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ABSTRACT

The long-term relaxation of rotating, spherically symmetric globular clusters is investigated through an extension of the orbit-averaged
Chandrasekhar non-resonant formalism. A comparison is made with the long-term evolution of the distribution function in action
space, measured from averages of sets of N-body simulations up to core collapse. The impact of rotation on in-plane relaxation
is found to be weak. In addition, we observe a clear match between theoretical predictions and N-body measurements. For the
class of rotating models considered, we find no strong gravo-gyro catastrophe accelerating core collapse. Both kinetic theory and
simulations predict a reshu✏ing of orbital inclinations from overpopulated regions to underpopulated ones. This trend accelerates
as the amount of rotation is increased. Yet, for orbits closer to the rotational plane, the non-resonant prediction does not reproduce
numerical measurements. We argue that this mismatch stems from these orbits’ coherent interactions, which are not captured by the
non-resonant formalism that only addresses local deflections.
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1. Introduction

Rotation is ubiquitous in stellar systems. In e↵ect, it pro-
vides a source of free energy, allowing clusters to e�ciently
reshu✏e their orbital structure towards more likely configura-
tions. Yet, historically, the study of globular clusters has been
mainly focused on isotropic, non-rotating, old globular clus-
ters (Aarseth et al. 1974; Spitzer 1975; Cohn 1979; Trager et al.
1995; Miocchi et al. 2013). The reasons behind such simplifica-
tions are two-fold: (i) naturally, it is easier numerically and ana-
lytically to neglect the e↵ect of rotation; (ii) spherical isotropic
models – for example, the King models (King 1966) or the Wil-
son models (Wilson 1975) – provided a satisfactory zeroth-order
description of the main observed dynamical properties of globu-
lar clusters (see, e.g., McLaughlin & van der Marel 2005).

The last decade has seen the extraction of new data – for
instance, HST (Bellini et al. 2017) and Gaia DR2 (Bianchini
2018; Sollima et al. 2019). These surveys gave the astrophysi-
cal community access to numerous and detailed observations of
the internal kinematics of several globular clusters of the Milky
Way (Bianchini et al. 2013; Fabricius et al. 2014; Watkins et al.
2015; Ferraro et al. 2018; Kamann et al. 2018), as well as a
quantification of the degree of velocity anisotropy (Jindal et al.
2019). Using these new data sets, the historical highly symmetric
cluster models are not satisfactory anymore.

Therefore, a secular theory that describes the evolu-
tion of globular clusters and accounts for their rotation is
needed to describe their long-term evolution. In particular,
the Fokker-Planck theory was used to probe the impact of
rotation of the long-term evolution of such clusters, both
before (Einsel & Spurzem 1999) and after (Kim et al. 2002)
core collapse. Furthermore, observations show that the angu-
lar momentum distribution measured in Galactic clusters
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retain the signature of their formation process (Lanzoni et al.
2018). While N-body simulations are able to reproduce these
results (Tiongco et al. 2016, 2022), the historical context and
the complexity of the problem have led to few analytical explo-
rations (Geyer et al. 1983; White & Shawl 1987; Kontizas et al.
1989). These remain scarce even now (see, e.g., Stetson et al.
2019; Rozier et al. 2019; Livernois et al. 2022).

In isolated systems, a non-zero total angular momentum,
that is, the presence of rotation, can have a significant impact
on the cluster’s long-term evolution, for instance, through the
“gravo-gyro catastrophe” (Hachisu 1979; Ernst et al. 2007). This
phenomenon has been observed in a range of rotating sys-
tems, including gas cylinders (Inagaki & Hachisu 1978; Hachisu
1979), gaseous discs (Hachisu 1982), flattened (quasi-spherical)
star clusters (Akiyama & Sugimoto 1989; Einsel & Spurzem
1999; Ernst et al. 2007), and clusters with embedded black
holes (BHs) (Fiestas & Spurzem 2010; Kamlah et al. 2022).
Let us however note that many of these studies used a rotat-
ing King model to study the impact of rotation (see, e.g.,
Einsel & Spurzem 1999; Varri & Bertin 2012). Therein, chang-
ing the amount of rotation impacts the density profile: this makes
comparisons amongst di↵erent models less clear.

The concurrent occurrence of internal rotation and a spec-
trum of stellar masses can result in the formation of an
oblate core of fast rotating heavy masses (Kim et al. 2004;
Tiongco et al. 2021). More precisely, the orbital inclinations
of the heaviest stars align with respect to one another, induc-
ing a mass segregation in the distribution of orbital inclina-
tions (Szölgyén et al. 2019). The generally agreed explanation
for this phenomenon is resonant relaxation and resonant fric-
tion (Rauch & Tremaine 1996; Meiron & Kocsis 2019). While
this e↵ect concerns globular clusters, nuclear cluster with a dom-
inant massive BH (Szölgyén & Kocsis 2018; Foote et al. 2020;
Gruzinov et al. 2020; Magnan et al. 2022; Ginat et al. 2023) also
display this spontaneous alignment.
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The objective of this paper is to explore the impact of rota-
tion on the long-term evolution of spherically symmetric glob-
ular clusters. To achieve this goal, we extend the orbit average
analysis of anisotropic Plummer globular clusters from Tep et al.
(2022) to the case of rotating clusters. By performing tailored N-
body simulations, we quantify the validity of Chandrasekhar’s
non-resonant relaxation (NR) theory (Chandrasekhar 1943), and
assess the importance of the gravo-gyro catastrophe as well as
that of collective e↵ects (i.e., the self-amplification of the star’s
gravitational response, see Heyvaerts 2010).

This paper is organised as follows. In Section 2, we extend
the NR theory to rotating clusters. In Section 3, we follow the
long-term evolution of a series of rotating clusters using N-body
simulations. We study the impact of rotation on core collapse
and on the distribution of orbital inclinations. We compare the
NR prediction with N-body simulations in Sections 4 (in-plane
di↵usion) and 5 (out-of-plane di↵usion). Finally, we discuss our
results in Section 6.

2. Non-resonant relaxation

We consider a self-gravitating globular cluster composed of N

stars of individual mass m=M/N, with M the cluster’s total
mass. We follow the cluster’s evolution through the total dis-
tribution function (DF) in (r, u) space, Frot=Frot(r, u), with r the
position and u the velocity. All normalisations are taken to be
the same as in Section 2 of Tep et al. (2022), hereafter T22. In
addition to quasi-stationarity, we assume the cluster to be spher-
ically symmetric – hence, with planar unperturbed orbits – and
in rotation. Since we are interested in orbital distortion, it is con-
venient to monitor the cluster’s evolution in action space, via
Frot=Frot(J), where J = (Jr, L, Lz) are the specific action coor-
dinates. Here, Jr is the radial action, L the norm of the angular
momentum vector and Lz its projection along the z-axis. We also
introduce the orbital inclination through cos I=Lz/L. Because
actions are integrals of motion, we use them to label the cluster’s
orbits and track their deformation over time.

The long-term evolution of the cluster’s DF is described by
the FP equation (see, e.g., section 7.4 of Binney & Tremaine
2008)
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with F (J) the action space flux. Therein, we find the first-order
di↵usion coe�cient, D1, and the di↵usion matrix, D2. Both of
them describe the distortion of orbits in action space. The next
two sections briefly describe the main steps needed to compute
this di↵usion flux in Equation (1).

2.1. Local velocity deflection coefficients

Let us consider a test star of mass m and velocity u. As a result
of the cluster’s finite number of constituents, this test star is
subject to perturbations around its mean field trajectory, driv-
ing an irreversible di↵usion of its velocity. We call this long-
term relaxation process, sourced by successive, uncorrelated
pairwise deflections, the NR relaxation. Following Appendix L
of Binney & Tremaine (2008) (p. 836), the corresponding local

velocity deflection coe�cients generically read

h�vii=�2A
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w3 Frot(r, u0), (2a)
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where 1 i, j3 run over the three directions of the coordi-
nate system. We also defined A=4⇡mG

2ln⇤ and the relative
velocity w=u � u0. Here, ln⇤ stands for the Coulomb logarithm,
set to ⇤=0.11N as is usual for single-mass globular clusters
(Giersz & Heggie 1994; Heggie & Hut 2003). In principle, the
rewriting of these expressions using Rosenbluth potentials is fea-
sible, as outlined by Rosenbluth et al. (1957). Such a program, in
a non-rotating but anisotropic cluster, was pursued in T22.

In Appendix A, we improve upon this approach in the con-
text of rotating clusters. In particular, we show how a rewriting
rather based on Equations (2) improves the numerical stability
and ensures the positivity of the second-order di↵usion coe�-
cients. More precisely, we write Equations (2) as
2
66666664
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where �vk (resp. �v?) is the local velocity deflection along
(resp. perpendicular to) the test star’s trajectory and we have
used polar coordinates (w,#, �) with the z-axis parallel to u (see
Fig. A.1). Appendix A.1 also details the arguments at which the
DF, Frot(r, u0)=Frot(E0, L0, L0z), must be evaluated.

Equation (3) is one of the main results of the present work.
In particular, Equation (3) possesses a few key advantages com-
pared to the expressions given in Equations (3) of T22, which
are recovered by the present approach: (i) no integrable singular
denominators remain; (ii) no gradients of Frot are required dur-
ing the computation; (iii) the positivity of the second-order coef-
ficients is ensured; (iv) this equation applies to a wider range of
clusters. Ultimately, Equation (3) compactly accounts for all the
two-body deflections from the cluster’s stars onto the test star.

2.2. Orbit average and secular evolution

Because we are interested in the di↵usion of orbits, we must con-
sider the e↵ect of NR on orbital invariants, namely the energy
E and the angular momenta L and Lz. In Appendix B, we
expand upon T22 and detail how the local di↵usion coe�cients
in (E, L, Lz) may be computed from the local velocity coe�-
cients given in Equation (3).

Once the local di↵usion coe�cients are known, they can
be averaged along the unperturbed mean field orbit of the test
star. At this stage, our accounting of rotation adds some com-
plexity. Indeed, the orbit average now involves an intricate two-
dimensional integral spanning the radial range of the test orbit
(r2 [rp, ra]) and its angular phase (' 2 [0, 2⇡]) within the orbital
plane. This is illustrated in Fig. 1.

In practice, computing the orbit average di↵usion coe�-
cients involves computing expressions of the form

DX =
⌦r

⇡

Z
ra

rp

dr

|vr|

Z 2⇡

0

d'
2⇡
h�Xi(r,'), (4)

where X runs over all the di↵usion coe�cients to compute, that
is, runs over singlets and pairs from {E, L, Lz}. Here, ⌦r is the
radial frequency and vr the radial velocity that is evaluated along
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Fig. 1. Illustration of the orbit average in physical space. The test star
(in black, part of whose orbit is shown in red) is averaged over all its
available positions in its orbital plane, within the radial range of the
orbit (r2 [rp, ra]) and its angular range (' 2 [0, 2⇡]), weighted by the
surface density ⌦r/(2⇡2|vr|). Here, the frame is that of the right panel of
Fig. A.2.

the mean field orbit. We refer to Appendix C for detailed expres-
sions. In particular, in Appendix C.1, we show how the angular
average can be performed explicitly for some classes of rotating
models. And, in Appendix C.2, we use the same approach as in
appendix F2 of T22 to compute the radial average using a stable
numerical integration scheme.

The final stage of the calculation is to convert the
orbit-averaged di↵usion coe�cients in (E, L, Lz) into ones in
J= (Jr, L, Lz). This is rather straightforward, as detailed in
Appendix D. Lastly, these di↵usion coe�cients are those used
to evaluate the FP Equation (1). Along the same lines, one
can similarly describe the dynamics within the coordinates
Jc= (Jr, L, cos I).

3. Long-term relaxation

We wish to study the impact of rotation on the long-term evolu-
tion of rotating, spherically symmetric1, anisotropic clusters. In
this first section, we focus on direct N-body simulations to get
some insight on the dynamics at play. We detail the correspond-
ing numerical setup in Appendix E.

First, let us describe the classes of clusters considered. The
in-plane distribution of orbits (i.e., when projecting in the (Jr, L)
space) follows the same Plummer DFs (see, e.g., Dejonghe
1987) as in Section 3.1 of T22. Velocity anisotropy is encoded
with the dimensionless parameter q, with q = 0 corresponding
to an isotropic distribution, and q>0 (resp. q<0) associated with
radially (resp. tangentially) anisotropic velocity distributions.

Let us introduce rotation in these models, while leaving the
mean potential invariant. To do so, we follow the Lynden-Bell
daemon (LBD) (Lynden-Bell 1960) and consider

Frot(J) = Ftot(Jr, L)
�
1 + ↵ sgn[Lz/L]

�
, (5)

where Ftot(Jr, L) is the non-rotating DF and ↵ a dimensionless
parameter between 0 and 1. Physically, this parameter corre-
sponds to converting a fraction ↵ of retrograde orbits (Lz<0)
into prograde orbits (Lz>0). Importantly, since Lz 7!sgn[Lz/L]
is an odd function, we stress that Ftot and Frot generate the exact
same potential.

1 We will justify the assumption of spherical symmetry in Section 3.1.

Fig. 2. Sphericity, h, of a sample of rotating anisotropic clusters, as
defined in Appendix F, from N-body simulations for N=105. Each
case has been averaged over 50 realisations. We represent radially
anisotropic clusters (q=1) in red, isotropic clusters (q=0) in yellow, and
tangentially anisotropic ones (q=�6) in blue. For each anisotropy, we
consider three rotating parameters ↵=0.1, 0.25, 0.5 (ordered from dark
to light colors). In agreement with Rozier et al. (2019), some of these
clusters are unstable – namely (q,↵)= (1, 0.5), and in a smaller fashion
(q,↵)= (1, 0.25) – while the others are linearly stable and remain spher-
ically symmetric.

When considering orbital inclinations via Jc= (Jr, L, cos I)
(see Appendix D.3), the LBD yields the DF in Jc space2

F(Jc) = L Ftot(Jr, L)
�
1+↵ sgn[cos I]

�
. (6)

Integrating this equation over cos I, one recovers the reduced DF
in (Jr, L), F(Jr, L)=2LFtot(Jr, L), used to describe non-rotating
clusters (see, e.g., Hamilton et al. 2018).

3.1. Sphericity of the cluster

The NR theory presented in Section 2 assumes that the
cluster remains spherically symmetric throughout. However,
Rozier et al. (2019) showed that (su�ciently) rotating clusters
can harbour unstable modes (see, e.g., Fig. 8 therein). To avoid
this complication, we restricted ourselves to (linearly) stable
rotating clusters, that is, clusters that would remain spherically
symmetric.

To probe the conservation of spherical symmetry, we inves-
tigateed the “sphericity”, h, of clusters, as defined in Appendix F
in terms of the eigenvalue ratio of the density-weighted inertia
tensor. This is illustrated in Fig. 2.

Except for the radially-anisotropic and rapidly-rotating clus-
ter (q,↵)= (1, 0.5), all clusters remain approximately spherical.
This is in agreement with the measurements from Rozier et al.
(2019), as this particular cluster falls into the region of linear
instability. Therefore, we shall focus our interest on parameters
(q,↵) for which the clusters remain spherically symmetric.

3.2. The gravo-gyro catastrophe

The typical relaxation timescale of a globular cluster can be
estimated through the half-mass relaxation time (see, e.g.,
Section 14 of Heggie & Hut 2003, for more details), defined by

trh =
0.138 N r

3/2
h

(GM)1/2 ln(0.11 N)
, (7)

2 Using cos I as an e↵ective coordinate to describe relaxation might be
problematic for some clusters. We refer to Appendix K for more details.
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Fig. 3. Core radius as a function of time, as measured in N-body simula-
tions, with trh defined in equation (7). Each case has been averaged over
50 realisations with N=104. Increasing the rotation strength ↵ slightly
reduces the time of core collapse. Nevertheless, the impact of rotation
(i.e. the gravo-gyro catastrophe) is surely not as pronounced as what
was observed in, e.g., Einsel & Spurzem (1999).

with rh the half-mass radius. For a cluster with N=105 stars,
this yields trh=994 HU, where HU stands for the Hénon
units (Heggie & Mathieu 1986) in which G=M=Rv=1, with Rv
the virial radius3. In practice, with N=105 running a numeri-
cal simulation up to t⇠ trh took about one day of computation,
see Appendix E. In Breen et al. (2017), core collapse occurs at
t⇠17trh for an isotropic cluster (see Table 1 therein for the depen-
dence with respect to velocity anisotropy). Hence, integrating
clusters with N=105 up to core collapse is not reasonably feasi-
ble. In this section we therefore scaled down the size of the clus-
ters to N=104 stars. In that case, trh=132 HU, and core collapse
was numerically reached in about ten hours. Since we focused on
measuring the core radius – a very integrated quantity – the qual-
ity of the numerical measurements was not too much degraded
by this use of a smaller value for N. In practice, measurements
were averaged over 50 runs.

Figure 3 represents the time evolution of the averaged core
radius, Rc, defined as (see, e.g., Breen et al. 2017; T22)

R
2
c =
X

i

r
2
i
⇢2

i
/
X

i

⇢2
i
, (8)

where ri is the radial position of star i and ⇢i an estimator of the
density at ri, as defined in NBODY6++GPU (Wang et al. 2015).
For the usual sets of anisotropies and rotations (q=1, 0,�6 and
↵=0, 0.1, 0.25, 0.5).

Interestingly, for these rotating clusters, the impact of
rotation is definitely not as important as the one reported
in Einsel & Spurzem (1999) in rotating King models (see
Figure 2 therein). Appendix G reproduces the main parameters
characterising these models. For example, in Einsel & Spurzem
(1999), assuming W0=6.0, a non-rotating King cluster collapses
at t ⇠ 12trh, while a rotating one, with !0/⌦0 = 0.4, can collapse
as early as t ⇠ 9trh. Here, for Plummer spheres, we do not find
any such stark impact of rotation.

Nonetheless, Figure 3 does not contradict the measure-
ments from Einsel & Spurzem (1999). Indeed, the parameters
!0 (King) and ↵ (Plummer) do not parametrise rotation in the
same way. As Einsel & Spurzem (1999) varies !0, the mean
density profile gets modified. Indeed, the rotating DF of the
King model (Equation G.1) cannot be decomposed into a fixed,

3 For a Plummer cluster, this is related to the Plummer scale length b

by the relation Rv=16b/(3⇡) (see, e.g., Dejonghe 1987).

rotation-free even part, and an odd part in Lz (see, e.g., Dejonghe
1986). As such, we argue that the LBD approach ensures a fairer
comparison between models to isolate the distinctive impact of
rotation.

Of course, to better assess the universality of these obser-
vations, it would be worthwhile to perform similar experiments
with other parametrisations for the rotation (see Appendix K).
This is left for future investigations.

3.3. In-plane vs out-of-plane diffusion

Using once again N-body simulations with N=104 stars, let us
finally investigate the typical features of the in-plane di↵usion
(i.e. relaxation in (Jr, L)) and out-of-plane di↵usion (i.e. relax-
ation in cos I).

First, Fig. 4 reports on the time evolution of the DF in L, that
is, the in-plane relaxation of the distribution of angular momenta.
There, we recover the imprints of core collapse visible through
the slow overall contraction of the distribution. But importantly,
we clearly note that rotation only (very) weakly impacts this
relaxation.

We can now compare this relaxation with the out-of-plane
one. Figure 5 reports on the time evolution of the DF in cos I. As
could have been expected, the clusters tend towards smoother
distribution of inclinations, meaning that relaxation tends to
erase discontinuities. The sharp discontinuity at cos I=0 has
already been washed away after 1 trh, regardless of the initial
amplitude of the discontinuity. We refer to Appendix K.2 for a
comparison of the early relaxation between a discontinuous and
a smooth distribution of orbital inclinations. Note that the redis-
tribution of prograde and retrograde orbits observed in Fig. 5
does not conflict with the conservation of the cluster’s total angu-
lar momentum. Indeed, the average of cos I=Lz/L is not con-
strained by any global invariance, contrary to Lz. As such, even
if the number of particles with positive and negative cos I (hence
Lz) changes, the conservation of the total angular momentum
is ensured by a modulation of the norm of each star’s angular
momentum vector.

Comparing Figs. 4 and 5 shows that orbital inclinations relax
much faster than angular momenta. This is a point already raised
in Rauch & Tremaine (1996) (Fig. 2 therein). In particular, they
showed in their Section 1.4 that the long-term relaxation of E and
L in spherical potential was driven by the NR theory, whereas
that of the angular momentum vector L – and thus Lz – was
subject to an enhanced relaxation. This out-of-plane relaxation
is driven by coherent torques between orbits and is coined vector
resonant relaxation (VRR).

4. In-plane diffusion

Assuming that the cluster’s relaxation is driven by local pair-
wise deflections, its long-term evolution is described by the
FP Equation (1). While this equation formally describes the
evolution in 3D action space, it is convenient to study relax-
ation in two-dimensional projections, in particular to improve
the signal-to-noise ratio. Yet, such a projection comes at the
cost of more intricate theoretical predictions, that require addi-
tional integrations along some third action. In this section, fol-
lowing the same approach as in T22, we first focus on in-plane
relaxation, that is, relaxation occurring in (Jr, L). Our goal is to
compare quantitatively the N-body measurements with the NR
prediction.
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Fig. 4. Evolution of the angular momentum DF, F(L), as measured in N-body simulations with N=104, with trh defined in Equation (7). For each
parameter, the latest time is close to the time of core collapse. Each panel is averaged over 50 realisations. Here, F(L) redistributes towards lower
angular momenta, with details depending on the initial velocity anisotropy. Rotation does not impact strongly the in-plane relaxation.

4.1. N-body measurements

The onset of core collapse is illustrated in Fig. 6 for clusters
with N=105 stars. As in Fig. 3, we recover that rotation does
not really impact the rate of core collapse in these linearly stable
clusters. Conversely, when the clusters are unstable, such as for
(q,↵)= (1, 0.5) (see Fig. 2), we find numerically (not reported in
Fig. 6) that the clusters flatten and that relaxation is accelerated.

To probe more precisely relaxation, let us now measure the
relaxation rate, @F/@t, in (Jr, L). This is presented in Fig. 7
with details spelled out in Appendix E. Even in the presence
of rotation, we recover the same result as in T22, namely all
clusters seem to isotropise toward an in-plane DF depending
only on energy. Indeed, in radially anisotropic clusters, relax-
ation depletes radial orbits. And the converse holds for tangen-
tially anisotropic clusters. Importantly, the amount of rotation,
↵, has no significant impact on the geometry of the in-plane dif-
fusion. Increasing ↵ only (very) weakly accelerates the in-plane
relaxation. This is in concordance with the slightly shorter core
collapse time observed in Fig. 3.

4.2. Non-resonant prediction

Let us now compute the NR prediction for the relaxation rate
in (Jr, L). This prediction was numerically very intensive and
required the evaluation of five embedded integrals, as demon-
strated in Appendices A and H. Importantly, we stress that in the
present case, the LBD (Equation (5)) allowed us to analytically
perform the angular part of the orbit average (Equation (4)). This
helped reducing the computation time. We refer to Appendix C.1
for details.

The relaxation rate, @F/@t in (Jr, L), presented in Fig. 8
for various anisotropies and rotations, suggests once again an
orbital reshu✏ing toward isotropisation. In addition, increas-
ing the rotation parameter ↵ only very weakly increases the
relaxation rate in (Jr, L), while barely impacting the structures
observed in the non-rotating case.

When comparing the N-body measurements (Fig. 7) with
the NR prediction (Fig. 8), the NR theory successfully recovers
the in-plane relaxation of stable rotating clusters: both figures
exhibit strikingly similar structures in action space. We obtain
results for the non-rotating case that are in agreement with T22.
Yet, even though amplitudes in both approaches are comparable,

there is still a (slight) overall prefactor mismatch. The inclusion
of rotation has little impact on this mismatch. A more quantita-
tive comparison would require performing (many) more N-body
runs, as well as a more precise measurement of the relaxation
rate. This would be no light undertaking, and will be the subject
of future works.

5. Out-of-plane diffusion

Because they rotate, the present clusters also undergo some out-
of-plane di↵usion, namely relative to the orbital inclinations
cos I. In this section, we focus on relaxation in (Jr, cos I), and
we refer to Appendix J for a similar investigation in (L, cos I).

5.1. N-body measurements

The relaxation rates in N-body simulations are presented in
Fig. 9. As expected, in the absence of rotation (top row), the
relaxation is independent of cos I, and the distribution of orien-
tations remains uniform.

Let us now consider the rotating clusters presented in the
middle and bottom rows of Fig. 9. In radially anisotropic (q=1)
and isotropic (q=0) clusters, the systems lose stars in the pro-
grade region (cos I>0) and gain stars in the retrograde region
(cos I<0). As one increases ↵ (i.e. as one increases the net rota-
tion), this trend strengthens. This is in agreement with the orbital
reshu✏ing observed in Fig. 8, where the clusters always tend to
isotropise their in-plane distribution. Finally, we note that the
highest di↵usion rates in inclination are observed near cos I=0.
This corresponds precisely to the location of the discontinuity of
the LBD.

At first glance, the tangentially anisotropic case (q=�6),
as given by the right column in Fig. 9, may seem di↵erent.
Indeed, in that case a depletion of orbits for small Jr is observed,
whatever cos I. Conversely, the number of orbits systematically
increases for large Jr, whatever cos I. This is directly linked
to the in-plane isotropisation of the cluster (Fig. 8). Indeed,
these clusters being tangentially biased, the in-plane di↵usion
occurs towards higher Jr. Overall, all clusters, independently
of their anisotropies, evolve towards smoother distribution of
orbital inclinations.
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Fig. 5. Same as Fig. 4 but for the DF in orbital inclinations, F(cos I). The out-of-plane relaxation does not depend much on the initial velocity
anisotropy. As time evolves, the discontinuity of the LBD (Equation (5)) at cos I=0 is (rapidly) washed out.

As a complement of Fig. 9, Appendix J also presents the
relaxation rates in (L, cos I). It reaches similar results as for dif-
fusion in (Jr, cos I). Namely, the in-plane distributions tend to
isotropise and orbital inclinations di↵use so as to reach smoother
distributions.

In addition, we stress that due to the use of binning and finite
di↵erentiation to compute @F/@t, the expected sharp evolution
occurring at cos I = 0 has been smoothed out. Furthermore, the
amplitude of relaxation depends on the time interval used for
finite di↵erentiation and on the bin size. While this does not
drastically change the observations away from cos I = 0, any
measurement in the neighborhood of cos I = 0 is tricky to per-
form: it should be taken with appropriate caution.

5.2. Non-resonant prediction

Let us now perform the same investigation in (Jr, cos I) using
the NR theory. Obtaining a satisfying prediction near cos I=0
required finely sampling the NR orbital integrals, as detailed in
Appendix H.2. The NR prediction is illustrated in Fig. 10.

First, in the absence of rotation, the NR theory predicts a
relaxation rate independent of cos I: this is a reassuring sanity
check. Yet, when comparing the top rows of Figs. 9 and 10, we
note some discrepancies. Namely, the locations of the line of
zero relaxation (dashed lines) slightly di↵er.

The di↵erence is much more striking in the presence of rota-
tion (middle and bottom rows of Fig. 10). In both figures, the
orbital reshu✏ing still operates, and the clusters redistribute their
orbits towards smoother distributions of inclinations. Yet, the
di↵usion structures predicted by the NR theory do not align with
the N-body ones. Indeed, N-body simulations (Fig. 9) present
“round” structures as one goes from cos I=0 to cos I=1. In addi-
tion, the relaxation rate decreases as one considers orbits within
to rotation plane, that is, as one considers cos I!±1. This is in
sharp contrast with the “straighter” structures predicted by the
NR theory (Fig. 10). Nevertheless, one should keep in mind that
Fig. 10 cuts out the singularity at cos I=0. The comparison to the
N-body measurements near cos I=0 is made di�cult by the fact
that di↵usion at early time is very fast in that region, as shown
by Fig. K.4. As a consequence, the measured relaxation rate may
su↵er from truncation errors – due to, for example, the finite dif-
ferentiation scheme – the closer one gets to cos I=0. However,
as Fig. K.4 shows, the initial discontinuity appears to have lit-

Fig. 6. Initial evolution of the core radius in clusters with N=105 stars,
as measured in N-body simulations. We use that same convention as in
Fig. 2. Interestingly, in these stable clusters, rotation only weakly a↵ects
the core contraction.

tle impact on di↵usion both far away from cos I=0 and beyond
t=0.1 trh. The obtention of a more robust measure would require
both a finer time di↵erence and a finer binning of action space.
These two improvements would require an ensemble-average
over much more realisations to reduce dispersion. A similar con-
clusion is reached in Appendix J when considering relaxation in
(L, cos I).

Before concluding, let us elaborate further on the failure of
the NR theory to model out-of-plane relaxation. For ↵,0, recall
that cos I=±1 corresponds to orbits within the rotation plane,
while cos I=0 corresponds to orbits perpendicular to the rotation
plane. A test star orbiting in this rotating cluster will torque with
all the other stars of the cluster. Equivalently, this means that
this star will typically be subject to a torque with the total angu-
lar momentum of the rotating cluster, hLi/↵ ez, the strength of
which depends on the test star’s orbital orientation. This is what
we observe in Fig. 9. However, the NR theory only takes into
account local deflections, and therefore cannot take these coher-
ent interactions into account.

Following the work of Meiron & Kocsis (2019) (see also ref-
erences therein), we anticipate for VRR to play a key role in
these coherent interactions – even after factoring the truncation
errors due to the finite di↵erence scheme and the singularity at
cos I=0, both discussed earlier in this section. Indeed, VRR,
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Fig. 7. Relaxation rate, @F/@t, in (Jr, L) for various velocity anisotropies q (left to right) and rotation parameters ↵ (top and bottom), as measured
in N-body simulations. The overall amplitude of the in-plane relaxation rate depends on q, but only very weakly on ↵.

  

Fig. 8. Relaxation rate, @F/@t, in (Jr, L) as in Fig. 7, but here from the NR theory. The prediction matches the N-body measurements from Fig. 7,
up to an overall prefactor that depends on q, and (very) weakly on ↵.

which is driven by persistent torques between orbital planes,
might be needed to explain (i) the faster out-of-plane relaxation
(Section 3.3); (ii) the discrepancies between the N-body mea-
surements and the NR predictions. Investigating quantitatively
the e�ciency of VRR in these systems will be the topic of future
investigations.

6. Conclusions and perspectives

6.1. Conclusion

In this paper, we used the NR formalism to probe the long-term
time-evolution of rotating anisotropic globular clusters. First,
using N-body simulations, we showed how rotation only has
a weak impact on the time of core collapse. As such, in con-
trast with prior research (see, e.g., Hachisu 1979), we did not

observe any gravo-gyro catastrophe that could expedite core col-
lapse (see, e.g., Einsel & Spurzem 1999). Since we introduced
rotation in a di↵erent fashion, this does not contradict previous
results.

Focusing on in-plane di↵usion, we showed how the NR
prediction successfully recovers all the intricacies of the N-
body measurements. This is in line with the non-rotating results
from T22. Yet, although the di↵usion structures in action space
closely align, there is still an overall amplitude mismatch
between the N-body measurements and the kinetic prediction.

We subsequently turned our interest on out-of-plane relax-
ation, that is, the redistribution of orbital inclinations. We
pointed out the similarities and di↵erences between the N-body
measurements and the NR prediction. In both approaches, we
observe a systematic reshu✏ing of orbital inclinations from
overpopulated regions to underpopulated ones. As such, the
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  Fig. 9. Relaxation rate, @F/@t, in (Jr, cos I) for various anisotropies q (left to right) and rotation ↵ (from top to bottom), as measured in N-body
simulations. The amplitudes and structures observed depend on anisotropy, and show a reshu✏ing towards isotropisation. Orientations redistribute
toward a more a�ne distribution in cos I. As a result of using binning in action space and finite di↵erence in time to compute @F/@t, the expected
initially sharp relaxation occurring at cos I=0 has been smoothed and is not visible.

distribution of inclinations get smoother through time, and this
process is accelerated by rotation. On the one hand, we observed
that the initial discontinuity at cos I=0 induced a fast relax-
ation at small times. Surely, this strongly a↵ects any measure-
ment of the relaxation rate in that region. On the other hand,
for orbits aligned with the cluster’s rotation plane – where dif-
fusion is much slower and measurements are much easier – the
local NR theory does not match with the N-body measurements.
We argue that this mismatch originates from the fact that the
NR formalism is sourced by local deflections, which neglect
the coherent torques between the orbital planes. Accounting for
the (e�cient) contribution of persistent torques requires the use
of VRR.

6.2. Perspectives

Here, the NR formalism was used to describe the very onset
of relaxation. Yet, the short duration of our simulations and
our limited sample of initial conditions prevented us from fully
assessing the asymptotic late time orbital distribution. Natu-
rally, it would be interesting to push the N-body integrations
further in time. While some studies carried out such long-
term N-body simulations (Tiongco et al. 2020; Livernois et al.
2022), orbital inclinations were, unfortunately, not their focus.
Along the same line, it would also be of interest to inte-
grate the 3D FP equation itself. In isotropic clusters, this
process has been conducted, as demonstrated for instance in
the work of Vasiliev (2015). However, the scenario involving
anisotropic, rotating systems has yet to be comprehensively
investigated.

Ultimately, if rotation is su�ciently large, it may induce
a flattening of the cluster. In that case, Stäckel sys-
tems (Dejonghe & de Zeeuw 1988) could be used to model real-
istic flattened rotating structures. In particular, this would still
ensure the integrability of the mean potential, that is the exis-
tence of explicit angle-action coordinates. Tailoring secular the-
ory to such setups will be the topic of future works.

In Section 5, we pointed out how the NR theory does not
reproduce the out-of-plane di↵usion observed in N-body sim-
ulations. To understand this mismatch, it would be valuable to
examine the predictions of the resonant relaxation (RR) formal-
ism (see, e.g., Hamilton et al. 2018; Fouvry et al. 2021) in the
presence of rotation. While the inhomogeneous Landau equa-
tion was already investigated in non-rotating isotropic clus-
ters (Hamilton et al. 2018; Fouvry et al. 2021), its implemen-
tation in rotating spheres with an explicit dependence on Lz

should be the next step. Furthermore, to account for collective
e↵ects, an explicit implementation of the Balescu–Lenard equa-
tion (Heyvaerts 2010) might prove necessary to match the details
of stacked N-body measurements.

Similarly, to get a better handle on the mismatch reported
in section 5, one should investigate quantitatively the e�-
ciency of VRR in these clusters (Rauch & Tremaine 1996).
This should allow us to determine if indeed coherent and long-
lasting torques between orbital planes are the missing ingredi-
ents to describe the relaxation of orientations. While this has
been extensively studied in galactic nuclei (see, e.g., Eilon et al.
2009; Kocsis & Tremaine 2011, 2015; Szölgyén & Kocsis 2018;
Fouvry et al. 2019; Szölgyén et al. 2019, 2021; Magnan et al.
2022), the implementation of VRR in globular clusters should
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  Fig. 10. Relaxation rate, @F/@t, in (Jr, cos I) as in Fig. 9, but here from the NR theory (see Appendix H.2 for details). While the in-plane isotropi-
sation and the smoothing of the inclination distribution is recovered, finer details disagree. Here, the amount of relaxation was estimated using
finite di↵erentiation using separately regions with positive or negative cos I In e↵ect, this removes the �0(cos I) singularity in cos I=0, as discussed
in Appendix I. Importantly, the removal of this singularity does not a↵ect the prediction away from cos I = 0. In addition, because this singularity
is diluted in N-body measurements – as discussed in Fig. 9 – we do not represent the NR prediction here.

be the topic of future work (see Meiron & Kocsis 2019, for a
preliminary investigation).

It would be interesting to leverage multiple masses into
the theory, so as to capture (radial or inclination) segregation
e↵ects (Meiron & Kocsis 2019). Dekel et al. (2023) argues for
instance that the excess of massive galaxies found at very high
redshift by the James Webb Space Telescope could originate
from early feedback-free star formation within dense, possibly
rotating stellar clusters made of massive stars. The fate of such
clusters should be captured by the present secular theory. In
particular, it could lead to the formation of intermediate mass
BHs (Greene & Ho 2004; Greene et al. 2020) and possibly seeds
for supermassive BHs (Kormendy & Ho 2013).

Data availability

The data underlying this article is available through rea-
sonable request to the authors. The code, written in
julia (Bezanson et al. 2017), computing the NR di↵usion coef-
ficients in anisotropic rotating clusters is available at the URL:
https://github.com/KerwannTEP/CARP.
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Appendix A: Non-resonant theory

In this Appendix, we detail the derivation of equation (3). This
is the backbone of our computation of the NR theory.

A.1. Local velocity coefficients

Fig. A.1. Tailored frame used to compute the parallel and perpendicular
local velocity deflections in equations (A.1). By construction, the test
star’s angular momentum L is along the axis e2.

The starting point are equations (2). We consider this relation
within the frame from Fig. A.1. The local velocity deflections are
then given by

h�vki = h�v1i, (A.1a)

h(�vk)2i = h(�v1)2i, (A.1b)

h(�v?)2i = h(�v2)2i + h(�v3)2i, (A.1c)

where the coordinate 1 is the z coordinate, parallel to u. The coor-
dinates 2 and 3 are defined such that the projection of r on the
(Oxy) plane is along e3 (Fig. A.1). We now introduce w=u�u0
and change the integration variables from u0 to w in equation (2).
We get

h�vii = �2A

Z
dw
wi

w3 Frot, (A.2a)

h�vi�v ji = A

Z
dw
w2�i j � wiw j

w3 Frot, (A.2b)

with the shortened notation Frot=Frot(r, u0=u�w). Using these
equations allows us to compute the needed coe�cients from
equation (A.1) through
2
666666666664

h�v1i
h(�v1)2i
h(�v2)2i
h(�v3)2i

3
777777777775
= A

Z
dw
w3

2
6666666666664

�2w1
w2 � w2

1
w2 � w2

2
w2 � w2

3

3
7777777777775

Frot. (A.3)

We now define the spherical coordinates associated with this
frame (Fig. A.1)

w1 = w cos# ; w2 = w sin# cos � ; w3 = w sin# sin �. (A.4)

Injecting equations (A.4) into equations (A.3), we obtain

2
666666666664

h�v1i
h(�v1)2i
h(�v2)2i
h(�v3)2i

3
777777777775
=A

Z
dwd#d� sin#

2
6666666666664

�2 cos#
w sin2 #

w(1 � sin2 # cos2 �)
w(1 � sin2 # sin2 �)

3
7777777777775

Frot. (A.5)

Fig. A.2. Illustration of the frames used to compute the argument of the
background DF, Frot(E0, L0, L0z). In the left panel, the cluster is seen from
the side of the rotation plane, (Oxy). In the right panel, the (OXY)-plane
is the orbital plane of the test star, seen from above.

Here, the background distribution, Frot, is to be evaluated
in Frot(r, u0)=Frot(E0, L0, L0z). We compute these arguments in
appendix A.2. Finally injecting equation (A.5) into equa-
tion (A.1), we obtain our main result, namely equation (3), as
given in the main text.

A.2. Arguments of the background distribution

Let us now compute the arguments E
0, L

0 and L
0
z

for the back-
ground distribution function, Frot(E0, L0, L0z), in equation (2).

We start with E
0. It reads

E
0= (r) +

u02

2
= (r) +

(u � w)2

2
=E +

w2

2
� wv cos#, (A.6)

since u=v e1 (see Fig. A.1). This form allows us to get an upper
bound on the w-integral of equation (A.5), above which E

0>0.
As soon as E

0>0, the background star is unbound and its DF
vanishes.

The computation of L
0 and L

0
z

is best achieved by using a
di↵erent coordinate system, as illustrated in Figs. A.1 and A.2.
More precisely, the frame (1, 2, 3) is related to the (X,Y,Z) one
through the relations

2
6666664

e1
e2
e3

3
7777775 =

2
66666664

vr
v cos' � vtv sin' vr

v sin' + vtv cos' 0
0 0 1

vr
v sin' + vtv cos' vt

v sin' � vrv cos' 0

3
77777775

2
6666664

eX

eY

eZ

3
7777775 ,

(A.7)

with vr (resp. vt) the radial (resp. tangential) component of the
test star’s velocity. We can finally relate the frame (X,Y,Z) to the
frame (x, y, z) through the relations
2
6666664

eX

eY

eZ

3
7777775 =

2
6666664

cos I 0 sin I

0 1 0
� sin I 0 cos I

3
7777775

2
6666664

ex

ey
ez

3
7777775 . (A.8)

We can now compute L, the norm of L. As it is a norm, we
can choose any frame to compute it. The frame (1, 2, 3) is a con-
venient choice as this frame is used to compute the integrands of
equations (A.3). We write

L
02= (r1v

0
2�r2v

0
1)2+(r1v

0
3�r3v

0
1)2+(r2v

0
3�r3v

0
2)2, (A.9)

where (r1, r2, r3) are the coordinates of r in the frame (1, 2, 3).
Using equations (A.7) and (A.8), we obtain

r1 =
vr
v

r ; r2 = 0 ; r3 =
vt
v

r. (A.10)
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Therefore, one gets

L
0 = r

s

v022 +
✓ vr
v
v03 �
vt
v
v01

◆2
(A.11)

= r

s

(w sin# cos �)2 +
✓
vt +
vr
v
w sin# sin � � vt

v
w cos#

◆2
,

given that u0=u � w.
Let us finally compute L

0
z
. In the (x, y, z) frame, it reads

L
0
z
= xv0y � yv0x. (A.12)

From equation (A.8), the positions read

x = X cos I = r cos' cos I, (A.13a)
y = Y = r sin', (A.13b)
z = X sin I = r cos' sin I, (A.13c)

using X=r cos' and Y=r sin'. We then obtain the velocities

vx = vr cos' cos I � vt sin' cos I, (A.14a)
vy = vr sin' + vt cos', (A.14b)
vz = vr cos' sin I � vt sin' sin I, (A.14c)

by taking the time derivative of equations (A.13). Let us now
compute the background velocity components. First, using the
left panel of Fig. A.2, we have

2
66666664
v0

x

v0y
v0

z

3
77777775 =

2
6666664

cos I 0 � sin I

0 1 0
sin I 0 cos I

3
7777775

2
6666664
v0

X

v0
Y

v0
Z

3
7777775 . (A.15)

Second, using the relation in equations (A.7) (Fig. A.1 and right
panel of Fig. A.2), we have

2
6666664
v0

X

v0
Y

v0
Z

3
7777775 =

2
66666664

vr
v cos' � vtv sin' 0 vr

v sin' + vtv cos'
vr
v sin' + vtv cos' 0 vt

v sin' � vrv cos'
0 1 0

3
77777775

2
6666664
v01
v02
v03

3
7777775 .

(A.16)

Overall, we can rewrite equation (A.12) as

L
0
z
= r

✓ v01vt
v
�
v03vr
v

◆
cos I + rv02 sin' sin I

= r

✓
vt �
vt
v
w cos# +

vr
v
w sin# sin �

◆
cos I

� rw sin# cos � sin' sin I. (A.17)

Finally, using the Cauchy–Schwarz inequality, one can check
that

|L0
z
|  L

0
q

cos2 I + sin2 ' sin2
I, (A.18)

which ensures that |L0
z
|L

0.
Equations (A.6), (A.11) and (A.17) are the main results of

this section. They provide us with explicit expressions for the
arguments at which to evaluate Frot=Frot(E0, L0, L0z) in equa-
tion (3).

Appendix B: 3D diffusion coefficients

The local in-plane di↵usion coe�cients, that is, the di↵u-
sion coe�cients in E and L, are given in appendix C of
Bar-Or & Alexander (2016). We reproduce them here for com-
pleteness. They read

h�Ei = 1
2 h(�vk)2i + 1

2 h(�v?)2i + vh�vki, (B.1a)

h(�E)2i = v2h(�vk)2i, (B.1b)

h�Li = r
vt
v
h�vki +

r
2

4L
h(�v?)2i, (B.1c)

h(�L
2)i = r

2 v
2
t

v2
h(�vk)2i + r

2

2
v2r
v2
h(�v?)2i, (B.1d)

h�E�Li = Lh(�vk)2i. (B.1e)

In order to compute the 3D FP equation (1), we also need the
local di↵usion coe�cients involving Lz=L·ez . Performing a
first-order variation of L= r ⇥ u, we can write

�L =
✓�vk
v
� vr
vt

�v3
v

◆
L + L

�v2
v

✓ vr
vt

e3 � û
◆
, (B.2a)

e3 =
u ⇥ L
|u ⇥ L| =

vr̂ � vrû
vt
, (B.2b)

where (e1, e2, e3) is the frame illustrated in Fig. A.1. We can then
write

e3 · ez = sin I

✓ vr
v

sin' +
vt
v

cos'
◆
. (B.3)

As a result, it follows that

vr
v

e3 · ez �
vzvt
v2
= sin' sin I, (B.4)

with ' given in Fig. (A.2) and vz by equation (A.14c). Overall,
we finally have

h�Lzi =
Lz

v
h�vki, (B.5a)

h(�L
2
z
i =
✓

Lz

L

◆2✓L2

v2
h(�vk)2i+ 1

2
r

2v2r
v2
h(�v?)2i

◆
(B.5b)

+
r

2 sin2 '

2

✓
1� L

2
z

L2

◆
h(�v?)2i,

h�E�Lzi = Lzh(�vk)2i, (B.5c)

h�L�Lzi =
Lz

L

✓
L

2

v2
h(�vk)2i + 1

2
r

2v2r
v2
h(�v?)2i

◆
. (B.5d)

Equations (B.1) and (B.5) are the main results of this section.
They allow us to compute the local di↵usion coe�cients in
(E, L, Lz) from the local velocity di↵usion coe�cients given by
equation (3).

Appendix C: Orbit average

The computation of the global di↵usion coe�cients in the FP
equation (1) requires that we orbit average the local di↵usion
coe�cients over the mean field orbit of the test star. Since the
background cluster is rotating, this average involves a radial inte-
gration, but also an angular one. This is what we detail here.
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C.1. Angular orbit average

We start from the generic formula of equation (4). There, the
average with respect to ' must be performed with care since L

0
z

depends on ' (equation A.17). Fortunately, taking advantage of
the particular structure of the di↵usion coe�cients in E, L and
Lz (see equations B.1 and B.5), we only need to compute the
following four integrals over '
Z

d'
2⇡
h�vki,

Z
d'
2⇡
h(�vk)2i,

Z
d'
2⇡
h(�v?)2i,

Z
d'
2⇡

cos 2' h(�v?)2i, (C.1)

where we used sin2 '= 1
2 (1�cos 2') for convenience.

In equation (3), the only dependence with respect to ' is in
the dependence with respect to L

0
z

in Frot. In the particular case of
the LBD (equation 5), we can perform explicitly the average over
'. Computing the integrals (C.1) only requires the evaluation of
the two non-trivial integrals

A1 =

Z 2⇡

0

d'
2⇡

sgn(L0
z
/L0), (C.2a)

A2 =

Z 2⇡

0

d'
2⇡

cos 2' sgn(L0
z
/L0), (C.2b)

with L
0
z

following from equation (A.17). Introducing
⇣=�(v01vt/v�v03vr/v) cos I and µ=⇣/(v02 sin I), these two integrals
can be explicitly computed. Their expressions are gathered in
Table C.1. This is the main result of this section.

Table C.1. Explicit values of A1 and A2 (equation C.2a) for the LBD
DF (equation 5).

v02 µ A1 A2

0 undefined �sgn(r⇣) 0
, 0 > 1 �1 0
, 0 [�1, 1] �2 sin�1 µ/⇡ �2µ

p
1 � µ2/⇡

, 0 < �1 1 0

From the numerical point of view, this analytical calculation
allows us to speed up the computation of the NR predictions,
as the angular integral is removed. In addition, it also explicitly
deals with the discontinuity of the LBD DF: this enhances the
numerical stability.

C.2. Radial orbit average

Having performed the angle average in Appendix C.1, equa-
tion (4) takes the form

DX =
⌦r

⇡

Z
ra

rp

dr

|vr|
h�Xi'(r), (C.3)

where h·i' stands for the angle average. As described in
appendix F2 of T22, equation (C.3) can be e�ciently performed
by changing variable from the radius to an e↵ective anomaly. In
particular, this removes the integrable singularity 1/|vr| at peri-
centre and apocentre. We follow the exact same approach here,
and perform the radial average using 50 sampling nodes.

Appendix D: Fokker–Planck and coordinates

Depending on the quantities we wish to investigate, we may wish
to change of coordinates system. Fortunately, it is possible to
transform one FP description into another under a change of vari-
able. We describe a few relevant examples in this appendix.

D.1. Generic change of coordinates

Given some coordinates x, the FP equation generically reads
(Risken 1996)

@F(x, t)
@t

= � @

@x
· F x(x) (D.1)

= � @

@x
·

Dx(x) F(x) � 1

2
@

@x
·
✓
Dxx(x) F(x)

◆�
,

with the di↵usion coe�cients

Dx(x)=

2
6666664
Dx1

Dx2

Dx3

3
7777775 ; Dxx(x)=

2
6666664
Dx1 x1 Dx1 x2 Dx1 x3

Dx1 x2 Dx2 x2 Dx2 x3

Dx1 x3 Dx2 x3 Dx3 x3

3
7777775 , (D.2)

and the DF in x space, F(x). In our case, depending on the con-
text, x= (x1, x2, x3) may either stand for (E, L, Lz), (Jr, L, Lz) or
(Jr, L, cos I).

Following Risken (1996) and Bar-Or & Alexander (2016),
one can easily rewrite the FP equation within some new coor-
dinates x0(x). The new di↵usion coe�cients read

Dx
0
l
=
X

k

@x
0
l

@xk

Dxk
+

1
2

X

k,r

@2
x
0
l

@xr@xk

Dxr xk
, (D.3a)

Dx
0
l
x
0
m
=
X

k,r

@x
0
l

@xr

@x
0
m

@xk

Dxr xk
. (D.3b)

These coe�cients source a FP equation in x0-space for the DF,
F
0(x0), reading

F
0(x0) =

�����
@x
@x0

����� F(x), (D.4)

with |@x/@x0| the inverse Jacobian of the coordinate transform.

D.2. From (E, L, Lz) to (Jr, L, Lz)

Following section 2, we have at our disposal di↵usion coef-
ficients within the coordinates (E, L, Lz). Owing to equa-
tions (D.3), the di↵usion coe�cients in the action space
(Jr[E, L], L, Lz) are easily computed. This is already detailed in
appendix F3 of T22. Ultimately, we have at our disposal the dif-
fusion coe�cients

D1(J)=

2
6666664

DJr

DL

DLz

3
7777775 ; D2(J)=

2
6666664

DJr Jr DJrL DJrLz

DJrL DLL DLLz

DJrLz
DLLz

DLzLz

3
7777775, (D.5)

which source the FP evolution of Frot(Jr, L, Lz), the cluster’s DF
in (Jr, L, Lz).

D.3. From (Jr, L, Lz) to (Jr, L, cos I)

Let us now change of coordinates from J= (Jr, L, Lz) to
Jc= (Jr, L, cos I=Lz/L). Applying equations (D.3), we obtain
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the new di↵usion coe�cients

DcosI = �
cos I DL

L
+

DLz

L
+

cos I DLL

L2 �DLLz

L2 , (D.6a)

DJr cosI = �
cos I DJrL

L
+

DJrLz

L
= 0, (D.6b)

DL cosI = �
cos I DLL

L
+

DLLz

L
= 0, (D.6c)

DcosIcosI =
cos2

I DLL

L2 � 2 cos I DLLz

L2 +
DLzLz

L2 , (D.6d)

while the other coe�cients stay unchanged. Importantly, we
point out that DJr cos I =DL cos I =0. This comes from the relations
DELz

=cos I DEL and DLLz
=cos I DLL, which are inferred from

equations (B.1) and (B.5). Hence, we are left with the di↵usion
coe�cients

D1(Jc)=

2
6666664

DJr

DL

DcosI

3
7777775 ; D2(Jc)=

2
6666664

DJr Jr DJrL 0
DJrL DLL 0

0 0 DcosIcosI

3
7777775. (D.7)

Overall, they drive the FP evolution of F(Jc)=LFrot(J), the clus-
ter’s DF in (Jr, L, cos I).

Appendix E: N-body simulations

The simulations presented throughout the main
text were performed using the direct N-body code
NBODY6++GPU (Wang et al. 2015), version 4.1. We used the
exact same run parameters as in appendix G of T22, and drew
the initial conditions using PlummerPlus.py (Breen et al.
2017). We also refer to the aforementioned appendix for the
N-body measurements, and to Table E.1 for all our binning
parameters.

Table E.1. Detailed parameters for the measurements in N-body simu-
lations, following the same notation as in appendix G1 of T22. To mea-
sure relaxation rate in Fig. 7, we bin the (Jr, L) domain in NJr⇥NL uni-
form bins within the region J

min
r  Jr J

max
r (similarly for L). We use a

similar approach for (Jr, cos I) and (L, cos I). All quantities are in phys-
ical units G=M=b=1, if not stated otherwise.

q 1 0 -6

Nrun 50 50 50
tlast [HU] 1000 1000 1000
(J

min
r , J

max
r ) (0, 0.55) (0, 0.55) (0, 0.5)

(Lmin, Lmax) (0,1.05) (0,1.05) (0,1.1)
(NJr ,NL) (20,20) (20,20) (30,40)
(NJr ,Ncos I) (20,20) (20,20) (20,20)
(NL,Ncos I) (20,20) (20,20) (20,20)

Each N-body realisation was composed of N=105 (resp.
N=104) stars and integrated up to tmax=1000 HU (resp.

tmax=4000 HU) with a dump every 1HU. On a 40-core CPU
node with a single V100 GPU, one simulation typically required
⇠24 h (resp. ⇠12 h) of computation. Ensemble averages were
performed over 50 independent runs.

In practice, the main di�culties in the N-body measurements
are (i) the estimation of the instantaneous potential – necessary
to compute the instantaneous radial action, Jr; (ii) the determi-
nation of the bins’ size in action space; (iii) the estimation of the
relaxation rate @F/@t via finite di↵erences. This is especially true
for highly tangentially anisotropic clusters (e.g., q=�6), where
stars are closely stacked near the Jr=0 axis. For these three dif-
ficulties, we use the same approach as in T22.

Appendix F: Sphericity

In order to track the clusters’ sphericity in Fig. 2, we intro-
duce the 3D inertia-like matrix

I =
NX

k=1

⇢2
k

✓
rT

k
rkI � rk rT

k

◆� NX

k=1

⇢2
k
, (F.1)

with rk the location of the k-th particle, ⇢k its local density (see
Casertano & Hut 1985) and I the 3D identity matrix. In that def-
inition, the extra ⇢2

k
factors enhance the contributions from the

regions close to the centre.
The matrix I is obviously symmetric. It is also semi-definite

positive since for any y 2 R3, we have

yTI y =
X

k

⇢2
k

✓
rT

k
rkyTy � yTrk rT

k
y
◆�X

k

⇢2
k

=
X

k

⇢2
k

✓
|rk |2 |y2|2�|rk ·y|2

◆�X

k

⇢2
k
� 0, (F.2)

following Cauchy–Schwarz’s inequality. As a result, I has
three positive eigenvalues, {�i}i, which encapsulate the cluster’s
sphericity. Indeed, spherically symmetric clusters have all their
eigenvalues equal.

We generically define the cluster’s sphericity via
h=�min/�max, which we estimated from N-body simula-
tions. To reduce shot noise in that measurement, we averaged h

over realisations as follows. First, we computed the elementary
symmetric polynomials ↵=�1+�2+�3, �=�1�2+�1�3+�2�3
and �=�1�2�3 for every cluster and every timestep. We then
averaged the values of (↵, �, �) over all realisations. From these
values, we estimated the eigenvalues �i as the three (positive)
roots of the polynomial �3�h↵i�2+h�i��h�i.4

In Fig. 2, we illustrate the evolution of the sphericity, h, for
various amounts of anisotropy and rotation. We typically find
h'0.996, that is, clusters remain reasonably spherically sym-
metric throughout their evolution. As as visual check of this con-
clusion, we represent in Fig. F.1 the late time stellar distribution
of a rotating isotropic globular cluster with N=104. Even close
to core collapse, the cluster remains spherically symmetric.

4 The positivity of ↵, �, � – and hence of their averages – ensures the
positivity of these roots.
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Fig. F.1. Snapshots of the distribution of stars in a rotating (↵=0.25) isotropic (q=0) Plummer cluster with N=104 stars, projected on the rotation
plane. From left to right, this corresponds to t=0, 1000, 2000, 3000 HU. As time evolves, the cluster contracts and the central density increases.
Notwithstanding, the cluster retains its initial spherical symmetry.

Appendix G: Rotating King model

In section 3.2, we mentioned the gravo-gyro catastrophe, intro-
duced in Hachisu (1979) as the rotational counterpart of
the gravothermal catastrophe (Lynden-Bell & Wood 1968) to
explain an apparent acceleration of core collapse with rotation.
To study this phenomenon, Einsel & Spurzem (1999) consid-
ered the secular evolution of a rotating King model with the
initial DF

Frot(E, Lz) / (e��E � 1) e��⌦0Lz , (G.1)

where Frot=Frot(r, u)=Frot(E, Lz) is the DF in (r, u). In this DF,
�=1/�2

c is an inverse temperature with �c the central veloc-
ity dispersion, while !0=

p
9/(4⇡Gnc)⌦0 is a rotation param-

eter with nc the central density and ⌦0 the angular velocity
in the cluster’s centre (Lagoute & Longaretti 1996). In partic-
ular, � is related to the so-called King parameter (King 1966),
defined by W0=��( �  t) where  t is the potential at the clus-
ter’s edge. The rotating King models from Einsel & Spurzem
(1999) can therefore be parametrised by (W0,!0). In practice,
Einsel & Spurzem (1999) integrated these models up to core col-
lapse using a FP scheme in (E, Lz) for di↵erent rotation param-
eters, !0. This is presented in their fig. 2. In particular, they
demonstrated a clear correlation between the time of core col-
lapse and the rotation parameter of the King model. The faster
a cluster rotates, the shorter the core collapse time. Importantly,
as emphasised in section 3.2, we recall that as one varies !0, the
cluster’s mean potential also varies.

Appendix H: 2D Fokker-Planck equations

In practice, it is convenient to study long-term relaxation
through two-dimensional projections of action space. To do
so, we must integrate over one coordinate the 3D FP equation
expressed either in (Jr, L, Lz) (appendix D.2) or in (Jr, L, cos I)
(appendix D.3). In this appendix, we compute the 2D FP equa-
tions in (Jr, L), (Jr, cos I) and (L, cos I) that respectively drive the
evolution of the DFs

F(Jr, L) =
Z

L

�L

dLz Frot(Jr, L, Lz), (H.1a)

F(Jr, cos I) =
Z +1

0
dL F(Jr, L, cos I), (H.1b)

F(L, cos I) =
Z +1

0
dJr F(Jr, L, cos I). (H.1c)

H.1. Equation in (Jr, L)

We start from equation (1), which describes di↵usion in
(Jr, L, Lz), and write the flux divergence as

@Frot

@t
= �
✓@FJr

@Jr
+
@FL

@L
+
@FLz

@Lz

◆
. (H.2)

Integrating over Lz yields
Z

L

�L

dLz

@FJr

@Jr
=

@

@Jr

Z
L

�L

dLz FJr , (H.3a)
Z

L

�L

dLz

@FL

@L
= �FL(Lz=L)�FL(Lz=�L) +

@

@L

Z
L

�L

dLz FL, (H.3b)
Z

L

�L

dLz

@FLz

@Lz

= FLz
(Lz=L) � FLz

(Lz=�L). (H.3c)

In addition, because the flux cannot exit action space, we
also have FLz

(Lz=±L)=±FL(Lz=±L). As a result, all the non-
integral terms in equations (H.3) cancel one another. We are then
left with the 2D equation

@F(Jr, L, t)
@t

= � @

@(Jr, L)
·
Z

L

�L

dLz

"
FJr (Jr, L, Lz)
FL(Jr, L, Lz)

#
. (H.4)

It is this rewriting that is used in section 4.2. To obtain Fig. 8,
the Lz-integrals in equations (H.3) are sampled with 50 nodes.
The (w,#, �)-integrals of equations (3) are sampled with 100 w-
nodes, 100 #-nodes and 200 �-nodes.

H.2. Equation in (Jr, cos I)

We start from the di↵usion coe�cients in equation (D.7), which
describe di↵usion in (Jr, L, cos I), for the DF, F=LFrot. We write
the flux divergence as

@F

@t
= �
✓@FJr

@Jr
+
@FL

@L
+
@FcosI

@ cosI

◆
. (H.5)

Integrating over L yields
Z 1

0
dL

@FJr

@Jr
=

@

@Jr

Z +1

0
dLFJr , (H.6a)

Z 1

0
dL

@FL

@L
= FL(L=+1) � FL(L=0), (H.6b)

Z 1

0
dL

@FcosI

@ cosI
=

@

@ cosI

Z +1

0
dLFcosI . (H.6c)
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Because the flux cannot leave action space, equation (H.6b) van-
ishes. Then, equation (H.5) readily reduces to a 2D FP equation
in (Jr, cos I), which we use in section 5.2. To obtain Fig. 10,
the L-integrals in equations (H.6) are sampled with 50 nodes
for 0L3 L0, where L0=

p
GMb is the typical action. The

(w,#, �)-integrals of equations (3) are sampled with 100 w-
nodes, 100 #-nodes and 800 �-nodes.

H.3. Equation in (L, cos I)

As in appendix H.2, we start from the di↵usion coe�cients in
equation (D.7). Integrating equation (H.5) over Jr yields
Z 1

0
dJr

@FJr

@Jr
= FJr (Jr=+1) � FJr (Jr=0), (H.7a)

Z 1

0
dJr

@FL

@L
=

@

@L

Z +1

0
dJr FL , (H.7b)

Z 1

0
dJr

@FcosI

@ cosI
=

@

@ cosI

Z +1

0
dJr FcosI . (H.7c)

Once again, because the flux cannot leave action space, equa-
tion (H.7a) vanishes. Then, equation (H.5) reduces to a 2D FP
equation in (L, cos I), which we use in appendix J. To obtain
Fig. J.2, the Jr-integrals in equations (H.7) are sampled with 50
nodes for 0 Jr10 L0. The (w,#, �)-integrals of equations (3)
are sampled with 100 w-nodes, 100 #-nodes and 1600 �-nodes.

Appendix I: Evaluating the discontinuity at cos I = 0
In this appendix, we highlight the sharp discontinuity of the
relaxation rate that occurs at cos I = 0 as a result of the discon-
tinuous LBD distribution of orientations (equation 5). This sin-
gularity has been removed from Figures 10 and J.2 (see appen-
dices H.2 and H.3). Because equation (5) is discontinuous, we
expect that taking the first and second derivatives with respect to
cos I will yield a theoretical �0(cos I) behaviour around cos I=0.
To that aim, we show in Figure I.1 the quantities DcosI Frot
and DcosI cosI Frot, respectively with their first and second deriva-
tives with respect to cos I. In particular, @2(DcosI cosI Frot)/@ cosI

2

has a �0(cos I) component near cosI = 0. In practice, this is
smoothed by the finite di↵erentiation used here. Indeed, reduc-
ing the finite di↵erentiation step sharpens the discontinuity to

higher and higher values, hence converging to the true �0(cos I)
behaviour.

Fig. I.1. Representation for a Plummer cluster (q,↵) = (0, 0.25) of the
cos I terms, DcosI Frot (on the top left) and DcosI cosI Frot (on the top right),
respectively with the first (on the bottom left) and second (on the bottom
right) derivative with respect to cos I. In particular, the bottom right
panel displays an approximate �0(cos I) behaviour – the amplitude of the
jumps tends to infinity as one reduces the step in the finite di↵erentiation
scheme – which is the expected theoretical relaxation induced by the
sgn discontinuity of Frot at t = 0.

Appendix J: Relaxation in (L, cos I)
In this appendix, we follow the same approach as in section 5,
and investigate relaxation in (L, cos I). We refer to Appendix H.3
for the derivation of the relevant 2D FP equation. In Fig. J.1, we
illustrate the N-body measurements while Fig. J.2 presents the
associated NR predictions.

From these two figures, we can globally make the same
observations as in section 5, which considered di↵usion in
(Jr, cos I). Indeed, in rotating clusters, di↵usion reshu✏es
orbits towards smoother distributions of inclinations. Never-
theless, the NR prediction fails at predicting the exact struc-
tures measured in N-body simulations. In particular, the NR
theory predicts a relaxation rate varying weakly with cos I

(for a given sign of cos I). This di↵ers from the N-body
simulations, where the relaxation rate decreases away from
cos I=0.
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  Fig. J.1. Same as in Fig. 9 but in (L, cos I). Di↵usion reshu✏es orbital inclinations toward a more a�ne distribution in cos I.

  Fig. J.2. Same as Fig. 10 but in (L, cos I). The NR prediction fails to recover in detail the di↵usion structures observed numerically in Fig. J.1.
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Appendix K: Impact of discontinuities

In this appendix, we investigate in more detail the impact of
the discontinuity at cos I=0, introduced by the LBD (equa-
tion 5). To do so, we follow the same approach as in section 2.3
of Rozier et al. (2019) and consider rotating DFs of the form

Frot(Jr, L, Lz) = Ftot(Jr, L)(1 + ↵g[Lz/L]), (K.1)

where g[cos I] is an odd function with g(1)=1. The LBD corre-
sponds to g=sgn. To approximate smoothly the LBD, we con-
sider the sequence of functions

ga(x) = erf(ax)/erf(a). (K.2)

As illustrated in Fig. K.1, this ensures that g0(x)= x and
g1(x)=sgn(x).

Fig. K.1. Family of functions ga(cos I) (equation K.2) for various a. For
a!0, the function approaches identity, while for a!1, it approaches
the sign function. Varying a allows us to investigate the impact of the
LBD discontinuity in equation (5).

K.1. The cos I coordinate

To probe the possible presence of discontinuities and singulari-
ties, let us first compute the cos I component of the 3D flux in
(Jr, L, cos I), as introduced in appendix D.3. The dependence of
this flux with respect to a is illustrated in Fig. K.2.

In this figure, for any smooth ga, we observe a 1/L diver-
gence of the flux as L!0. In a nutshell, when working with

Fig. K.2. Di↵usion flux along cos I of the 3D FP equation in
(Jr, L, cos I), for Jr=0.1 and cos I=0.2, as a function of L and for vari-
ous smooth functions ga (equation K.2). Here, we consider an isotropic
cluster with rotation parameter ↵=0.25. For any smooth ga, the flux
diverges like 1/L for L!0. As a!1, that is, as ga tends to the sgn
function, the flux converges to the LBD flux pointwise, which exhibits
no divergence.

Fig. K.3. One-dimensional di↵usion coe�cients DLz
(top panel) and

DLzLz
(bottom panel) of equations (K.5), computed for the rotating

isotropic clusters with ↵=0.25, and with the smoothing parameters
a=1, 5, 10, 15,1, as defined in equation (K.2). These coe�cients are
well-defined for all values of Lz. In addition, they only (very) weakly
depend on a, with relative di↵erences of order 1–5%.

cos I, we su↵er from a coordinate singularity, and the NR pre-
diction cannot be applied to a DF with a smooth rotation func-
tion. Yet, when a!1, the flux converges towards the LBD flux
pointwise, and this flux does not diverge for L!0. Phrased dif-
ferently, in the particular case of the LBD sign function, we can
make a meaningful and well-posed NR prediction for the di↵u-
sion in cos I. In practice, this vanishing of the divergence stems
from the cancellation of the derivative of sgn(cos I) everywhere
(except for cos I=0). Such a property is not the norm for smooth
arbitrary rotation functions, g(cos I). In that case, the 1/L2 sin-
gularities visible in equations (D.6) do not combine into an inte-
grable quantity.

To further stress that this divergence originate from coordi-
nate singularities, let us now produce NR predictions by describ-
ing relaxation in (Jr, L, Lz) rather than in (Jr, L, cos I). To do so,
we define the DF in Lz as

F(Lz) =
Z +1

0
dJr

Z +1

|Lz |
dL Frot(Jr, L, Lz). (K.3)

Integrating the 3D FP equation (1) over Jr and L yields

@F(Lz)
@t

= � @

@Lz

�
DLz

F[Lz]
�
+

1
2
@2

@L2
z

�
DLzLz

F[Lz]
�
. (K.4)

Here, the 1D di↵usion coe�cients in Lz are given by

DLz
=

Z +1

0
dJr

Z +1

|Lz |
dL DLz

Frot(Jr, L | Lz), (K.5a)

DLzLz
=

Z +1

0
dJr

Z +1

|Lz |
dL DLzLz

Frot(Jr, L | Lz), (K.5b)

with Frot(Jr, L | Lz)=Frot(Jr, L, Lz)/F(Lz) standing for the DF in
(Jr, L) given Lz, and normalised to unity. Importantly, for Lz,0,
the coe�cients DLz

and DLzLz
are well defined whatever the con-

sidered rotating DF. In addition, they both converge to some
finite values as Lz!0, as illustrated in Fig. K.3. The absence
of any divergence here emphasizes that the divergence observed
in Fig. K.2 stems from a coordinate singularity associated with
cos I.
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K.2. Impact on N-body measurements

To estimate the impact of the discontinuity on relaxation, we
used N-body simulations in Fig. K.4 to compare the early relax-
ation of the discontinuous LBD distribution (equation 5) with
its smooth approximation (equation K.2 with a=10). Reassur-
ingly, we observe a fast dilution of the discontinuity, with the
DF quickly resembling its smooth approximation. Afterwards,
no significant di↵erence is observed between the two systems.

Fig. K.4. Comparison between two rotating, isotropic Plummer clusters
with parameters (q,↵)= (0, 0.25) and N = 105 stars. The discontinuous
cluster follows the LBD parametrization (equation 6), while the smooth
cluster follow an erf approximation, as defined in eq. (K.2). Both mea-
surements have been ensemble-averaged over 10 realizations. Beyond
the initial dilution of the discontinuity, we observe that the initially dis-
continuous DF joins the smooth DF, after which both systems appear to
follow the same evolution.
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