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ABSTRACT

This article investigates the problem of online statistical inference of model parameters in stochastic opti-
mization problems via the Kiefer-Wolfowitz algorithm with random search directions. We orst present the
asymptotic distribution for the Polyak-Ruppert-averaging type Kiefer-Wolfowitz (AKW) estimators, whose
asymptotic covariance matrices depend on the distribution of search directions and the function-value
query complexity. The distributional result renects the tradeof between statistical eociency and function
query complexity. We further analyze the choice of random search directions to minimize certain summary
statistics of the asymptotic covariance matrix. Based on the asymptotic distribution, we conduct online
statistical inference by providing two construction procedures of valid conodence intervals. Supplementary
materials for this article are available online.
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1. Introduction

Stochastic optimization algorithms, introduced by Robbins
and Monro (1951) and Kiefer and Wolfowitz (1952), have
been widely used in statistical estimation, especially for large-
scale datasets and online learning where the sample arrives
sequentially (e.g., web search queries, transactional data). The
Robbins–Monro algorithm (Robbins and Monro 1951), oven
known as the stochastic gradient descent, is perhaps the most
popular algorithm in stochastic optimization and has found a
wide range of applications in statistics and machine learning.
Nevertheless, in many modern applications, the gradient infor-
mation is not available. For example, the objective function may
be embedded in a black box and the user can only access the
noisy objective value for a given input. In such cases, the Kiefer-
Wolfowitz algorithm (Kiefer and Wolfowitz 1952) becomes a
natural choice as it is completely free of gradient computation.
Despite being equipped with an evident computational advan-
tage to avoid gradientmeasurements, theKiefer-Wolfowitz algo-
rithm has been historically out of practice as compared to the
Robbins-Monro counterpart. Nonetheless, heralded by the big
data era, there has been a restoration of the interest of gradient-
free optimization in a wide range of applications in recent years
(Conn, Scheinberg, and Vicente 2009; Nesterov and Spokoiny
2017). We brieny highlight a few of them to motivate our
article.

• In some bandit problems, one may only have black-box
access to individual objective values but not to their gradients
(Flaxman, Kalai, and McMahan 2005; Shamir 2017). Other
examples include graphical models and variational infer-
ence problems, where the objective is deoned variationally
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(Wainwright and Jordan 2008), and the explicit diferentia-
tion can be diocult.

• In some scenarios, the computation of gradient information
is possible but very expensive. For example, in the online
sensor selection problem (Joshi and Boyd 2008), evaluating
the stochastic gradient requires the inverse ofmatrices, which
generates O(d3) computation cost per iteration, where d is
the number of sensors in the network. In addition, the stor-
age for gradient calculation also requires an O(d3) memory,
which could be practically infeasible.

This article aims to study the asymptotic properties of the
Kiefer-Wolfowitz stochastic optimization and conduct online
statistical inference. In particular, we consider the problem,

θ� = argmin F(θ), where (1)

F(θ) := EPζ

[
f (θ ; ζ )

]
=

∫
f (θ ; ζ )dPζ ,

where f (θ ; ζ ) is a convex individual loss function for a data
point ζ , F(θ) is the population loss function, and θ� is the true
underlying parameter of a oxed dimension d. Let θ0 denote
any given initial point. Given a sequentially arriving online
sample {ζ n}, the Robbins and Monro (1951) algorithm (RM),
also known as the stochastic gradient descent (SGD), iteratively
updates,

(RM) θ
(RM)
n = θ

(RM)
n−1 − ·ng(θn−1; ζ n), (2)

where {·n} is a positive nonincreasing step-size sequence, and
g(θ ; ζ ) denotes the stochastic gradient, that is, g(θ ; ζ ) =
∇f (θ ; ζ ). In the scenarios that direct gradient measurements are
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inaccessible to practitioners, the Kiefer and Wolfowitz (1952)
algorithm (KW) becomes the natural choice, as

(KW) θ
(KW)
n = θ

(KW)
n−1 − ·n̂g(θn−1; ζ n), (3)

where ĝ(θn−1; ζ n) is an estimator of g(θn−1; ζ n). Under the
univariate framework (d = 1), Kiefer and Wolfowitz (1952)
considered the onite-diference approximation

ĝ(¸n−1; ζn) = f (¸n−1 + hn; ζn) − f (¸n−1; ζn)

hn
, (4)

where hn is be a positive deterministic sequence that goes to zero.
Blum (1954) later extended the algorithm to the multivariate
case and proved its almost sure convergence. This pioneering
work extended in various directions of statistics and control
theory (see, e.g., Fabian 1967, 1980; Hall and Heyde 1980; Rup-
pert 1982; Chen 1988; Polyak and Tsybakov 1990; Spall 1992;
Chen, Duncan, and Pasik-Duncan 1999; Spall 2000; Hall and
Molchanov 2003; Dippon 2003; Mokkadem and Pelletier 2007;
Broadie, Cicek, and Zeevi 2011). In the optimization literature,
the Kiefer-Wolfowitz (KW) algorithm is oven referred to as
the gradient-free stochastic optimization, or zeroth-order SGD
(Agarwal, Dekel, and Xiao 2010; Agarwal et al. 2011; Jamieson,
Nowak, and Recht 2012; Ghadimi and Lan 2013; Duchi et al.
2015; Shamir 2017; Nesterov and Spokoiny 2017; Wang et al.
2018, among others).

For the (RM) algorithm in (2), Ruppert (1988) and Polyak
and Juditsky (1992) characterize the limiting distribution and

statistical eociency of the averaged iterate θ
(RM)

n = 1
n

∑n
i=1 θ

(RM)
i

by

√
n

(
θ

(RM)

n − θ�
)

�⇒ N
(
0,H−1SH−1

)
, (5)

where H = ∇2F(θ�) is the Hessian matrix of F(θ) at θ = θ�,
and S = E[∇f (θ�; ζ )∇f (θ�; ζ )�] is the Gram matrix of the
stochastic gradient. Under a well-specioed model, this asymp-
totic covariance matrix matches the inverse Fisher information
and the averaged (RM) estimator is asymptotically eocient.
Based on the limiting distribution result (5), there are many
recent research eforts devoted to statistical inference for (RM).
A brief survey is conducted at the end of the introduction.

For the (KW) scheme, we can similarly construct the aver-
aged Kiefer-Wolfowitz (AKW) estimator

(AKW) θ
(KW)

n = 1
n

n∑
i=1

θ
(KW)
i . (6)

As compared to well-established asymptotic properties of
(RM), study of the asymptotics of(AKW) is limited, particularly
with a random sampling direction in multivariate (KW). In this
article, we study the (KW) algorithm (3) with random search

directions {vi}ni=1

iid∼ Pv, that is, at each iteration i = 1, 2, . . . , n,
a random direction vi is sampled independently from Pv, and
the (KW) gradient

ĝhn,vn(θn−1; ζ n) = f (θn−1 + hnvn; ζ n) − f (θn−1; ζ n)

hn
vn. (7)

Compared to the (RM) scheme, (KW) introduces additional
randomness into the stochastic gradient estimator through {vn}.

Indeed, as one can see from our main result in Theorem 3.3,
(AKW) is no longer statistically eocient and its asymptotic
covariance structure depends on the distributionPv. It opens the
room for the investigation on the impact of Pv (see Section 3.1
for details). We further extend the estimator to use multiple
function-value queries per step and establish an online statis-
tical inference framework. We summarize our main results and
contributions as follows,

• First, we quantify the asymptotic covariance structure of
(AKW) in Theorem 3.3. Since the asymptotic distribution
depends on the choice of the direction variable v, we pro-
vide an introductory analysis on the asymptotic performance
for diferent choices of random directions for constructing
(AKW) estimators (see Section 3.1).

• The eociency loss of (AKW) is due to the information con-
straint as one evaluates only two function values at each
iteration. We analyze the (AKW) estimators in which mul-
tiple function queries can be assessed at each iteration, and
show that the asymptotic covariance matrix decreases as the
number of function queriesm+1 increases (see Section 3.2).
Moreover,(AKW) achieves asymptotic statistical eociency as
m → ∞. We further show that when v is sampled without
replacement from Pv with a discrete uniform distribution of
any orthonormal basis, (AKW) achieves asymptotic statisti-
cal eociency with d + 1 function queries per iteration.

• Based on the asymptotic distribution, we propose two online
statistical inference procedures. The orst one is using a plug-
in estimator of the asymptotic covariance matrix, which sep-
arately estimates the Hessian matrix and Gram matrix of the
(KW) gradients (with additional function-value queries, see
Theorem 4.3). The second procedure is to characterize the
distribution of intermediate(KW) iterates as a stochastic pro-
cess and construct an asymptotically pivotal statistic by nor-
malizing the (AKW) estimator, without directly estimating
the covariance matrix. This inference procedure follows the
<random scaling= method proposed in Lee et al. (2022a) that
considers the online inference for the (RM) scheme. These
two procedures have their advantages and disadvantages:
the plug-in approach leads to better empirical performance
but requires additional function-value queries to estimate
the Hessian matrix, while the other one is more eocient
in both computation and storage, though its onite-sample
performance is inferior in practice when the dimension is
large. A practitioner may choose the approach suitable to her
computational resources and requirement of the inference
accuracy.

Lastly, we provide a brief literature survey on the recent works
for statistical inference for the (RM)-type SGD algorithms.
Chen et al. (2020) developed a batch-means estimator of the
limiting covariance matrix H−1SH−1 in (5), which only uses
the stochastic gradient information (i.e., without estimating any
Hessian matrices). Zhu, Chen, and Wu (2023) further extended
the batch-means method in Chen et al. (2020) to a fully online
covariance estimator. Lee et al. (2022a) extended the results in
Polyak and Juditsky (1992) to a functional central limit theo-
rem and used it to propose a novel online inference procedure
that allows for eocient implementation, followed by Lee et al.
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(2022b) and Chen et al. (2023) for application to quantile regres-
sion and generalized method of moments. Fang, Xu, and Yang
(2018) presented a perturbation-based resampling procedure
for inference. Su and Zhu (2018) proposed a tree-structured
inference scheme, which splits the SGD into several threads to
construct conodence intervals. Liang and Su (2019) introduced a
moment-adjusted method and its corresponding inference pro-
cedure. Toulis and Airoldi (2017) considered the implicit SGD,
and investigate the statistical inference problem under the vari-
ant. Duchi and Ruan (2021) studied the stochastic optimization
problem with constraints and investigate its optimality proper-
ties. Chao andCheng (2019) proposed a class of generalized reg-
ularized dual averaging (RDA) algorithms andmake uncertainty
quantiocation possible for online �1-penalized problems. Shi
et al. (2021) developed an online estimation procedure for high-
dimensional statistical inference. Chen, Lu, and Song (2021)
studied statistical inference of online decision-making problems
via SGD in a contextual bandit setting.

1.1. Notations andOrganization of the Article

We write vectors in boldface letters (e.g., θ and v) and scalers in
lightface letters (e.g., ·). For any positive integer n, we use [n]
as a shorthand for the discrete set {1, 2, . . . , n}. Let {ek}dk=1 be

the standard basis in R
d with the kth coordinate as 1 and the

other coordinates as 0. Denote Id as the identity matrix inRd×d.
Let ‖ · ‖ denote the standard Euclidean norm for vectors and
the spectral norm for matrices. We use Ak� and An,k� to denote
the (k, �)th element of matrices A,An ∈ R

d×d, respectively, for
all k, � ∈ [d]. Furthermore, we denote by diag(v) a matrix in
R
d×d whose main diagonal is the same as the vector v and of-

diagonal elements are zero, for some vector v ∈ R
d.With a slight

abuse of notation, for a matrix M ∈ R
d×d, we also let diag(M)

denote a Rd×d diagonal matrix with same diagonal elements as
matrix M. We use the standard Loewner order notation A � 0
if a matrix A is positive semideonite. We use θ (RM) and θ (KW) to
denote the iterates generated by the(RM) scheme and the(KW)

scheme, respectively. We use θ̂
(ERM)

for the onine empirical risk

minimizer, that is, θ̂
(ERM) = argminθ

1
n

∑n
i=1 f (θ ; ζ i). As we

focus on the (KW) scheme in this article, we sometimes omit
the superscript (KW) in the estimator tomake room for the other
notations. In derivations of the (KW) estimator, we denote the
onite diference of f (·) as,

�h,vf (θ ; ζ ) = f (θ + hv; ζ ) − f (θ ; ζ ), (8)

for some spacing parameter h ∈ R+ and search vector v ∈ R
d.

We use En to denote the conditional expectation with respect to
the natural oltration, that is,

En[θn+1] := E[θn+1|Fn], Fn := σ {θk, ζ k|k ≤ n}.

We use the O(·) notation to hide universal constants indepen-
dent of the sample size n.

The remainder of the article is organized as follows. In Sec-
tion 2, we describe the Kiefer-Wolfowitz algorithmwith random
search directions along with three illustrative examples of the
classical regression problems.We also provide a technical lemma
to characterize the limiting behavior of the (KW) gradient,

which leads to the distributional constraint of the random direc-
tion vector. In Section 3, we orst introduce the technical assump-
tions before we present the onite-sample rate of convergence
of the (KW) estimator. We further provide the asymptotic dis-
tribution of the (AKW) estimator, accompanied by discussions
on the statistical (in)eociency. We highlight a comparison of
the choices of the direction distributions in Section 3.1, and
further extend the theoretical analysis to multi-query settings
of the (KW) algorithm in Section 3.2. Section 3.3 generalizes
our analysis to some specioc nonsmooth loss functions, such
as the quantile regression. Based on the established asymptotic
distribution results, we propose two types of online statistical
inference procedures in Section 4. A functional extension of the
distributional analysis of (KW) as a stochastic process is also
provided. Numerical experiments in Section 5 lend empirical
support to our theory. All proofs are relegated to the supplemen-
tary material.

2. Kiefer-Wolfowitz Algorithm

In this section, we introduce the general form of the Kiefer-
Wolfowitz (KW) gradient estimator and the corresponding iter-
ative algorithm θn = θn−1−·n̂g(θn−1; ζ n). In the seminal work
by Blum (1954), the(KW) gradient estimator ĝ(θn−1; ζ n) is con-
structed by approximating the stochastic gradient g(θn−1; ζ n)

using the canonical basis of Rd, {e1, e2, . . . , ed}, as search direc-
tions. In particular, given any θ ∈ R

d and ζ ∼ Pζ , the kth
coordinate of the (KW) gradient estimator

(
ĝh,e(θ ; ζ )

)
k

= f (θ + hek; ζ ) − f (θ ; ζ )

h
, for k = 1, 2, . . . , d,

(9)

where h is a spacing parameter for approximation. At each
iteration, (9) queries d+1 function values from d oxed directions
{ek}dk=1. To reduce the query complexity, a random diference
becomes a natural choice. Koronacki (1975) introduced a ran-
dom version of the (KW) algorithm using a sequence of random
unit vectors that are independent and uniformly distributed
on the unit sphere or unit cube. Spall (1992) also provided a
random direction version of the (KW) algorithm, named as
the simultaneous perturbation stochastic approximation (SPSA)
algorithm and later extended to several variants (Chen, Duncan,
and Pasik-Duncan 1999; Spall 2000; He, Fu, and Marcus 2003).
These randomdirectionmethods can reduce the bias in gradient
estimates as compared to their nonrandom counterparts. In the
following, we write the (KW) algorithm with general random
search directions, as in (7),

θn = θn−1 − ·n̂ghn,vn(θn−1; ζ n), where (10)

ĝh,v(θ ; ζ ) := 1

h
�h,vf (θ ; ζ )v = f (θ + hv; ζ ) − f (θ ; ζ )

h
v.

Here {vn} is sampled from an underlying distribution Pv sat-
isfying certain conditions (see Assumption 4 in Section 3). At
each iteration n, the algorithm samples a direction vector vn
independently from Pv, and makes two solitary function-value
queries, f (θn−1; ζ n) and f (θn−1 + hnvn; ζ n). We refer to the
(KW) gradient estimator ĝhn,vn(θn−1, ζ n) in (10) as a two-query
onite-diference approximation of the stochastic gradient. If one
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is allowed to make additional function-value queries, an averag-
ing of the function values from multiple directions generates a
multi-query stochastic gradient estimatorwith reduced variance.
In particular, at each iteration n, the practitioner makes m + 1

queries {f (θn−1; ζ n), f (θn−1 + hnv
(j)
n ; ζ n)}1≤j≤m via m random

directions
{
v
(j)
n

}
sampled from Pv. If Pv is a onite distribution,

practitioners may choose to samplewith orwithout replacement.
In summary, an (m + 1)-query (KW) algorithm constructs a
stochastic gradient estimator

g(m)
n (θn−1; ζ n) = 1

m

m∑

j=1

ĝ
hn,v

(j)
n

(θn−1; ζ n) (11)

= 1

mhn

m∑

j=1

�
hn,v

(j)
n
f (θn−1; ζ n)v

(j)
n ,

at each iteration n, and updates θn = θn−1 − ·ng
(m)
n (θn−1; ζ n).

Here we restrict the procedure to sampling from the same distri-

butionPv independently across diferent iterations.We use θ
(m)
n

to denote the onal (KW) estimator using the above (m + 1)-
query onite-diference approximation.

We now provide some illustrative examples of the two-query
(KW) estimator ĝhn,vn in (10) used in popular statistical models,
and we will refer to these examples throughout the article.
A multi-query extension of the examples can be constructed
accordingly.

Example 2.1 (Linear Regression). Consider a linear regression
model yi = x

�
i θ� + εi where {ζ i = (xi, yi), i = 1, 2, . . . , n} is

an iid sample of ζ = (x, y) and the noise εi ∼ N (0, σ 2). We
use a quadratic loss function f (θ ; ζ ) = (y − x

�θ)2. Therefore,
the stochastic gradient ∇f (θ ; ζ ) =

(
x
�θ − y

)
x, and the (KW)

gradient estimator ĝh,v(θ ; {x, y}) in (10) becomes

ĝh,v(θ ; {x, y}) = 1

h

[(
y − x

�(θ + hv)
)2 −

(
y − x

�θ
)2]

v

= 2vv�(
x
�θ − y

)
x + h(x�

v)2v.

Example 2.2 (Logistic Regression). Consider a logistic regres-
sion model with a binary response yi ∈ {−1, 1} generated by

Pr(yi|xi) =
(
1 + exp

(
−yix

�
i θ�

))−1
. The individual loss func-

tion f (θ ; ζ ) = log
(
1 + exp(−yx�θ)

)
. The stochastic gradient

∇f (θ ; ζ ) = −yx
(
1 + exp(yx�θ)

)−1
, and the (KW) gradient

estimator ĝh,v(θ ; {x, y}) in (10) becomes

ĝh,v(θ ; {x, y}) = v

h

[
log

(
1 + exp(−yx�(θ + hv))

)

− log
(
1 + exp(−yx�θ)

)]

= −yvv�
x

1 + exp(yx�θ)
+ y2(x�

v)2 exp(yx�θ)hv

2(1 + exp(yx�θ))2

+ O(h2), as h → 0+,

under some regularity conditions on θ and the distribution
of x.

We note that for the (RM) scheme with diferentiable loss
functions, the stochastic gradient is an unbiased estimator of

the population gradient under very mild assumption, that is,
Eζ g(θ ; ζ ) = ∇F(θ). In contrast, the (KW) gradient estimator
is no longer an unbiased estimator of ∇F(θ). In the following
lemma, we precisely quantioes the bias incurred by the (KW)
gradient estimator.

Lemma 2.3. We assume that the population loss function F(·)
is twice continuously diferentiable and Lf -smooth, that is,

∇2F(θ) � Lf Id for any θ ∈ R
d. Given any oxed parameter

θ ∈ R
d, suppose the random direction vector v is independent

from ζ , we have

∥∥E ĝh,v(θ ; ζ ) − ∇F(θ)
∥∥ ≤

∥∥∥E
(
vv

� − Id
)
∇F(θ)

∥∥∥ + h

2
LfE‖v‖3,

where the expectation in E ĝh,v(θ ; ζ ) takes over both the ran-
domness in v and ζ .

The proof of Lemma 2.3 is provided in Section A of the sup-
plementary material. To reduce the bias in the (KW) gradient,
Lemma 2.3 indicates that one should choose the random direc-
tion vn that satisoes the distributional constraint E[vnv�

n ] = Id
(see Assumption 4 in Section 3). We will further conduct a
comprehensive analysis in Section 3.1 on diferent choices of
distributions Pv satisfying the condition E[vnv�

n ] = Id. Despite
the existence of the bias, as the spacing parameter hn → 0, the
bias convergences to zero asymptotically.

3. Theoretical Results

We orst introduce some regularity assumptions on the popula-
tion loss F(θ) and the individual loss f (θ ; ζ ).

Assumption 1. The population loss function F(θ) is twice con-
tinuously diferentiable, convex, and Lf -smooth, that is, 0 �
∇2F(θ) � Lf Id for any θ ∈ R

d. In addition, there exist
δ1, λ > 0, such that, ∇2F(θ) � λId for any θ in the δ1-ball
centered at θ�.

Assumption 2. Assume E
[
∇f (θ ; ζ n)

]
= ∇F(θ) for any θ ∈ R

d.
Moreover, for some 0 < δ ≤ 2, there exists M > 0 such that
E‖∇f (θ ; ζ n) − ∇F(θ)‖2+δ ≤ M

(
‖θ − θ�‖2+δ + 1

)
.

Assumption 3. There are constants Lh, Lp > 0 such that for any

θ , θ ′ ∈ R
d,

E
∥∥∇2f (θ ; ζ n) − ∇2f (θ ′; ζ n)

∥∥2 ≤ Lh‖θ − θ ′‖2,
E

∥∥[∇2f (θ�; ζ n)]2 − H2
∥∥ ≤ Lp,

where H is the Hessian matrix of the population loss function
F(·), that is, H = ∇2F(θ�).

Assumption 4. We adopt iid random direction vectors {vn} from
some common distribution v ∼ Pv such that E[vv�] = Id.
Moreover, assume that the (6 + 3δ)th moment of v is bounded.

We discuss the above assumptions and compare them with
the standard conditions in the literature of (RM)-type SGD
inference. Assumption 1 assumes the population loss function
F(·) to be λ-strongly convex in a δ1 neighborhood of the true
parameter θ�, which is oven referred to as local strong convexity
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assumption widely used in many existing literature of statistical
inference on (RM)-type stochastic optimization (e.g., Polyak
and Juditsky 1992). This condition is satisoed in the settings of
linear and logistic regression (Examples 2.1–2.2) with classical
design assumptions on the covariates x. Assumption 2 intro-
duces the unbiasedness condition on the stochastic gradient
∇f (θ ; ζ ) when the individual loss function f (θ ; ζ ) is smooth.
The (2 + δ)th moment condition is the classical Lyapunov
condition used in the derivation of asymptotic normality. The
statements in Assumption 3 introduce the Lipschitz continu-
ity condition and the concentration condition on the Hessian
matrix. Relaxation to Assumptions 2 and 3 can be made to
handle some nonsmooth loss functions f (θ ; ζ ), such as the
quantile regression as described in Section 3.3. Assumption 4
guarantees that the(KW) gradient ĝh,v(θ ; ζ ) is an asymptotically
unbiased estimator of ∇F(θ) as the spacing parameter hn → 0,
as suggested by Lemma 2.3. We provide several examples of Pv

in Section 3.1.
Before we derive the asymptotic distribution for (AKW), we

orst provide a consistency result and onite sample error bound
for the onal (KW) iterate θn:

Proposition 3.1. Assume Assumptions 1, 2, and 4 hold. Set the
step size as ·n = ·0n

−α for some constant ·0 > 0 andα ∈
(
1
2 , 1

)

and the spacing parameter as hn = h0n
−γ for constant h0 > 0,

and γ ∈
(
1
2 , 1

)
. The (KW) iterate θn converges to θ� almost

surely.
Additionally, assume Assumptions 1 holds with δ1 = +∞,

that is, the population loss function F(θ) is globally λ-strongly
convex and Lf -smooth. For suociently large n, we have,E‖θn −
θ�‖2+δ ≤ Cn−α(2+δ)/2, where the constant C depends on
d, λ, Lf ,α, γ , ·0, h0.

The proof of Proposition 3.1 and the explicit dependency
of the constant C on the parameters and the initial value θ0
are provided in Remark A.1 of the supplementary material. A
similar error bound on the parameter θ is given by Duchi et al.
(2015) in terms of the function values for δ = 0. We provide
an error bound for the (2 + δ)-moment under our assumption,
where δ ∈ (0, 2] is assumed in Assumption 2. Proposition 3.1
suggests that the asymptotic rate of the (KW) estimator matches
the best convergence rate of the (RM) estimator (Moulines and
Bach 2011) when the spacing parameter hn = h0n

−γ is a
decreasing sequence with γ ∈ ( 12 , 1).

Recall that to characterize the asymptotic behavior of (RM)
iterates, we denote by S, the Gram matrix of ∇f (θ ; ζ ) at the
true parameter θ�, that is, S := E

[
∇f (θ�; ζ )∇f (θ�; ζ )�

]
.

Analogously, we deone the limiting Gram matrix of the (KW)
gradient estimator ĝh,v at θ� as h → 0 to be Q. The following
lemma proves that the limiting Gram matrix takes the form
of Q = E

[
vv

�Svv�]
, and it quantioes the distance between

ĝh,v(θ
�; ζ )̂gh,v(θ

�; ζ )� and Q, as the spacing parameter h → 0.

Lemma 3.2. Under Assumptions 1, 2, 3, and 4, we have
∥∥∥E

[
ĝh,v(θ

�; ζ )̂gh,v(θ
�; ζ )�

]
− Q

∥∥∥ ≤ Ch(1 + h2),

Q = E
[
vv

�Svv�]
.

where S = E
[
∇f (θ�; ζ )∇f (θ�; ζ )�

]
is deoned inAssumption 2.

With Lemma 3.2 in place, we state our orst main result that
characterizes the limiting distribution of the averaged (AKW)
iterates deoned in (6).

Theorem 3.3. Let Assumptions 1, 2, 3, and 4 hold. Set the step
size as ·n = ·0n

−α for some constant ·0 > 0 and α ∈
(
1
2 , 1

)
,

and the spacing parameter as hn = h0n
−γ for some constant

h0 > 0, and γ ∈
(
1
2 , 1

)
. The averaged (KW) estimator θn

satisoes,

√
n

(
θn − θ�

)
�⇒ N

(
0,H−1QH−1

)
, as n → ∞,

(12)

where H = ∇2F(θ�) is the population Hessian matrix and Q =
E

[
vv

�Svv�]
is deoned in Lemma 3.2. Here �⇒ represents the

convergence in distribution.

We now compare the asymptotic covariance matrix of θn
with that of the (RM) counterpart in (5).1 As one can see, the
asymptotic covariance matrix of (AKW) estimator θn exhibits
a similar sandwich form as the covariance matrix of (RM), but
strictly dominates the latter, regardless of the choice of random
direction vectors {v1, v2, . . . , vn}. In fact, it is easy to check that

H−1QH−1 − H−1SH−1 (13)

= H−1
Ev

[
(vv� − Id)S(vv

� − Id)
]
H−1 � 0,

which suggests the (AKW) estimator sufers an inevitable loss

of eociency compared to the θ̂
(RM)

. In Section 3.2, we analyze
(AKW) with multiple function-value queries at each iteration.
With the price of additional per-iteration computational com-
plexity, one is able to improve the statistical eociency of (AKW)
and achieve the optimal asymptotic variance H−1SH−1.

Remark 3.4. To complete the distributional analysis on (KW)
iterates, we also provide the asymptotic distribution of the nth

iterate θ
(KW)
n of (3) without averaging. Assume the Hessian

matrix has decompositionH = P�P�, whereP is an orthogonal
matrix and � is a diagonal matrix. Using the proof in Fabian
(1968), we establish the following asymptotic distribution for

θ
(KW)
n ,

nα/2(θ (KW)
n − θ�) �⇒ N (0,�), (14)

where each (k, �)th entry of the covariance matrix � is,

�k� = ·0
(
P�QP

)
kl

(
�kk + ���

)−1
, 1 ≤ k, � ≤ d.

Here ·0 > 0 and α ∈ ( 12 , 1) are specioed in the step size

·n = ·0n
−α . As α < 1, the nth iterate θ

(KW)
n without averaging

converges at a slower rate n−α/2 than that of (AKW) in Theo-
rem 3.3.

1Note that the asymptotic covarianceH−1SH−1 in (5) is <optimal=in the sense
that it matches the asymptotic covariance for the empirical risk minimizer

θ̂
(ERM)

without online computation and gradient information constraint.
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3.1. Examples: Choices of Direction Distribution

By Theorem 3.3, the asymptotic covariance matrix of (AKW)
estimator, H−1QH−1, depends on the distribution of search
direction Pv via Q = E[vv�Svv�]. In this section, we compare
the asymptotic covariance matrices of the (AKW) estimator
when the random directions {vi}ni=1 are sampled from diferent
Pv’s. Several popular choices of Pv are listed as follows,

(G)Gaussian: v ∼ N (0, I).
(S)Spherical: v is sampled from the uniform distribution on

the sphere ‖v‖2 = d.
(I)Uniform in the canonical basis: v is sampled from{√

de1,
√
de2, . . . ,

√
ded

}
with equal probability, where

{e1, e2, . . . , ed} is the canonical basis of Rd.

It is easy to verify that the above three classical choices
of Pv satisfy Assumption 4, among which (G) and (S) are
continuous distributions, while (I) is a discrete distribu-
tion. In particular, (I) is a discrete uniform distribution with
equal probability among the d vectors of the standard basis of
Euclidean space Rn, which can be generalized in the following
two forms.

(U)Uniform in an arbitrary orthonormal basis U: vi is sam-

pled uniformly from
{√

du1,
√
du2, . . . ,

√
dud

}
, where

{u1, u2, . . . , ud} is an arbitrary orthonormal basis ofRd, that
is, the matrix U = (u1, u2, . . . , ud) is a d × d orthonormal
matrix such that UU� = U�U = I.

(P)Nonuniform in the canonical basis with probability
(p1, p2, . . . , pd): v =

√
1/pk ek with probability pk > 0, for

k ∈ [d] and
∑d

k=1 pk = 1.

The following proposition provides expressions of the matrix
Q for the above ove choices of Pv.

Proposition 3.5. Under the assumptions in Theorem 3.3, for
above examples of Pv,

(G)Gaussian: Q(G) = (2S + tr(S)Id).
(S)Spherical: Q(S) = d

d+2 (2S + tr(S)Id).

(I)Uniform in the canonical basis: Q(I) = d diag(S).
(U)Uniform in an arbitrary orthonormal basis U: Q(U) =

dUdiag(U�SU)U�.
(P)Nonuniform in a natural coordinate basis: Q(P) =

diag(S11/p1, S22/p2, . . . , Sdd/pd).

From Proposition 3.5, one can see that any of the above
choices of Pv leads to a Q(·) that strictly dominates S. Take
S = Id as an example, we have Q(G) = (d + 2)Id and Q(S) =
Q(I) = Q(U) = dId and Q(P) = diag(p−1

1 , p−1
2 , . . . , p−1

d ) � Id
where p1 + p2 + · · · + pd = 1. Several additional ondings
and implications of Proposition 3.5 are discussed in Section
A.2 of the supplementary material. To brieny mention a few,
the Gaussian direction (G) is always inferior to the spher-
ical direction (S). Among the rest of the choices, there is
no domination relationship, and diferent optimality criterion
in the experimental design leads to diferent optimal choices
of Pv.

3.2. Multi-Query Extension and Statistical Eociency

We now consider the (AKW) estimator using (m + 1) function

queries θ
(m)

n in (11),

θ
(m)

n = 1

n

n∑

i=1

θ
(m)
i , where

θ
(m)
i = θ

(m)
i−1 − ·ig

(m)
n (θ i−1; ζ i)

= θ
(m)
i−1 − ·i

m

m∑

j=1

ĝ
hi,v

(j)
i

(θ i−1; ζ i).

Here we orst consider using the same sampling distribution

acrossm queries and n iterations. In other words, v
(j)
i is sampled

iid from Pv for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Analogous
to Theorem 3.3, we present the asymptotic distribution ofmulti-
query (AKW),

Theorem 3.6. Under the assumptions in Theorem 3.3, the (m+
1)-query (AKW) estimator has the following asymptotic distri-
bution, as n → ∞,

√
n

(
θ

(m)

n − θ�
)

�⇒ N
(
0,H−1QmH

−1
)
, where

Qm = 1

m
Q + m − 1

m
S.

Theorem3.6 illustrates a tradeof efect between the statistical
eociency and computational eociency. When m = 1 and only
two queries of function evaluations are available, Theorem 3.6
reduces to Theorem 3.3, and Qm = Q. Conversely, as m → ∞,
we have Qm → S. Therefore, the asymptotic covariance of

(m + 1)-query (AKW) estimator θ
(m)

n approaches the optimal
covarianceH−1SH−1 asm approaches inonite. Nevertheless, the
algorithm requires m function-value queries at each iteration,
which signiocantly increases the computation complexity.

For a onitem, a slight revision of the sampling scheme of the

direction vectors {v(j)
i }j=1,2,...,m provides a remedy to achieve a

smaller and indeed optimal asymptotic covariance matrix. Par-
ticularly at the ith iteration, one may samplem direction vectors

{v(j)
i }j=1,2,...,m from a discrete distribution (such as (I) and

(U))without replacement. In such settings, the direction vectors{
v
(1)
i , v

(2)
i , . . . , v

(m)
i

}
are no longer independent but they have

the same marginal distribution. The asymptotic distribution of
the multi-query (KW) algorithm sampling without replacement
is provided in the following theorem.

Theorem 3.7. Under the assumptions in Theorem 3.3, and the
direction vectors in all iterations

{
Ṽi

}n
i=1

are iid from Pv such

that Ṽi =
(
v
(1)
i , v

(2)
i , . . . , v

(m)
i

)
follows discrete sampling scheme

in (I) and (U) WithOut Replacement (WOR), the (m + 1)-

query (AKW) estimator, referred to as θ
(m,WOR)

n , has the follow-
ing asymptotic distribution, as n → ∞,

√
n

(
θ

(m,WOR)

n − θ�
)

�⇒ N

(
0,H−1Q(WOR)

m H−1
)
, where

Q(WOR)
m = (d − m)

m(d − 1)
Q + d(m − 1)

m(d − 1)
S.
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By comparing the asymptotic covariance matrices in Theo-

rems 3.6 and 3.7, Q
(WOR)
m for sampling without replacement case

is strictly smaller than Qm in Theorems 3.6 when we consider
multi-query evaluation (m ≥ 2). Moreover, when m = d, it

is easy to see that Q
(WOR)
m = S. Therefore, the (d + 1)-query

(AKW) estimator θ
(m,WOR)

n achieves the same limiting covariance
as that of the averaged (RM) estimator. Under a well-specioed
parametric model, the limiting covariance matrix H−1SH−1

achieves the Cramér-Rao lower bound. This result indicates that
the (d + 1)-query θ

(d,WOR)

n is asymptotically eocient (van der
Vaart 2000).

3.3. Asymptotic Behavior of (AKW) Estimator for

Nonsmooth Losses

The analysis of the asymptotic distribution of the (AKW) esti-
mator remains valid naturally for some nonsmooth loss func-
tions F(θ) including quantile regression, speciocally:

Example 3.8 (Quantile Regression). Consider a quantile regres-
sion model yi = x

�
i θ� + εi where {ζ i = (xi, yi), i = 1, 2, . . . , n}

is an iid sample of ζ = (x, y) and the noise εi is independent
from xi and Pr(εi ≤ 0) = τ . The individual loss f (θ ; ζ ) =
ρτ (y− x

�θ), where ρτ (z) = z(τ − 1{z<0}). Although ρτ is non-
diferentiable, the (KW) gradient estimator ĝh,v is well-deoned
and takes the following form,

ĝh,v(θ ; {x, y}) =v

h

[
ρτ

(
y − x

�(θ + hv)
)
− ρτ

(
y − x

�θ
)]

=vv
�
x
(
τ − 1{y−x�θ<0}

)
,

for 0 < h <

∣∣∣∣
y − x

�θ

x�v

∣∣∣∣ .

We next statemodeling assumptions for some nonsmooth losses
including Example 3.8.

Assumption 5. Assume that f (θ ; ζ ) = ρ(y−x
�θ)whereρ(u) is a

convex function with a subgradientψ(u), and |ψ(u)| ≤ C(|u|+
1) for some constantC > 0. The covariates x is independent of ε
and x has onite eighth moments and nondegenerate covariance
matrices. Assume the probability density function p(x) of ε is
in C3, its derivatives up to third order are all integrable, and
ε has onite fourth moment. Assume φ(u) = E[ψ(u + ε)] is
diferentiable, φ(0) = 0, and uφ(u) > 0 for any u �= 0. We
further assume φ′(0) > 0, and there exist constants C > 0 such
that |φ′(u)| ≤ C and |φ′(u) − φ′(v)| ≤ C|u − v|.

Assumption 5 essentially guarantees that the population loss
function F(θ) is smooth and locally strongly convex, and the
distribution of the noise ε is smooth enough such that, the
empirical loss (averaged individual loss) well approximates the
population loss asymptotically. We now restate Theorem 3.3 for
certain nonsmooth losses under Assumption 5. The proof of
Theorem 3.9 is relegated to Section A.3 of the supplementary
material.

Theorem 3.9. Let Assumptions 4 and 5 hold. Under the stepsize
and spacing parameter conditions specioed in Theorem 3.3, the

averaged estimator θn satisoes,

√
n

(
θn − θ�

)
�⇒ N

(
0,H−1QH−1

)
, as n → ∞,

(15)

where Q = E[vv�Svv�], S = E[ψ2(ε)xx�], and H =
E[φ′(0)xx�].

From Theorem 3.9, we know that the (AKW) estimator of
the above quantile regression model is asymptotically normal
with asymptotic covariance matrixH−1QH−1 whereQ depends
on the sampling directions (see Proposition 3.5). In an quantile
regression Example 3.8 when the noise ε follows the normal
distribution with standard deviation 1 and Pr(ε ≤ 0) = τ ,
a direct computation shows H = ϕ

(
�−1(τ )

)
E[xx�], where ϕ

and� are the probability and cumulative distribution functions
of a standard normal distribution. Furthermore, if v is sampled
uniformly from the canonical basis with two function queries,
we can see from Proposition 3.5 that Q = Q(I) = ddiag(S)
where S = τ(1 − τ)E[xx�].

4. Online Statistical Inference

In the previous section, we provide the asymptotic distribution
for the (AKW) estimator. For the purpose of conducting statisti-
cal inference of θ�, we need a consistent estimator of the limiting
covariance H−1QH−1 in (12). A direct way is to construct a

pair of consistent estimators Ĥ and Q̂ of H and Q, respectively,
and estimate the asymptotic covariance by the plug-in estimator

Ĥ−1Q̂Ĥ−1. Onine construction of those estimators is generally
straightforward. However, as the (KW) scheme typically applies
to sequential data, it is ideal to estimate the asymptotic covari-
ance in an online fashion without storing the data. Therefore,
one cannot simply replace the true parameter θ� by its estimate
θn in Q and H in an online setting, since we can no longer
access the data stream {ζ i}ni=1 aver the estimator θn is obtained.
To address this challenge, we orst propose the following onite-
diference Hessian estimator at each iteration n:

G̃n =
d∑

k=1

d∑

�=1

G̃n,kleke
�
� (16)

= 1

h2n

d∑

k=1

d∑

�=1

[
�hn,ek f (θn−1 + hne�; ζ n)

−�hn,ek f (θn−1; ζ n)
]
eke

�
� .

This construction can be viewed as a multi-query (with d2 + 1
queries of function values at each iteration) (KW) scheme with
the (I) choice of the random directions. Other choices of
the search directions can be used as well, and discussions are
provided in Section B.1 of the supplementary material. Each
additional function-value query beyond the orst one provides
an estimate G̃n,kl for the (k, l)th entry of the matrix G̃n. To
reduce the computational cost in G̃n, at each iteration, the
algorithm may compute a random subset of entries of G̃n and
partially inhere the remaining entries from the previous esti-
mator G̃n−1. For example, each entry G̃n,k� is updated with
probability p ∈ (0, 1]. The procedure thus requires O(pd2)
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function-value queries at each step. If we set p = O(1/d2),
then the query complexity is reduced toO(1) per step. Since the
construction of (16) does not guarantee symmetry, an additional
symmetrization step needs to be conducted, as

H̃n = 1

n

n∑

i=1

G̃i + G̃�
i

2
. (17)

The next lemma quantioes the estimation error of the Hes-
sian estimator H̃n in (17) and the proof is provided in Section B
of the supplementary material.

Lemma 4.1. Assume Assumptions 1, 2, 3, 4 hold, or Assump-
tions 4, 5 hold, then H̃n converges in probability toH. Addition-
ally, if Assumptions 1, 2, 3, 4 hold with δ1 = +∞ and δ = 2, we
have E‖H̃n − H‖2 ≤ C1n

−α + C2p
−1n−1.

From Lemma 4.1, as n → ∞, the error rate is dominated by
the C1n

−α term, where α is the parameter of the decaying step
sizes.

Remark 4.2. In construction of the estimator of the limiting
covariance matrix H−1QH−1, it is necessary to avoid the pos-
sible singularity of H̃n. A common practice is to adopt a thresh-
olding version of H̃n in (17). Let U�̃nU

� be the eigenvalue
decomposition of H̃n, and deone

Ĥn = U�̂nU
�, (18)

�̂n,kk = max
{
κ1, �̃n,kk

}
, k = 1, 2, . . . , d,

for any positive constant κ1 < λ where λ is deoned in Assump-
tion 1. It is guaranteed by construction that Ĥn is strictly positive
deonite and thus invertible.

On the other hand, the estimator of Gram matrix Q can be
naturally constructed as

Q̂n := 1

n

n∑

i=1

ĝhi,vi(θ i−1; ζ i) ĝhi,vi(θ i−1; ζ i)
�, (19)

where ĝhi,vi(θ i−1; ζ i) is the (KW) update in the ith iteration
obtained by (10). As both Ĥn in (18) and Q̂n in (19) can be
constructed sequentially without storing historical data,2 the
onal plug-in estimator Ĥ−1

n Q̂nĤ
−1
n can also be constructed in

an online fashion. Based on Lemma 4.1, we obtain the fol-
lowing consistency result of the covariance matrix estimator
Ĥ−1
n Q̂nĤ

−1
n .

Theorem 4.3. Assume Assumptions 1, 2, 3, 4 hold, or Assump-
tions 4, 5 hold. Under the stepsize and spacing parameter
conditions specioed in Theorem 3.3 or Theorem 3.9, we have
Ĥ−1
n Q̂nĤ

−1
n converges in probability to H−1QH−1.

Furthermore, if Assumptions 1, 2, 3, 4 hold with δ1 = +∞
and δ = 2, we have E

∥∥Ĥ−1
n Q̂nĤ

−1
n − H−1QH−1

∥∥ ≤ Cn−α/2.

We defer the technical proof to Section B of the supplemen-
tary material. Theorem 4.3 establishes the consistency and the

2The sequence Q̂n := 1
n

∑n
i=1 Qi with Qi = ĝhi ,vi (θ i−1 ; ζ i) ĝhi ,vi (θ i−1 ; ζ i)

�
can be constructed in one pass over the sequential data. In particular, we

could compute Q̂n = 1
n ((n − 1)Q̂n−1 + Qi) sequentially.

rate of the convergence of our proposed covariance matrix esti-
mator Ĥ−1

n Q̂nĤ
−1
n . Given Theorems 3.3 and 4.3, a conodence

interval of the projected true parameter w
�θ� for any w ∈

R
d can be constructed via a projection of θn and Ĥ−1

n Q̂nĤ
−1
n

onto w. Speciocally, for a pre-specioed conodence level q and
the corresponding z-score zq/2, we obtain an asymptotic exact
conodence interval as n → ∞,

P

{
w

�θ� ∈
[
w

�θn −
zq/2√
n

√
w�Ĥ−1

n Q̂nĤ
−1
n w,

w
�θn +

zq/2√
n

√
w�Ĥ−1

n Q̂nĤ
−1
n w

]}
→ 1 − q.

4.1. Online InferenceWithout Additional Function-Value

Queries

Despite the simplicity of the plug-in approach, the proposed
estimator Ĥ−1

n Q̂nĤ
−1
n incurs additional computational and stor-

age cost as it requires additional function-value queries for
constructing Ĥn. It raises a natural question: is it possible to
conduct inference only based on (KW) iterates {θ i}i=1,2,... without
additional function-value queries?

In this section, we provide an aormative answer to this
question, and propose an alternative online statistical inference
procedure using the intermediate (KW) iterates only, without
requiring any additional function-value query. Intuitively, the
(AKW) estimator in (6) is constructed as the average of all inter-
mediate (KW) iterates {θ i}ni=1. If all iterates were independent
and identically distributed, the asymptotic covariance could
have been directly estimated by the sample covariance matrix of
the iterates 1

n

∑n
i=1(θ i − θ)(θ i − θ)�. Unfortunately, the (KW)

iterates are far from independent and indeed highly correlated.
Nevertheless, the autocorrelation structure of the iterates can
be carefully analyzed and used to construct the estimator of
H−1QH−1.

In this article, we adopt an alternative approach to take more
advantage of the autocorrelation structure by leveraging the
techniques from robust testing literature (Abadir and Paruolo
1997; Kiefer et al. 2000; Lee et al. 2022a). Such an estimator
is oven referred to as the Fixed Bandwidth Heteroscedasticity
and Autocorrelation Robust estimator (oxed-b HAR) in the
econometrics literature to overcome the series correlation and
heteroscedasticity in the error terms for the OLS estimates of
the linear regression. For stochastic approximation, Lee et al.
(2022a) orst used and generalized this technique to construct an
online statistical inference procedure, and refer to this method
as random scaling, followed by Lee et al. (2022b) and Chen
et al. (2023) for extension to quantile regression and generalized
method of moments.

In particular, we present the following theorem based on a
functional extension of the distributional analysis of the inter-
mediate (KW) iterates {θ t} as a stochastic process.

Theorem 4.4. For any w ∈ R
d, under the assumptions in

Theorems 3.3 or 3.9, we have

√
n
w

�(θn − θ�)√
w�Vnw

�⇒ W1√∫ 1
0 (Wr − rW1)

2 dr

, (20)
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Table 1. Cumulative probability table of the limiting distribution.

Quantile 90% 95% 97.5% 99%

Abadir and Paruolo (1997) Table 1 3.875 5.323 6.747 8.613

whereVn = 1
n2

∑n
i=1 i

2(θ i−θn)(θ i−θn)
�, and θ i = 1

i

∑i
�=1 θ�

is the average of iterates up to the ith iteration, and {Wt}t≥0 is the
standard one-dimensional Brownian motion.

As an important special case, when w = ek for k =
1, 2, . . . , d, we have the convergence in each coordinate to the
following pivotal limiting distribution,

√
n(θn,k − θ�

k)√
Vn,kk

�⇒ W1√∫ 1
0 (Wr − rW1)

2 dr

. (21)

For the asymptotic distribution deoned on the right hand side
in (21), we repeat the quantiles of the distribution published by
Abadir and Paruolo (1997) in Table 1.3 Combining the asymp-
totic results in (21) and Table 1, we can construct coordinate-
wise conodence intervals for the true parameter θ�. In addition,
as

Vn = 1

n2

n∑

i=1

i2(θ i − θn)(θ i − θn)
�

= 1

n2

n∑

i=1

i2θ iθ
�
i − θn

n2

n∑

i=1

i2θ
�
i − 1

n2

( n∑

i=1

i2θ i

)
θn

+ 1

n2

n∑

i=1

i2θnθ
�
n (22)

can be constructed in an online fashion via the iterative updates

of the matrix
∑n

i=1 i
2θ iθ

�
i and the vector

∑n
i=1 i

2θ i, the pro-
posed online inference procedure only requires one pass over
the data.

5. Numerical Experiments

In this numerical section, we orst investigate the empirical
performance of the proposed inference procedures and their
corresponding coverage rates. We consider linear regression
and logistic regression in this section (Examples 2.1–2.2) and
conduct simulations for quantile regression (Example 3.8) in the
next section. Here {xi, yi}ni=1 is an iid sample with the covariate
x ∼ N (0,�) and the response y ∈ R.We set the sample sizen =
105 and the parameter dimension d = 5, 20, 50. The true model
parameter θ� ∈ R

d is selected uniformly from the unit sphere.
For both models, we consider two diferent structures of the
covariance matrices �: identity matrix Id and equicorrelation
covariance matrix (Equicorr in the tables), that is, �k� = 0.2
for all k �= � and �kk = 1 for k = 1, 2, . . . , d. The stepsize
and spacing parameters for the orst 50 × d iterations are set
nat to avoid a sharp change in the learning rate. Particularly,

3Since the distribution on the right hand side of (20) is symmetric, we provide
one-side quantiles only.

Table 2. Estimation errors, averaged coverage rates, and average lengths of the
proposed algorithm with search direction (I) and two function queries (m = 1).

d � Estimation error Average coverage rate Average length

(standard error) Plug-in Oracle Fixed-b Plug-in Oracle Fixed-b

Linear
Identity 0.015 ( 0.005 ) 0.944 0.938 0.940 0.028 0.028 0.036

5 Equicorr 0.017 ( 0.006 ) 0.958 0.954 0.946 0.032 0.032 0.041
Identity 0.066 ( 0.010 ) 0.943 0.938 0.928 0.058 0.056 0.074

20 Equicorr 0.082 ( 0.014 ) 0.938 0.931 0.923 0.071 0.068 0.087
Identity 0.180 ( 0.018 ) 0.947 0.917 0.881 0.097 0.089 0.108

50 Equicorr 0.227 ( 0.026 ) 0.937 0.912 0.860 0.121 0.110 0.126

Logistic
Identity 0.037 ( 0.011 ) 0.946 0.938 0.916 0.065 0.065 0.075

5 Equicorr 0.042 ( 0.015 ) 0.934 0.932 0.908 0.073 0.073 0.085
Identity 0.152 ( 0.025 ) 0.943 0.937 0.862 0.128 0.125 0.136

20 Equicorr 0.177 ( 0.030 ) 0.939 0.935 0.848 0.154 0.150 0.158
Identity 0.404 ( 0.040 ) 0.914 0.912 0.688 0.199 0.197 0.140

50 Equicorr 0.495 ( 0.051 ) 0.920 0.917 0.620 0.245 0.241 0.142

NOTE: Sample size n = 105 . Corresponding standard errors are reported in the
brackets. We compare the plug-in covariance estimator (plug-in) based inference
(17) and oxed-b HAR (oxed-b) based inference (21).

the stepsize ·n = ·0(max{n, 50d})−α and spacing parameters
hn = h0(max{n, 50d})−γ where the exponents are set to α =
γ = 0.501 to satisfy the assumptions in Theorem 3.3. The
constant h0 is set to 0.01 for both examples, and ·0 is a tunable
hyperparameter. The variance of noise ε in the linear regression
model (Example 2.1) is set to σ 2 = 1. For both examples,
the algorithm initialized from θ0 randomly sampled spherically
with radius 0.01.

We orst report the performance of (AKW) with the search
direction uniformly sampled from the natural basis, referred to
as (I) in Section 3.1. In Table 2, we present the mean and
standard error of the estimation errors in the Euclidean norm
(i.e., ‖θn − θ�‖, see the orst column), with 100 Monte Carlo
simulations. Next, we set the nominal coverage probability as
95% and we project θ ∈ R

d onto ek to construct conodence
intervals, where ek is the standard basis inR

d with the kth coor-
dinate as 1 and the other coordinates as 0.We record the average
coverage rate and the average length of the intervals among the d
coordinates for (1) the plug-in covariancematrix estimator4 (16)
and (2) the oxed-b HAR procedure in (22), for each simulation
and report the mean coverage and median interval lengths. As
an oracle benchmark, we also report the length of the conodence
interval with respect to the true covariance matrix H−1QH−1

of the plug-in approach and the corresponding mean coverage
rate. As shown from Table 2, the coverage rate of the plug-in
covariance estimator and the oracle coverage rates are very close
to the desired 95% coverage, while the oxed-bHAR approach is
comparable in small dimension d = 5, 20 but has lower coverage
rates for the large dimension d = 50. The average lengths of
the plug-in method are comparable to the lengths derived from
the true limiting covariance. Due to the space constraints, we
relegate the additional simulation results for other choices of
direction distributions and multi-query methods to Section C
of the supplementary material.

4Here we use updating probability p = 1 for the plug-in estimation. In other

words, d2 + 1 queries of function values are obtained at each iteration.
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Table 3. Estimation errors, averaged coverage rates (Coverage), median interval
lengths (Length), and computation time (Time) of the proposed algorithm with
search direction (I), (S), (G) deoned in Section 3.1 and two function queries
(m = 1), under quantile regression model.

τ Search Estimation error Plug-in Fixed-b

direction (standard error) Coverage Length Time Coverage Length Time

(I) 0.041 ( 0.007 ) 0.923 0.033 318.9 0.893 0.041 99.7
(S) 0.042 ( 0.007 ) 0.950 0.040 306.4 0.885 0.041 89.0

0.1 (G) 0.043 ( 0.007 ) 0.896 0.032 344.4 0.873 0.043 83.8

(I) 0.027 ( 0.004 ) 0.903 0.020 303.7 0.915 0.028 94.8
(S) 0.026 ( 0.004 ) 0.904 0.020 295.0 0.919 0.027 85.4

0.5 (G) 0.027 ( 0.004 ) 0.928 0.022 268.5 0.911 0.028 64.2

(I) 0.041 ( 0.006 ) 0.934 0.034 299.8 0.900 0.041 93.7
(S) 0.041 ( 0.007 ) 0.949 0.040 293.1 0.904 0.042 84.9

0.9 (G) 0.043 ( 0.007 ) 0.892 0.032 267.3 0.897 0.043 64.0

NOTE: Sample size n = 106 , dimension d = 20. Corresponding standard errors are
reported in the brackets. We compare the plug-in covariance estimator (plug-in)
based inference (17) and oxed-b HAR (oxed-b) based inference (21).

5.1. Numerical Experiments on Non-smooth Loss Function

In this section, we provide simulation studies to illustrate the
performance of the (AKW) estimator and inference procedures
on quantile regression. Our data is generated from a linear
model, yi = x

�
i θ� + εi, where {ζ i = (xi, yi)}ni=1 is an iid

samplewith the covariate x ∼ N (0,�) and the noise {εi} follows
an iid normal distribution such that εi ∼ N (−σ�−1(τ ), σ 2),
Pr (εi ≤ 0 | xi) = τ . Here �(·) is the cumulative density func-
tion of standard normal distribution and �−1(·) is its inverse
function. For each quantile level τ ∈ (0, 1), the individual loss
is f (θ ; ζ ) = ρτ

(
y − x

�θ
)
, where ρτ (z) = z (τ − 1{z < 0}).

In this example, we have H = 1
σ
φ
(
�−1(τ )

)
E[xx�] and Q =

E[vv�Svv�] where S = τ(1 − τ)E[xx�], according to Theo-
rem 3.9. The explicit form of Q is provided in Proposition 3.5,
for example, if we sample uniformly from the canonical basis
with two function queries (m = 1), then Q(I) = d diag(S).

In the numerical experiments below, we ox sample size n =
106, dimension d = 20, and the noise variance σ 2 = 1. The step-
sizes and spacing parameters are set with the same speciocations
as the previous experiment except for h0 = 1 and ·0 = 0.03.
We present our results below in Table 3 with three quantile
levels τ = 0.1, 0.5, 0.9 and three searching direction schemes
(I), (S), (G), detailed descriptions of which are presented in
Proposition 3.5 of Section 3.1. Reported numbers contain the
mean and standard error of the estimation error for the plug-in,
and mean coverage rate and median interval lengths for plug-
in and oxed-b procedures of constructing conodence intervals,
based on 100 Monte Carlo simulations. We further report the
mean computation time for the two procedures recorded on
compute nodes equipped with dual CPU sockets of 24-core Intel
Cascade Lake Platinum 8268 chips. As can be inferred from
the table, both procedures have good coverage rates. The oxed-
b HAR inference structure generates slightly larger conodence
intervals with computes four times faster since it does not need
additional function queries to compute the Hessian estimator.

Supplementary Materials

The supplementary materials include: (1) all the proof details for the lem-
mas and main theorems, (2) additional results of numerical experiments.
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