
Assortment Planning for Recommendations at Checkout Under
Inventory Constraints

Xi Chen,a Will Ma,b,* David Simchi-Levi,c Linwei Xind

a Stern School of Business, New York University, New York, New York 10012; b Graduate School of Business, Columbia University, New York,
New York 10027; c MIT Institute for Data, Systems, and Society; Department of Civil and Environmental Engineering; and Operations
Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; d Booth School of Business, University of Chicago,
Chicago, Illinois 60637

*Corresponding author

Contact: xchen3@stern.nyu.edu, https://orcid.org/0000-0002-9049-9452 (XC); wm2428@gsb.columbia.edu,
https://orcid.org/0000-0002-2420-4468 (WM); dslevi@mit.edu, https://orcid.org/0000-0002-4650-1519 (DS-L);

linwei.xin@chicagobooth.edu, https://orcid.org/0000-0002-8160-6877 (LX)

Received: July 23, 2018

Revised: October 1, 2019; November 3, 2020;

August 19, 2022

Accepted: January 15, 2023

Published Online in Articles in Advance:

February 23, 2023

MSC2020 Subject Classification: Primary:

68W27

https://doi.org/10.1287/moor.2023.1357

Copyright: © 2023 INFORMS

Abstract. In this paper, we consider a personalized assortment planning problem under
inventory constraints, where each arriving customer type is defined by a primary item of
interest. As long as that item is in stock, the customer adds it to the shopping cart, at which
point the retailer can recommend to the customer an assortment of add-ons to go along with
the primary item. This problem is motivated by the new “recommendation at checkout” sys-
tems that have been deployed at many online retailers, and it also serves as a framework
that unifies many existing problems in online algorithms (e.g., personalized assortment
planning, single-leg booking, and online matching with stochastic rewards). In our problem,
add-on recommendation opportunities are eluded when primary items go out of stock,
which poses additional challenges for the development of an online policy. We overcome
these challenges by introducing the notion of an inventory protection level in expectation
and derive an algorithm with a 1/4-competitive ratio guarantee under adversarial arrivals.

Funding: This work was supported by the Adobe Data Science Research Award and the Alibaba Inno-
vation Research Award. L. Xin was partly supported by the National Science Foundation (NSF)
[Award CMMI-1635160], X. Chen was supported by the NSF [CAREER Award IIS-1845444]. W. Ma
and D. Simchi-Levi were supported by the Accenture and MIT Alliance in Business Analytics.

Keywords: revenue management • personalized recommendations • online algorithms • competitive ratio

1. Introduction
The past decade has seen a tremendous increase in the sophistication of online recommendation systems. Because
different customers arriving to the website have different preferences, instead of recommending the same products
to everyone, personalized recommendation has become widely adopted for both enhancing customer experience
and boosting revenue. For example, Amazon.com makes recommendations based on a customer’s past purchases,
the ratings that customer has given to products, and the purchasing behavior of similar customers; this has dramati-
cally increased click-through and conversion rates (Linden et al. [30]). Another example is Netflix, which tailors
recommendations of movies to customers’ taste. A recent paper by Wood [41] highlights the popularity of personal-
ized recommendation, reviewing several start-ups that are adopting customer-specific operational decisions,
including Stitch Fix, Trunk Club, Birchbox, and Club W.

Despite the success of personalized recommendations, it is often difficult to accomplish: many customers are
transient and make a one-time purchase without registering an account. Even when historical purchasing informa-
tion is available, it can be irrelevant or misleading, because a customer can return to the website planning to pur-
chase products in a different category. One way to overcome these obstacles is to make recommendations based on
the product a customer has added to her shopping cart. For example, in Figure 1, which is taken from the furniture
retailer West Elm, the customer has added a dining table to her shopping cart, and the website has recommended
an assortment of chair sets that could accompany the table. As another example, Walmart has begun to implement
this idea in the form of a new recommendation-at-checkout system for its online grocery. As described in Yuan et al.
[44], “When a customer finishes shopping and clicks checkout, she would see a ‘stock up’ page with at most 8 addi-
tional items recommended, generated by our system” (p. 62, italics in original). In contrast to traditional recommen-
dation systems, Walmart’s recommendation-at-checkout system is based on the products that the customer is

297

MATHEMATICS OF OPERATIONS RESEARCH
Vol. 49, No. 1, February 2024, pp. 297–325

ISSN 0364-765X (print), ISSN 1526-5471 (online) https://pubsonline.informs.org/journal/moor

mailto:xchen3@stern.nyu.edu
https://orcid.org/0000-0002-9049-9452
mailto:wm2428@gsb.columbia.edu
https://orcid.org/0000-0002-2420-4468
mailto:dslevi@mit.edu
https://orcid.org/0000-0002-4650-1519
mailto:linwei.xin@chicagobooth.edu
https://orcid.org/0000-0002-8160-6877

already purchasing. The recommended products are usually complementary to the products already in the cart
(e.g., cereal to go with milk) and can even be offered at discounted prices and seen as a bundle deal.

1.1. Model and Main Tension
Motivated by these recommendation-at-checkout systems, we consider the following dynamic recommendation
problem. A firm is selling n items with starting inventory amounts b1, : : : , bn, and there is no replenishment. Custo-
mers arrive sequentially, and each customer t plans on buying her primary item it (the dining table, in the example in
the preceding paragraph). As long as item it is in stock, the customer adds it to her shopping cart. At this point, the
system recommends to the customer an assortment of add-on items (the three chair sets, in the aforementioned exam-
ple). Add-ons that are out of stock cannot be recommended. In its full generality, our model allows for add-ons to
be sold at a fixed discount, and constraints on how many or what types of add-ons can be recommended.

The customer chooses at most one of the add-ons to purchase alongside item it, according to known choice proba-
bilities. These choice probabilities are estimated by aggregating the decisions of past customers who added it to
their shopping carts. In this vein, it can be seen as the type of customer t, and our model allows for general, different
choice functions for customers with different primary items. That is, we allow for n different choice functions, each
of which is associated with a different primary item. We make a mild substitutability assumption on these choice
functions, as introduced in the recent papers by Golrezaei et al. [24] and Gallego et al. [23]; this assumption essen-
tially says that the recommended add-ons are substitutes (in the preceding example, the chair sets are clearly substi-
tutes for each other, because the customer would want at most one to go alongside the dining table).

In this work, we do not consider the learning problem; instead, we focus on the dynamic optimization problem
when the choice functions are given. Our goal is to develop a recommendation algorithm, which sequentially deci-
des on the add-on assortment, whenever a primary item is added to a customer’s shopping cart. The objective is to
maximize the expected profit earned before the selling season is over or the inventories run out. We take the
sequence of primary items as exogenously given, and our control lever is which add-ons to recommend.

Figure 1. (Color online) Screenshot taken from WestElm.com.

Chen et al.: Assortment Planning for Recommendations at Checkout
298 Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS

https://www.westelm.com/

Online personalized assortment planning is a challenging problem because of the inventory constraints that tie
together the assortments that can be recommended to the heterogeneous customers. A few recent papers have pio-
neered the study of this problem under different settings (Bernstein et al. [4], Gallego et al. [23], Golrezaei et al.
[24]). Compared with existing models, the following aspects of our recommendation-at-checkout problem intro-
duce additional challenges for the development of an online policy.

1. In the previously considered choice models, if a specific item is unavailable, it does not decrease the customer’s
interest in other items. By contrast, in our problem, if a customer’s primary item has stocked out, then she never
adds it to her shopping cart, and there is no opportunity to recommend other add-on items.

2. Most existing work on assortment optimization assumes that each item has a fixed price. Our results hold
even if each item has a discounted price whenever it is recommended as an add-on. In this case, the total profit can-
not be analyzed by tallying the inventory depleted (as is done in the previous work), because one would not know
how much of that inventory was sold at the full versus discounted price.

All in all, in existing models, an item is withheld from the assortment shown only to reduce the cannibalization
of other sales. In our model, with or without discounted add-on prices, the system may want to withhold an item
because it could be someone else’s primary item. As a result, our problem requires new insights on the trade-off between
recommending add-ons to maximize immediate profit and preserving inventory over time.

1.1.1. Discussion of the Model and Primary Item Assumption. We take the perspective of the “recommendation at
checkout” team at an e-commerce platform who only recommends add-ons but has no control over the primary
items it being checked out. Moreover, we assume there is no substitution in the primary items-that is, stocking out
of one item (as a result of frequently recommending it as an add-on) does not cause customers to substitute similar
ones for their primary items. We justify this assumption in three ways. First, many e-commerce platforms display
items in the initial search even if they are out of stock, making customers less likely to substitute with a second
choice (contrast this with add-ons, where out-of-stock items can be deliberately omitted). Second, because we are
anchoring customers’ choice models to their primary item it, allowing for a customer t to have multiple it’s in mind
requires an explosion of customer types that is not easy to model (see Xu and Wang [42]; such a model depends on
whether the customer is forward looking to the add-on assortment). Finally, the main tension introduced in our rec-
ommendation problem is not about substitution, and our main technique of a “protection level in expectation” (dis-
cussed subsequently) is needed even in a setting with no substitution. We allow for substitution in the add-ons
because the generality is convenient.

1.2. Performance Metric and Main Result
To evaluate online recommendation algorithms, we adopt the worst-case competitive ratio as our performance met-
ric. Under this metric, no assumptions are made about the types of future customers; the sequence of customer
types can be thought of as chosen adversarially. The benefit of this metric theoretically is that it provides a universal
approximation guarantee that is irrespective of the arrival process; the competitive ratio is a lower bound to the
approximation ratio under any forecasted stochastic arrival model. In practice, algorithms that maximize the com-
petitive ratio are used in settings where the demand is highly uncertain or used in conjunction with forecasting
algorithms. For more background on why the competitive ratio is useful, we refer to the book by Borodin and
El-Yaniv [7]. Evidence of practical efficacy is also demonstrated through numerical simulations of our competitive-
ratio-based algorithm; these are presented in Section 6.

To define the competitive ratio, let OPT(i1, : : : , iT) denote an upper bound based on a linear program (LP) (speci-
fied in Section 2.2) to the expected profit of any algorithm, even one that knows both the problem instance I

(including choice functions, prices, and initial inventories) and the sequence of customer types i1, : : : , iT in advance.
Let ALG(i1, : : : , iT) denote the expected profit of an online algorithm, which knows I but does not know in advance
the sequence i1, : : : , iT. Note that neither algorithm knows in advance the outcomes of the randomness in the custo-
mers’ purchase decisions. We then define the competitive ratio of the algorithm to be

inf
I

inf
i1, : : : , iT

ALG(i1, : : : , iT)
OPT(i1, : : : , iT)

: (1)

Our main result is an algorithm whose competitive ratio is at least 1=4� ε, where ε�is an error that can be made arbi-

trarily small at the expense of runtime polynomial in 1ε. The error of ε�is introduced by the fact that our overall algo-

rithm needs to sample its own decisions from the past.

Chen et al.: Assortment Planning for Recommendations at Checkout
Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS 299

1.3. Directly Related Existing Results
We explain our new algorithmic techniques in Section 1.4 but first motivate them by discussing the existing algo-
rithms and bounds that are closely related.

Consider the special case of our problem where the primary item for each customer is a different dummy item
with price 0 and starting inventory 1. In this case, there is no concern about primary items stocking out, and an
assortment of nondummy items (with fixed add-on prices) can be recommended to each of the arriving customers.
This is the personalized assortment problem introduced in Golrezaei et al. [24]. They prove that for any starting
inventory amounts and substitutable choice models, the competitive ratio is at worst 1/2. This worst case arises
when the starting inventories are 1, in which case the algorithm of Golrezaei et al. [24] is equivalent to the greedy
algorithm, maximizing the immediate profit from each customer without considering future inventory.

In our general problem, there is the further concern about protecting items, because each unit of inventory could
sold in one of two ways—the “good option,” where it is sold as a primary item, and the “bad option,” where it is
sold as an add-on—with the good option being better than the bad option by a potentially unbounded factor
(because the good option enabled the recommendation of other items). This trade-off has been analyzed in the
single-leg booking problem by Ball and Queyranne [3] and Lan et al. [28]. For a single item with two selling options,
a competitive ratio of 1/2 can be achieved by a simple rule: flip a coin of probability 1/2; if heads, protect all units of
the item from being sold under the bad option; if tails, allow all units of the item to be sold under either option.

It may appear that our competitive ratio of 1/4 is easily obtained by combining these two existing results. Indeed,
one could decide whether to protect each item with probability 1/2, losing a factor of 1/2, and otherwise maximize
the immediate profit from each customer, losing another factor of 1/2 as a result of being greedy. However, this is
not the case, because in our problem, the majority of the profit could require a specific combination of items. For
example, for an arrival sequence, the majority of the profit could occur from selling item 2 as an add-on to item 1, in
which case the algorithm only obtains this profit if it both (i) decides to protect item 1 from selling out as an add-on
and (ii) decides not to protect item 2 from being sold as an add-on.

If we use the strategy of protecting each item with probability 1/2 independently, then in the preceding example
where the profit comes from selling item 2 as an add-on to item 1, we have already lost a factor of 1=2 × 1=2 � 1=4
before getting to any additional factor lost as a result of being greedy. Therefore, this does not achieve a competitive
ratio of 1/4. In fact, it appears that any algorithm that fixes the items and levels of inventory to protect beforehand,
even if it determines these using some coordinated randomness, has a competitive ratio strictly less than 1/4; we
explain using a detailed example in Section 2.3.

1.4. New Algorithmic Techniques
This brings us to our main algorithmic innovation, which is a protection level in expectation. Our algorithm ensures
that the expected number of units of each item sold under the bad option does not exceed half of its starting inven-
tory, where the expectation is over all possible realizations of the purchase decisions of past customers (and the expecta-
tion can be computed because the types of past customers have already been revealed). By contrast, the existing
algorithms fix the inventory to protect beforehand and only ensure that on any specific realization the protected
inventory is not sold under the bad option.

Our algorithm is defined by a simple greedy rule:

Recommend the profit-maximizing add-on assortment to each customer while ensuring that the expected units of
each item sold as an add-on never exceeds half of its starting inventory.

Of course, although this constraint is related to the expected remaining inventory, the algorithm is also physically
constrained from recommending any items whose realized remaining inventory is 0. As a result, implementing
such a rule poses many challenges. For example, suppose that both items i and j have remaining inventory in reality
and that the algorithm is deliberating whether to maximize immediate profit by recommending item j as an add-on
to primary item i. Let dcurrj denote the expected number of units of item j that have been sold as an add-on thus far.
To evaluate whether recommending item j would push dcurrj above its allowable threshold, the algorithm must
know the following:
• If item j is recommended given the current inventory state, how much is added to dcurrj ? In other words, what

is the measure of the present inventory state that has been realized?
• What are the other possible inventory states for the present time step, and what decisions would have been

made on those?
We answer these questions by envisioning time as passing fluidly over a unit interval [0, 1] for each time step. We

consider the entire distribution for the inventory state (I1, : : : , In) at the start of the time step and evaluate how the
values of (dcurr1 , : : : , dcurrn) would increase if we recommend at each state the profit-maximizing assortment from

Chen et al.: Assortment Planning for Recommendations at Checkout
300 Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS

the items j such that both Ij > 0 and dcurrj <
bj

2 . If this causes any add-on thresholds to be violated by the end of the

time step, then we consider the first breakpoint s∗ in [0, 1] where dcurrj∗ has reached its threshold for some item j∗.

Over the time interval [0, s∗], we recommend the already computed profit-maximizing assortments at each inven-
tory state. In the time interval after s∗, we reoptimize the assortments for each state, where j∗ is no longer eligible to
be an add-on (and this could completely change the optimal assortments). The algorithm repeats this process,
potentially adding multiple breakpoints in a time step, until the end of the continuous interval [0,1] is reached with
no threshold violations. Finally, the algorithm returns to reality and makes the corresponding decision given the
inventory state at hand, which is in the form of a random assortment if there were breakpoints during the time step.

There is a final computational challenge caused by the fact that there could be exponentially many inventory
states for a time step. To compensate, at the start of each time step, we sample a fresh empirical distribution for the
inventory state using the known customer types i1, : : : , it�1 and simulating the random purchase decisions of these
customers (while also simulating the random assortments previously recommended by the algorithm). This simu-
lation idea is based on Ma [32], who presents an algorithm that makes decisions based on expectations over all sam-
ple paths instead of the realized sample path. However, our algorithm also incorporates the fact that the customer
type information it is arriving online, which requires new simulations to be run at each time t. To our knowledge,
our work is the first to synthesize this simulation idea (also used in Adamczyk et al. [1] and Brubach et al. [8],
among others) with the online information structure of competitive ratio analysis.

1.5. New Analytical Bounds and Comparison with Literature
Bounding the competitive ratio of our online algorithm, which makes decisions based on expectations and esti-
mates them via sampling, also requires new analytical techniques.

We first review the competitive ratio bounds for the personalized assortment (Golrezaei et al. [24]) and single-leg
booking (Ball and Queyranne [3], Lan et al. [28]) problems from the literature, as well as the online matching with
stochastic rewards problem studied in Mehta and Panigrahi [35] and Mehta et al. [36]. The online matching with
stochastic rewards problem is a special case of the personalized assortment problem when the items yield the same
reward and the assortment shown is constrained to size 1. Therefore, our problem generalizes all three of these pro-
blems, following the explanation in Section 1.3 of how our problem captures the first two problems. Overall, our
model incorporates the aspect of inventory protection (studied for one item in the single-leg booking problem) into
the online assortment and matching problems (where inventory protection was previously a nonfactor).

Table 1 presents a detailed comparison of our model with existing models, as well as our bounds with existing
bounds.

Although the competitive ratio achieved by our analysis is smaller, we do provide an upper bound showing that
the existing competitive ratios cannot be achieved for our more general problem. Also, although our lower bound
of 1/4 on the competitive ratio does not match our upper bound of 0.43, we are not aware of any tight competitive
ratio results under both (i) uncertainty in purchasing and (ii) small starting inventories. To highlight the difficulty

Table 1. Comparison of problems and competitive ratios. For each row, bold font indicates the greatest generality.

Problem
Real-time personalized

assortment optimization
Online matching

w/stochastic rewards
Two-fare single-leg
booking problem

Recommendation at
checkout

Reference Golrezaei et al. [24] Mehta and Panigrahi
[35]

Ball and Queyranne [3] This paper

No. of items Multiple Multiple Single Multiple

Prices of items One price per item Same reward for all
items

Two prices per item Two prices per item

Choice function Arbitrary; assume
substitutabilitya

Purchase probabilities
for single items

Deterministic Arbitrary; assume weak

substitutabilitya

Lower bound 1
2
b 1

2
c 1

2
1
4 � ε

Upper bound 0.621 1
2 0.43

aGolrezaei et al. [24] introduce a necessary, mild substitutability assumption on the choice model, where the purchase probability of an item can
only decrease as additional items are added into the assortment. We call our assumption weak substitutability because while we assume
substitutability between the add-ons, we allow the purchase probability of an add-on to decrease (to 0) if the primary item is out of stock.

bThe competitive ratio improves from 12 to 1� 1
e ≈ 0:632 as the minimum starting inventory increases from 1 to ∞, and in this case, matches the

upper bound of 1� 1
e (the stronger upper bound of 0.621 from Mehta and Panigrahi [35] does not hold here because it requires unit starting

inventories).
cThe competitive ratio improves to 0.534 if the purchase probabilities approach 0 and 0.567 if they are also equal; the first statement is

attributable to Mehta et al. [36].

Chen et al.: Assortment Planning for Recommendations at Checkout
Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS 301

of the problem-even in the special case of online matching with stochastic rewards-with the further assumption
that every purchase probability is equal to a single infinitesimal value ρ, there is a gap between the lower bound of
0.567 and the upper bound of 0.621 (see Mehta and Panigrahi [35] and the later work by Mehta et al. [36]). Only
when (i) is relaxed and we have the deterministic online matching problem does a “random ranking” online algo-
rithm achieve a tight competitive ratio of 1� 1=e (see Karp et al. [26], its generalization by Aggarwal et al. [2], and
the unified analysis by Devanur et al. [18]). Alternatively, when (ii) is relaxed and the starting inventories approach
∞, an “inventory balancing” online algorithm can achieve a tight competitive ratio, also of 1� 1=e (see Golrezaei
et al. [24]; this result is closely related to the AdWords stream of research initiated in Buchbinder et al. [10], Kalyana-
sundaram and Pruhs [25], and Mehta et al. [37]). In Appendix C, we discuss why large starting inventories do not
appear to improve our competitive ratio, including an example under this regime that shows that the competitive
ratio must still be less than 1/2.

We see our guarantee of 1/4 as the natural baseline competitive ratio that combines the loss of 1/2 from the
online matching with stochastic rewards problem with the loss of 1/2 from items having a good option and a bad
option. It is particularly interesting to us that the competitive ratio of 1/4 is not immediately achieved by flipping a
coin for each item to decide whether to sell it under its bad option; instead, it is achieved by constraining the expected
units of each item sold under its bad option.

Finally, we would like to mention that unlike in the classical online matching problem, where it is immediate that
greedy is (1/2)-competitive (Aggarwal et al. [2], Karp et al. [26]), showing that greedy is (1/2)-competitive in the
online matching with stochastic rewards problem requires a probabilistic dual-balancing argument (Golrezaei et al.
[24], Mehta and Panigrahi [35]). Extending this to a (1/4)-competitive algorithm for our recommendation-at-checkout
problem requires new insights into how to define dual variables when the algorithm is based on expected add-on
sales instead of realized add-on sales. Furthermore, similar to Ma [32], we need to show that the ε�errors accumulated
from sampling do not propagate in a way such that the final competitive ratio is worse than 1=4� ε.

1.5.1. Additional Result When Add-on Profit Is Small. When the reward from selling an add-on is always lower
than that of the primary item, a simple algorithm that never offers add-ons is 1/2-competitive. More generally, if
the maximum reward from selling any add-on j relative to that of the primary item i is R, then the algorithm that
never offers add-ons is 1=(1+R)-competitive. In Section 5, we formally analyze this no-add-on algorithm and prove
these results.

This no-add-on algorithm has a worse guarantee than our algorithm whenever the value of R is large, which we
generally expect to be the case. Indeed, the reward earned from selling an item can be interpreted to be its profit mar-
gin, of price minus cost. Many online platforms carry “niche” products with high profit margins that are predomi-
nantly sold through recommendations. Additionally, in some industries, it is known that the majority of profit comes
from selling items that are usually the add-on. For example, when selling printers, a significant fraction of profit arises
from the cartridges that come as add-ons; in console gaming, a significant fraction of profit arises from games or acces-
sories instead of the console itself; and in airlines, a significant fraction of profit arises from the ancillary services.

1.6. Other Related Work
The papers that are most related to ours from a technical standpoint have already been discussed in Sections
1.3–1.5. In this section we emphasize several papers that have been previously unmentioned.

The retailing problem of planning a sequence of assortments over a finite horizon subject to various operational
constraints (e.g., assortment cardinality and inventory considerations) has been studied extensively since the semi-
nal papers by van Ryzin and Mahajan [40] and Mahajan and van Ryzin [34]. The model we study here, where the
trade-off is between immediate profit and future inventory, was originally studied specifically for the multinomial-
logit choice model by Talluri and van Ryzin [39] and Rusmevichientong et al. [38].

In this paper, instead of focusing on a specific choice model, we view the assortment decision as a generic lever
for managing the trade-off between different depletion options for the inventories, which have different profit rates
(see Chan and Farias [12] and Maglaras and Meissner [33]). Conceptually, our analysis holds as long as the add-ons
being recommended satisfy the substitutability condition. Computationally, our algorithm can run in polynomial
time as long as the single-period assortment optimization problem corresponding to any of the choice models given
can be solved efficiently. The paper by Cheung and Simchi-Levi [13] contains a recent summary on the state of the
art in single-customer assortment optimization. We also detail specific single-period assortment optimization ora-
cles that can be used under our framework in Section 2.1.

Our paper provides a worst-case approximation guarantee that makes no assumptions on the arrival sequence.
This benchmark is referred to as the competitive ratio under adversarial arrivals; see the book by Borodin and
El-Yaniv [7] or see the paper by Buchbinder et al. [11], which discusses some recent unified results. In the context of

Chen et al.: Assortment Planning for Recommendations at Checkout
302 Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS

the recent assortment planning literature, Golrezaei et al. [24] focus on the worst-case competitive ratio, whereas
Bernstein et al. [4] and Gallego et al. [23] consider improved approximation guarantees under additional assump-
tions about the arrival sequence.

Moreover, although our main focus is on assortment optimization, our problem is related to dynamic pricing with
inventory control. Since the seminal work of Gallego and van Ryzin [21], which introduces the runout price to deal with
inventory constraints, the dynamic pricing problem with limited inventory has received a lot of attention. A large of
amount of effort has been devoted to several important problems in dynamic pricing-for example, multiple product pric-
ing, inventory replenishment, correlated demands over time, and the presence of strategic customers. Please refer to
Elmaghraby and Keskinocak [19] and Bitran and Caldentey [5] for comprehensive review. We note that most existing
work assumes a stochastic model on the demand function; however, our framework allows an adversarially chosen arrival
sequence. Recently, some work in dynamic pricing studied adversarial models (e.g., adversarial demand (Bubeck et al. [9])
or adversarial features (Cohen et al. [14])). However, this work does not take inventory control into consideration.

1.7. Outline of the Paper
The rest of the paper is organized as follows. In Section 2, we introduce the specific models and assumptions (e.g.,
the problem definition and the general choice model considered in the paper). We also provide instances to moti-
vate our algorithm and establish the upper bound of the competitive ratio in Sections 2.3 and 2.4. This upper bound
result illustrates the key features of our problem. In Section 3, we describe our proposed algorithm with several
illustrative examples. We also provide the running time of the algorithm. In Section 4, we prove our main result,
which lower bounds the competitive ratio of our algorithm. In Section 6, we conduct numerical experiments.
Finally, we summarize our main contributions and propose directions for future research in Section 7.

2. Model Specification
Let R denote the set of real numbers, and let N denote the set of positive integers. For a general m ∈ N, let [m] denote
the set {1, : : : , m}.

A firm is selling n ∈ N different items. Each item j ∈ [n] starts with an initial inventory of bj ∈ N units, and there is
no replenishment. Each item has two prices: the full price rj ∈ R and a discounted price of rdisc

j ∈ R satisfying rj ≥
rdisc

j ≥ 0 (we allow for the single-price case where rj � rdisc
j).

Following the discussion in the introduction, assuming that leftover inventory does not perish, the firm’s objec-
tive is to prioritize selling items with a high price compared with cost. Therefore, “prices” rj and rdisc

j should actually
be interpreted as “profit margins” (price minus cost). However, as is standard in the revenue management litera-
ture, we will hereafter refer to rj and rdisc

j as prices and the amounts collected as revenue.
There are n customer types, one for each item i ∈ [n], characterized by the population of customers who arrive

planning to purchase item i at its full price. Any items that type i customers purchase other than i are sold at their
discounted prices. When a customer of type i arrives, assuming she can add her primary item i to the shopping cart,
the firm has an opportunity to recommend her an assortment of add-ons. The probabilities of how she would
decide between the add-ons is given in the form of a choice function, as we define next.

2.1. Choice Functions for Add-ons
Fix an i ∈ [n], and let Ai denote the collection of all add-on assortments that are feasible recommendations to a cus-
tomer of type i. For A ∈Ai and j ∈ [n] \ i, let qij(A) denote the probability that a type i customer chooses to purchase j
as an add-on to item i when shown add-on assortment A. Note that qij(A) can only be nonzero for j ∈ A and that it is
possible for

P

j∈Aqij(A) to be strictly less than 1, in which case 1�
P

j∈Aqij(A) is the probability that the customer pur-
chases no add-on. We make the following assumptions on Ai and the values of qij(A) for all customer types i.

Definition 1. We define the assumptions on feasible assortments and choice probabilities as follows.
(1) Assume Ai is a nonempty, downward-closed family of subsets of [n] \ i. That is, ∅ ∈Ai, and if A1 ⊆ A2 ∈Ai, then

A1 ∈Ai.
(2) The probability of selling an add-on j cannot be increased by recommending it in a larger assortment. That is,

if A1, A2 ∈Ai and j ∈ A1 ⊆ A2, then qij(A1) ≥ qij(A2).
(3) There is an efficient algorithm for solving the single-customer assortment optimization problem over Ai with

choice probabilities qij(A). That is, for any weights w1, : : : , wn ≥ 0, we are given an oracle that computes

max
A∈Ai

X

j∈A
wjqij(A): (2)

Assumptions (1)–(3) are very mild and also made in the related papers by Golrezaei et al. [24] and Gallego et al. [23].

Chen et al.: Assortment Planning for Recommendations at Checkout
Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS 303

Assumption (1) on Ai being downward-closed ensures that even if some add-ons stock out, the remaining
ones can still be feasibly recommended. It is satisfied if Ai is all subsets of [n] \ i, and it is also satisfied by natural
constraints on the recommended assortment, such as the space available for add-ons to be displayed.

Meanwhile, assumption (2) is called the substitutability assumption and is naturally satisfied by any choice
function that arises from a random-utility model, including the commonly used multinomial logit (MNL) and
nested logit models. Equivalently, it is also satisfied by any choice function that arises from a distribution over
rankings, such as the Markov chain choice model. It essentially says that the recommended add-ons are substi-
tutes, as is the case in Figure 1 from the introduction, where the customer needs at most one chair set to go along
with the dining table she is purchasing.

Finally, assumption (3) allows us to defer the static combinatorial optimization problem in (2) to the literature,
which focuses on single-customer assortment optimization. The unconstrained (i.e., Ai � 2[n]\i) single-customer
problem has been solved in polynomial-time for the aforementioned MNL (Talluri and van Ryzin [39]), d-level
nested logit (Li et al. [29]), and Markov chain (Blanchet et al. [6]) choice models. The constrained problem can be
solved for MNL (Rusmevichientong et al. [38]) and nested logit (Gallego and Topaloglu [20]) models and approx-
imately solved for several other variants (Désir et al. [16, 17]).

2.2. Problem Definition and Main Result
Having defined the recommendation and purchasing dynamics with a single customer, we now define the overall
problem. There are T ∈ N customers arriving sequentially. The type it ∈ [n] of a customer t ∈ [T] is revealed upon
arrival, and we say that she requests item it. If it has stocked out, then she leaves without making a purchase. Other-
wise, we say that she is served, in which case the firm can recommend to her an assortment of add-ons. The firm’s
goal is to maximize the total revenue earned in expectation before there are no more customers or when all items
sell out. However, the firm must make recommendation decisions in an online fashion without knowing the types
of future customers it+1, : : : , iT. A recommendation algorithm is evaluated by its performance relative to a clairvoy-
ant benchmark that knows the entire sequence i1, : : : , iT in advance.

To define this benchmark, we first introduce some notation. For most of this paper, it will be more convenient to
refer to assortments with the primary item i included.

Definition 2. We use the following notation.
(1) Let St refer to the assortment of all items seen by customer t, including item i. In the case where it is out of

stock, St � ∅. Otherwise, St � {i} ∪ A for some A ∈Ai. We say that St is the assortment offered to customer t.
(2) Let Si � {{i} ∪ A : A ∈Ai} denote the collection of all nonempty possibilities for St when customer t has type i.
(3) For all i ∈ [n] and S ∈ Si, let pij(S) denote the marginal probability that j ∈ [n] is sold when S is offered to a customer

of type i. Relating to previous notations in Section 2.1, we have that pij(S) � 1 if j � i, and pij(S) � qij(S \ i) otherwise.
Using the above-mentioned notation, we can define the clairvoyant benchmark to which the algorithm’s per-

formance will be compared. For any fixed sequence (i1, : : : , iT) of customer types, consider the following LP:

max
X

T

t�1

X

S∈Sit

rit +
X

j≠it

rdisc

j pitj(S)
!

yt(S)

s:t:
X

T

t�1

X

S∈Sit

pitj(S)yt(S) ≤ bj, j ∈ [n]

X

S∈Sit

yt(S) ≤ 1, t ∈ [T]

yt(S) ≥ 0 t ∈ [T], S ∈ Sit :

(3)

For all t, variable yt(S) corresponds to the unconditional probability that assortment S is offered to customer t. The
objective function is the expected revenue obtained as a result of these probabilistic offerings. The first set of con-
straints impose that the expected units of item j sold do not exceed its starting inventory of bj, whereas the next set
of constraints impose that the total probability of customer t being offered a nonempty subset is at most 1.

Let OPT(i1, : : : , iT) denote the optimal objective value of this LP. Although LP (3) has exponentially many deci-
sion variables and could be difficult to solve, it is only conceptually used by our analysis, and its solution is not
required by our algorithm. This type of LP is commonly referred to in revenue management as the (choice-based)
deterministic linear program (Gallego et al. [22]). It can also be found in discrete mathematics problems such as

Chen et al.: Assortment Planning for Recommendations at Checkout
304 Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS

stochastic knapsack (Dean et al. [15]). In either case, the following is a standard result. We provide a self-
contained proof of Lemma 1 in Appendix A.

Lemma 1. Let OPT(i1, : : : , iT) be an upper bound on the expected revenue obtainable by any algorithm, even one that
knows i1, : : : , iT at the start of the time horizon.

Having established OPT(i1, : : : , iT) as an upper bound, we are now ready to define the competitive ratio.

Definition 3. Fix an online algorithm. For a given instance I (consisting of choice functions, revenues, and start-
ing inventories), let ALG(i1, : : : , iT) denote the expected revenue earned by the algorithm when the sequence of
arrival types is i1, : : : , iT. Then the competitive ratio of the algorithm is

inf
I

inf
i1, : : : , iT

ALG(i1, : : : , iT)
OPT(i1, : : : , iT)

:

In other words, an adversary who knows the algorithm beforehand (but knows neither the outcome of any ran-
domness in the algorithm nor the customers’ purchase decisions) chooses an instance and arrival sequence to
minimize the online algorithm’s expected revenue as a fraction of OPT(i1, : : : , iT). By Lemma 1, an algorithm’s
competitive ratio cannot be better than 1, because OPT(i1, : : : , iT) is always an upper bound on expected revenue,
even when the online algorithm happens to “guess” the sequence i1, : : : , iT correctly. We note that this definition
of competitive ratio, based on the LP optimum, is standard in online problems where there is stochasticity in the
decisions of the arriving agents (see Golrezaei et al. [24] and Mehta and Panigrahi [35]).

We prove the following bound on the competitive ratio.

Theorem 1. For any ε > 0, our online algorithm (whose runtime is polynomial in 1ε�and the instance parameters) ha sa com-
petitive ratio at least 14 � ε.

Our algorithm needs to estimate probabilities by sampling virtual outcomes for the decisions of past customers,
which explains the error of ε. Before we describe our algorithm, we present an example that provides intuition by
illustrating the main “difficulty” in the problem.

2.3. A Motivating Example for Our Algorithm
We present an example demonstrating why the fixed-protection-level algorithm, which would follow naturally
from the existing literature discussed in Section 1.3, does not suffice for our problem.

Example 1. Fix N, M ∈ N, which are large integers with M≫N. There are n � 3 items, with starting inventories
b1 � b2 �N and b3 � 1. Item 1 is a dummy item with r1 � 0. Customers of type 1 can be recommended item 2 as
an add-on, earning a small but nonzero revenue of rdisc

2 � r2 � 1=N with probability (w.p.) 1. However, item 2 is
better used as a primary item for selling item 3, because customers of type 2 can be recommended item 3 as an
add-on to earn a large revenue of rdisc

3 �M with probability 1=N. Only customers of type 1 or 2 can arrive. Item 3
can be interpreted as a niche product that is more profitable but difficult to sell on its own, and it usually serves
as an add-on as a result of recommendations instead of as a primary item.

The arrival sequence begins with N customers of type 1, and the firm must decide how many units of item 2 to
sell as an add-on at the modest price of 1=N. If the firm is myopic and sells all of it, then this is suboptimal in the
scenario where the arrival sequence continues with N customers of type 2, because the firm would be forgoing N
opportunities to earn M/N expected revenue. On the other hand, if the firm sells none of item 2 as an add-on,
then it earns zero revenue in the scenario where no customers of type 2 arrive.

Following the discussion of the literature in Section 1.3, the firm can balance between the two extreme scenar-
ios by randomly deciding whether it is going to “protect” items from being sold as an add-on, with independent
probability 1/2 for each item. However, consider the scenario where type 2 customers do arrive. In order to real-
ize the opportunities of selling item 3 as an add-on, the firm must both (i) have inventory of item 2 remaining to
serve the type 2 customers and (ii) not be protecting1 item 3. By independence, this only occurs with probability
1/4, so the firm’s expected revenue would be

M · 1
4

1 � 1 �

1

N

� �N
 !

+ 1 ≈M · 1 � 1=e

4
: (4)

(Note that 1 is added to the left-hand side because of the revenue of N · 1=N from selling item 2 as a primary item,
which is negligible.) The result of (4) is less than 1/4 of the optimum defined in Section 2.2 using the LP, which
equals M · (1=N)N �M.

Chen et al.: Assortment Planning for Recommendations at Checkout
Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS 305

To our knowledge, there is no immediate solution to the problem demonstrated by (4). Even if the algorithm
made the improved decision on this example of protecting half of the units of item 2 deterministically (instead of
protecting all of the units with probability 1/2), its expected revenue would only increase to

M · 1
2

1 � 1 �

1

N

� �N=2
 !

+ 1 ≈M · 1 � 1=
ffiffi

e
√

2
, (5)

which is still less than 1/4 of the optimum. In fact, for any fixed fraction α�of starting inventory to protect, the
expected revenue on this example would be

≈M · (1 � α)(1 � e�α), (6)

which is strictly less than 1/4 of the optimum for any α ∈ [0, 1]. There also does not appear2 to exist a simple way to
improve on (6) by correlating the randomized rounding across items.

The issue with all of these methods is that the decision on how many units of each item to protect is (ran-
domly) fixed from the start, not adapting to the sequence encountered. In the preceding example, the algorithm
should be always willing to offer the single unit of item 3 as an add-on for the first time, because its probability of
being sold is only 1=N. Of course, it needs to stop after a certain number of times so that item 3 is not determinis-
tically sold as an add-on. This brings us to our main insight: the algorithm should keep track of the expected num-
ber of units of item 3 sold and stop offering it once this expectation hits a threshold so that item 3 is not always
sold as an add-on. Specifically, our algorithm freely offers an item as an add-on as long as both
• the number of units sold, in reality, has not reached its starting inventory, and
• the number of units sold as an add-on, in expectation over the purchase decisions of the sequence of customers

encountered, has not reached 1/2 of its starting inventory.
On this example, our algorithm would behave as follows. It would sell 1/2 of the N units of item 2 as add-ons

to item 1. Then, it would offer item 3 as an add-on to item 2 as long as the probability of item 3 being sold does
not exceed 1/2. Even after N=2 offerings (which is the maximum number of attempts because only N=2 units of
item 2 remain), the unconditional probability of item 3 being sold as an add-on is

1� 1�
1

N

� �N=2

≈ 1� 1=
ffiffi

e
√
� 0:393: : : ,

which is less than 1/2. Therefore, our algorithm would offer item 3 as long as it is available, earning expected reve-
nue M · (1� 1=

ffiffi

e
√
), which is twice the amount from (5) and surpasses the target competitive ratio of 1/4.

Our algorithm, in its full generality where assortments of multiple add-ons can be offered, is formally specified
in Section 3. We first modify the aforementioned example to establish an upper bound on the competitive ratio.

2.4. Upper Bound on Competitive Ratio
We use the example from Section 2.3 to generate an upper bound on the competitive ratio by choosing the worst-
case probability distribution between the two scenarios, of type 2 customers arriving versus not arriving.

Example 2 (Upper Bound Construction). Let C denote the constant 1
w, where w is the unique real number satisfying

wew � 1. Consider the following randomized arrival sequence for the instance defined in Example 1:
•Arrivals are T �N, i1 �⋯� iN � 1 w.p. 1� C

M.
•Arrivals are T � 2N, i1 �⋯� iN � 1, iN+1 �⋯� i2N � 2 w.p. C

M.
Our construction is similar in spirit to that of Mehta and Panigrahi [35], who also exploit the fact that the opti-

mum can use a fractional LP solution. This is used in the following theorem.

Theorem 2. Consider the randomized instance defined in Example 2, and let M, N→∞. The expected value of OPT

(i1, : : : , iT) is at least C + 1. On the other hand, for any online algorithm, the expected value of ALG(i1, : : : , iT) is at most
C� ln C. By Yao’s minimax principle (see Yao [43] or Krumke [27, theorem 1.12]), the competitive ratio of any online algo-
rithm cannot exceed

C� ln C

C+ 1
≈ 0:43:

The value of C � 1
w � ew ≈ 1:76 has been chosen to minimize the competitive ratio. We defer the calculations required

to prove Theorem 2 to Appendix A.

Chen et al.: Assortment Planning for Recommendations at Checkout
306 Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS

3. Algorithm
In this section we show how to formally specify our algorithm, which

1. maximizes the expected revenue of the assortment offered to each customer and
2. is subject to the constraint that the expected units of any item sold as an add-on never exceed half of its starting

inventory, which we will call its add-on threshold.
We divide the specification of the algorithm into the following procedures.
• Constructing the optimal assortment given the appropriate instructions of which add-ons cannot be offered

(Section 3.1)
• Constructing the instructions given accurate estimates of expected add-on sales (Section 3.2)
• Constructing the estimates via sampling (Section 3.3)
• Presenting the combined algorithm (Section 3.4)
Overall, our algorithm abstracts each time step into a continuous interval and envisions time as passing “fluidly”

through it, as described in the introduction in Section 1.4.

3.1. Offering Add-on Assortments
In this section we describe the instructions that enforce the add-on thresholds and how to follow them when offer-
ing assortments. The instructions come as a sequence of protection lists L1, : : : ,LT, where Lt contains the items that
hit their add-on thresholds at time t. A forbidden set then accumulates all of the items that have appeared in a protec-
tion list and hence can no longer be offered as add-ons. We formally define these in their full generality in the fol-
lowing and then provide examples.

Definition 4 (Protection List and Forbidden Set). For each time period t � 1, : : : , T, let Lt be a list of tuples of the
form “(item, probability)”; Lt is called a protection list. Formally,

L
t � ((jt

k,ρt
k) : k ∈ [Kt]),

where Kt ≥ 0 is its length, jtk ∈ [n], and ρt
k ∈ [0, 1].

For all t ∈ [T], L
1, : : : ,Lt, and k � 0, : : : , Kt, let F t

k be a set of items, called a forbidden set. We have that F t
k is a

function of L1, : : : ,Lt and is defined as follows:

F
t
k(L1, : : : ,Lt) :�

[

s<t

{jsk′ : k′ ∈ [Ks]}
 !

∪ {jtk′ : k′ ≤ k}:

In Definition 4, jt1, : : : , jtKt
is the sequence of items that hit their add-on thresholds at time t. It is necessary to allow

for multiple items to hit their thresholds during the same time step t, because after the first item hits its add-on
threshold, the revenue-maximizing assortment that would be offered can completely change, causing another item
to also hit its add-on threshold. A running example that demonstrates this complexity is relegated to Appendix B.

We now provide a simple example of how protection lists work. Suppose that there is one unit of item 1, which
is the only item eligible to be offered as an add-on to the first customer, who would purchase it as an add-on
with probability 3/4. To prevent item 1 from violating its add-on threshold, list L1 � ((ρ, 2=3)), which tells the
algorithm to only offer it as an add-on with probability 2/3. With probability 1/3, item 1 joins the forbidden set
F

1
1(L1) without having ever been offered as an add-on. This ensures that the expected number of units of item 1

sold as an add-on is 23 · 34 � 1
2, which will never increase again.

We formalize how our algorithm would read a general protection list Lt to make a randomized offer to cus-
tomer t in Procedure 1. Note that it also requires lists L1, : : : ,Lt�1 as input. Furthermore, we let I1, : : : , In denote
the respective remaining inventory levels of the n items, which we refer to in Procedure 1 to ensure that stocked-
out items are not offered.

Procedure 1

Input: lists L1, : : : ,Lt;
Output: randomized assortment to offer customer t

1: if Iit > 0 then
2: J←{j ≠ it : Ij � 0} (these items have stocked out)
3: k← 0
4: while k < Kt do
5: flip a coin that is heads with probability ρt

k+1
6: if heads then break out of while loop

Chen et al.: Assortment Planning for Recommendations at Checkout
Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS 307

7: k← k+ 1
8: end while
9: F � F

t
k(L1, : : : ,Lt) \ {it} (these items are forbidden, based on the randomly chosen index k)

10: set wj � 0 if j ∈ J ∪ F, and wj � rdisc
j otherwise

return arg max
Ã∈Ait

X

j∈Ã
wjqitj(Ã) (7)

11: else
12: return ∅
13: end if

We clarify why the assortment Ã returned in step 10 is valid. First, the problem is computationally tractable as a
result of the oracle assumed in Definition 1. Second, Ã can be assumed to not contain any add-ons j ∈ J that are out
of stock. This is because if it did, then we could remove all such j’s from Ã and not remove any positive terms from
the sum (7) (because wj � 0 for all j ∈ J) and yet increase qitj′(Ã) for add-ons j′ not removed (by the substitutability
assumption from Definition 1). Similarly, Ã does not need to contain any j ∈ F. We assume a consistent tiebreaking
for selecting Ã, where Ã ∩ (J ∪ F) � ∅ is enforced.

3.2. Constructing Protection Lists
In Section 3.1, we specified how to follow the instructions contained in the protection lists. Now we specify how to
construct the lists L1, : : : ,LT in sequence so that an item is no longer offered as an add-on after it hits its add-on
threshold.

We describe how our procedure constructs protection list Lt given lists L1, : : : ,Lt�1. It starts with Lt as the empty
list () and considers what would happen if Procedure 1, given these lists L1, : : : ,Lt, was used to offer randomized
assortments to customers 1, : : : , t. If no add-on thresholds would be violated after time t, then Lt � () is returned.
Otherwise, some item must have crossed its add-on threshold at time t, assuming lists L1, : : : ,Lt�1 were properly
defined. Our procedure then finds a “most violating” item, ℓ, and appends instruction (ℓ,ρ) to list Lt, where ρ�is the
constant telling Procedure 1 to only offer the originally planned assortments with probability ρ�and add ℓ�to the for-
bidden set otherwise. This ensures that ℓ�does not violate its add-on threshold. However, other items could still vio-
late their add-on thresholds at time t, so Procedure 1 needs to be rerun with the given lists L1, : : : ,Lt�1 and the
newly augmented list Lt. This process is repeated until all items that need to be protected have been added to Lt.

We now introduce some notation. We emphasize that for the purpose of constructing protection list Lt, the real-
ized inventory levels at time t are irrelevant; all quantities are based on the expected add-on sales over all sample
paths of what could have been purchased by customers 1, : : : , t� 1.

Definition 5. Fix a time t ∈ [T] at which point arrival types i1, : : : , it have been revealed. For a given sequence of
protection lists L1, : : : ,Lt, suppose that Procedure 1 is used to offer randomized assortments to customers 1, : : : , t.
Define the following for all items j ∈ [n]:
• Let dt

j(L1, : : : ,Lt) ∈ [0, bj] denote the expected units of j sold as an add-on to customers 1, : : : , t, not counting any
units sold to customer t if the assortment offered to her by Procedure 1 was determined with index k equal to Kt.
• Let ht

j(L1, : : : ,Lt) ∈ [0, 1] denote the expected units of j sold as an add-on to customer t, only counting units sold
when the assortment offered to her by Procedure 1 was determined with k � Kt.

An add-on threshold is violated if for some item j,

dt
j(L1, : : : , Lt) + ht

j(L1, : : : , Lt) > bj

2
,

in which case the quantities from Definition 5 will allow us to compute the most violating item ℓ�and the probability
ρ�with which we need to scale back its offering. However, there is one final challenge: the quantities from Definition
5 are not computationally tractable, because there could be exponentially many sample paths. To compensate, our
algorithm stores the values of dt

j(L1, : : : ,Lt) and increments them using the values of ht
j(L1, : : : ,Lt), which are esti-

mated via sampling.
We are finally ready to specify our procedure that constructs list Lt, given L1, : : : ,Lt�1, in Procedure 2. The

algorithm’s internal variable for dt
j(L1, : : : ,Lt) based on the current time and lists is denoted by dcurrj for all items

j ∈ [n]. Meanwhile, ε�is a small additive error assumed on the estimates of ht
j(L1, : : : ,Lt); later we will see that this

is possible and sufficient, but for now, it may aid comprehension to assume that ε � 0.

Chen et al.: Assortment Planning for Recommendations at Checkout
308 Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS

Procedure 2

Input: protection lists L1, : : : ,Lt�1, sampling error ε;
Output: protection list Lt

1: L← (), K � 0
2: loop
3: G← [n] \ (F t

K(L1, : : : ,Lt�1,L) ∪ {it}) (these items are not currently forbidden as add-ons)
4: ĥj← a sampled estimate of ht

j(L1, : : : ,Lt�1,L) for all j ∈ G

5: if dcurrj + ĥj ≤ bj

2 � ε�for all j ∈ G then

6: dcurrj ← dcurrj + ĥj for all j ∈ G

7: return (L, dcurr1 , : : : , dcurrn)
8: end if

9: ℓ← arg minj∈G

bj
2�ε
� �

�dcurrj

ĥ j
; ρ←

bℓ
2 �ε
� �

�dcurr
ℓ

ĥℓ

10: append (ℓ,ρ) to list L and increment K by 1

11: dcurrj ← dcurrj + ρ · ĥj for all j ∈ G

12: end loop

Now we establish some basic properties about Procedure 2; their proofs are relegated to Appendix A. The first propo-
sition states that the procedure “correctly” updates its internal variables dcurrj and that any errors as a result of sampling
accumulate additively. The second proposition states that the protection lists Lt constructed indeed do not cause any
add-on thresholds to be violated. The third proposition states that each item needs to be protected by at most one list.

Proposition 1. Fix ε1,ε2 ≥ 0 and consider an iteration of the loop in Procedure 2. Suppose that at the start of this iteration,
the value of internal variable dcurrj is within an additive error ε1 of dt

j(L1, : : : ,Lt�1,L) for all items j. Furthermore, suppose
that all of the estimates ĥj are within an additive error ε2 of ht

j(L1, : : : ,Lt�1,L). The following statements then hold:
• If step 6 is executed during this iteration, then for all j ∈ G, the updated value of dcurrj satisfies

|dcurrj � dt+1
j (L1, : : : ,Lt�1,L, ()) | ≤ ε1 + ε2:

•Otherwise, if step 11 is executed during this iteration, then for all j ∈ G, the updated value of dcurrj (along with the updated
value of L) satisfies

|dcurrj � dt
j(L1, : : : ,Lt�1,L) | ≤ ε1 + ε2:

Proposition 2. Consider an iteration of the loop in Procedure 2. Suppose for all j ∈ [n], dcurrj does not violate its add-on
threshold; that is, dcurrj ≤ bj

2 � ε. Then for these j ∈ G, the updated value for dcurrj is still at most
bj

2 � ε.

Proposition 3. Any item j ∈ [n] can get added to the protection lists at most once. That is, in step 9 of Procedure 2, ℓ�does
not appear in L1, : : : ,Lt�1,L. Furthermore, ℓ�is never again offered as an add-on, and dcurrj is not increased.

3.3. Estimating Add-on Sales via Sampling
In Section 3.2, we assumed that the values of ht

j(L1, : : : ,Lt) could be accurately estimated. By Definition 5,
ht

j(L1, : : : ,Lt) is concerned with the events of add-ons being sold at time t. Note that in this probability space, the
protection lists L1, : : : ,Lt are fixed, and the randomness is in the assortments offered by Procedure 1 and the pur-
chase decisions of all past customers (the purchases of customers before t matter because they determine the inven-
tories remaining at time t). Because we know the types i1, : : : , it and the choice models associated, we can simulate
both Procedure 1 and the purchase decisions of customers 1, : : : , t from the start to draw samples of the add-ons
sold at time t. Our Procedure 3 simply performs this sampling M independent times, where M is a large integer
whose value is to be determined later.

Procedure 3

Input: lists L1, : : : ,Lt, the number of samples M;
Output: estimates of ht

j(L1, : : : ,Lt)
1: G← [n] \ (F t

Kt
(L1, : : : ,Lt) ∪ {it}) (these are the items not currently forbidden as add-ons, for which we need to compute

ht
j(L1, : : : ,Lt))

2: Cj← 0 for all j ∈ G
3: repeat
4: Simulate a run to the end of time t

Chen et al.: Assortment Planning for Recommendations at Checkout
Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS 309

5: if the assortment offered to customer t by Procedure 1 was chosen in iteration k � Kt then
6: Cj← Cj + 1 for any j ∈ G purchased by customer t
7: end if
8: until M runs have passed
9: return

Cj

M for all j ∈ G

The following is a standard bound on the additive sampling error of Procedure 3, based on the Chernoff–Hoeffding
inequality, for which a proof can be found in Lugosi [31].

Lemma 2. For any j ∈ G, M ∈ N, and ε2 > 0, the estimate
Cj

M of ht
j(L1, : : : ,Lt) returned by Procedure 3 satisfies

Pr

�

�

�

�

�

Cj

M
� ht

j(L1, : : : ,Lt)
�

�

�

�

�

> ε2

" #

≤ 2e�2ε2
2M:

3.4. Combined Algorithm
Having derived the procedures in Sections 3.1–3.3, we are now ready to describe our combined algorithm. When a
new customer t arrives and her type it is revealed, the algorithm first runs itself from the start a large number of
times using the known types i1, : : : , it to estimate the expected add-on sales (Procedure 3). These estimates allow for
a protection list Lt to be constructed for customer t (Procedure 2). Using this list, a randomized add-on assortment
can be offered to customer t in a way which does not violate the add-on thresholds (Procedure 1). The purchase
decision of customer t is then realized, and the algorithm moves on to customer t + 1. These cycles are depicted
schematically in Figure 2.

Now we show that the combined algorithm accomplishes the goal outlined at the start of Section 3. The following
theorem is proven in Appendix A.

Theorem 3. Fix some small ε > 0 and consider our combined algorithm where Procedure 2 uses error parameter ε�and Pro-

cedure 3 uses sample size M � 1
2

T+n
ε

� �2
ln 2n(T+n)

ε : For all items j, let dj denote the expected units of j sold as an add-on at the

end of the horizon, and let d̂j denote the recorded value of dcurrj at the end of the horizon.
Then with probability at least 1� ε, the inequalities d̂j � ε ≤ dj ≤ bj

2 hold for all items j. Furthermore, the combined algo-
rithm terminates in runtime polynomial in T, n, and 1ε.

Note that the value of M is chosen so that the sampling error each time Procedure 3 is called is at most εT+n.

4. Analysis
In this section we prove Theorem 1, which lower bounds the competitive ratio of our combined algorithm by 1=4� ε�
for any ε > 0. We reuse the definitions from the statement of Theorem 3: d̂j is our algorithm’s value of dcurrj at the end of

Figure 2. Schematic of the combined algorithm.

Chen et al.: Assortment Planning for Recommendations at Checkout
310 Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS

the selling season, whereas dj is the true expected units of item j sold as an add-on. Again, it may aid comprehension to
first assume that ε � 0, in which case d̂j � dj for all j ∈ [n].

We provide a general road map of the proof:
1. We define each θj, the dual variable for the inventory constraint on item j, based on dj and d̂j, providing

shadow prices for each unit of starting inventory.
2. To ensure feasibility, we also need to have dual variables λt, which provide shadow prices for each customer t

(Lemma 3).
3. We bound from above the value of the LP defined in Section 2.2 using weak duality (Lemma 4).
4. To bound the revenue our algorithm earns from selling add-ons to customer t, we need to bound the probabil-

ity of customer t being served and the probabilities of add-ons not stocking out, which we accomplish given the
protection levels in expectation (Lemma 5).

5. This allows us to obtain a lower bound on the expected revenue of our algorithm (Lemma 6).
6. Finally, using a variant of Markov’s inequality (Proposition 5), we show that the lower bound from step 5 is at least

1
4 � ε�of the upper bound from step 3 and that the ε-error in sampling translates to only an ε-loss in revenue (Section 4.3).

4.1. Bounding OPT via Duality
We first introduce the following concepts that will aid our proof.

Definition 6. We define the following notation, for all j ∈ [n]:
• Let aj denote the number of arriving customers of type j. That is, aj � |{t ∈ [T] : it � j} | .
• Set dj as follows:

dj �
max{dj, d̂j + ε} if d̂j ≥

1

2
� ε;

dj otherwise:

8

<

:

Note that if ε � 0, then dj � dj � d̂j.
It simplifies the analysis to assume that aj ≤ bj for all j ∈ [n]. This can be justified by the fact that after bj customers

of a type j have already arrived, there are no units of item j remaining to serve subsequent customers of that type.

Definition 7. For each i ∈ [n], introduce a fixed assortment S∗i lying in

arg max
S∈Si

X

j≠i

rdisc

j 1�
aj + 2dj

bj

� �

pij(S):

We can interpret S∗i as an “ideal” assortment to offer customers of type i, given the a posteriori values of aj and dj.
We assume that S∗i does not contain any j ≠ i such that aj + 2dj ≥ bj. This is because if it did, then we could remove

all such j’s from S∗i and not remove any positive terms from the above-mentioned sum and yet increase pij′(S) for

add-ons j′ that were not removed (by the substitutability assumption from Definition 1).

With this assumption, dj <
bj

2 for all j ∈ S∗i \ {i}. By definition, either dj ≥ d̂j + ε, which would imply d̂j <
bj

2 � ε, or

d̂j <
1
2 � ε. In both cases, the conclusion is that d̂j <

bj

2 � ε, because bj is always at least 1. This means that at any

point in our algorithm, the value of dcurrj never reached the threshold of
bj

2 � ε. As a result, items in S∗i \ {i} do not
appear in any protection list and are never in the forbidden set for all i ∈ [n].

Now we are ready to specify the bound on OPT(i1, : : : , iT), which is the optimal objective value of the LP defined
in Section 2.2. The dual of this LP can be written as follows, where {θj : j ∈ [n]} are the variables corresponding to
the first n primal constraints and {λt

: t ∈ [T]} are the variables corresponding to the next T primal constraints:

min
X

n

j�1

bjθj +
X

T

t�1

λt

s:t:
X

n

j�1

pitj(S)θj +λt ≥ rit +
X

j≠it

rdisc

j pitj(S) t ∈ [T], S ∈ Sit ,

θj ≥ 0 j ∈ [n],

λt ≥ 0 t ∈ [T]:

Chen et al.: Assortment Planning for Recommendations at Checkout
Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS 311

We propose the following values for the dual variables:

θj �
rjaj + 2rdisc

j dj

bj
, j ∈ [n],

λt � rit 1 �

ait

bit

� �

+
X

j≠it

rdisc

j 1 �

aj + 2dj

bj

� �

pitj(S∗it), t ∈ [T]: (8)

Golrezaei et al. [24] were able to define dual variables that are sample-path dependent and prove feasibility on
every sample path. We need to define our dual variables based on the dj’s, which can be seen as aggregate statis-
tics over all the sample paths, in order to prove feasibility. Note that the value of λt is fully determined by the
type of the customer, it.

Lemma 3 (Dual Feasibility). The solution of the dual LP defined in (8) is feasible.

Proof. We know that ait ≤ bit for all t ∈ [T], by assumption. Also, for j ≠ it, pitj(S∗it) can only be nonzero for j ∈ S∗it ,
which implies aj + 2dj ≤ bj. Therefore, λt ≥ 0. It is also easy to see that θj ≥ 0 for all j ∈ [n].

The remaining constraints can be rearranged as

λt ≥ rit � θit +
X

j≠it

pitj(S)(rdisc

j � θj), (9)

where we have used the fact that pii(S) � 1 for all i and S ∈ Si.
Take an arbitrary t ∈ [T] and S ∈ Sit . By our definition of the dual variables, θj ≥ rdisc

j · aj+2dj

bj
for all j ≠ it, because

rj ≥ rdisc
j . Also, it is immediate that θit ≥ rit ·

ait

bit
. Therefore, the right-hand side of (9) is at most

rit 1�
ait

bit

� �

+
X

j≠it

rdisc

j 1�
aj + 2dj

bj

� �

pitj(S):

Now, S∗it was specifically chosen to maximize the second part of the preceding expression among all S ∈ Sit .

Therefore, the preceding expression is no greater than our definition of λt, completing the proof of dual
feasibility. w

Lemma 4 (Dual Objective Value). The objective value of the dual solution in (8) is at most

X

n

i�1

2riai +
X

n

j�1

2rdisc

j dj +
X

n

i�1

ai

X

j≠i

rdisc

j 1 �

aj + 2dj

bj

� �

pij(S∗i):

Proof. Substituting our values of θj and λt into the objective function of the dual LP, we get

X

n

j�1

bjθj +
X

T

t�1

λt �
X

n

j�1

(rjaj + 2rdisc

j dj) +
X

T

t�1

rit 1 �

ait

bit

� �

+
X

j≠it

rdisc

j 1 �

aj + 2dj

bj

� �

pitj(S∗it)
 !

�
X

n

j�1

rjaj +
X

n

j�1

2rdisc

j dj +
X

n

i�1

X

t:it�i

ri 1 �

ai

bi

� �

+
X

j≠i

rdisc

j 1 �

aj + 2dj

bj

� �

pij(S∗i)
 !

:

Noting the fact ai is defined to be the cardinality of the set {t ∈ [T] : it � i} and rearranging the terms, we have

X

n

j�1

bjθj +
X

T

t�1

λt ≤
X

n

i�1

2riai +
X

n

j�1

2rdisc

j dj +
X

n

i�1

ai

X

j≠i

rdisc

j 1�
aj + 2dj

bj

� �

pij(S∗i),

which completes the proof. w

Combining Lemmas 3 and 4 and applying weak duality, we have established in this subsection that the expres-
sion from Lemma 4 is an upper bound on OPT(i1, : : : , iT).

Chen et al.: Assortment Planning for Recommendations at Checkout
312 Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS

4.2. Bounding the Algorithm’s Revenue
We first introduce some notation and an auxiliary proposition.

Definition 8. For a run of our algorithm, define the following random variables:
• For all t ∈ [T] and j ∈ [n], let It

j denote the inventory of item j remaining at the end of time period t. It is under-
stood that I0

j � bj, its starting inventory, for all items j ∈ [n].
• For all t ∈ [T], let St ∈ Sit ∪ {∅} denote the assortment offered at time t.
• For all t ∈ [T] and j ∈ [n], let Pt

j be the indicator random variable for whether customer t bought item j; Pt
j can

only potentially be 1 for j ∈ St.
• For all j ∈ [n], let Dj denote the units of item j sold as an add-on by the end of the selling season. Note that

Dj �
P

t:it≠jP
t
j , and E[Dj] � dj.

• For all t ∈ [T], let Vt denote the items in S∗it with inventory available at time t. That is, Vt � {j ∈ S∗it : It�1
j > 0}.

The following proposition is immediate.

Proposition 4. For all j ∈ [n], the units of item j sold at full price by the end of the selling season is min{bj �Dj, aj}.
Proof. For any j ∈ [n], consider a single sample path with a fixed value for Dj. The units of item j remaining to
sell at full price are bj �Dj. Because our algorithm offers item j to every customer requesting it as long as inven-
tory is available, the number of customers served is min{bj �Dj, aj}. w

Now we analyze the revenue earned by our algorithm in expectation and compare it with Lemma 4. The follow-
ing lemma is crucial in bounding the revenue earned from selling add-ons.

Lemma 5 (Bound on Add-on Revenue). For all t ∈ [T], the revenue earned by our algorithm from selling add-ons during

time t,
P

j≠it
rdisc

j Pt
j , is in expectation at least

X

j∈S∗
it
, j≠it

rdisc

j pitj(S∗it) Pr[It�1
it

> 0]� dj

bj � aj

 !

:

(Recall that for all j ∈ S∗it \ {it}, we have aj + 2dj < bj, which implies bj � aj ≠ 0.)

Proof. Fix an arbitrary t ∈ [T]. We have

E
X

j≠it

rdisc

j Pt
j

" #

� E
X

j≠it

rdisc

j pitj(St)
" #

� E
X

j≠it

rdisc

j pitj(St)
�

�

�

�

�

It�1
it

> 0

" #

Pr[It�1
it

> 0]: (10)

Both equalities use the law of total expectation. The first equality holds because E[Pj≠it
rdisc

j Pt
j] � ESt[E[Pj≠it

rdisc
j

Pt
j |St]], and the inner expectation is equal to

P

j≠it
rdisc

j pitj(St), because for a fixed St, Pt
j is an independent binary

random variable that is equal to 1 with probability pitj(St). The second equality holds because if It�1
it
� 0, then

St � ∅, and pitj(∅) � 0 for all j.
Now, we claim that on every sample path where It�1

it
> 0, the following holds:

X

j≠it

rdisc

j pitj(St) ≥
X

j≠it

rdisc

j pitj(Vt)

�
X

j∈Vt, j≠it

rdisc

j pitj(Vt)

≥
X

j∈Vt, j≠it

rdisc

j pitj(S∗it):

The first inequality is true because, conditioned on It�1
it

> 0, Vt was a feasible choice of assortment during the

maximization step (step 10) of Procedure 1 (add-ons in Vt are never in the forbidden set and have inventory

Chen et al.: Assortment Planning for Recommendations at Checkout
Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS 313

available). The second inequality is true because, conditioned on It�1
it

> 0, Vt is always a subset of S∗it containing it,

and by the substitutability assumption, pitj(Vt) ≥ pitj(S∗it) for all j ∈ Vt. Thus (10) is at least

E
X

j∈Vt, j≠it

rdisc

j pitj(S∗it)
�

�

�

�

�

It�1
it

> 0

2

4

3

5Pr[It�1
it

> 0]

�
X

j∈S∗
it
, j≠it

rdisc

j pitj(S∗it)Pr[It�1
j > 0 |It�1

it
> 0]Pr[It�1

it
> 0]

�
X

j∈S∗
it
, j≠it

rdisc

j pitj(S∗it)Pr[(It�1
j > 0) ∩ (It�1

it
> 0)]

≥
X

j∈S∗it , j≠it

rdisc

j pitj(S∗it)(Pr[It�1
it

> 0]�Pr[It�1
j � 0]),

where in the first equality we have used the definition that Vt is the subset of S∗it with inventory remaining.

Finally, It�1
j � 0 implies IT

j � 0. By Proposition 4, this event is equivalent to Dj +min{bj �Dj, aj} � bj, which, in

turn, is equivalent to min{bj � aj, Dj} � bj � aj, or Dj ≥ bj � aj. By Markov’s inequality, this is at most
E[Dj]
bj�aj
� d j

bj�aj
,

completing the proof of Lemma 5. w

Lemma 6 (Algorithm’s Expected Revenue). The expected revenue of our algorithm is at least

X

n

i�1

ri · E[min{bi � Di, ai}] +
1

2

X

n

j�1

rdisc

j dj +
1

2

X

n

i�1

X

j≠i

rdisc

j E[min{bi � Di, ai}]�
ai

2
· aj + 2dj

bj

� �

pij(S∗i):

Proof. Recall that for every customer t ∈ [T], our algorithm serves her as long as item it is available. Therefore,
the revenue earned on a run of our algorithm is

X

T

t�1

rit · 1(It�1
it

> 0) +
X

j≠it

rdisc

j Pt
j

 !

:

Its expected value is equal to

E
X

T

t�1

rit · 1(It�1
it

> 0)
" #

+ E
X

T

t�1

X

j≠it

rdisc

j Pt
j

" #

:

The first term is the expected revenue earned from selling items i to customers requesting them (at the full price
of ri), whereas the second term is the expected revenue earned from selling items j ≠ it as add-ons (at the dis-

counted price of rdisc
j) summed over all time periods t.

Applying Proposition 4, the first term is equal to

X

n

i�1

ri · E
X

t:it�i

1(It�1
i > 0)

" #

�
X

n

i�1

ri · E[min{bi � Di, ai}]: (11)

Applying the definitions that Dj �
P

t:it≠jP
t
j and E[Dj] � dj, the second term is equal to

E
X

T

t�1

X

j≠it

rdisc

j Pt
j

" #

�
X

n

j�1

rdisc

j ·E
X

t:it≠j

Pt
j

" #

�
X

n

j�1

rdisc

j dj: (12)

We also analyze the second term in a different way. It can be rearranged as follows:

E
X

T

t�1

X

j≠it

rdisc

j Pt
j

" #

�
X

n

i�1

X

t:it�i

E
X

j≠i

rdisc

j Pt
j

" #

: (13)

Chen et al.: Assortment Planning for Recommendations at Checkout
314 Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS

Fix an arbitrary i and apply Lemma 5 for all t such that it � i. We obtain

X

t:it�i

E
X

j≠i

rdisc

j Pt
j

" #

≥
X

t:it�i

X

j∈S∗
i
, j≠i

rdisc

j pij(S∗i) Pr[It�1
i > 0]� dj

bj � aj

 !

�
X

j∈S∗
i
, j≠i

rdisc

j pij(S∗i)
X

t:it�i

Pr[It�1
i > 0]� ai ·

dj

bj � aj

 !

�
X

j∈S∗
i
, j≠i

rdisc

j pij(S∗i) E[min{bi � Di, ai}]�
ai

2
· 2dj

bj � aj

 !

,

where the final equality follows after the same derivation as (11). Now, by definition, dj ≤ dj. Therefore, we can replace

dj with dj and the expression would be no greater. Furthermore, because 2dj < bj � aj for all j ∈ S∗i \ {i},
2dj

bj�aj
≤ 2dj+aj

bj
.

Substituting back into (13), we conclude that

E
X

T

t�1

X

j≠it

rdisc

j Pt
j

" #

≥
X

n

i�1

X

j∈S∗i , j≠i

rdisc

j E[min{bi �Di, ai}]�
ai

2
· 2dj + aj

bj

� �

pij(S∗i): (14)

Taking (11) + 1
2 · (12) + 1

2 · (14) completes the proof of Lemma 6. w

4.3. Proof of Theorem 1
In this subsection we aim to prove our main result Theorem 1 by using Theorem 3 to bound the expression from
Lemma 4 relative to the expression from Lemma 6. Both expressions can be seen as a sum of three terms, and we
compare the respective terms separately. Namely, we compare

X

n

i�1

ri · E[min{bi � Di, ai}] to
X

n

i�1

2riai,

1

2

X

n

j�1

rdisc

j dj to
X

n

j�1

2rdisc

j dj,

1

2

X

n

i�1

X

j≠i

rdisc

j E[min{bi � Di, ai}]�
ai

2
· aj + 2dj

bj

� �

pij(S∗i) to
X

n

i�1

ai

X

j≠i

rdisc

j 1 �

aj + 2dj

bj

� �

pij(S∗i):

Fix a small ε. We will condition on our sampling algorithm not failing (i.e., d̂j � ε ≤ dj ≤ bj

2 for all j ∈ [n]), which

occurs with probability at least 1� ε. We will scale our total revenue by (1� ε) at the end and treat a failed run as a
run with 0 revenue.

To bound the value min{bj �Dj, aj}, we use the following modification of Markov’s inequality.

Proposition 5. For some b ≥ 0, let X be a random variable distributed over [0, b] with E[X] ≥ b
2. Then for any a such that

0 ≤ a ≤ b, E[min{X, a}] ≥ a
2.

Proof. Consider the random variable X �min{X, a}. When X ≥ a, its value is at most b – a, because X ≤ b. When
X < a, its value is 0. Therefore, E[X�min{X, a}] ≤ (b� a)Pr[X ≥ a], which in conjunction with E[X] ≥ b

2 implies

E[min{X, a}] ≥ b

2
� (b� a)Pr[X ≥ a]: (15)

If Pr[X ≥ a] ≤ 1
2, then (15) implies E[min{X, a}] ≥ b

2 �
b�a

2 � a
2, as desired.

Otherwise, if Pr[X ≥ a] > 1
2, we can immediately conclude from the nonnegativity of X and a that E[min{X, a}] ≥ a ·

Pr[X ≥ a], which combined with Pr[X ≥ a] > 1
2 yields the desired result. w

Now, to compare the first terms, consider any i ∈ [n]. We have E[Di] � di ≤ bi

2 , which implies E[bi �Di] ≥ bi

2 . There-
fore, we can apply Proposition 5 with X � bi �Di to obtain E[min{bi �Di, ai}] ≥ ai

2 for all i ∈ [n]. This establishes that

X

n

i�1

ri ·E[min{bi �Di, ai}] ≥
1

4

X

n

i�1

2riai: (16)

Chen et al.: Assortment Planning for Recommendations at Checkout
Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS 315

To compare the second terms, consider any j ∈ [n]. If dj ≠ dj, then dj � d̂j + ε�and d̂j ≥ 1
2 � ε. Also, dj ≥ d̂j � ε. There-

fore, for these j,
dj
2

2dj
≥ d̂ j�ε

4d̂ j+4ε
� 1

4 �
2ε

4d̂ j+4ε
≥ 1

4 �
2ε

4(1=2�ε)+4ε � 1
4 � ε. This establishes that

1

2

X

n

j�1

rdisc

j dj ≥
1

4
� ε

� �

X

n

j�1

2rdisc

j dj: (17)

Finally, to compare the third terms, we can again apply Proposition 5 for all i ∈ [n] to obtain

1

2

X

n

i�1

X

j≠i

rdisc

j E[min{bi �Di, ai}]�
ai

2
· aj + 2dj

bj

� �

pij(S∗i) ≥
1

4

X

n

i�1

ai

X

j≠i

rdisc

j 1�
aj + 2dj

bj

� �

pij(S∗i): (18)

Adding (16), (17), and (18), we conclude that with probability at least 1� ε, our algorithm earns revenue at least 14 � ε�

of the dual objective. Therefore, using our combined algorithm, for any instance and sequence of arrivals,

ALG(i1, : : : , iT) ≥ (1� ε) 1
4 � ε
� �

·OPT(i1, : : : , iT), completing the proof of Theorem 1.

Remark 1. Throughout our algorithm and analysis in Sections 3 and 4, we assumed the existence of an oracle
that can solve the single-customer assortment optimization problem (2) exactly. However, given an oracle that
can only solve (2) approximately-that is, return an assortment A′ with

X

j∈A′
wjqij(A′) ≥ γ ·max

A∈Ai

X

j∈A
wjqij(A)

for some γ ≤ 1-our analysis still leads to a competitive ratio guarantee of γ=4. To see this, note that the only state-
ment that used the optimality of the oracle is Lemma 5. With an approximate oracle instead, the revenue in Lemma
5 is scaled down by a factor of γ, which ultimately leads to the algorithm’s total revenue in Lemma 6 being scaled
down by the same factor γ. Therefore, the competitive ratio guarantee degrades by a factor of γ.

5. Analysis of the No-add-on Algorithm When Potential Add-on Revenue Is Small
Our main algorithm from Section 3 demonstrates the need to protect items from being sold as an add-on but only
partially-namely, a 1/2-fraction in expectation should be protected. In this section we analyze the “no-add-on” algo-
rithm, which fully protects items in that it does not recommend any add-ons and reserves all inventory to be sold as
primary items. We prove that in the regime where the potential add-on revenue is low compared with the profit
margins (prices) rj of primary items-namely, rdisc

j =ri ≤ R if there is any positive probability that item j is sold as an
add-on to item i-this algorithm performs well.

Theorem 4. Let R be a constant such that the expected revenue
P

j∈Ardisc
j qij(A) of any feasible add-on assortment A ∈Ai to

item i is upper bounded by R · ri for all primary items i ∈ [n]. Specifically,

max
i∈[n]

max
j:qij(A)>0 for some A∈Ai

rdisc
j

ri

is a valid value for R, which denotes the maximum ratio between the revenues of an add-on item and a primary item for which it
is sold as an add-on with positive probability. Then the online algorithm that never offers any add-ons has a competitive ratio at
least 1=(1+R).

It is easy to see that the guarantee of 1=(1+R) for the no-add-on algorithm from Theorem 4 is tight, because with-
out inventory constraints, the no-add-on algorithm would lose a factor of 1+R at every time step. Therefore, our
main algorithm from Section 3 would have a better worst-case performance as long as R > 3 and enjoys a big benefit
in that its competitive ratio guarantee of 1/4 does not depend on R. We reiterate that in most circumstances, we would
expect the value of R to be large, because the online platform can selectively recommend niche items j that have a
much larger profit margin than the primary item i. Our numerical experiments in Section 6 also corroborate this,
where the no-add-on algorithm does not perform well across the board.

Proof of Theorem 4. On any sequence of arrivals (i1, : : : , iT), let aj � |{t ∈ [T] : it � j} | denote the number of arriv-

ing customers of type j for all j ∈ [n]. We upper bound the value of OPT(i1, : : : , iT) defined by LP (3) as follows.
First, note that i ∈ S for all S ∈ Sit , with piti(S) � 1 (see Definition 2). Therefore, from the first set of LP constraints,

Chen et al.: Assortment Planning for Recommendations at Checkout
316 Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS

we can deduce that

bj ≥
X

T

t�1

X

S∈Sit

pitj(S)yt(S) ≥
X

t:it�j

X

S∈Sit

yt(S) (19)

for all j. Consequently, the objective value of the LP can be upper bounded as

X

T

t�1

X

S∈Sit

rit +
X

j≠it

rdisc

j pitj(S)
 !

yt(S) �
X

n

i�1

X

t:it�j

X

S∈Sit

yt(S) ri +
X

j≠i

rdisc

j qij(S \ i)
 !

≤
X

n

i�1

ri(1+R)
X

t:it�j

X

S∈Sit

yt(S)

≤
X

n

i�1

ri(1+R)min{bj, aj},

where the first inequality uses the definition of R, and the second inequality uses (19) along with the definition that

aj � |{t : it � j} | and the LP constraint that
P

S∈Sit
yt(S) ≤ 1 for all t such that it � j.

Meanwhile, the revenue earned by the no-add-on algorithm on arrival sequence (i1, : : : , iT) is
Pn

j�1 rj min{aj, bj},
because it only collects revenue for primary items, up to a maximum of bj times for each j. Therefore, the compet-
itive ratio of this online algorithm is at least 1=(1+R), completing the proof of Theorem 4. w

6. Numerical Experiments
In this section, we conduct numerical experiments to evaluate the performance of our algorithm. We focus on a par-
ticular choice model: at most one add-on can be recommended. We compare our algorithm with four other algo-
rithms: the inventory-balancing policy from Golrezaei et al. [24] (denoted by “GNR”) based on a penalty function;
the protection-level policy from Ball and Queyranne [3] (denoted by “BQ”), which never offers as add-ons items
with less than half of starting inventory remaining; the greedy algorithm (denoted by “Greedy”), which offers the
revenue-maximizing add-on assortment each period without considering saving inventory; and the algorithm that
never offers add-ons (denoted by “No add-on”). For GNR, we further consider two versions of the algorithm
depending on different penalty functions: the linear (denoted by “GNR(L)”) and exponential (denoted by
“GNR(E)”) penalty functions (see Golrezaei et al. [24]). Note that GNR(L), GNR(E), and Greedy are equivalent
when the inventory level bj � 1 for all j. In addition, when bj � 1 for all j, we use the probabilistic version of BQ: for
each item, we randomly choose a protection level of either 0 or 1 with equal probability.

When the number of products n is small, we are able to evaluate the conditional probabilities exactly (i.e., simula-
tion is unnecessary). More specifically, in each time period, we can track the probability of each inventory state and
the expected number of units of each item sold as an add-on. However, the number of states grows exponentially in
n. When n is large, we have to use simulation to evaluate each algorithm (over the different realizations of customer
decisions). Because we can exactly evaluate algorithms for relatively small problem instances, we compare the sim-
ulation results with exact results in those problem instances and find that the simulation results are quite accurate
with 500 simulation replications. Therefore, we will use 500 simulation replications in each experiment. We also
note that the difference among algorithms seems to be larger in small-sized problem instances than in large-sized
problem instances. Hence many of our numerical experiments focus on small-sized problem instances. We choose
a revenue vector r � {1, 2, : : : , n} and assume that rdisc

j � αrj for each j. We also assume that the probability of buying

each add-on equals a constant p and all items have the same initial inventory; that is, bj � b for each j. Then we can
set up our experiments by adjusting the following parameters: the number of items n, number of customers T, ini-
tial inventory level for each item b, probability of buying each add-on p, and discount factor α. For each fixed
(n, T, b, p,α) (called a group of experiments), we randomly generate an arrival sequence n � 1,000 times. When b � 1,
we assume that each type of customer appears at most once; when b > 1, we generate each customer uniformly
from {1, : : : , n}. We test on 40 groups of experiments (i.e., 40,000 problem instances) in total. We evaluate each algo-
rithm based on the ratio of the expected revenue generated from that algorithm to the optimal value of the LP.

In summary, our algorithm performs well. In particular, the worst-case ratio among all the 40,000 problem
instances under our algorithm equals 0.60, which is much higher than the theoretic worst-case bound 0.25. In addi-
tion, it is higher than the worst-case ratio under all other algorithms (see Table 2). Moreover, we calculate the aver-
age ratio among the last β-quantile for each algorithm. For example, β�� 1 corresponds to the average ratio among

Chen et al.: Assortment Planning for Recommendations at Checkout
Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS 317

all the 40,000 problem instances, and β � 0:5 corresponds to the average ratio among those 20,000 problem instances
with the least ratios. We summarize the results in Figure 3. In particular, our algorithm outperforms others when
β ≤ 0:5; GNR(L) and GNR(E) eventually perform the best as β�approaches 1.

In conclusion, although our algorithm is robust in the sense that it is designed to hedge against the worst-case
instance and arrival sequence, our numerical experiments suggest that it is competitive with existing algorithms
over average instances and arrival sequences while dominating in the worst cases.

7. Conclusions and Future Directions
Motivated by recommendation-at-checkout systems, we study a new online assortment planning problem. We
develop a robust algorithm based on the new notion of a protection level in expectation and bound its competitive
ratio under the worst-case arrival sequence. Our numerical experiments demonstrate that it is also highly competi-
tive with existing benchmarks over average instances. One managerial insight from this work is that it can be
important to withhold inventory in order to meet the primary demands of future customers, even if an add-on item
is not being sold at a discount.

This work is a first attempt to address a setting where (i) the choice function for add-ons is based on the primary
item at checkout, and the availability of the primary item determines whether an add-on assortment can be offered,
and (ii) each item has a full price when sold as a primary item and a discounted price when sold as an add-on.
Thus, our model is simplified in several aspects. Here are some future directions:

1. It would be interesting to incorporate the problem of learning into our work. Moreover, our model does not
consider the case where the choice model could depend on both the primary item and the customer’s profile (when
such information is available).

2. It would be interesting to allow multiple primary items at checkout. Then, the choice function would depend
on a subset of items. Analyzing the relationship between the competitive ratio and the number of primary items is
a challenging problem.

3. We assume that when an item is offered as an add-on, it has a single, fixed discount price. However, the level
of discount could depend on the primary item with which it is bundled. Such a model is an interesting direction for
future work.

4. Along the same vein, trying to design an instance-dependent algorithm and get a bound based on the ratios
between the discounts of the items could be interesting.

Figure 3. (Color online) Ratios of algorithms under different quantiles.

Table 2. Worst-case and average ratios of algorithms.

Ratio type Our algorithm GNR(L) GNR(E) Greedy BQ No add-on

Worst-case ratio 0.60 0.34 0.34 0.34 0.31 0.15
Average ratio 0.89 0.91 0.91 0.89 0.89 0.72

Chen et al.: Assortment Planning for Recommendations at Checkout
318 Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS

Acknowledgments
The authors thank Qihang Lin for early discussions. The authors thank the anonymous reviewers of Mathematics of Opera-
tions Research for many useful suggestions that have improved the paper.

Appendix A. Omitted Proofs

Proof of Lemma 1. Consider any algorithm, which could know i1, : : : , iT at the start of the time horizon, and consider a sample

path with that algorithm. For all t ∈ [T] and S ∈ Sit , let Yt(S) be the indicator random variable for assortment S being offered dur-

ing time t. For all t ∈ [T] and j ∈ [n], let Pt
j be the indicator random variable for customer t buying item j.

Clearly, at most one assortment from Sit can be offered during each t ∈ [T], so we have
P

S∈Sit
Yt(S) ≤ 1. Taking the expecta-

tion (with respect to both the randomness in the algorithm and the randomness in the customers’ decisions) on both sides and

letting yt(S) :� E[Yt(S)], we have
X

S∈Sit

yt(S) ≤ 1,

which shows that the second constraint in LP (3) is satisfied.

During time t, inventory of item j ∈ [n] gets depleted if and only if Pt
j � 1, which is only possible if some S ∈ Sit is offered.

Therefore, the depletion of item j during time t is equal to
P

S∈Sit
Pt

j ·Yt(S). Conditioned on Yt(S) � 1, Pt
j is an independent

binary random variable that is 1 with probability pit j(S). Because the total depletion of item j over all the time periods cannot

exceed bj, we have

X

T

t�1

X

S∈Sit

Pt
j ·Yt(S) ≤ bj

⇒
X

T

t�1

X

S∈Sit

E[Pt
j |Yt(S) � 1] ·Pr[Yt(S) � 1] ≤ bj

⇒
X

T

t�1

X

S∈Sit

pitj(S)yt(S) ≤ bj,

which shows that the first constraint in LP (3) is satisfied.
Finally, using the same arguments, the revenue on a run of the algorithm is

X

T

t�1

X

S∈Sit

rit P
t
it
+
X

j≠it

rdisc

j Pt
j

!

Yt(S),

whose expectation is

X

T

t�1

X

S∈Sit

rit +
X

j≠it

rdisc

j pitj(S)
!

yt(S),

because pit it (S) � 1 for all S ∈ Sit .
We have shown that the expected revenue for every algorithm is equal to the objective value of the LP on a feasible solution of

the LP. Therefore, the expected revenue of the algorithm is no greater than OPT(i1, : : : , iT), completing the proof of Lemma 1. w

Proof of Theorem 2. First we show that the expected value of OPT(i1, : : : , iT) is at least C + 1. In the case where customers

N+ 1, : : : , 2N do not arrive (which occurs with probability 1� C
M), a revenue of N 1

N

� �

� 1 can be obtained by offering assortment

{1, 2} during each t � 1, : : : , N. In the case where customers N+ 1, : : : , 2N arrive (which occurs with probability C
M), it can be

checked that y1({1}) �⋯� yN({1}) � 1, yN+1({2, 3}) �⋯� y2N({2, 3}) � 1 is a feasible solution to the LP. Therefore, in this case,

OPT(i1, : : : , iT) ≥N 1
N+M

N

� �

� 1+M. The expected value of OPT(i1, : : : , iT) is at least

1�
C

M

� �

(1) + C

M
(1+M) � 1+C,

as desired.
Now consider any online algorithm. It must determine what fraction of the first N customers to offer item 2 to (as an add-

on) without knowing whether the subsequent N customers requesting item 2 will arrive. Let α ∈ [0, 1] denote the fraction of
the first N customers to whom the online algorithm offers item 2. After deciding α, should customers N+ 1, : : : , 2N arrive, the

Chen et al.: Assortment Planning for Recommendations at Checkout
Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS 319

best the algorithm can do is use every remaining unit of item 2 to try to sell item 3. That is, the algorithm should serve N �αN
of the customers of type 2 and offer item 3 as an add-on while it is available.

The expected revenue of such an algorithm is

αN
1

N

� �

+ C

M
(N � αN) 1

N

� �

+ 1 � 1 �

1

N

� �N�αN
 !

M

 !

, (A.1)

which can be explained as follows:

• αN of the first N customers are offered item 2 as an add-on, guaranteeing a revenue of 1
N per customer, and

• only if the next N customers arrive (which occurs w.p. C
M) is there additional revenue:

— the remaining N �αN units of item 2 will be sold at the price of 1
N each, and

— the probability that item 3 is not sold is equal to the probability that all N �αN customers are offered {2, 3} and reject item

3, which occurs with probability 1� 1
N

� �N�αN
.

Note that (A.1) can be rearranged as α+C 1� 1� 1
N

� �N�αN
� �

+ C(1�α)
M . Taking the limit as M, N→∞, the expression is equal

to

α+C(1� eα�1):
We would like to argue that this expression, which is a continuous and differentiable function of α�over the domain [0, 1], is max-

imized at α � 1� ln C. Indeed, its derivative is 1�Ceα�1, which is positive for α ∈ [0, 1� ln C), 0 when α � 1� ln C, and negative
for α ∈ (1� ln C, 1].

Therefore, the expected revenue of any online algorithm is no greater than 1� ln C+C 1� 1
C

� �

� C� ln C. Thus the competi-

tive ratio of any online algorithm cannot exceed

C� ln C

C+ 1
:

Substituting in the optimized value of C � 1
w (where wew � 1) completes the proof of Theorem 2. w

Proof of Proposition 1. If step 6 of Procedure 2 is executed, then by the linearity of expectation,

dt+1
j (L1, : : : , Lt�1, L, ()) � dt

j(L1, : : : , Lt�1, L) + ht
j(L1, : : : , Lt�1, L),

and the desired result follows from the triangle inequality. Otherwise, if step 11 is executed, then again, by the linearity of
expectation,

dt
j(L1, : : : , Lt�1, L) � dt

j(L1, : : : , Lt�1, L � (ℓ, ρ)) + ρ · ht
j(L1, : : : , Lt�1, L � (ℓ, ρ)),

where L� (ℓ,ρ) refers to the list before (ℓ,ρ) was appended. The desired result follows from the triangle inequality and the
fact that ρ ≤ 1. w

Proof of Proposition 2. If the dcurrj ‘s are updated in step 6, then dcurrj ≤ bj

2 � ε�by the guarantee in step 5, whereas if they are

updated in step 11, then ρ · ĥj ≤ bj

2 � ε
� �

� dcurrj (because ĥj ≥ 0) by the choice of ρ. w

Proof of Proposition 3. The first statement follows from the definition of F t
K, which is the set of items that appear in

L
1, : : : ,Lt�1,L. The second statement follows from the fact that after iteration K with customer t, item j will always appear in F

in Procedure 1 and never appear in G in Procedure 2. w

Proof of Theorem 3. Consider any t ∈ [T]. In step 5 of Procedure 1, an extra iteration is possible only for each item that was

added to Lt by step 9 of Procedure 2. However, items can be added to protection lists at most once, by Proposition 3. Therefore,
the total number of iterations over t � 1, : : : , T (i.e., the value of K1+⋯ +KT) is at most T + n.

As a result, Procedure 3 is called in at most T + n times, and the total number of probabilities ht
j(L1, : : : ,Lt�1,L) estimated in

Procedure 2 is at most n(T+ n). Applying Lemma 2 with ε2 � ε
T+n, each of the estimates ĥj is outside of [ht

j(L1, : : : ,Lt�1,L)�
ε2, ht

j(L1, : : : ,Lt�1,L) + ε2] with probability at most 2e�2ε2
2
M � ε

n(T+n). By the union bound, the probability that any estimate is not
within ε2 of its true value is at most ε.

Therefore, with probability at least 1� ε, there are no failures in the sampling, and the requirements on ĥj in Proposition 1
are always met. For all j ∈ [n], there is no error in the algorithm’s value for dcurrj at the start (i.e., the initial value of ε1 is 0).

Inductively applying Proposition 1, the total error accumulated over at most T + n subiterations is at most (T+ n)ε2 � ε. That

is, | d̂j � dj | ≤ ε. We can also inductively apply Proposition 2 to see that d̂j ≤ bj

2 � ε.

Combining the two preceding inequalities establishes that with probability at least 1� ε, we have d̂j � ε ≤ dj ≤ bj

2 for all j ∈ [n],
as desired.

Chen et al.: Assortment Planning for Recommendations at Checkout
320 Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS

Now we analyze the runtime of our combined algorithm. The time taken by Procedure 1 to offer assortments until the end of
time t is O((t+ n)n) (in step 9, F s

k can easily be computed in O(n) time by having an index from each item to its position in the

protection lists). Therefore, the total runtime of Procedure 3 over the up to T + n times it is called is

O((T+ n)M(T+ n)n)) �O
(T+ n)4n

ε2
· ln (T+ n)n

ε

 !

, (A.2)

which is polynomial in T, n, and 1
ε. It is easy to see that this is the bottleneck operation in the combined algorithm, completing

the proof of Theorem 3. w

Appendix B. Running Example for Our Algorithm
In this section we provide a full running example of our algorithm (from Section 3), which demonstrates its full generality as
well as the necessity of its complexity.

Our algorithm and analysis both extend to the case where multiple add-ons can be chosen, in which case the choice proba-
bilities pij(S), indicating the marginal probability of j being purchased when S is offered to type i, need to be generalized to

expressions of the form pi(S′, S), indicating the probability of S′ being the exact subset chosen when S is offered to type i. Then,

pij(S) is derived through

pij(S) �
X

S′⊆S:j∈S′
φi(S′, S),

and the substitutability assumption translates to pij(S1) ≥ pij(S2) if {i, j} ⊆ S1 ⊆ S2. To simplify our notation in describing the
choice models, we use two conventions, for brevity:

1. We only list the maximal subsets in Si (this is enough because Si is downward closed).
2. We do not list choice probabilities that can be inferred from other choice probabilities.

Example B.1. The setup is as follows:
• b1 �∞, b2 �⋯� b6 � 1;

• r2≫ r3≫ r4≫ r5≫ r6≫ r1 � 0, rj � rdisc
j for all j;

• S1 � {{1, 2}, {1, 3}, {1, 4, 6}, {1, 5}}:
— φ1({1, 2}, {1, 2}) � 3

4, φ1({1, 3}, {1, 3}) � 1;

— φ1({1, 4, 6}, {1, 4, 6}) � 1, φ1({1, 5}, {1, 5}) � 1;

• S3 � {{3, 4}}, φ3({3, 4}, {3, 4}) � 3
5; and

• (i1, i2, i3) � (1, 3, 1).
To explain choice function φ1 in words, customers of type 1 can be offered either add-on 2, which they purchase with prob-

ability 3/4; add-on 3, which they purchase with probability 1; add-ons 4 and 6, which they purchase with probability 1 (for
both); or add-on 5, which they purchase with probability 1. It is also inferred from substitutability that customers of type 1
can be offered add-on 4 alone, which they purchase with probability 1; or add-on 6 alone, which they purchase with probabil-
ity 1.

We now provide a full example of how our algorithm offers randomized assortments using Procedure 1, assuming that the
proper protection lists have been given.

B.1. Description of Procedure 1.

Assume that the protection lists have been given as L1 � 2, 2
3

� �� �

,L2 � (),L3 � 4, 1
6

� �

, 5, 13
25

� �� �

.

Consider time s � 1. All inventories are full, so Ii1 � I1 > 0 and J � ∅. With probability 2
3, k � 0 and F � ∅, so Ã � {1, 2}. With

probability 13, k � 1 and F � {2}, which prevents item 2 from being offered as an add-on, so Ã � {1, 3}. After time period 1, there

are three possibilities for the state of the inventory:

(I1, : : : , I6) �

(∞, 0, 1, 1, 1, 1) w:p:
2

3
· 3

4
� 1

2
;

(∞, 1, 1, 1, 1, 1) w:p:
2

3
· 1

4
� 1

6
;

(∞, 1, 0, 1, 1, 1) w:p:
1

3
· 1 � 1

3
:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Now consider s � 2. If Ii2 � I3 � 0, then we have no choice but to offer Ã � ∅. Otherwise, k � 0, F � {2}, and J is either {2} or ∅,
so Ã � {3, 4}. Although the customer buys item 4 as an add-on with probability 3

5 (greater than 1
2), we only get to this state

Chen et al.: Assortment Planning for Recommendations at Checkout
Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS 321

with probability 1
2+ 1

6 � 2
3, so the add-on threshold for item 4 is not violated. After time 2, these are the possibilities for the

state:

(I1, : : : , I6) �
(∞,?, 0, 0, 1, 1) w:p:

2

3
· 3

5
� 2

5
;

(∞,?, 0, 1, 1, 1) w:p:
1

3
+ 2

3
· 2

5
� 3

5
:

8

>

<

>

:

Note that we have merged some states because it will be irrelevant for the remainder of the execution whether I2 � 0 or I2 � 1
(item 2 will always be in F and forbidden from being sold as an add-on).

Now consider s � 3. Note that J always contains 3 and contains 4 with probability 2
5. Independent of this, k � 0 w.p. 1

6, k � 1

w.p. 1� 1
6

� �

13
25 � 13

30, and k � 2 w.p. 1� 1
6

� �

1� 13
25

� �

� 2
5. The respective forbidden sets are {2}, {2, 4}, and {2, 4, 5}. When 4 ∉ J and

F � {2}, the revenue-maximizing assortment is {1, 4, 6} (guaranteeing the sales of items 4 and 6). Alternatively, if

{4, 5, 6} ∩ (J ∪ F) � {4}, then Ã � {1, 5}. Finally, if {4, 5, 6} ∩ (J ∪ F) � {4, 5}, then Ã � {1, 6}. Note that because Ã only depends on
J ∪ F, if 4 ∈ J, then it does not matter whether k � 0 (F � {2}) or k � 1 (F � {2, 4}). The final possibilities for the state at the end of
time t � 3 can be computed to be

(I1, : : : , I6) �

(∞,?, 0, 0, 0, 1) w:p:
2

5
· 1

6
+ 13

30

� �

� 6

25
;

(∞,?, 0, 0, 1, 0) w:p:
2

5
· 2

5
+ 3

5
· 1
6
� 13

50
;

(∞,?, 0, 1, 0, 1) w:p:
3

5
· 13

30
� 13

50
;

(∞,?, 0, 1, 1, 0) w:p:
3

5
· 2

5
� 6

25
:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

It can be seen that at the end of the above-mentioned execution that Pr[I4 � 0] � Pr[I5 � 0] � Pr[I6 � 0] � 13
50+ 6

25 � 1
2; that is, the

add-on thresholds for items 4, 5, and 6 are respected. Now we redescribe the execution while interleaving descriptions of how
Procedure 2 constructs the protection lists. We assume for simplicity that the sampling error is ε � 0.

B.2. Description of Procedure 2.

Consider time t � 1. At the very start, dcurrj has been initialized to d1
j (()) � 0 for all j ∈ [6]. During the first run through the loop,

L is (), and G, the set of items that have not reached their add-on thresholds, is {2, : : : , 6}. With an empty protection list, Proce-
dure 1 deterministically offers assortment {1, 2} during time 1, resulting in item 2 being sold as an add-on with probability

h1
2(L) � 3

4. Therefore, ĥ2 >
1
2, and the add-on threshold in step 5 of Procedure 2 is violated for j � 2. In step 9, ℓ � 2 and

ρ �
1
2�0

3
4

� 2
3. We compute ρ�so that had the algorithm offered {1, 2} with probability ρ�(instead of probability 1), then the expected

units of item 2 sold as an add-on would be exactly b2

2 , as indicated by the updates in step 11.

The algorithm tries again with L � 2, 2
3

� �� �

. Now, ĥ3 � 1
3, because the probability of getting to the final iteration with k � Kt is

1� 2
3 � 1

3, after which item 3 is deterministically sold as an add-on. The add-on thresholds in step 5 are upheld, and the algo-

rithm updates dcurr3 ← 1
3 ,L1← L. Note that 2 ∉ G, and dcurr2 will never again be updated, remaining at 1

2 until the end of the
selling season.

Now consider time t � 2. It is straightforward to see that ĥ4 is the only nonzero ĥj, with ĥ4 � 2
3 · 35 � 2

5. The algorithm updates

dcurr4 ← 2
5 and proceeds to time 3 with L2 � ().

From the analysis in the previous subsection, the state of the inventory (I1, : : : , I6) at the start of time 3 is (∞,?, 0, 0, 1, 1) with

probability 2
5 and (∞, ?, 0, 1, 1, 1) with probability 3

5. The expectations (dcurr1 , : : : , dcurr6) are at 0, 1
2 , 1

3 , 2
5 , 0, 0

� �

. Now consider the

execution of Procedure 1 with lists (L1,L2,L), where L � (). With probability 2
5 (when I4 � 0), the subroutine will offer {1, 5}

(because 4 ∈ J), resulting in the deterministic sale of item 5 as an add-on. With probability 3
5, the subroutine will offer {1, 4, 6}

and sell items 4 and 6 as add-ons. Therefore, ĥ4 � ĥ6 � 3
5, whereas ĥ5 � 2

5. The add-on threshold in step 5 is violated for both j �
4 and j � 6. In step 9, the expression

bj
2�dcurrj

ĥ j
is equal to

1
2�

2
5

3
5

� 1
6 when j � 4, and

1
2�0

3
5

� 5
6 when j � 6. Therefore, we choose ℓ � 4 and

ρ � 1
6. In step 11, dcurr4 ← 2

5+ 1
6 · 35 � 1

2 , dcurr5 ← 1
6 · 25 � 1

15, and dcurr6 ← 1
6 · 35 � 1

10. Note that choosing an ℓ�that minimizes ρ�is important

for respecting the add-on thresholds; had we chosen ℓ � 6 and ρ � 5
6, then dcurr4 would be updated to 25+ 5

6 · 35 > 1
2.

The algorithm tries again with updated list L � 4, 1
6

� �� �

and updated expectations (dcurr1 , : : : , dcurr6) � 0, 1
2 , 1

3 , 1
2 , 1

15 , 1
10

� �

. The

inventory possibilities are still the same, and the probability that Procedure 1 gets to the final iteration with k � Kt is 1� 1
6 � 5

6.

Regardless of whether I4 � 1, it will offer (and successfully sell) item 5 as an add-on, so ĥ5 � 5
6, which exceeds 12. Therefore, ℓ � 5

and ρ �
1
2�

1
15

5
6

� 13
25. Note that item 6 violated its add-on threshold with an earlier list but no longer violates its add-on threshold

Chen et al.: Assortment Planning for Recommendations at Checkout
322 Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS

even though dcurr6 increased with the earlier iteration. This is why adding items to the list one at a time, even when multiple

items violate their add-on thresholds, is important.

The algorithm tries again, having appended 5, 13
25

� �

to L and updated dcurr5 to 1
2. Now Procedure 1 gets to the final iteration

with probability 1� 1
6

� �

1� 13
25

� �

� 2
5, in which case it will deterministically sell item 6 as an add-on. Therefore, ĥ6 � 2

5, which

when added to dcurr6 � 1
10 is exactly 12. The algorithm proceeds to the next time period with L3← L even though dcurr6 will be 12;

item 6 will immediately get added to L if Procedure 1 attempts to offer it as an add-on again.

Appendix C. Exponential Inventory Balancing on Our Problem
First we describe an example with large starting inventories where the competitive ratio is still no better than 1/2. We also dis-
cuss why using an exponential penalty function, as in Golrezaei et al. [24], does not seem to improve the competitive ratio for
our problem.

C.1. Example.

Consider a “scaled-up” version of Example 2 with initial inventories and a selling season multiplied by k, a large integer. Now
the randomized instance is defined as follows:
• n � 3,

• r1 � rdisc

1 � 0, b1 � kN,

• r2 � rdisc

2 � 1
N , b2 � kN,

• r3 � rdisc

3 �M, b3 � k,

• S1 � {{1, 2}}, p12({1, 2}) � 1,

• S2 � {{2, 3}}, and p23({2, 3}) � 1
N.

• The arrivals are as follows:

— T � kN, i1 �⋯� ikN � 1, w.p. 1� C
M, and

— T � 2kN, i1 �⋯� ikN � 1, ikN+1 �⋯� i2kN � 2, w.p. C
M.

The expected value of OPT(i1, : : : , iT) has been multiplied by k, so it is now k(1+C). Intuitively, the offline fractional solution

will always extract the full revenue of 1
N · kN � k from item 2 and extract the revenue of M · k from item 3 w.p. C

M. Details on the

feasible LP solutions can be found in the proof of Theorem 2.
Now, consider any online algorithm. It faces the same conundrum as before: it must determine what fraction of the first kN

customers to offer item 2 without knowing whether the subsequent kN customers will come. Let α ∈ [0, 1] be the fraction of the
first kN customers served. If the subsequent kN customers come, (1�α)kN units of item 2 would be remaining for the purpose
of selling item 3. The number of units of item 3 sold is then min{X, k}, where X is a Binomial random variable with parameters

(1�α)kN, 1
N

� �

. Clearly,

E[min{X, k}] < E[X] � (1�α)k: (C.1)

In the proof of Theorem 2 we explicitly compute the difference between E[min{X,k}] and E[X], although for any fixed α < 1,
the law of large numbers suggests that E[min{X, k}] → E[X] as k→∞.

Nonetheless, for any k, we can conclude from (C.1) that the expected revenue of an online algorithm serving α�of the first kN
customers is less than αk+C(1�α)k, as M, N→∞ (for details, see the proof of Theorem 2). Choosing C � 1, αk+C(1� α)k � k

regardless of what α�the algorithm chooses, and E[OPT(i1, : : : , iT)] � 2k. Therefore, the competitive ratio must be less than 1
2

even as min{b1, : : : , bn}→∞.

C.2. Comparison of Exponential Inventory Balancing and Protection Level in Expectation

For their problem, Golrezaei et al. [24] recommend offering a revenue-maximizing assortment during every time period, where
the revenue of each item is scaled by a function of its fraction of starting inventory remaining. This function is called a penalty
function. The intuition is that if a large fraction of an item has already been sold, then lower priority should be given to selling
the remaining units. As the starting inventories become large, their exponential penalty function accomplishes the optimal
trade-off between selling a high-revenue item and selling a low-revenue item that may not be wanted later.

In our problem, there is a further trade-off between selling a high-revenue item and saving it for even higher revenue later.
As a result, selling too much of an item as an add-on has the added downside that the inventory could be being disposed for
an arbitrarily small fraction of its potential revenue, and every unit depleted as an add-on incurs the same risk in revenue loss.
The example in the previous subsection illustrates this—every unit of item 2 sold to the first kN customers loses the same frac-

tion (1
N) of item 3’s large revenue (M), should the final kN customers arrive.

Therefore, placing higher value on the final remaining units of each item in the form of an exponential penalty function
appears to yield no benefit. In fact, if we directly use the penalty functions of Golrezaei et al. [24] on our problem, then the
competitive ratio guarantee is 0. To see this, note that the penalty function–based algorithm would sell all k copies of item 2 as
an add-on, because its “penalized” revenue would still be positive as long as there is positive remaining inventory. Thus in the
scenario where the final kN customers arrive, the algorithm would stock out of item 2 and sell no copies of item 3, whereas the
optimum would have protected all of its copies of item 2 to earn the large revenue of kM from item 3.

Chen et al.: Assortment Planning for Recommendations at Checkout
Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS 323

Our algorithm remedies this issue by withholding half of the inventory of each item (in expectation) from being sold as an
add-on. In that sense, our algorithm also scales the revenue of each item by a penalty factor, but our penalty factor is a function

of the item’s expected fraction of starting inventory remaining, and that function over [0, 1] is the function that is 0 on 0, 1
2

� �

and

1 on 1
2 , 1
� �

.

Endnotes
1 In general, the firm would need to flip another coin to decide whether to sell item 3 as an add-on, because the full price of item 3 could be
M2 (which is ≫M), or item 3 could be a primary item that enables the sales of another add-on with price M2.
2 This example shows why the positive correlation between protecting items does not cure the problem. Although negative correlation does
cure the problem on this example, it is unclear how to define negative correlation in general when there are a large number of items, all of
which could be sold as add-ons to one another.

References
0[1] Adamczyk M, Grandoni F, Mukherjee J (2015) Improved approximation algorithms for stochastic matching. Bansal N, Finocchi I, eds.

Algorithms—ESA 2015 (Springer, Berlin, Heidelberg), 1–12.
0[2] Aggarwal G, Goel G, Karande C, Mehta A (2011) Online vertex-weighted bipartite matching and single-bid budgeted allocations. Proc.

22nd Annual ACM-SIAM Sympos. Discrete Algorithms (Society for Industrial and Applied Mathematics, Philadelphia), 1253–1264.
0[3] Ball MO, Queyranne M (2009) Toward robust revenue management: Competitive analysis of online booking. Oper. Res. 57(4):950–963.
0[4] Bernstein F, Kök AG, Xie L (2015) Dynamic assortment customization with limited inventories. Manufacturing Service Oper. Management

17(4):538–553.
0[5] Bitran G, Caldentey R (2003) An overview of pricing models for revenue management. Manufacturing Service Oper. Management 5(3):203–229.
0[6] Blanchet J, Gallego G, Goyal V (2016) A Markov chain approximation to choice modeling. Oper. Res. 64(4):886–905.
0[7] Borodin A, El-Yaniv R (2005) Online Computation and Competitive Analysis (Cambridge University Press, Cambridge, UK).
0[8] Brubach B, Sankararaman KA, Srinivasan A, Xu P (2017) Attenuate locally, win globally: An attenuation-based framework for online sto-

chastic matching with timeouts. Das S, Durfee E, Larson K, Winikoff M, eds. Proc. 16th Conf. Autonomous Agents Multiagent Systems (Inter-
national Foundation for Autonomous Agents and Multiagent Systems), 1223–1231.

0[9] Bubeck S, Devanur NR, Huang Z, Niazadeh R (2019) Multi-scale online learning and its applications to online auctions. J. Machine Learn.
Res. 20(62):1–37.

[10] Buchbinder N, Jain K, Naor JS (2007) Online primal-dual algorithms for maximizing ad-auctions revenue. Arge L, Hoffmann M, Welzl E,
eds. Algorithms—ESA 2007 (Springer, Berlin), 253–264.

[11] Buchbinder N, Chen S, Naor J, Shamir O (2016) Unified algorithms for online learning and competitive analysis. Math. Oper. Res. 41(2):612–625.
[12] Chan CW, Farias VF (2009) Stochastic depletion problems: Effective myopic policies for a class of dynamic optimization problems. Math.

Oper. Res. 34(2):333–350.
[13] Cheung WC, Simchi-Levi D (2016) Efficiency and performance guarantees for choice-based network revenue management problems

with flexible products. Preprint, submitted August 15, http://dx.doi.org/10.2139/ssrn.2823339.
[14] Cohen MC, Lobel I, Paes Leme R (2020) Feature-based dynamic pricing. Management Sci. 66(11):4921–4943.
[15] Dean BC, Goemans MX, Vondrák J (2008) Approximating the stochastic knapsack problem: The benefit of adaptivity. Math. Oper. Res.

33(4):945–964.
[16] Désir A, Goyal V, Zhang J (2022) Capacitated assortment optimization: Hardness and approximation. Oper Res. 70(2):893–904.
[17] Désir A, Goyal V, Segev D, Ye C (2020) Constrained assortment optimization under the Markov chain–based choice model. Management

Sci. 66(2):698–721.
[18] Devanur NR, Jain K, Kleinberg RD (2013) Randomized primal-dual analysis of RANKING for online bipartite matching. Khanna S, ed.

Proc. 24th Annual ACM-SIAM Sympos. Discrete Algorithms (Society for Industrial and Applied Mathematics, Philadelphia), 101–107.
[19] Elmaghraby W, Keskinocak P (2003) Dynamic pricing in the presence of inventory considerations: Research overview, current practices,

and future directions. Management Sci. 49(10):1287–1309.
[20] Gallego G, Topaloglu H (2014) Constrained assortment optimization for the nested logit model. Management Sci. 60(10):2583–2601.
[21] Gallego G, van Ryzin G (1994) Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Management Sci.

40(8):999–1020.
[22] Gallego G, Iyengar G, Phillips R, Dubey A (2004) Managing flexible products on a network. Preprint, submitted July 1, http://dx.doi.

org/10.2139/ssrn.3567371.
[23] Gallego G, Li A, Truong VA, Wang X (2016) Online personalized resource allocation with customer choice. Technical report, Columbia

University, New York.
[24] Golrezaei N, Nazerzadeh H, Rusmevichientong P (2014) Real-time optimization of personalized assortments. Management Sci. 60(6):1532–1551.
[25] Kalyanasundaram B, Pruhs KR (2000) An optimal deterministic algorithm for online b-matching. Theoret. Comput. Sci. 233(1):319–325.
[26] Karp RM, Vazirani UV, Vazirani VV (1990) An optimal algorithm for on-line bipartite matching. Proc. 22nd Annual ACM Sympos. Theory

Comput. (ACM, New York), 352–358.
[27] Krumke SO (2002) Online optimization: Competitive analysis and beyond. Postdoctoral thesis, Technische Universität Berlin, Berlin.
[28] Lan Y, Gao H, Ball MO, Karaesmen I (2008) Revenue management with limited demand information. Management Sci. 54(9):1594–1609.
[29] Li G, Rusmevichientong P, Topaloglu H (2015) The d-level nested logit model: Assortment and price optimization problems. Oper. Res.

63(2):325–342.
[30] Linden G, Smith B, York J (2003) Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Comput. 7(1):76–80.
[31] Lugosi G (2009) Concentration-of-measure inequalities. Working paper, Pompeu Fabra University, Barcelona, Spain. http://www.econ.

upf.edu/lugosi/anu.pdf.

Chen et al.: Assortment Planning for Recommendations at Checkout
324 Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS

http://dx.doi.org/10.2139/ssrn.2823339
http://dx.doi.org/10.2139/ssrn.3567371
http://dx.doi.org/10.2139/ssrn.3567371
https://www.amazon.com/
http://www.econ.upf.edu/lugosi/anu.pdf
http://www.econ.upf.edu/lugosi/anu.pdf

[32] Ma W (2018) Improvements and generalizations of stochastic knapsack and Markovian bandits approximation algorithms. Math. Oper.
Res. 43(3):789–812.

[33] Maglaras C, Meissner J (2006) Dynamic pricing strategies for multiproduct revenue management problems. Manufacturing Service Oper.
Management 8(2):136–148.

[34] Mahajan S, van Ryzin G (2001) Stocking retail assortments under dynamic consumer substitution. Oper. Res. 49(3):334–351.
[35] Mehta A, Panigrahi D (2012) Online matching with stochastic rewards. IEEE 53rd Annual Sympos. Foundations Comput. Sci. (IEEE,

Piscataway, NJ), 728–737.
[36] Mehta A, Waggoner B, Zadimoghaddam M (2015) Online stochastic matching with unequal probabilities. Proc. 26th Annual ACM-SIAM

Sympos. Discrete Algorithms (SIAM, Philadelphia), 1388–1404.
[37] Mehta A, Saberi A, Vazirani U, Vazirani V (2007) AdWords and generalized online matching. J. ACM 54(5):Article 22.
[38] Rusmevichientong P, Shen ZJ, Shmoys D (2010) Dynamic assortment optimization with a multinomial logic choice model and capacity

constraint. Oper. Res. 58(6):1666–1680.
[39] Talluri K, van Ryzin G (2004) Revenue management under a general discrete choice model of consumer behavior. Management Sci.

50(1):15–33.
[40] van Ryzin G, Mahajan S (1999) On the relationship between inventory costs and variety benefits in retail assortments. Management Sci.

45(11):1496–1509.
[41] Wood M (2014) A new kind of e-commerce adds a personal touch. New York Times (August 13), https://www.nytimes.com/2014/08/

14/technology/personaltech/data-driven-shopping-with-the-personal-touch.html.
[42] Xu Y, Wang Z (2018) Assortment optimization for a multi-stage choice model. Preprint, submitted September 4, http://dx.doi.org/10.

2139/ssrn.3243742.
[43] Yao ACC (1977) Probabilistic computations: Toward a unified measure of complexity. 18th Annual Sympos. Foundations Comput. Sci.

(IEEE, Piscataway, NJ), 222–227.
[44] Yuan M, Pavlidis Y, Jain M, Caster K (2016) Walmart online grocery personalization: Behavioral insights and basket recommendations.

Link S, Trujillo JC, eds. Adv. Conceptual Modeling: ER 2016 Workshops (Springer, Cham, Switzerland), 49–64.

Chen et al.: Assortment Planning for Recommendations at Checkout
Mathematics of Operations Research, 2024, vol. 49, no. 1, pp. 297–325, © 2023 INFORMS 325

https://www.nytimes.com/2014/08/14/technology/personaltech/data-driven-shopping-with-the-personal-touch.html
https://www.nytimes.com/2014/08/14/technology/personaltech/data-driven-shopping-with-the-personal-touch.html
http://dx.doi.org/10.2139/ssrn.3243742
http://dx.doi.org/10.2139/ssrn.3243742

	Assortment Planning for Recommendations at Checkout Under Inventory Constraints
	Introduction
	Model Specification
	Algorithm
	Analysis
	Analysis of the No-add-on Algorithm When Potential Add-on Revenue Is Small
	Numerical Experiments
	Conclusions and Future Directions

