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Abstract. Classical work of Lee, Schultz, and Stolz relates the smooth transfor-
mation groups of exotic spheres to the stable homotopy groups of spheres. In this
note, we apply recent progress on the latter to deduce the existence of smooth
circle and cyclic group actions on certain exotic spheres.
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1. Introduction

One appealing feature of spheres is their high degree of symmetry. For example,
for all n → 1, the n-sphere S

n equipped with its standard smooth structure has
smooth rotational symmetry, i.e., it supports a nontrivial smooth action of the
circle group T. More generally, by regarding S

n as the unit sphere in Rn+1, we see
that Sn admits a smooth SO(n + 1)-action. In a precise sense, cf. [Str94, Sec. 0],
this implies that spheres are the “most symmetric” of all simply connected smooth
manifolds.

However, if we consider exotic n-spheres, i.e., spheres which are homeomorphic
but not di!eomorphic to S

n, then this high degree of symmetry is usually not
present, cf. [Hsi67, HH67, HH69, LY74, Str94]. In 1985, Schultz [Sch85] highlighted
the following questions concerning the rotational symmetry of exotic spheres:

Question 1.1 ([Sch85]). Let ”n be an exotic n-sphere, n → 5. Does ”n support a
nontrivial smooth T-action? Does ”n support a nontrivial smooth Z/p-action for
every prime p?

Bredon [Bre67], Schultz [Sch75], and Joseph [Jos81] have produced examples of
nontrivial smooth T-actions on certain (8k + 1)- and (8k + 2)-dimensional exotic
spheres. Schultz has also shown that every 8- and 10-dimensional exotic sphere
admits a smooth semi-free T-action with fixed point set S4 [Sch72] and that for each
odd prime p, a certain (2p2 ↑ 2p↑ 2)-dimensional exotic sphere admits a nontrivial
smooth T-action [Sch73]; related examples are discussed in [Sch85], cf. Corollary 3.3.
Nonexistence results, as well as the existence of some nontrivial smooth Z/p-actions,
are discussed in [Sch78].

The purpose of this note is to provide some positive answers to Question 1.1.
Our approach is as follows. Classical results of Lee and Schultz (Theorem 1.2)
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and Schultz and Stolz (Theorem 1.5) link Question 1.1 to the stable homotopy
groups of spheres, the Kervaire–Milnor sequences [KM63], and the Mahowald in-
variant [MR93]. Using recent progress on the stable homotopy groups of spheres
and Mahowald invariants, we are able to prove the existence of nontrivial smooth
T- and Z/p-actions on many exotic spheres up to dimension 100. We also describe
arithmetic conditions on the pair (n, p) under which every exotic n-sphere admits a
smooth free Z/p-action.

The first result we will use was proven by C.N. Lee in [Lee68] and refined by
Schultz in [Sch85]:

Theorem 1.2 ([Lee68], [Sch85, Thm. 1.9]). Let ”n
be an exotic sphere. For all but

finitely many primes p, ”n
supports a nontrivial smooth Z/p-action. More precisely,

”n
admits a free smooth Z/p-action whenever p is prime to the order of ”n

in #n.

Here, #n is the group of h-cobordism classes of homotopy n-spheres introduced
by Kervaire and Milnor in [KM63]. The group #n sits in exact sequences with #bp

n ,
the subgroup of h-cobordism classes of homotopy n-spheres which bound stably
parallelizable manifolds, and coker(Jn), the cokernel of the J-homomorphism.

In Section 2, we apply results on the order of #bp
n from [KM63, Lev85] and coker Jn

from [BHHM20, BMQ22, IWX20, Rav86] to study the order of #n. In Proposi-
tion 2.6 and Corollary 2.9, we provide arithmetic conditions on the dimension n and
odd prime p under which every exotic n-sphere admits a smooth free Z/p-action. In
Appendix A, we compute the prime factors of #n for all n ↓ 100; combined with
Theorem 1.2, this allows us to deduce the existence of nontrivial smooth Z/p-actions
on many exotic spheres:

Theorem 1.3. The prime factors of #bp
n and coker Jn are listed for n ↓ 100 in

Appendix A. Every exotic n-sphere admits a smooth free Z/p-action for each prime

p which does not appear in row n.

Example 1.4. The prime factors of coker(J23) are 2 and 3, and the prime factors

of #bp
23 are 2, 23, 89, and 691. Therefore each exotic 23-sphere admits a smooth free

Z/p-action for all primes p /↔ {2, 3, 23, 89, 691}.

Theorem 1.2 leaves open the question of nontrivial smooth Z/p-actions on exotic
n-spheres whose order in #n is divisible by p. Using beautiful results of Schultz and
Stolz, it is sometimes possible to prove that such exotic spheres admit nontrivial
smooth T- or Z/p-actions. To state their results, let P(↑) denote the Pontryagin–
Thom construction identifying framed bordism classes of stably framed smooth n-
manifolds with classes in the n-th stable homotopy group of spheres ωs

n (cf. [Kos93,
Sec. IX.5]), and let M(↑) be the Mahowald invariant [MR93] which associates a
nontrivial coset in the stable homotopy groups of spheres to any nontrivial element
in the stable homotopy groups of spheres.

Theorem 1.5 ([Sch85, Thm. 3.7] for p odd, [Sto88, Thm. D] for p = 2).

(1) Let p be an odd prime. Let ε ↗= 0 ↔ (ωs
n)(p) and ϑ ↔ M(ε) ↔ (coker Jm)(p).

Suppose ”0 is a framed sphere with P(”0) = ε.

(a) If m↑n is even, then there is an exotic sphere ”1 such that P(”1) = ϑ

and ”1 admits a smooth Z/p-action with fixed point set ”0.

(b) If m↑ n is odd, then there is an exotic sphere ”1 such that P(”1) = ϑ

and ”1 admits a smooth T-action with an (n ↑ 1)-dimensional fixed

point set.
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(2) Let ε ↗= 0 ↔ (ωs
n)(2) and ϑ ↔ M(ε) ↔ (coker Jm)(2). Suppose ”0 is a framed

sphere with P(”0) = ε and let ”1 be an exotic sphere with P(”1) = ϑ. If

m → 2n + 1 and either m and m ↑ n are both odd or m ↑ n is even and

m ↘ 1 mod 4, then there exists a smooth Z/2-action on the connected sum

”1#”→
, ”→ ↔ #bp

m+1, with fixed point set ”0.

Remark 1.6. We believe there is a slight ambiguity in [Sch85, Thm. 3.7]. On
page 248 of loc. cit., Schultz takes the Pontryagin–Thom construction to be a map
from #n/#

bp
n to coker Jn and defines the Mahowald invariant (page 259, loc. cit)

only on elements in the quotient group coker J . However, the Pontryagin–Thom
isomorphism and Mahowald invariant apply to elements in the stable homotopy
groups of spheres before quotienting.

We believe a more applicable version of [Sch85, Thm. 3.7] appears as [Sto88,
Thm. C]. There, one begins with a pair of framed spheres ”0 and ”1, identifies
them with elements in the stable homotopy groups of spheres via the Pontryagin–
Thom construction, and assumes that ”1 ↔ M(”0). In particular, Schultz’s principal
example [Sch85, Ex. 3.8] works under these weaker hypotheses.

Remark 1.7. We will not use it here, but it is worth mentioning that a partial
converse to Theorem 1.5 also appears in the work of Stolz [Sto88, Thm. D]. If ”m is
a homotopy sphere with a smooth Z/2-action with fixed point set some homotopy
sphere ”n, then there exist framings a and b of ”m and ”n, respectively, such that
P([”m

, a]) ↔ M(P([”n
, b])) or [”m

, a] = 0.

In Section 3, we recall many Mahowald invariant computations which were made
after the original appearance of Theorem 1.5 and apply them to prove the existence
of nontrivial smooth T- and Z/p-actions on certain exotic spheres whose order in
#n is divisible by p.

Theorem 1.8. Some combinations of dimensions n and primes p for which Theo-

rem 1.5 implies the existence of a nontrivial smooth T- or Z/p-action on an exotic

n-sphere whose order in #n is divisible by p are marked with an asterisk ≃ in Ap-

pendix A.

Example 1.9. In Example 1.4, we mentioned that Theorem 1.2 cannot be used to
produce a nontrivial smooth Z/3-action on certain exotic 23-spheres since 3 divides
the order of #23. However, Behrens [Beh06] showed that

M(ε2)
.
= ϑ

2
1ε1,

where ε2 ↔ (ωs
7)(3) and ϑ

2
1ε1 ↔ (ωs

23)(3). Applying the odd-primary part of Theo-
rem 1.5, we find that the exotic 23-sphere corresponding to ϑ

2
1ε1, whose order in

#23 is divisible by 3, supports a nontrivial smooth Z/3-action with fixed points the
standard 7-sphere.

Remark 1.10. Even in low dimensions, Theorem 1.2 and Theorem 1.5 cannot be
used to deduce the existence of smooth nontrivial Z/p-actions on every exotic sphere.
For example, we cannot deduce the existence of a smooth nontrivial Z/3-action
on certain exotic 10-spheres using these results. Interestingly, Schultz suggests in
[Sch78, Sec. 4] that every exotic sphere admits a smooth nontrivial Z/p-action for
every prime p.

Some suggestions for future work and further remarks on the limitations of these
techniques appear in Section 3.3.
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2. Smooth free Z/p-actions via the Kervaire–Milnor sequences

In order to apply Theorem 1.2, we need to analyze the orders of the groups #n

of homotopy n-spheres. Kervaire and Milnor showed in [KM63] that there is an
isomorphism

#4k
⇐= coker J4k

and exact sequences

0 ⇒ #bp
2k+1 ⇒ #2k+1 ⇒ coker J2k+1 ⇒ 0,

0 ⇒ #4k+2 ⇒ coker J4k+2
!↑⇒ Z/2 ⇒ #bp

4k+1 ⇒ 0,

where $ is the Kervaire invariant [Ker60]. In this section, we will apply information

about #bp
n and coker J to analyze the order of #n. Our main result (Proposition 2.6)

provides arithmetic conditions on the natural number n and odd prime p under which
every exotic n-sphere admits a smooth free Z/p-action.

Our first lemma allows us to ignore contributions from coker J , provided that n
is su%ciently small.

Lemma 2.1. Let p be an odd prime. Then

(coker Jn)(p) = 0

for n < 2p2 ↑ 2p↑ 2.

Proof. By [Rav86, Sec. 5.3], the first nontrivial element in (coker J↑)(p) is the Greek
letter element ϑ1, which appears in stem 2p2 ↑ 2p↑ 2. ↭

We now turn out attention to #bp
n . These groups were first studied by Kervaire–

Milnor in [KM63], but we refer the reader to Levine [Lev85] for results closer to
ours which incorporate the solution of the Adams Conjecture. The restrictions in
the case n = 4k + 1 follow from the solution of the Kervaire invariant one problem
[HHR16].

Theorem 2.2. The subgroup #bp
n ⇑ #n of h-cobordism classes of homotopy n-

spheres which bound a stably parallelizable manifold is given by

#bp
n

⇐=






0 if n ↘ 0 mod 2,

0 if n = 4k + 1 ↔ {1, 5, 13, 29, 61, and possibly 125},
Z/2 if n = 4k + 1 /↔ {1, 5, 13, 29, 61, and possibly 125},
Z/tk if n = 4k ↑ 1,

where

tk :=
3↑ (↑1)k

2
22k↓2(22k↓1 ↑ 1) · num

(
B2k

4k

)

with Bj the j-th Bernoulli number.
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Corollary 2.3. Let p be an odd prime. For n < 2(p2 ↑ 1)↑ 2(p↑ 1)↑ 2,

(#n)(p) ⇐=

{
(Z/tk)(p) if n = 4k ↑ 1, k → 2,

0 otherwise.

Lemma 2.4. Let p be an odd prime. Then (Z/tk)(p) ↗= 0 if and only if p|22k↓1 ↑ 1

or p| num
(
B2k
2k

)
.

Proof. We have (Z/tk)(p) ↗= 0 if and only if p|tk, and since p is odd,

p | tk ⇓⇔ p | 3↑ (↑1)k

2
22k↓2(22k↓1 ↑ 1) num

(
B2k

4k

)

⇓⇔ p|(22k↓1 ↑ 1) num

(
B2k

2k

)

⇓⇔ p|22k↓1 ↑ 1 or p| num
(
B2k

2k

)
.

↭
Example 2.5. Since 3 ⊋ 22k↓1 ↑ 1 and 3 ⊋ num(B2k

2k ), we have (Z/tk)(3) = 0 for all
k. The first claim follows from elementary modular arithmetic and the second claim
follows from the fact that 3 is a regular prime (cf. Remark 2.8).

Putting these observations together, we have shown:

Proposition 2.6. Let p be an odd prime and let n < 2p2 ↑ 2p ↑ 2. If n ↘ 0, 1, 2
mod 4, or if n = 4k ↑ 1 with p ⊋ 22k↓1 ↑ 1 and p ⊋ num(B2k

2k ), then every exotic

n-sphere admits a smooth free Z/p-action.

In the following two remarks, we give some examples of when the conditions in
Proposition 2.6 are satisfied.

Remark 2.7. We first consider the condition p ⊋ 22k↓1 ↑ 1. If 2k↑ 1 is prime, then
quadratic reciprocity implies that the prime factors of 22k↓1↑1 must be congruent to
±1 modulo 8. Thus if 2k↑1 is prime and p ↗↘ ±1 mod 8, the condition p ⊋ 22k↓1↑1
is satisfied.

Remark 2.8. We can also say something about the condition p ⊋ num(B2k
2k ). As

explained in the proof of [Tha12, Thm. 1], the prime factors of num(B2k
2k ) must be

irregular.1 Thus if p is a regular prime, the condition p ⊋ num(B2k
2k ) is satisfied.

Corollary 2.9. Let p ↗↘ ±1 mod 8 be an odd regular prime and let n = 4k ↑ 1 <

2p2 ↑ 2p ↑ 2 with 2k ↑ 1 prime. Then every exotic n-sphere admits a smooth free

Z/p-action.

3. Nontrivial smooth T- and Z/p-actions via the Mahowald invariant

As discussed in the introduction, we can find nontrivial smooth T- and Z/p-
actions on exotic spheres whose order in #n is divisible by p using the Mahowald

invariant. We refer the reader to [MR93] for a definition, since for our purposes,
it su%ces to know that for each prime p, the Mahowald invariant is a construction
which assigns a nontrivial coset in the p-local stable homotopy groups of spheres
to each nontrivial element in the p-local stable homotopy groups of spheres. We

1Recall that a prime q is irregular if q|Bj for some even j → p↑ 3.
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will freely use the names of elements in the stable homotopy groups of spheres from
[Rav86] (e.g., for elements like εi, ϑj) and [IWX20] (e.g., for elements like ϖϖ4, ϱ2).

Our recollection of Mahowald invariant computations is divided into two sec-
tions. In Section 3.1, computations of infinite families of Mahowald invariants are
discussed, and in Section 3.2, additional low-dimensional computations at small
primes are recalled. After each result is stated, its consequences for transformation
groups of exotic spheres via Theorem 1.5 are given. Directions for future work and
a discussion of the limitations of these techniques appear in Section 3.3.

3.1. Mahowald invariants of infinite families. Computing the Mahowald in-
variants of infinite families of elements in the stable homotopy groups of spheres is
a di%cult problem in stable homotopy theory. This section recalls almost all of the
existing computations in this direction.

Theorem 3.1 ([MR93, Thm. 3.5], [Sad92, Cor. 1.4]). For all i > 0 and primes

p → 5,
ϑi ↔ M(εi).

Theorem 3.2 ([Beh06, Thm. 15.7]). For all i > 0 with i ↘ 0, 1, 5 mod 9 and

p = 3,
(↑1)i+1

ϑi ↔ M(εi).

We note that the p-primary Mahowald invariant is natural in the action of Z↔
p on

the stable stems, so if ϑ ↔ M(ε), then ςϑ ↔ M(ςε) for ς ↔ Z↔
p . In particular, the

signs above don’t pose an issue for the actions on exotic spheres deduced below.

Corollary 3.3 (Compare with [Sch85, Ex. 3.8] for p → 5). For all i → 1 and

primes p → 5, and for all i → 1 with i ↘ 0, 1, 5 mod 9 and p = 3, every exotic

sphere ”2(p2↓1)i↓2(p↓1)↓2
corresponding to ϑi ↗= 0 ↔ coker J2(p2↓1)i↓2(p↓1)↓2 supports

a smooth T-action with a (2(p↑ 1)i↑ 2)-dimensional fixed point set.

Remark 3.4. The case i = 1 was proven by more geometric methods in [Sch73].

Theorem 3.5 ([Sad92, Sec. 6]). For all primes p → 5,

ϑp/2 ↔ M(εp/2).

Corollary 3.6. For all primes p → 5, every exotic sphere ”2(p2↓1)p↓4(p↓1)↓2
corre-

sponding to ϑp/2 ↗= 0 ↔ coker J supports a smooth T-action with a (2(p ↑ 1)p ↑ 2)-
dimensional fixed point set.

3.2. Low-dimensional Mahowald invariants at small primes. The di%culty
of computing p-primary Mahowald invariants increases when p is a small prime. In
[Beh06, Beh07], Behrens introduced new techniques which allowed for the compu-
tation of new 3- and 2-primary Mahowald invariants in low dimensions.

Proposition 3.7 ([Beh06, Prop. 12.1]). The following Mahowald invariants hold

at p = 3:

M(ε2)
.
= ϑ

2
1ε1; M(ε3/2) = ↑ϑ3/2; M(ε3) = ϑ3;

M(ε4)
.
= ϑ

5
1 ; M(ε6/2) = ϑ6/2; M(ε6) = ↑ϑ6.

Here, we write ‘
.
=’ for equations which hold up to multiplication by a unit.

Corollary 3.8. Let p = 3.

(1) Every exotic sphere ”23
corresponding to ϑ

2
1ε1 ↗= 0 ↔ coker J23 supports a

smooth Z/3-action wtih fixed points S
7
.
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(2) Every exotic sphere ”38
, ”42

, ”50
, ”86

, and ”90
corresponding to the non-

trivial elements ϑ3/2, ϑ3, ϑ
5
1 , ϑ6/2, and ϑ6 in coker J , respectively, supports

a smooth T-actions with 10-, 10-, 14-, 22-, and 22-dimensional fixed point

sets, respectively.

Theorem 3.9 (Part of [Beh07, Thm. 11.1]). The following Mahowald invariants

hold at p = 2:

M(ϖ2) = φ
2; M(ϖ3) = φ

3; M(2φ) = ↼ϖ; M(↼) = ↼
2;

M(2↼) = ϖ4; M(4↼) = ϖϖ4; M(8↼) = ϖ
2
ϖ4; M(ϖ↼) = φ

↑;

M(ϖ2↼) = φφ
↑; M(v41ϖ) = φϱ̄; M(v41ϖ

2) = ϱ
2; M(v41ϖ

3) = ϖq;

M(v41φ) = φ
2
ϱ̄; M(v412φ) = q.

Corollary 3.10. Let p = 2. Then, potentially after taking the connected sum with

elements in #bp
↑ , every exotic sphere ”9

, ”17
, ”21

, and ”33
corresponding to the

nontrivial elements φ
3
, ϖϖ4, φφ

↑
, and ϖq in cokerJ , respectively, supports a smooth

involution with fixed points S
3
, M

7
, S

9
, and M

11
, where M

n
is any homotopy n-

sphere which maps to zero in coker J .

3.3. Further remarks. We close by mentioning some directions for follow-up work
and limitations of these techniques.

Remark 3.11. Schultz mentions [Sch85, Pg. 260] the possibility of applying Theo-
rem 1.5 to Mahowald invariants at higher chromatic heights. Mahowald and Ravenel
state [MR93] that M(ϑ1) = ϑ

p
1 , and outline an approach to showing M(ϑi) = ↽i for

i → 2 and p → 7.2 Assuming this is true, one obtains nontrivial smooth S
1-actions

on some additional exotic spheres.

Remark 3.12. Many divided Greek letter elements ϑkp/i in coker J are repre-
sented by exotic spheres (see, for instance, [Beh07, Sec. 3]). For example, the
elements ϑ6/3 ↔ coker(J82)(3) and ϑ6/2 ↔ coker(J86)(3) are represented by exotic 82-
and 86-spheres, respectively, for which a nontrivial Z/3-action is not guaranteed
by Theorem 1.2. As mentioned in Theorem 3.5, Sadofsky showed in [Sad92] that
M(εp/2) = ϑp/2 for all primes p → 5. It seems plausible that M(εkp/i) = ϑkp/i for
larger k and i; if this were true, one could deduce the existence of additional infinite
families of nontrivial Z/p-actions on exotic spheres whose order in #n is divisible
by p.

Remark 3.13. Belmont and Isaksen [BI22] have recently introduced some promis-
ing techniques for computing 2-primary Mahowald invariants. It would be interest-
ing to see how far these ideas can be pushed and their consequences for nontrivial
smooth involutions on exotic spheres.

Remark 3.14 (Limitations). Fix a prime p. Let Gk := (ωs
k)(p), and let Rk ⇑ Gk

denote the subgroup generated by classes which are Mahowald invariants. In [MR93,
Conj. 1.13], Mahowald and Ravenel conjecture that

lim
k↗↘

logp |Rk|
logp |Gk|

=
1

p2
,

assuming that logp |Gk| grows linearly in k. Burklund [BHS22, Bur22] has recently
shown that logp |Gk| grows subexponentially, so one might expect that the limit

2Here, the restriction p ↓ 7 ensures that ωi is defined via the work of Miller–Ravenel–Wilson
[MRW77].
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above approaches 1/p instead of 1/p2. If this is true, then Theorem 1.5 can be
applied to roughly 1 out of every p exotic spheres from coker J if p is odd (and some
smaller proportion if p = 2).

Appendix A. Tables of nontrivial T- and Z/p-actions in low dimensions

In this appendix, we compute the prime factors of coker(Jn) and #bp
n in all di-

mensions n ↓ 100 where exotic spheres are known to exist (see [BHHM20] for a list
up to dimension 140).

The prime factors of coker(Jn) follow directly from inspection of the p-local stable
homotopy groups of spheres. Note that coker(Jn)(p) = 0 for n ↓ 100 if p → 11, so
we only need to examine p ↔ {2, 3, 5, 7}:

• For p = 2, this follows from recent work of Isaksen–Wang–Xu [IWX20],
n ↓ 95, and from [BHHM20, BMQ22] for 96 ↓ n ↓ 100.

• For p ↔ {3, 5}, we use Ravenel’s extensive Adams–Novikov spectral sequence
computations [Rav86, Thms. 7.5.3, 7.6.5].

• For p = 7, the only element in coker(J)n with n ↓ 100 is ϑ1 ↔ coker(J82).

The prime factors of #bp
n follow from Theorem 2.2. Since #bp

n = 0 if n is even,
prime factors only appear when n is odd. We can further reduce to the study of
odd prime factors, since 2 divides |#bp

n | for all odd n → 7, except in the exceptional
cases n ↔ {1, 5, 13, 29, 61}. The odd prime factors of tk were determined using
Mathematica.

We add an asterisk whenever some exotic sphere whose order is divisible by p

admits a T- or Z/p-action via Theorem 1.5. For example, for n = 9, the prime
2 divides the order of coker(J9), but the element φ

3 ↔ coker(J9) is a Mahowald
invariant (Theorem 3.9) for which Theorem 1.5 applies. Thus we have ‘2↑’ in the
row n = 9 and second column, instead of just ‘2’.

Finally, we added two asterisks to the ‘2’ in the n = 30 row, since the only
nontrivial element in coker(J30)(2) is ⇀4, which has Kervaire invariant one and thus
does not detect an exotic sphere.
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n prime factors of prime factors of #bp
n

coker(Jn)
7 2 2
8 2
9 2* 2
10 2, 3*
11 2 2, 31
13 3
14 2
15 2 2, 127
16 2
17 2* 2
18 2
19 2 2, 7, 73
20 2, 3
21 2* 2
22 2
23 2, 3* 2, 23, 89, 691
24 2
25 2 2
26 2, 3
27 2 2, 8191
28 2
29 3
30 2**, 3
31 2 2, 7, 31, 151, 3617
32 2
33 2* 2
34 2
35 2 2, 43867
36 2, 3
37 2, 3 2
38 2, 3*, 5*
39 2, 3 2, 283, 617
40 2, 3
41 2 2
42 2, 3*
43 2 2, 7, 127, 131, 337, 593
44 2
45 2, 3, 5 2
46 2, 3
47 2, 3 2, 47, 103, 178481, 2294797
48 2
49 2, 3 2
50 2, 3*

Figure 1. The prime factors of #bp
n , 7 ↓ n ↓ 50. The trivial group

#12 is omitted.
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n prime factors of prime factors of #bp
n

coker(Jn)
51 2 2, 657931
52 2, 3
53 2 2
54 2
55 2, 3 2, 7, 73, 9349, 262657, 362903
57 2 2
58 2
59 2 2, 233, 1103, 1721, 2089, 1001259881
60 2
62 2, 3
63 2 2, 37, 683, 305065927, 2147493647
64 2
65 2, 3 2
66 2
67 2 2, 7, 23, 89, 5999479, num(B34/34)
68 2, 3
69 2 2
70 2
71 2 2, 31, 71, 127, 122921, num(B36/36)
72 2, 3
73 2 2
74 2, 3*
75 2, 3 2, 223, 616318177, num(B38/38)
76 2, 5
77 2 2
78 2, 3
79 2 2, 7, 79, 8191, 121369, 137616929, 1897170067619
80 2
81 2, 3 2
82 2, 3, 7*
83 2, 5 2, 13367, 164511353, num(B42/42)
84 2, 3
85 2, 3 2
86 2, 3*, 5*
87 2 2, 59, 431, 8089, 9719, 2099863, 2947939, 1798482437
88 2
89 2 2
90 2, 3*
91 2, 3 2, 7, 31, 73, 151, 631, 23311

383799511, 67568238839737
92 2, 3
93 2, 3, 5 2
94 2, 3

Figure 2. The prime factors of #bp
n , 51 ↓ n ↓ 94. The trivial

groups #56 and #61 are omitted.
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n prime factors of prime factors of #bp
n

coker(Jn)
95 2, 3 2, 653, 2351, 4513, 56039, 10610063, 13264529, 31184907679,

59862819377, 140737488355327, 153298748932447906241
96 2
97 2 2
98 2
99 2, 3 2, 127, 417202699, 4432676798593,

562949953421311, 47464429777438199
100 2, 3

Figure 3. The prime factors of #bp
n , 90 ↓ n ↓ 100.
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