to their one-
dimensional tubular morphology, large surface area, short Li" diffusion path, and high electrical
and thermal conductivity [22-25]. Moreover, due to their tubule structure and high flexibility,
CNTs can be excellent hosts for high-capacity active materials. For instance, nanoparticles,
including SnO3, can be coated on the CNT’s outer wall, creating a core (CNTs)-shell (layer of
SnOy) structure (SnO2-CNTs) [26, 27]. Due to this unique structure, SnO>-CNTs core-shell can
absorb considerable stress resulting from active material pulverization during the
lithiation/delithiation procedure. Several reports have shown excellent Li" storage properties of
SnO,-CNTs composite nanomaterial as the anode of LIBs [28-30]. However, the conventional
bilayer design of the electrode, where a binder is used to glue active materials to a current
collector, limits achieving the maximum capacity of SnO> electrodes. Reports have shown that
the layered design of the LIB anode can reduce the practical capacity by ~47% [31]. Therefore,
besides limiting the SnO; size below the critical threshold (<10 nm) and understanding the
subsequent structural evolution during the electrochemical reaction, the electrode material’s
uninterrupted electron conducting path and high electrolyte accessibility are essential in
achieving the maximum reversible capacity of SnO2 and hence for the future commercialization

of SnO;-based anodes.

It is reported that tin (Sn), germanium (Ge), and silicon (Si) coated on free-standing
vertically-aligned carbon nanotubes (VACNTS) can significantly improve the Li* storage by

offering effective strain accommodation and electrolyte access due to the regular pore
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morphology and inter-tube space of the VACNTSs array [32-35]. It is important to note that the
VACNTs arrays in these reports were synthesized using catalyst-buffer bilayers on top of the
current collector surface, and hence, the VACNT arrays cannot be classified as directly grown on
the current collector. In addition, the bilayer materials add extra impurities to the active
materials, which may complicate the electrochemical redox reaction by causing parasitic
reactions. We proposed that a direct synthesis of VACNTSs on current collectors (such as a Ni
foam) and the high conductivities of VACNTs will reduce the electrical contact resistance
between VACNTSs and current collectors, which will enhance the charge transfer and facilitate
effective heat dissipation caused by resistive heating. Furthermore, an array of VACNTs with a
finite space between individual tubes can alleviate the stress resulting from volume alteration
during the lithiation/delithiation reactions. Therefore, an electrode designed by growing
VACNTs directly on the current collector and then coating the VACNTSs with a layer of ultra-
fine high-capacity electrode material such as SnO2 nanoparticles without any binder could be an

excellent LIB anode material with high energy capacity.

In this work, free-standing VACNT arrays have been grown directly on 3D nickel foam
using a plasma-enhanced chemical vapor deposition method. The as-synthesized VACNTSs have
been coated with a layer of SnO2 nanoparticles (SnO2-VACNTSs) to form core-shell structured
hybrid material free of any binder. Then, the material was tested for its electrochemical lithiation
property as the anode in coin-type lithium-ion half cells. The electrochemical Li" storage
performance of the SnO2-VACNTSs anode has been measured, and assessed by comparing it with
the SnO»-coated Ni foam and pristine VACNTSs synthesized on Ni foam. Furthermore, the
excellent electrochemical Li" storage performance of the SnO>-VACNTS anode has been

explained in detail using electrode impedance evolution with the electrode cycle age. Moreover,
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the correlation between the microstructure and the electrochemical properties of the anode

material has also been explained thoroughly.
2. Experimental
2.1 Electrodes preparation

Vertically aligned carbon nanotubes (VACNTSs) were synthesized on nickel foam (Ni,
99.99% by wt., Alfa Aesar) using plasma-enhanced chemical vapor deposition (PECVD). The
apparatus and synthesis procedure details are described in our previous work [36]. In brief,
circular disks of a diameter of about 10 mm were punched out from as-received Ni foam (1.6
mm thick) and immersed sequentially in ultrasonic baths of isopropyl alcohol and acetone, each
for 10 minutes. The cleaned Ni foam disks were placed into the PECVD system and then
pumped down to the pressure of 0.01 Torr. The VACNT synthesis procedure was performed at
600 °C for 6 minutes using C2H> (25 scem) as carbon precursor gas diluted with NH3 (400 sccm).
Also, the synthesis procedure was carried out at the pressure of 7 Torr and in the presence of a
d.c. plasma of power 70 W to ensure the alignment of CNTs. Tin oxide (SnO2) coated VACNTs
(SnO2-VACNTSs) composite electrodes were fabricated using a wet-chemical method [26]. First,
the VACNTSs on Ni foam were functionalized using HNO3 (20%) for 15 minutes. Before the
final coating procedure, a precursor solution was formulated by dissolving 1 g of anhydrous tin
(IT) chloride (SnCl, 98%, Alfa Aesar) in 80 mL DI water and 1.4 mL HCI (38%). Then, the
functionalized VACNTSs were coated with SnO; nanoparticles by submerging them into the
precursor solution for 9 hours. The weight of the SnO2-VACNTS anodes (active material for Li*
storage) was in the range of 1.02 — 1.21 mg cm™. This weight refers to the weight of VACNTSs
synthesized for 6 minutes and the weight of SnO; coated for 9 hours. However, in order to

increase the areal capacity of the SnO2-VACNTSs anode for use in full cell performance test, the
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VACNT growth time and SnO; coating time were increased to 20 minutes and 18 hours,
respectively, which resulted in the SnO2-VACNTSs weight of ~1.7 mg cm™. For comparison
purposes, bare Ni foams were coated with SnO» using a similar procedure, but the Ni foams were
treated with Ozone for 30 minutes to remove any contaminants before being immersed in the
precursor solution for SnO» coating. Finally, the SnO>-coated electrodes were removed from the
precursor solution and dried out overnight at 95 °C. The weight of the active material (SnO>)

coated on the Ni foam was ~1 mg cm™ from a 9-hour coating process.

Furthermore, the cathode was fabricated by using commercial LiNio.sMno.1C00.102
(Lithium Nickel Manganese Cobalt Oxide, NMCS811) microparticles. First, an N-
methylpyrrolidone (NMP, anhydrous, 99.5%, Sigma-Aldrich)-based slurry composed of 90 wt%
NMC (MTI Corp.), 2.5 wt% carbon nanotubes (ACS Materials), 2.5 wt% Super P conductive
carbon (MTI Corp.), and 5 wt% polyvinylidene fluoride (PVDF) binder (MTI Corp.) was
prepared by mixing at 320 rpm for 30 minutes using a vacuum mixture. Then, the resulting slurry
was coated onto carbon-coated (thickness 1 um) aluminum foil (thickness 15 um) using a doctor
blade calibrated to provide active material loading of ~15 mg cm™, an equivalent nominal areal
capacity of ~3 mAh cm™. The electrode foil was dried at room temperature for 2 hours and 110
°C for 12 hours in a vacuum oven. The cathode was calendered at 90 °C to a target thickness of

~60 um using a heated calendering machine.
2.2 Materials characterization

The surface morphology of VACNT arrays, SnO; layer coated on Ni foam (the sample
will be termed as SnO; hereafter), and SnO2-VACNTSs were characterized using a field emission
scanning electron microscope (SEM, JEOL JSM—-6330F). The surface morphology of the Ni

foam was analyzed using atomic force microscopy (AFM). The nanostructure, chemical
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composition, and crystal structure analysis of VACNTSs and SnO,-VACNTSs were performed
using a transmission electron microscope (TEM) operated at an accelerating voltage of 300 k'V.
Thermogravimetric analysis (TGA) of the materials was accomplished using the
thermogravimetric-differential scanning calorimetry analysis (TG/DSC, SDT Q600 V20.9,
USA). All experiments were performed under airflow and a temperature increase of 10 "C/min.
In order to prepare the sample for the TGA experiments, the as-synthesized SnO>-VACNTs were
detached from the Ni foam using an IPA ultrasonic bath for 10 minutes. The possible Ni
remanent in the SnO2-VACNTS/IPA solution was carefully removed by using a strong bar
magnet, and the SnO2-VACNTSs were filtered out from the resulting solution. Then, the SnO»-
VACNTs were dried overnight at 100 °C before the TGA experiment. Crystal structure and
defect analysis of the as-synthesized materials were performed using X-ray diffraction (Siemens
Diffraktometer D5000, Cu (Ka), A= 1.54 A, 0.02° step size, 20° to 80° range, 2°/min speed) and
Raman spectroscopy (Ar', L = 632.8 nm). A Fourier transform infrared spectrometer (Jasco,
FTIR-4100) was used to analyze functional groups on the VACNTSs and SnO2-VACNTs. The
chemical state of each element in the electrode was analyzed using X-ray photoelectron
spectroscopy. The core level spectra were measured using a monochromated Al (Ka)) X-ray

source and a PHOIBOS 150 energy analyzer, both from SPECS.
2.3 Lithium-ion cell assembly and electrochemical measurements

Electrochemical properties of the as-synthesized materials were studied using CR2032
coin-type half cells with a lithium foil (3860 mAh g'') as the counter and reference electrode.
Lithium hexafluorophosphate solution (1M LiPFs) in ethylene carbonate and diethyl carbonate
(EC:DEC, 1:1, vol. %) was used as an electrolyte, and Celgard polypropylene films were used as

electrode separators. A symmetric test cell with identical working and counter electrodes of
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lithium foil (10 mm diameter) was used to evaluate and isolate the interfacial electrochemical
properties of the working electrode from the counter/reference electrodes. In addition, a coin-
type full cell was fabricated in an anode overhang configuration with a slightly bigger anode area
(diameter 13 mm) compared to that of the cathode (diameter 12 mm) and electrodes overlapped
area was used while calculating the areal capacity of the cell. However, the anode and cathode
were of the same diameter (12 mm) in the case of the three-electrode cell. The specific capacities
of the half cells were calculated based on the weight of active materials. For further clarification,
the specific capacities of the SnO>-VACNTSs half cells were calculated based on the combined
weight of VACNTs and SnO;. The electrochemical properties were measured at room
temperature (~23 °C) using a NEWARE battery tester, Gamry reference 3000 potentiostat, and

Arbin battery cycler.

3. Results and discussion

3.1 Structural and compositional properties
3.1.1 AFM analysis

Vertically aligned carbon nanotube (VACNT) arrays were grown directly on catalytic 3D
Ni foam without any external catalysts. The use of catalytic metal substrates such as Ni foam for
synthesizing VACNTSs facilitates the evolution of the catalytically active growth spots (nano-
hills) on the substrate surface, which further initiates on-site disintegration of hydrocarbon
precursor gas and the diffusion of carbon atoms into the catalytic sites, i.e., nano-hills [36].
Carbon atoms precipitate on the nano-sized catalyst surface upon supersaturation and lead to the
formation of CNTs after graphitization [37]. To understand the growth of VACNTSs on the
catalytic substrate, the surface evolution of the Ni foam due to the heat treatment, under similar

conditions used for VACNTSs growth except carbon precursor gas, was analyzed using SEM and

9
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AFM images (see Figs. S1(a-c)). Three-dimensional AFM images (Fig. S1(b)) revealed a

relatively smooth surface of the pristine Ni foam with a mean roughness R, = 53.68 nm, whereas

the AFM image (Fig. S1(c)) after the heat treatment revealed a much rougher surface with R, =

105 nm. This result confirmed that uniform catalyst sites (nano-hills) formed on the Ni foam
surface due to the application of heat in the presence of reducing gas (NH3) catalyzed the

nucleation and growth of VACNT arrays.

3.1.2 SEM analysis

Figs. 1(a-c) show low to high magnification SEM images of Ni foam coated with SnOx.

The SEM images revealed the rough surface of Ni foam due to the non-uniform coating with

macroscopic SnO; particles. As shown in the inset of Fig. 1(c), the energy-dispersive X-ray

10
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Fig. 1. SEM images of SnO, and SnO,-VACNTSs on Ni foam at low to high magnification. (a-c) SnO;
coated on Ni foam, (d-f) VACNTSs grown on Ni foam, and (g-i) SnO, coated on VACNTs. The inset in

panel (¢) represents the EDS spectrum measured on the surface of SnO, coated on Ni foam.

spectroscopy (EDS) measured on the surface of Ni foam confirmed that the particles on the
surface are SnO». The Ni signal in the spectrum is from the Ni foam substrate. The ozone
treatment of the Ni foam may have assisted in creating some functional groups on the surface,
which could facilitate the coating of SnO> on the Ni foam. Figs. 1(d-f) show low to high
magnification SEM images of vertically aligned and uniform arrays of CNTs grown on the Ni
foam. The diameter of VACNTSs was in the range of 150-270 nm, whereas the length was ~5 pm
long. Figs. 1(g-i) display low to high magnification SEM images of uniquely bundled SnO»-
VACNT arrays in which the VACNT tips touch each other. These bundles were formed by the

solution phase SnO; coating process.
3.1.3 TEM analysis

TEM image, as shown in Figs. 2(a, b), revealed a “bamboo-like” morphology of as-
synthesized VACNTSs with a catalyst nanoparticle anchored at the top end of the tubular structure
[37]. As shown in the inset of Fig. 2(b), the lattice fringes in the CNT wall are separated by 0.34
nm in the VACNT wall, suggesting the multi-walled structure of CNTs. The high-resolution
TEM image of the tip of VACNT, as shown in Fig. 2(c), revealed crystal lattice planes separated
by 0.21 nm, which corresponds to the (111) lattice plane of face-centered cubic Ni crystal, as
expected. This result indicates that the VACNTs were grown directly from the Ni foam. The
direct connection between the VACNTSs and Ni foam is expected to benefit the electron transfer
between them. When poor electrical conducting material, such as SnO», is coated on the

VACNTS’ surface, the VACNTSs will also improve the electron transfer between the SnO, and Ni

11
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substrate. The distinct diffraction spots of the particle entrapped at the VACNT apex (upper-right
inset of Fig. 2(c)) can be assigned to (020), (111), and (111) planes of face-centered cubic Ni
crystal along the [101] zonal axis, which confirmed that the nanoparticle encapsulated inside the
CNT is a single crystalline Ni particle. The EDS spectrum displayed in the inset of Fig. 2(c)
further corroborated the particle at the CNT tip as a Ni metal. Furthermore, the peaks related to C

and Cu in the spectrum occurred due to the VACNT wall and TEM holder, respectively.

Cu Ky
i

' S
3 308 - 6 8 10 12008
n g L Energy (keV) A

VRl

Fig. 2. TEM characterization of the as-synthesized VACNT (a-c) and SnO,-VACNT (d-f) samples. (a)
and (b) are low and high magnification images of a VACNT. The inset in panel (b) represents a high-
resolution TEM image of the VACNT wall. (c¢) High-resolution TEM image showing an interfacial region

between the VACNT wall and the catalyst particle. The upper-right and lower-left insets in panel (c)

12
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represent the SAD and EDS of the Ni anchored at the VACNT apex. (d, ¢) Low and high magnification
TEM images of a SnO,-VACNT showing that the VACNT was coated with a layer of SnO»-
nanoparticles. The inset in panel (d) represents a schematic showing the core-shell structure of the SnO,-
VACNT. (f) High-resolution TEM image of the SnO; nanoparticles of a SnO,-VACNT. The upper-right
and lower-left insets in panel (f) are the SAD and EDS of the SnO; nanoparticles.

TEM images, as shown in Figs. 2(d, e), show a core-shell structure formed with the core
of VACNT and a shell of a thin layer (~20 nm) of SnO nanoparticles. For clarity, a schematic
showing the core-shell structure of the SnO,-VACNT is presented in the inset of Fig. 2(d). The
TEM images (Figs. 2(e, f)) clearly show that the coating consists of a multilayer of SnO>
nanoparticles. A single layer of SnO nanoparticles coating can be considered ideal regarding an
efficient reversible electrochemical lithiation/delithiation of the SnO; nanoparticles. However, it
is desirable to increase the content of the SnO» nanoparticles for practical applications, such as
for high-energy-density LIBs. This means that there should be a fine balance between the coating
thickness and the content of the SnO> nanoparticles for optimum performance of the SnO»-
VACNTs electrode. Although it is out of the scope of this work, it is imperative to determine the
optimal content of the SnO; nanoparticles in the SnO2-VACNTs electrode for future practical
applications. The high-resolution TEM image in Fig. 2(f) confirmed the crystalline phase of
SnO; nanoparticles with distinct crystal planes isolated by 0.33 nm, which can be assigned to the
(110) lattice plane of the tetragonal SnO: (t-SnO») crystal. Furthermore, the EDS of the SnO»-
VACNT, the upper-right inset of Fig. 2(f), shows circular diffraction rings which can be indexed
as (110), (101), and (210) lattice planes associated with the polycrystalline t-SnO». The
occurrence of EDS peaks related to Sn, O, and C (lower-left inset of Fig. 2(f)) further confirmed

the specimen as the SnO2-VACNT core-shell. Moreover, the EDS peaks related to Ni and Cu can
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be assigned to the catalyst particle (Ni from Ni foam) anchored at the VACNT tip and TEM grid,

respectively.
3.1.4 TGA analysis

In order to determine the weight percentage of SnO» nanoparticles on the SnO>-VACNTSs
composite electrode, TGA analysis was performed, and the results are presented in Fig. 3(a). The
TGA profiles of VACNTSs and SnO>-VACNTSs demonstrated weight loss as a result of moisture
elimination up to 400 °C. However, SnO2-VACNTs exhibited more significant weight loss,
attributed to the solution-based SnO> coating process. The VACNTs demonstrated a slight
weight reduction at ~435 °C due to the oxidation of amorphous carbon formed on the VACNTSs
during the synthesis process. Most of the weight loss of the VACNTSs occurred in the
temperature range of 520 °C — 605 °C. On the other hand, the SnO2-VACNTSs material showed a
significant weight reduction at ~537 °C corresponding to the loss of the VACNTSs. This result
suggests that pristine VACNTs were more stable than the VACNTSs in the SnO2-VACNTSs
because the VACNTSs in the SnO2-VACNTSs have more defects suffered from the SnO>-coating
process [38]. It has been verified that SnO> (~10 nm) nanopowder can show thermal stability up
to 900 °C [39]. Therefore, the final residual after 800 °C of both samples should include only the
dry mass of SnO», any impurities, and Ni particles initially encapsulated in the VACNTSs tip, as
all the carbonaceous species, such as CNTs and amorphous carbon, should be burnt off by 700
°C [40]. The TGA spectra revealed that the weight percentage of SnO> nanoparticles was ~40%
of the total weight of SnO2-VACNTSs, which was obtained by subtracting the final remaining

weight of the VACNTSs from the final residual weight of SnO>-VACNTSs after 800 °C.

3.1.5 Raman spectroscopy and XRD analysis

14
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Raman spectra displayed in Fig. 3(b) revealed an increase in the Ip/Ig ratio from 1.12 to
1.18, where Ip and Ig represent the intensity of D-band and G-band, respectively. This result
indicates that the SnO» coating increased the defects on the VACNTSs [41]. The defects were
created on the VACNTSs of the SnO>-VACNTSs sample due to the acid treatment of the VACNTSs
prior to SnO; coating. It has been reported that the presence of defects on the surfaces and tips of
CNTs, such as vacancies, dangling bonds, edge dislocations, and functionalization sites, can
serve as extra sites for Li" intercalation and adsorption, thereby increasing their lithium storage
capacity [42]. In addition, it has also been reported that defects in the CNTs can lower the energy
barrier for the Li" diffusion process [43]. These results indicate that the defective VACNTS in the
SnO>-VACNTSs anode can potentially improve the overall electrochemical lithiation properties of
the SnO2-VACNTSs anode. Furthermore, the functionalization of the VACNTSs with oxygen-
containing functional groups was essential for promoting the SnO; coating procedure. Moreover,
as shown in Fig. 3(c), the crystal structure of VACNTSs and SnO2-VACNTSs was investigated by
XRD. The XRD spectrum of the SnO,-VACNTSs demonstrates the peaks related to crystal planes
at 20 positions of ~26.6°, 33.9°, 42.6°, and 51.4°. These peak positions can be assigned to (110),
(101), (210), and (211) planes of the t-SnO> crystal. This result is consistent with the above TEM
results and those reported in a publication [44]. In the XRD spectra shown in Fig. 3(c), the peaks

at ~26° and 42° correspond to the graphitic C signal from VACNTs.
3.1.6 FTIR analysis

As shown in Fig. 3(d), FTIR spectra were used to determine the functional groups
present on the VACNTs treated with HNO3 only and coated with SnO> nanoparticles. It has been
reported that treatment with a strong oxidizing agent such as HNO3 can create different

functional groups at the defect sites of CNTs [45]. The wide-survey FTIR spectra between 4000
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cm™ and 500 cm™ of both samples exhibited signals related to the C=C, C=0, C-N, and N-H
stretching vibrations. In detail, peaks at wave number positions ~3790 cm™', 2319 cm’!, and 1256
cm! are related to N-H and C-N bonds and can be accredited to adsorbed H,O and NH3 on the
VACNT wall [46]. Moreover, the signals related to the .CH and C=H band stretching vibrations
can be observed at 2901 cm™ and 2844 cm!, respectively [47]. The peaks at ~1730 cm™ and
1633 cm! can be assigned to the carboxyl (C=0) group and graphene layer (C=C) of VACNTs
[45, 48, 49]. Furthermore, the band stretching signals at 1445 cm™!, 1359 cm™, 1096 cm™, and
804 cm™! are related to the CHo/CH3, C—C, C—O, and —OH group, respectively [50]. The
composite material comprised of SnO; and carbon materials was further confirmed by the

presence of signals at ~3716 cm™!, 645 cm™, and 579 cm™ [47, 51].
3.1.7 XPS analysis

The surface chemical constituents of the SnO2-VACNTSs were studied using XPS, as
shown in Figs. 3(e-h). A wide-survey XPS spectrum of the SnO2-VACNTs (Fig. 3(e)) revealed
the presence of C, O, and Sn (3p, 3d, and 4d). The prominent peaks of Sn and O suggested the
existence of SnO> nanoparticles, whereas the C signal can be attributed to the VACNTs. In
addition, the intense peaks of Si are ascribed to the Si substrate on which a thin layer of the
SnO>-VACNTSs was deposited for the XPS measurements. The high-resolution Sn, O, and C
peaks were analyzed to explain the chemical valence of elements in the SnO2-VACNTSs. As
shown in Fig. 3(f), the Sn 3d core level spectrum of SnO> demonstrated two distinct peaks
centered at 487.7 and 496.2 eV corresponding to Sn 3ds2 and Sn 3ds/2 levels of the energy
splitting reported for SnO, [52], respectively. This result can be attributed to the Sn** valence
state in the tetragonal rutile structure of the SnO; crystal [53]. The binding energy values for the

spin-orbit splitting of the Sn 3d level are in close agreement with the binding energy values
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reported in the literature [52-55]. Detailed analysis of XPS spectra of O 1s for the SnO»-
VACNTs is shown in Fig. 3(g). The high-resolution spectra revealed the presence of oxygen in
three chemically nonequivalent states, represented by three well-fitted peaks in the spectrum of
O Is. The peak at a binding energy of 531.3 eV can be ascribed to oxygen in the composition of
SnO:z (i.e., O of Sn0) [53]. Furthermore, the XPS peaks at 532 and 533.5 eV correspond to
oxygen in the O=C and O—C=0 bonds, respectively, which can be attributed to the oxidation of
VACNT sections uncoated by SnO; nanoparticles [53]. Fig. 3(h) shows the high-resolution XPS
spectrum of C 1s, which consists of four well-fitting peaks centered at 284.9, 285.7, 287.4, and
290.2 eV corresponding to the C—C, O—-C, C=0, and O=C—-O groups, which are in agreement

with the previous reports [52, 56].
3.2 Electrochemical lithiation properties
3.2.1 Electrochemical properties test in half-cell configuration

The electrochemical Li" storage properties of SnO2 and SnO,-VACNTSs were investigated
using cyclic voltammetry (CV) between 0.01 and 3 V (vs. Li/Li") for five cycles, as shown in
Figs. 4(a, b). The cell potential was swept at a constant scan rate of 0.2 mV s, and the
corresponding current was recorded. Sharp irreversible reduction peak at ~1.08 V for SnO> and
~0.81 V for SnO2-VACNTs during the first cycle suggested the solid electrolyte interphase (SEI)
formation on the electrode surface due to the decomposition of organic solvents such as EC and
DEC. The reduction peaks can also be related to the initial irreversible reduction of SnO> to Sn
and Li>O (Eq. 1) [57]. The reversible reduction peak at ~0.56 V for the SnO- can be attributed to
the alloying of Li with Sn. However, this reduction peak emerged at a much lower voltage of
~0.27 V for the SnO2-VACNTSs anode. Another reduction peak for the SnO2 anode was detected

in the range of ~1.5 — 1.67 V, and interestingly, both the peak position and intensity were
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decreased with the CV cycles. The reversible oxidation peaks at ~1.05 V, 1.41 V, and 2.29 V for
the SnO2 anode can be assigned to the dealloying of LixSn (Eq. 2) [58] and oxidation of Sn™2.
Similar to the reversible reduction peak, these reversible oxidation peaks for the SnO2-VACNTSs
anode were observed at lower potentials of ~0.67, 1.32, and 2.01 V, respectively, compared to
those for the SnO» anode. The shift of these peak positions toward the lower potential side for the
SnO,»-VACNTSs anode may be attributed to the lower impedance of the anode compared to the
SnO; anode, as shown in the 1% and 5" impedance spectra in Figs. 5(a, b). The SnO2-VACNTs
anode exhibited stable CV cycles after the first cycle in terms of peak positions and area under
the curves, which may indicate long-term cycle stability with good capacity retention. It is well
known that CNTs are also electrochemically active materials for Li* storage. A detailed
description of the CV and galvanostatic charge/discharge potential profiles of VACNTSs anodes
measured in half-cell configurations is provided in Fig. S2 (Supplementary Information).
Furthermore, we also conducted an in-situ TEM experiment to understand the lithiation process
of the SnO2-VACNTSs anode and a detailed explanation is provided in Fig. S3 and S4

(Supplementary Information).

Figs. 4(c, d) show the galvanostatic lithiation/delithiation potential profiles of SnO; and
Sn0,-VACNTs at different cycles measured at a current density of 0.1 A g'! between cut-off
potentials of 0.01 V and 3 V (vs. Li/Li"). The first lithiation and delithiation capacities for the
SnO; electrode were 3080 mAh g'! and 2160 mAh g'!, respectively. Also, the first lithiation and
delithiation capacities for the SnO,-VACNTSs anode were 3530 mAh g! and 2360 mAh g’!,
respectively. Theoretical calculations have implied that reversible capacity exceeding a LiC»
stoichiometry [59, 60], which is equivalent to >1116 mAh g'!, is achievable for CNTs [61]. Also,

considering the theoretical specific capacity of SnO; as 1493 mAh g! [12], the theoretical
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experimental capacities of the SnO>-VACNTSs exceeded the theoretical limit significantly. It is
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specific capacity of the SnO2-VACNTS can be calculated as 1267 mAh g™'. That means that the

strange, in general, for an electrode to show a higher capacity than the theoretical limit; however,
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Fig. 4. (a, b) Cyclic voltammograms of SnO, and SnO,-VACNTS scanned at 0.2 mV s between 0.01 and
3 V. (c, d) Galvanostatic charge/discharge potential profiles of SnO, and SnO,-VACNTs at the current
density of 0.1 A g! between 0.01 to 3 V. (e) Cyclability and rate performance tests of SnO», VACNTSs,
and Sn0,-VACNTSs anodes. (f) Cycling performance of the VACNTSs and SnO,-VACNTS anodes at a

high current density of 1 A g\,

such an anomaly has been encountered in the past only in the case of ultrafine (typically < 10
nm) SnO> nanoparticle-based anodes [62, 63]. This anomaly can be accredited to the interfacial
storage of Li" at the phase boundaries of ultrafine SnO> nanoparticles. Theoretical calculations
and experimental results have shown that nanocomposites composed of extremely fine
nanoparticles with high surface area-to-volume ratios can demonstrate extra lithium storage
capacity [64, 65]. Because the size of the SnO2 nanoparticles in the SnO2-VACNTSs composite
was only ~5 nm, they possess an extremely high interfacial surface-to-volume ratio and, thus, a
great potential for interfacial Li" storage. Furthermore, it should also be noted that the defects on
the VACNTs created due to the acid treatment (see Section 3.1.5) and the high surface-to-
volume ratio of the VACNTs may have provided extra lithium storage capacity. On the other
hand, the absence of VACNTSs and the difference in SnO, morphology may have led to a lower

initial capacity of the SnO2 anode compared to the SnO2-VACNTs composite anode.

Both electrodes showed initial coulombic efficiencies of about 70%. The specific
capacities of both electrodes dropped significantly in the second cycle, suggesting poor capacity
retention due to irreversible capacity loss. A plateau at ~1.1 V in the first lithiation curve of the
SnO; anode is associated with the SEI and amorphous Li>O matrix formation, and another
plateau at ~0.5 V can be related to the alloying of Li with Sn metal [66-68]. In contrast, a plateau

at ~1.4 V in the first lithiation curve of the SnO,-VACNTSs anode may be ascribed to the
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irreversible reduction of oxygen-containing surface species on VACNTSs [67]. Also, the plateau
that emerged at ~0.8 V can be accredited to the formation of SEI and amorphous Li>O. These
results agree well with the results obtained from the CV measurement, although a reduction peak
related to the plateau at ~1.4 V in the first lithiation curve of the SnO>-VACNTSs was not
observed in the first CV cycle. The potential profiles at different cycles for the SnO; anode
displayed continuous capacity degradation as the cycle increased. However, the SnO>-VACNTSs

anode exhibited improved stability compared to the SnO; anode.

The long-term cycle stability test of the pristine VACNTSs, SnO2, and SnO2-VACNTs
anodes was assessed for 100 cycles of lithiation and delithiation at a current density of 0.1 A g™!
followed by rate performance tests after 100 cycles, and the results are shown in Fig. 4(e). The
VACNTSs anode displayed excellent cyclability with a delithiation capacity of ~535 mAh g’!
after 100 cycles, which is ~4% degradation in delithiation capacity with respect to the first cycle.
In contrast, the SnO> anode showed continuous capacity decay with a low delithiation capacity
of ~327 mAh g! after 100 cycles. The SnO,-VACNTSs anode displayed considerably more stable
cycle performance than the SnO> anode with a high delithiation capacity of ~1512 mAh g! after
100 cycles. It should be noted that the SnO>-VACNTSs anode also suffered significant capacity
fading during the first 20 cycles, but it became stable after the first 20 cycles. The initial poor
cyclability of the SnO2-VACNTSs anode may be attributed to the significant volume alteration
and pulverization of SnO nanoparticles, which led to the detachment of the SnO> nanoparticles
poorly bonded to the VACNT wall. In addition, this significant capacity fading during the initial
cycles may also be attributed to the coating of SnO- on the bare area of Ni foam where VACNTs
were not present. The SnO- coated on Ni foam can be easily detached from the Ni foam due to

the pulverization during the lithiation/delithiation process. The poor cycle stability of the SnO>
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anode, as shown in Fig. 4(e), further supports this hypothesis. Furthermore, VACNTSs and SnO»-
VACNTSs anode materials demonstrated excellent rate capability, as shown in Fig. 4(e). At
current densities 0f 0.2, 0.5, 1,2, and 5 A g’!, the reversible capacities of the SnO2-VACNTs
were ~1382, 1137, 895, 625, and 449 mAh g’!, respectively. Also, the rate performance exhibited
that the SnO,-VACNTSs anode retained ~83 % of its reversible capacity at 0.1 A g'! compared to
the specific capacity at the 100" cycle at the same rate, as shown in Fig. 4(e). In contrast, the
SnO, anode exhibited poor rate performance, as shown in Fig. 4(e). In addition, the SnO»-
VACNTs anode showed a stable long-term cycling test with a capacity retention of ~60% and a
specific capacity of 813 mAh g! at a high rate of 1 A g'! after 200 cycles, as shown in Fig. 4(f).
Although the capacity retention is lower, the specific capacity of the SnO2-VACNTSs anode at the
200" cycle at the current rate of 1 A g™! is better or comparable compared to similar electrodes
reported in the literature [69-71]. Furthermore, Table 1 compares the half-cell performance of

the SnO,-VACNTSs anode with similar anodes reported in various literature.

Table 1. Half-cell performance comparison of the SnO,-VACNTSs anode with similar anodes reported in

various literature.

SnO; Half cell performance
Active material size Cycle Sp. capacity (mAh g) Ref.

(nm) Current rate

number (n)  at n" cycle

SnO; 3-8 200 1425 0.1Ag! [12]
SnO; 3-8 350 1062 1Ag! [12]
SnO; 3-10 40 760 0.1Ag! [72]
Sn-CNF 100 200 774 08Ag! [73]
SnO,@CNTs 4 200 1192 0223 A g! [74]
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Fe-doped SnO, 7-8 50 600 0.05A g'! [63]
Sb-doped SnO,-rGO 3 100 813 1.249 A g'! [75]
F-doped SnO,-rGO 5 200 1439 02Ag! [62]
Sn0,-VACNTs 5 100 1512 0.1Ag! This work
SnO,-VACNTSs 5 200 813 1Ag! This work

AC impedance measurements of the different electrodes were carried out using
electrochemical impedance spectroscopy (EIS). The impedance measurements were conducted in
the potentiostatic mode using a sine wave of 5 mV amplitude between 100 kHz and 50 mHz
frequency range. The impedance measurements were carried out at different
lithiation/delithiation cycles to understand the impedance evolution of electrodes with cycle age.
For a fair comparison between different cycles and samples, cells were completely delithiated
first and rested for three hours for cell stabilization before the EIS measurements. Figs. 5(a, b)
show Nyquist plots of the SnO2 and SnO2-VACNTs at different cycle ages. The intercept by the
EIS spectrum on the Z’ axis at high frequencies corresponds to the equivalent series resistance
(Rs) related to the total resistance of the electrolyte, separator, and electrical contacts. The spectra
also comprise a small semicircle at high frequencies followed by a larger semicircle in the high-
to-medium frequency region. Furthermore, the plots show another semicircle in the medium-to-
low frequency region, which becomes more prominent as the cell ages (after the 5 cycle), and a
straight line inclined to the real axis (Z’ axis) at low frequencies. The high-frequency semicircle
with a small diameter can be attributed to the impedance related to the SEI (Cski, Rser) developed
on the electrode surface due to the electrolyte reduction, while the second semicircle with a
larger diameter can be attributed to the impedance related to the charge transfer through double

layer (Cpr, Ret) during the lithiation/delithiation reaction [76-78]. An interesting feature of the
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impedance spectra shown in Fig. 5(a, b) is the presence of the third semicircle in the medium-to-
low frequency region. The origin of this semicircle in the EIS spectra is discussed in detail in the
following paragraphs. Also, the straight line at the low-frequency region of the impedance
spectrum is related to the lithium diffusion process within the electrode [79]. In addition, it
should be noted that the size of the semicircles, particularly those related to the charge transfer,
decreased significantly until the S0 cycle for both electrodes. After the S0 cycle, it increased
substantially up to the 100" cycle for the SnO» cell. However, for SnO,-VACNTs, the

semicircles related to the charge transfer and the SEI were almost unchanged from the 50™ cycle

b C)80
(a)150 4 Sn0,|Li ( 1)00 | Sn0,-VACNTs|[Li ( ) LilLi
1 o 20 < o 20
X 5 A S50 80 - X 5 A S50
100 100
100 - o 1m0 < o 1m0 <

19.8 Hz l-ﬁr'l

|
IUU\kHz P

Fig. 5. EIS spectra of (a) SnO,, (b) SnO,-VACNTs, and (¢) lithium-lithium symmetric cell measured at
various cycles. Experimental and fitted EIS spectra of the (d) lithium-lithium symmetric cell at the 20™
cycle, () SnO», and (f) SnO,-VACNTSs measured at the 20", 50", and 100" cycles. The inset in panel (d)

represents an ECM for fitting measured EIS spectra.
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to the 100" cycle, as shown in Fig. 5(b), indicating stable SEI and efficient charge transfer
process without a significant increase in the impedance. In this case, it should be noted that the
half-cell impedance represents the combination of the interfacial properties of both the working
electrode and the lithium counter electrode. Therefore, the EIS spectrum of a half cell does not

correctly characterize the interfacial properties of a single working electrode [80, 81].

In order to accurately evaluate and isolate the interfacial electrochemical properties of the
working electrode from the counter/reference electrode, a symmetric test cell with identical
working and counter electrodes of lithium foil was used [80]. The lithium symmetric cell was
polarized (charged and discharged for 30 minutes each) using a current density of 0.1 mA ¢cm™,
and EIS measurements were carried out at various cycles, as shown in Fig. 5(¢). The impedance
spectra comprise a small semicircle at high frequencies related to the SEI, a large semicircle in
the high-to-medium frequency region related to the charge transfer, another semicircle in the
medium-to-low frequency (~20 — 1.6 Hz) region, and a Warburg diffusion region. Interestingly,
the small semicircle in the medium-to-low frequency region emerged only after the first cycle
and gradually evolved with the cell age. Regarding its frequency range and evolution with the
cell aging, this result implies that the third semicircle in the EIS can be related to the surface
morphology evolution-driven reaction kinetics on the lithium electrode. During the initial few
cycles, lithium preferentially deposits on the lithium electrode surface as mossy dendrites that
increase the surface area, offering lower-impedance pathways for charged particles [82]. As a
result, charge transfer resistance significantly decreased until the 20th cycle (Fig. 5(c)). As the
cell ages, these mossy dendrites can be mechanically detached and electrically isolated from the
bulk lithium surface, creating a tortuous interphase layer (TIL) [54], different from the SEI,

between the bulk lithium surface and electrolyte. This TIL can limit mass transport (observable
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at low frequencies) during cell cycling, and hence, the third semicircle in the EIS spectrum can

be associated with this phenomenon.

In addition, the impedance of the symmetric cell stabilized after the 20 cycle and
remained similar afterward. Therefore, the decrease in the overall impedance of SnO; and SnO»-
VACNTs half cells during the initial 20 cycles can be attributed partially to the lithium counter
electrode. Furthermore, the EIS of the symmetric cell at the 20" cycle (Fig. 5(d)) is selected to
estimate the contribution of the lithium counter electrode in the impedances of SnO> and SnO»-
VACNTS half cells. The symmetric cell consists of two similar lithium-electrolyte interfaces.
Hence, the impedance of the symmetric cell represents a doubling of a single lithium electrode.
The values of circuit components obtained by fitting the EIS spectrum of the symmetric cell at
the 20" cycle using an equivalent circuit model (ECM) (inset of Fig. 5(d)) are presented in

Table 2.

The ECM comprises serial resistance (Rs), representing the cell’s ohmic resistance, and
three parallel resistor-constant phase element (R-Q) networks, corresponding to three semicircles
in the measured EIS spectra. The ECM uses constant phase elements to simulate depressed
semicircles in the EIS spectra [83]. An R-Q parallel network can be estimated with a resistor-
capacitor (R-C) parallel network, and the capacitances related to the different electrochemical

events in the electrode (Csg1, CpL, CLi) can be calculated using the following equation.|
C=[(R*Q)""I/R 3)
where a is a constant with values between 0 and 1 [84].

Table 2. Element values obtained by fitting the EIS spectra of SnO,, SnO,-VACNTs, and Li-Li

symmetric cells using the ECM shown in the inset of Fig. 5(d).
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Electrode Cycle ks Rawr - Com Rer Co R Cu Dol (em®
@ ©@ @®Hh ©@ whH (@ (mF) s
SnO;
20 4.11 1495 0.24 1829 11.82 2386 6.08 43 %101
50 321 1375 0.26 16.54 9.94 30.88  3.89 1.9 x 101
100 4.89 1222 0.30 35.64 6.35 37.99 7.54 3.9 x 10"
SnO,-VACNTSs
20 3.81 8.10 048 2533 12,57  10.73  4.53 1.2 x 10"
50 416 556 0.46 17.65 18.08 12.37 6.80 2.2 %1012
100 434 538 042 18.49 2129 1344 7.03 2.5 %1012
Li-Li
20 449 3.05 1.78 1741  17.12  4.76 12.55 2.5 %1012

Figs. 5(e, f) show the experimental and fitted impedance spectra of SnO> and SnO»-

VACNTs at the 20, 50%, and 100" cycles using the ECM, and fitting parameters are shown in

Table 2. The table shows that resistances, Rsgr and Rer, decreased after the 20" cycle up to the

50 cycle for both electrodes, which can be ascribed to the decomposition of the electrolyte on

the electrode surface that generates protons, which in turn enhances the conductivity, lowering

the impedance of the passivated film and charge transfer [81]. After the 50" cycle, the Rsgr and

Rcr increased significantly for the SnO: electrode. This increase can be attributed to the

continuous SEI formation and the active material (SnO;) detachment from the Ni foam due to

continuous and significant volume alteration and pulverization during the lithiation/delithiation

process [85]. The continuous capacity fading during the cyclability test and poor rate

performance at the high current density, as shown in Fig. 4(e), are in agreement with the

increased SnO; electrode resistances.
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On the other hand, the Rsgr and Rer values remained nearly similar from the 50" to 100"
cycles for the SnO2-VACNTS electrode, and Rcr is significantly smaller compared to the SnO»
electrode at the 100™ cycle, indicating fast electron transport and faradaic reactions at the
electrode surface assisted by highly conductive VACNTs, strong adhesion of SnO; nanoparticles
on the VACNTs aided by the functional groups on the VACNTSs wall, and direct connection of
VACNTs to the current collector (Ni foam). As a result, the SnO>-VACNTs electrode exhibited a
much better cycle stability and rate performance than the SnO, electrode. Also, it should be
noted that the capacity fading of the SnO2-VACNTs during the first few cycles (Figs. 4(e, f)) can
be ascribed to the resistance increase due to the formation and continuous thickening of SEI
along with the loss of SnO; active materials. In contrast, the Ry; increased continuously from the
20" to the 100" cycle for both electrodes. Furthermore, it should also be noted that the time
constants corresponding to the third semicircle (Rpi*CLi) for the SnO2 and SnO2-VACNTs half
cells are higher than that for the symmetric lithium-lithium cell. These results indicate that the
third semicircles in the frequency range of ~20 — 1.6 Hz in EIS spectra of the SnO> and SnO»-
VACNTSs may not have originated solely due to the lithium counter electrode, and working
electrodes may have contributed to the evolution of the third semicircle. This complicates the
isolation of the working electrode impedance entirely from the counter electrode impedance and

requires more in-depth study.

Furthermore, the solid-state diffusion property of SnO2 and SnO,-VACNTs electrodes

was studied using the Li" diffusion coefficient (Dii") given by the following equations [86].
Dii" = (R? T?)/(2A% n* F* C? 64?) (4)

where R (8.314 J mol™! K'!) is the gas constant, T (298 K) is the absolute room temperature, A

(0.785 cm?) is the area of the electrode, n (4.4, regarding Sn alloying with Li up to a maximum
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theoretical limit of Li2»Sns [87]) is the number of electrons per species reaction during the
oxidation/reduction reaction, F (96500 C mol™) is the Faraday constant, Gy is the Warburg's
impedance coefficient, and C (0.001 mol cm™) is the molar concentration of Li* ions. The values
of ow were determined by fitting the experimental data using Warburg’s element in the ECM, as
shown in the inset of Fig. 5(d). The Li* diffusion coefficients of SnO,, SnO>-VACNTSs, and
lithium-lithium symmetric cells calculated using eq. (4) are presented in Table 2. The table
shows that the Li" diffusion coefficients of the SnO>,-VACNTS electrode are significantly higher
than that of the SnO; electrode. This result suggests that the ultra-fine SnO> particles (< 5 nm)
coated on VACNTSs with proper inter-tube distance and better electrolyte accessibility could

provide more favorable Li" transportation kinetics and shorten the Li" diffusion pathway at the

(a) Cycling

b OEE B B
.. t

4

o et

¥

Current collector

Fig. 6. Schematic representation of morphological changes in SnO (thin film, macro-particles, and

nanoparticles on VACNTS) electrodes due to electrochemical cycling.
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electrode/electrolyte interfaces. Since Li" diffusion is directly related to the rate capability of the
electrode, higher reversible capacities with remarkable stability of SnO,-VACNTs at higher
current densities (Figs. 4(e, f)) further indicate the faster Li" transportation kinetics and shorter

Li" diffusion pathway compared to the SnO; electrode.

The Li" storage performance of the SnO,-VACNTSs anode can be described using a
schematic, as shown in Fig. 6. The SnO; electrode undergoes a large volume change during the
lithiation process, leading to fracture in bulk or micron/macro-sized materials (Figs. 6(a, b))
[88]. Due to this, materials lose connection with the current collector. As a result, electrodes face
severe capacity decay as electronic charge carriers should move through interparticle contact
areas, as shown in Figs. 6(a, b). Previous reports have recommended a materials-dependent
critical particle size below which particles do not pulverize upon lithiation [89]. In addition,
binders used for active materials coating on the current collector can seriously undermine the
electrode's overall conductivity and add extra weight (so-called dead weight) to the electrode. In
contrast, in the case of SnO,-VACNTs electrodes, VACNTSs were synthesized directly on the
catalytic metal current collector substrate (3D Ni foam). Each VACNT coated with SnO; NPs
was electrically connected to the metallic current collector, so all the SnO2-VACNT nanowires
contributed to the capacity. Also, the VACNTSs have direct one-dimensional electronic pathways
(Fig. 6(c)), ensuring efficient charge transport to individual SnO2 NPs, which can be very
important for the high-rate performance of the electrode. Furthermore, an array structure with a
regular space between the SnO2-VACNT nanowires can effectively accommodate the large
volume changes due to efficient strain relaxation and significantly improve the electrolyte

accessibility during the lithiation/delithiation process.
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3.2.2 Cyecling test in full-cell configuration

In order to understand the practical applicability of the SnO,-VACNTSs as an anode for
LIBs, we assembled a coin-type full cell composed of the SnO>-VACNTSs anode and a
LiNiMnCoO> (NMC) cathode with the positive-to-negative electrode capacity ratio (P/N) of
~1.1. The physical morphology characterization of the NMC cathode by SEM and its
electrochemical properties in the half-cell configuration are presented in Supplementary
Information (Section 4, Fig. S5). A low initial coulombic efficiency (ICE < 80%), which is most
prevalent in alloying/dealloying-type electrodes, is one of the reasons for preventing these types
of electrodes in practical applications. The low ICE requires an excessive amount of cathode
materials (>10%—15% even for typical graphite anodes) to overcome the low ICE of the anode,
resulting in a significant decrease in energy density [90]. A few methods, such as electrolyte
optimization and pre-lithiation of the anode by direct contact with lithium metal, have been
proposed to improve the ICE of the alloying/dealloying-type anodes composed of nanoparticles
[90, 91]. However, the SnO>-VACNTS electrode in this work was pre-lithiated in a half-cell for
three cycles prior to assembly of the full cell to reduce the effect of the poor ICE. Furthermore,
the potential profiles of the SnO,-VACNTSs anode (vs. reference), NMC cathode (vs. reference),
and full cell were measured using a three-electrode coin-type cell with a lithium reference

electrode to determine the cutoff potentials of the full cell, as shown in Fig. 7(a).
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Fig. 7. (a) Current and potential profiles of the SnO,-VACNTSs anode (vs. Li reference), NMC cathode
(vs. Li reference) and full cell during the charge/discharge of a three-electrode cell. (b) Charge/discharge
potential profiles during different cycles and (c) long-term cycling test of the SnO,-VACNTs/NMC full

cell.

Fig. 7(b) shows the charging and discharging potential profiles of the full cell at different
cycles within the potential range of 1.5-4.2 V. During the charging stage, a constant current
(CC) of 3.5 mA cm™ was applied until the cell potential reached 4.2 V and then the cell potential
was kept constant (CV) until the current reduced to 0.5 mA cm™. In contrast, the cell was
discharged using the constant current (CC) of 3.5 mA cm™ until the cell potential decreased to

1.5 V. The first cycle areal charge and discharge capacities of the full cell were 2.83 mAh cm™
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and 2.63 mAh cm, respectively, with an ICE of ~91%, which is much higher than the ICE the
SnO,2-VACNTSs anode measured in half-cell and can be attributed to the prelithiation.
Furthermore, the first areal discharge capacity of the cell is about an industrially acceptable areal
capacity level (~3 mAh g!) [92]. However, the areal capacity rapidly decreased by ~29% after
50 cycles, retained the areal capacity of ~47% after 200 cycles and only ~20% after 500 cycles,
as shown in Figs. 7(c), which is significantly low and indicates that the cyclability of the SnO>-
VACNTSs anode must be improved for future practical applications. One of the possible reasons
for this rapid capacity fade of the SnO2-VACNTs/NMC full cell can be the detachment of SnO»
nanoparticles from the VACNTSs due to the high charging rate of 2.06 A g (or 3.5 mA cm?).
The anode active material loading was significantly increased by increasing the VACNTSs growth
time and SnO; coating time for the full cell testing compared to the anode for half cell testing.
The increase in coating time may have increased the SnO> coating thickness, making it weakly
bonded to the VACNT and vulnerable to detaching from the host VACNT. In addition, it should
be noted that the full cell achieved 80, 90, and 100% state of charge in 38, 43, and 56 minutes,
respectively, as shown in Fig. S6 (Supplementary Information). This result indicates that the
SnO2-VACNTs anode may have potential applications in future fast-charging high-energy-

density LIBs.
3.3 Anode aging analysis

The SnO2-VACNTSs anode morphology after 500 fast-charged cycles in the full-cell
configuration was examined using SEM spectroscopy. As shown in Figs. 8(a, b), the spongy,
porous, and aligned morphology of SnO>-VACNTSs remained intact on the Ni foam substrate
even after the extended cycling test. This result suggests that VACNTSs were strongly connected

to the Ni foam current collector as they were directly synthesized on the Ni metal substrate. This
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inherent connection between the current collector (Ni foam) and active materials (SnO»-
VACNTsS) is crucial for developing a binder-free anode. Furthermore, signals related to C, Sn,

and O in the SEM-EDS elemental mapping (Figs. 8(c-e) and Fig. 8(h)) demonstrate the uniform

Intensity (arb.)

10 pm LR Energy (keV)

Fig. 8. (a, b) Low and high magnification SEM images, (c-h) SEM-EDS mapping (C, Sn, O, P, F, and
their overlap) images, and (i) corresponding EDS spectrum of the SnO,-VACNTSs anode after 500 cycles
tested in the full-cell.

distribution of the active materials and are still available in the electrode even after the long
cycling for further electrochemical Li* storage reaction. As shown in Figs. 8(f-h), the signals P
and F should be from the SEI and LiPFs electrolyte remanents, although the electrode was

thoroughly cleaned using DMC before taking SEM images. Also, the Ni and Al signals, as
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shown in Fig. 8(i), can be attributed to the Ni foam substrate and SEM sample holder,
respectively.

The excellent performance of the SnO,-VACNTSs anodes can be ascribed to the following
factors: (1) 3D Ni foam host for 1D VACNTs array with the regular pore (inter-VACNTSs space)
for better electrolyte accessibility; (2) ultra-fine SnO» nanoparticles, facilitating the Li" diffusion
and enhancing the reversible electrochemical lithiation/delithiation reaction; (3) highly
conductive VACNTSs host for high-capacity SnO, materials (SnO2-VACNTSs core-shell
structure), increasing conductivity and alleviating electrode pulverization from volume
expansion; and (4) innate connection between VACNTSs and current collector (binder-free
anode), facilitating uninterrupted electron conduction during charge/discharge cycling.
Therefore, the SnO2-VACNTS are promising anode materials for high energy and power density
LIBs, although the large initial irreversible capacity loss and cycle instability require further

improvement.
4. Conclusions

VACNT arrays have been synthesized directly on 3D Ni foam using the PECVD method
to develop free-standing, binder-free VACNTSs anode materials. The high-capacity SnO»-
VACNTs core-shell anode was developed by coating the VACNTSs wall with ultrafine SnO>
nanoparticles using a wet-chemical method. The electrochemical properties of the SnO2 and
Sn02-VACNTSs anodes were measured using lithium-ion coin cells in a half-cell configuration.
The core-shell structured SnO»-VACNTSs exhibited excellent Li" storage properties with a high
specific capacity of ~1512 mAh g after 100 cycles at a current rate of 0.1 A g'. The SnO»-
VACNTSs anode also demonstrated long-term cycle stability for 200 cycles at a current density of

1 A g'! with a reversible capacity of about 800 mAh g'! with excellent coulombic efficiencies.
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The excellent Li* storage properties of the SnO>-VACNTS can be attributed to the ultra-fine
SnO; particles (< 5 nm) that shortened the diffusion routes of Li" and mitigated the volume
alteration by minimizing the strains during the Li" alloying and dealloying. Also, proper inter-
tube distance between individual SnO>-VACNTSs buffered the volume instability and offered
better electrolyte accessibility during the lithiation/delithiation process. Furthermore, the direct
connection of VACNTSs to the Ni foam current collector ensured an uninterrupted electron
conducting path between the current collector and active material, thereby offering more
efficient charge transport kinetics at the electrode/electrolyte interfaces. Furthermore, the as-
synthesized SnO2-VACNTSs anode was assessed in a full cell by pairing with an NMC cathode to
understand its practical applications. The strategy presented in this work for synthesizing the
three-dimensional SnO2-VACNTSs anode material may pave the way for developing high-

performance LIBs.
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Battery checklist

Checklist for battery-related manuscripts submitted to

Journal of Power Sources / Journal of Power Sources Advances

When submitting a manuscript to Journal of Power Sources or Journal of Power Sources Advances dealing
with any type of battery, authors are requested to include the following checklist as supplemental
information.

Please, confirm that each information in Table 1 is present in the manuscript by checking the
corresponding box.

Table 1. Information Checklist

Electrodes and Cells

Cell type and configuration X
Electrodes’ geometry and size X
Description of electrode preparation (including post-coating treatments such as X
compression/calendering)

Electrode’s active material areal mass loading (or areal capacity) X
Composition of the electrodes including supplier and purity of pursued components X
Apparent electrode density (calculated as the ratio of areal mass loading and thickness) X
Current collector type and thickness (if not flat, also weight) X
Separator type & thickness X
Electrolyte composition and volume/weight used in the cell X

Ratio of N/P capacities (for full cells only)
Areal capacity of the counter electrode (for half cells only) X
Electrolyte/Sulfur (E/S) weight ratio (for Li-S batteries only)

Thickness and carbon mass loading of the air electrode (for metal air batteries only)
Electrochemical testing

Testing temperature

Voltage (or potential) range

Theoretical capacity and specified C-rate

Charge / discharge program (CC, CV, combination)

C-rate for each electrochemical measurement

Initial electrochemical profile

Cycling performance

Coulombic efficiency associated with cycling data

Additional checklist for redox flow batteries

Active material concentration in anolyte and catholyte

Electrode material (e.g., carbon felt, metal mesh) and thickness

Flow field type, if any

Anolyte / catholyte flow rate

Active material solubility limits (both redox forms) for anolyte and catholyte

X | X | X | X [X [X [X [X

X | X




Please, indicate in Table 2 the electrochemical data reported in the manuscript by checking the
corresponding box.

Table 2. Performance Reporting

Cell type Coin cell ‘ X ‘ Pouch cell ‘ ‘ Other
Cell configuration 2-electrode cell ‘ X ‘ 3-electrode cell
Coin cell Pouch cell Other
Mass loading of <2mgcm? | x
active material 2-5 mg cm™
5-8 mg cm™
>8 mg cm
Metal anode/battery Full cell
Number of cycles (incl. half cells)
at <1C (Note: We <50
tested according 50-200 X
to active materials | >200
wt. @0.1 A/g).
Metal anode/battery Full cell
Number of cycles (incl. half cells)
at >1C (Note: We <100
tested according 100-300 X
to active materials | 300-500
wt. @ 1A/g). >500

If you answered with NA to any request, please, explain the reason below:
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10.1016/j.joule.2020.12.026



https://www.sciencedirect.com/science/article/pii/S0378775320301270
https://www.cell.com/joule/pdf/S2542-4351(20)30625-5.pdf



