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Inference, optimization, and inverse problems are but three examples of mathematical operations that require the re-
peated solution of a complex system of mathematical equations. To this end, surrogates are often used to approximate
the output of these large computer simulations, providing fast and cheap approximation solutions. Statistical emulators
are surrogates that, in addition to predicting the mean behavior of the system, provide an estimate of the error in that
prediction. Classical Gaussian Stochastic Process emulators predict scalar outputs based on a modest number of input
parameters. Making predictions across a space-time field of input variables is not feasible using classical Gaussian
process methods. Parallel Partial Emulation is a new statistical emulator methodology that predicts a field of outputs,
based on the input parameters. Parallel partial emulation is constructed as a Gaussian process in parameter space, but
no correlation among space or time points is assumed. Thus the computational work of parallel partial emulation scales
as the cube of the number of input parameters (as traditional Gaussian Process emulation) and linearly with space-time
grid.

The numerical methods used in numerical simulations are often designed to exploit properties of the equations to be
solved. For example, modern solvers for hyperbolic conservation laws satisfy conservation at each timestep, insuring
overall conservation of the physical variables. Similarly, symplectic methods are used to solve Hamiltonian problems in
physics. It is of interest, then, to study whether Parallel Partial Emulation predictions inherit properties possessed by
the simulation outputs. Does an emulated solution of a conservation law preserve the conserved quantities? Does an
emulator of a Hamiltonian system preserve the energy? This paper investigates the properties of emulator predictions,
in the context of systems of partial differential equation. We study conservation properties for three different kinds of
equations — conservation laws, reaction-diffusion systems, and a Hamiltonian system. We also investigate the effective
convergence, in parameter space, of the predicted solution of a highly nonlinear system modeling shape memory alloys.

KEY WORDS: surrogate models, Gaussian Process emulation, high-dimensional outputs, conservation,
Parallel Partial Emulation

1. INTRODUCTION TO SURROGATE MODELS

Surrogate models are often used to quickly approximate the results of time-consuming computational or physical
experiments. In this way, a scientist can explore the range of parameters and settings that serve as experimental
inputs, experiments that could not be performed because of time and/or budget constraints. For example, Bayesian
inference for a system of partial differential equations may require tens or hundreds of thousands of evaluations
of a large computer simulation as part of a Markov Chain Monte Carlo study. Design, optimization, and inverse
problems likewise may require many solutions of a computational model. Surrogate models allow detailed, if ap-
proximate, scientific exploration of inputs and parameters, on a timescale not attainable through direct simulation or
experimentation.

There are several kinds of surrogates employed in different settings. Reduced order models (ROMs) replace a
complex mathematical model with a set of easier-to-solve equations that approximate outputs. For example, a ROM
might replace a large system of partial differential equations with a small set of ordinary differential equations that
can be solved rapidly. An experiment that includes stochastic elements may be modeled by a truncated version of a
Karhunen-Loeve equation, again expecting that this equation can be solved (relatively) rapidly [[1]. Physics-informed
neural networks (PINNSs) are function approximators that can embed physical laws defined by, for example, a system
of differential equations with sufficiently smooth solutions [2].

Statistical emulators are another kind of surrogate model, often used as an approximation to the output of
complex computer models. In addition to predicting the output of a simulation, statistical emulators provide an
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estimate of the possible error in that prediction [3]]. One common statistical emulator is the Gaussian Stochastic
Process (GaSP) [4]]. The classical theory of GaSP emulators predicts a scalar output measure of the solution of a
system of equations, often ordinary or partial differential equations. In order to predict a field of outputs, such as the
entire space-time solution of a system of differential equations, this classical approach requires that every gridpoint
in space-time to be treated as an input parameter. The output is the emulated solution for every space-time point. The
work in computing a GaSP emulator scales as the cube of the number of input parameters, rendering this approach
to emulating a field impractical.

Recently Gu and Berger developed Parallel Partial Emulation (PPE) [5], which emulated the output of a sim-
ulation of differential equations across an entire region of space and/or time, with computational work that scales
linearly with the number of space and time gridpoints.

Numerical methods used in simulations are often designed to exploit properties of the equations to be solved.
For example, modern methods for hyperbolic conservation laws are designed to preserve the L; norm of the so-
lution. A different kind of conservation is present in Hamiltonian systems, and symplectic methods are often used
as numerical solvers in order to preserve the total energy of the system. In a similar fashion, some reduced order
methods are explicitly designed to enforce properties such as conservation, as in [6]. Standard PINNs require suffi-
cient smoothness of solutions of the underlying PDE to guarantee an accurate approximation, and PINNs may fail
to approximate solutions of nonlinear hyperbolic equations; current research is exploring additional constraints that
must be included within the PINN framework to guarantee conservation of norms, or of other physically important
measures for conservation laws such as entropy [7H9].

Thus, it is natural to ask whether PPE predictions, which can be thought of as very fast, approximate numerical
solvers, conserve norms. Does an emulated solution of a conservation law, trained using a conservative numerical
method, preserve the total mass of the system? If a symplectic method is used to train a PPE for a Hamiltonian
system, does the prediction preserve the total energy? To be clear, PPE does not explicitly enforce conservation nor
any other property of the differential equations being studied. PPE does assume some smoothness in the covariance
structure in parameter space, but does not make any assumption about the space-time structure of solutions. Thus,
our conclusion that PPE preserves conservation properties of the simulator should be seen a property of the Parallel
Partial Gaussian process emulator itself, and not as a consequence of enforcing norms to be preserved.

This paper studies conservation properties of the emulated solution for three different kinds of equations —
conservation laws, a reaction-diffusion system, and a 2-body Hamiltonian system. We also investigate the effective
convergence — in parameter space — of the predicted solution of a highly nonlinear system; this convergence study
provides a quick estimate for the error in the solution or functionals of the solution that can be expected in a complex
system. In the following section, we review the classical construction of a scalar Gaussian process emulator, and then
explain the extension to PPE. In subsequent sections, we apply PPE to four different model systems of differential
equations.

2. GASP

We begin by briefly reviewing the construction of a GaSP emulator.

2.1 Basic Gaussian Process Theory

The GaSP is designed to be a BLUP - a Best, Linear, Unbiased Predictor, based on available data. Let us explain.
We assume data consisting of M d-dimensional input parameters g, and scalar outputs Y = (Y1,...,Ya)T. Atan
untested input ¢*, the predicted output is Y (¢*). As a BLUP, then, the GaSP satisfies the following:

e The GaSP predictor is the best predictor in the L, sense. That is, for the true output Y, the integral [ (f/(q) —
Y (q))? dq is minimized among all predictors with finite mean and variance

e The GaSP predictor is linear in the data, in that Y = ag + wa a;Y;

e The GaSP predictor is unbiased, meaning E[Y (q)] = E[Y (¢)].
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The construction of a GaSP begins by assuming a Gaussian Process prior on the space of functions with finite
mean and second moment. A Gaussian Process is a function f(g) such that for any finite collection g1, ¢z, ...qas of in-

puts, the outputs { f(q1), f(@),...f(qm)} ~ MV N(u(q); R), a multivariate normal with covariance matrix R and
mean (1. A common assumption is that R is separable in the d-dimensions of ¢, and can be written as R = 0 R for a
correlation matrix R, defined by a correlation kernel, and a variance parameter o2. Common correlation kernels in-
clude the power exponential exp(—(|¢; —¢;|)?/(2y)) and the Matern function %( 2\/%)*’ K ( 2\/%) with d =
|g; — ¢;|- Hyper-parameters, and in particular the correlation lengths (y and p) must be estimated from the data.

Given input and output data {¢;,Y;,j = 1,2... M}, it is common to separate the overall mean trend from the
rest of the process. Thus we write Y = h(g)} + Z, where h is a collection of basis functions (often a low order
polynomial), 1 are coefficients for these basis functions, and Z a zero-mean Gaussian Process. In the following we
continue to refer to the Gaussian Process as Y, whether or not it is zero mean.

Given a Gaussian Process prior and data {q, Y}, the posterior distribution at some untested ¢* can be determined
explicitly by conditioning. In particular, we can write formulae for the mean and the variance (see Sec. [2.2)). The
largest computational burden in constructing a GaSP is the calculation of R, usually performed via a Cholesky
decomposition. The interested reader may consult [4/10] for more details.

Maximum likelihood estimation (MLE) is often used to determine the hyper-parameters of the Gaussian pro-
cess. MLE estimates tend to underestimate the variance term in practice [11]. A fully Bayesian approach would
put priors on all hyper-parameters and solve. But these hyper-parameter priors have their own parameters, and the
hierarchy continues to expand, and can quickly become prohibitively expensive to compute. A hybrid approach is to
estimate the most crucial uncertainties (for example, correlation lengths) via a Bayesian analysis, and retains MLEs
for other parameters. With appropriate choices of priors, this hybrid approach again results in somewhat complicated

but still explicit formulae for the mean and variance; again we refer the reader to [4410].

2.2 Parallel Partial Emulation

In a conventional approach, if one wished to emulate the output at many space-time locations (x, t), each space-time
point would be treated as an input dimension, and the standard GaSP construction outlined above would be per-
formed. Emulating over an entire space-time domain with thousands of points is, therefore, prohibitively expensive
[L1H13]. Nevertheless in applications there often is a need for emulation at every point of a space-time field. For
example, one may be interested in performing a sensitivity analysis on the parameter inputs ¢ of a time-dependent
partial differential equation %u = F(u,Vu;q). Here u is a dependent variable depending on space points x and
time ¢. The quantities of interest in such an analysis would likely include norms such as f u*(x,t; q)dx. Sensitiv-
ity analysis requires a solution of this differential equation for many parameter values, across space. Moreover the
quantity of interest may change over time, so it may be important to construct an emulator for all (x, ¢) in addition
to the gs.

Parallel Partial Emulation (PPE) generalizes the standard emulator construction, emulating an entire field of
outputs at once [3]. Each space-time output location has its own mean p and variance o> depending on ¢ and
(x,t), but the correlation structure and correlation lengths depend on ¢ only, and are shared among all space-time
locations. In this way the computational burden of calculating an enormous R~ is avoided. To be clear, PPE makes
no assumption about the correlation among space-time points. In addition, we assume the set of basis functions h
and the coefficients \{ for the overall trend are common to all points, although these are evaluated at every space-time
point.

Specifically, using a hybrid approach as discussed earlier, and given M model design inputs and responses
(¢,Y), the PPE predictive process mean at an untested input, ¢* is given as

Y(g*) = (g )W + " (¢") R (VP — h(g”)), ()

where
b= (K" (¢")R"h(¢”))"'n" (¢")RT'YP
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is the generalized least squares fit to the data, with -7 denoting the transpose. Also, 7(g*) is the correlation vector
between design points ¢; and the untested ¢*; that is 7(¢*) = R(q;, ¢*). To emphasize the construction, we employ
the superscript - to indicate the input data.

We note that these formulae are the same as those for a classical (i.e. scalar) Gaussian Process construction,
although the interpretation is different. Here the data Y'? and the prediction Y are space-time fields, and h,{ are
evaluated at every space-time point.

The predictive variance at each space-time point is given by

var(q*) = o (1—r"(¢" )R 'r(q"))
+(h(g*) = RP R ()T (BT RTRD) T (h(g") — DT R (g))).

3)

The paper [3]] applies PPE to a large computation of a geophysical mass flow, as described in [14], across a 2-
dimensional spatial region (time is not an active variable in this application). However, no assumptions are made
about the correlation structure of the GaSP at nearby spatial or space-time points, and the behavior of Parallel
Partial Emulation predictions as a function of space and/or time is not well understood. Indeed, the construction of
the Parallel Partial Emulator and the mass flow application in [S]] suggest that the relationship among spatial points
in the emulation should be ‘inherited’ from the spatial smoothness of a solution to the underlying partial differential
equations. This is the critical issue we explore.

In particular, using example problems we examine how the predicted solution inherits conservation properties of
the numerical solution methodology — that is, whether the predicted solver conserves some functional of the solution.
These examples include (i) a scalar conservation law (Sec[3)), (ii) a reaction-diffusion model in which the total mass
of the system is conserved although the mass of each individual species is not (SecH), and (iii) the Hamiltonian
system describing Kepler’s 2-body problem, and which conserves the total energy of the system (Sec[5). We also
examine a system of differential equations modeling the deformation of shape memory alloys (Secl6), in order to
study accuracy under refinement in parameter space; we provide a summary of error estimates for PPE predictions,
and this error estimate gives guidance about how accurate any solution or functional of the solution is likely to be.

In our analysis and applications we use the default settings for the ppgasp routine in the R package RobustGaSP,
with a power exponential correlation function with exponent 1.9 [15].

3. PPE AND CONSERVATION LAWS
Consider the simplest nonlinear scalar conservation law, the viscous Burgers’ equation in 1 space dimension,

ou  Of(u) 0%u
e — e 4
ot " Tor  Cox )
with f(u) = u?/2. The Hopf-Cole transformation provides a mechanism for calculating the exact solution of
Burgers’ equation. The inviscid equation, with € = 0, is the starting point for understanding hyperbolic conservation
laws.
Integrating this equation on x € [0, 1] with periodic boundary conditions we find

"ou  af(u) _ I 9%
/O[E—I- 5 ldz = /O[e@]dx

8815/0 u(z,t)dr + f(u(1,t)) — f(u(0,t)) = ¢

which yields
8 1
a/o u(x,t)dx = 0.
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Let us write u} = u(x = jAx,nAt) as a numerical approximation of the true solution at the space point jAx and
time point nAt. Then a conservative numerical method can be written as

At
uith = = P ()~ Fu); ] (5)

for some numerical flux function F'. Conservation can be seen by summing Eq[5|over all grid cells and noticing the
cancellation of all fluxes except at the domain boundary. Modern methods for systems of hyperbolic conservation
laws satisfy this numerical conservation property [16].

If we compute several solutions to EqH]for several specified values of € using a conservative numerical method,
will a solution predicted by PPE for an untested value of € satisfy conservation? In addressing this question it is
important to recall that the construction of a standard Gaussian process emulator encodes no explicit condition
enforcing properties (such as conservation) that might be of interest to disciplinary scientists.

Consider a 1-dimensional grid of points on the interval [0, 1] with spacing Ax. To solve Burgers’ equation we
specify initial data at ¢ = O (a square wave will be used below) and boundary conditions (periodic conditions Will

be used). The grid variable u is thought of as u? = [ ((J+ )A: (x,nAt) dr, the total “mass” of u(z,t) in the j*?
grid cell at time nAt. Because of conservation,

1 1
/0 u(x, nAt) dacz/o u(z, (n + 1)At) dz

for every time step.
To study conservation, we marry a parabolic predictor-corrector scheme with Davis’ approach to computing
second-order accurate solutions to hyperbolic conservation laws [[17]:

n44 n At n At gl n+ n+
’U,j 2:uj KUAU—FGA 2( J+12_2 2—|— 2)
At e At il

u;H—l =uj — E(F(UH%) = F(u;_1)) + E@([(uj‘“ —2u n+1 + u"-H)] + [(ujyy = 2uf +uf_y)])
Here the numerical flux F; ! is composed of two parts: (i) F'(u; ) which is readily determined as the stationary

state for the inviscid Burgers equation with Riemann data u] nts + A uand u' it 1 — %Aj+]u and limited slopes
Aju, and (ii) a centered difference of the Laplacian term, e (u” T g ) ThlS computational method has a truncation
error O (5t + Ax?).

Consider square wave initial data

1 04<2<0.6

u(z,0) = .
0  otherwise

We remark that, for the inviscid Burgers’ equation, any initial data u°(x), however smooth, which is decreasing
somewhere on its domain, will form a shock in finite time. So discontinuous solutions are typical when € = 0. Of

course viscous dissipation will smooth this shock. Tests on smooth initial data produce similar conservation results

to those reported below.

For any € > 0, the numerical method conserves the mass of the solution to machine precision, at least up to a
nominal time 7' = 1. Fig[T| shows how the computed solutions changes as a function of time for fixed €, and as the
viscosity varies, for fixed time.

To investigate conservation we vary both the dissipation parameter € and the time ¢,, = nAt at which the solu-
tions are sampled. Specifically, consider the following: Given computed solutions €+ for asetof (e, tl) (ez, t2),...(Ex,tK)
pairs of parameters and times, for 0 < = < 1, does the PPE solution @€+ satisfy fo W€ (x,t) de = fo (z,0) dx?

We perform this experiment on spatial grids with 100, 200, and 400 cells.
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FIG. 1: The evolution of the solution to Burgers’ Equation. Left: given fixed € = 0.075, the computed solution u(z, t) flatten
out as time increases. Right: at fixed time ¢ = 1, the computed solution u(x, ¢ = 1) curves become smoother as € increases.
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FIG. 2: Left: Conservation errors of PPE predicted solution, on three different grids, tested using 20 randomly selected (e, t)
data, and an increasing number of training datasets from 30 to 300. Right: Averaged MSE of PPE predicted solutions relative
to computed solutions, on different grids and for varying numbers of training datasets. In both plots, n specifies the number of
computational grid cells used in the construction of the emulator. Three grids, with 100, 200, and 400 cells, have been used for
each emulation, denoted by red, green, and blue markers, respectively; some points in the plots overlap.

Define the conservation error as the mean squared error between the mean of the predicted PPE solutions with
specific € at some time ¢, and the initial area fol u(x,0) dz (which is 0.2 with the specified square wave data). We
consider 15 values of € = 0.005,0.01,..0.075, and times At, 2At,...501 At = 1. We select 20 random (€, t) pairs
as test data, and train on 30, 60,... 300 of the remaining pairs, again selected at random. The left plot of Fig.[2]shows
the log of the conservation error of PPE predicted solutions, for the selected €, ¢, on grids of 100, 200, and 400
cells. Recall that the computed solutions conserve mass to approximately machine precision. The right plot shows
the MSE of the PPE prediction, relative to the computed solution, averaged over the 20 test predictions

%Z/@ (0 (2, t) — us(x, 1)) d

computed on different grids, for 30, 60,..300 training datasets.

We see that the PPE prediction conserves mass to about the same accuracy as the computed solution. In the
MSE error plot, the worst error — 100 grid points, and 30 training datasets — yields a mean squared error of less
than 102, which is about the accuracy of the total computed error on that grid. It is informative to take note of the
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variability owing to the size of the training data, and the averaged error on different grids.

4. A REACTION-DIFFUSION SYSTEM

For Burgers’ Equation, conservation is expressed by the equation itself. Provided the numerical scheme respects
conservation at the grid level, ‘mass’ should be conserved to high accuracy. In this section we study a system
of reaction-diffusion equations (RDE), none of which individually embodies a conservation principle but which,
together, conserve the total mass of the system. We again probe whether PPE predictions preserve this property.

We examine the PPE emulation of a RDE system on the domain [—1, 1] x [—1, 1], a simplification of part of
a model of tumor growth (a more complete model may be found in [18]], and references in that paper). Two cell
species ¢, §,, diffuse and feed each other, reacting with a nutrient species v:

O (V) + By (©)
% = V(uVdr) + adiv
%’ = —(¢1+bd2)v

The reaction terms show v being consumed at a rate proportional to the amount of ¢, ¢, and the ¢ species
increase synergistically. Although the diffusion tensor might vary in space or as a function of concentrations, here
we prescribe a constant p for each species. Initial and boundary conditions are also required. In the computations
here we restrict ourselves to two spatial dimensions, with periodic boundary conditions on all sides. Initial data
consists of constant v, and piecewise constant s, all of which are symmetric across the origin.

Note that, from the differential equations, the total amount of material C' = [(a* by + B * do+ ok B+ v) dady
is constant in time for periodic or no-flux boundary conditions. It is this conservation of total material that we will
study. We remark that, because of symmetry considerations, we can limit ourselves to calculate a one-dimensional
integral of C taken along a line through the origin.

In contrast to a study of the PPE prediction of a conservation law, the conservation property of this RDE system
is not represented by a specific equation that is solved, nor a conservative numerical method, but is a consequence
of the solution to all three equations. In many applications ranging from multi-phase flow to combustion, accurate
tracking of material is critical to the successful simulation of solutions; this examination of RDEs is a first step in
extending PPE ideas to these settings.

In this application the parameter space is 4-dimensional — o, 3, 1y, to. We work with a fixed spatial grid of
100 grid cells in « and y, with z,y € [—1,1]. The computational algorithm is an explicit second-order mid-time
predictor-corrector scheme. Certainly this is not a methodology that would be used for a production code. But our
intent is to study the parametric dependencies of PPE predictors. This explicit numerical scheme requires no linear
algebra solver. On the other hand our study does not investigate any stiffness of the reaction terms, a phenomenon
that could be important in some settings. Thus we restrict all four parameters to be positive and O(1). The evidence
suggests that PPE predictions trained using specialty stiff solvers for the reaction terms will exhibit conservation
similar to what is reported here.

We begin, then, with initial data v = 1 for all x, y, and

1 —-02<2<02 —-02<y<0.2
b;(x,0) = { Y )

0.1 otherwise

The diffusion term smooths the discontinuity, but the relatively fast reaction near the origin quickly depletes v.
We remark that testing with other initial data, whether smooth or discontinuous, also exhibits conservation of C' as
illustrated below.

As an example of the complicated behavior of the system, Fig[3] shows the weighted sum of material ot * ¢ +
B * &2 + « * 3 *x v at four different times. In this figure all the parameters are set equal to 0.5.
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FIG. 3: The total weighted mass of material at non-dimensional times t = 0.25 (upper left), t=0.5 (upper right), t=1.0 (lower left),
and t=2.0 (lower right). Parameters p;, pz, &, (3 are all equal to 0.5
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FIG. 4: Conservation error, for three separate selections of training and testing datasets represented by red, green and blue
markers. Shown are each of the errors for each of the 6 collections of training data.

We will use PPE to predict the solutions ¢, ¢,,v of the RDE system, and check that the prediction results
satisfy conservation of C'. To the end, we exercise the following experimental design. Consider the product parameter
design space with p;, pp, &, 3 each taking on the values 0.5, 1, 1.5. Computations using these 81 outputs constitute
the universe of available data. We compute numerical solutions for (¢ (z,y), da2(z, y), v(z,y)) up to time t=0.64.
From the 81 computations we extract 31 at random to be used as test data. We train our PPE emulator based on
a subset of the 50 remaining computed solutions, and predict ¢, ¢,, and v for the 31 test inputs. Using these
emulated outputs (and the symmetry noted above) we calculate

1
C’:/ axb(z,y=0,T)+ B * Pa(z,y=0,T) + ocx B xv(x,y =0,T)dx
—1

and compare this number to C' at ¢t = 0, to calculate the error in conservation. Specifically, we randomly selected
6 collections of training datasets, trained using either 5, 10, 20, 30, 40 or all 50 available solutions, and examine C'
based on the emulated output variables. The conservation error is defined as £ = 3% > (C* — C) for the selected
values of «, 3, and C* is the total mass of the emulated solution. Figure ] shows this error for three different cases
of training and testing data, showing each of the 6 selected collections of training data.

As should be expected, as the number of training sets increases, the conservation error decreases to a value
~ 1077, For reference, the conservation error of computed solution is ~ 10~'3. For context, when using 50 training
datasets, the RMSE (emulated solution minus computed solution) for ¢; and ¢, is about 10~3, and for v is around
107°.
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5. HAMILTONIAN SYSTEMS

)

T

— ——— for the
q71t49;

In center-of-mass coordinates, the Kepler 2-body problem, the Hamiltonian is H = 2 4

positions q;, ¢ and momenta p;, p,. The equations of motion are

dg; dH  dp;  dH

dt —dp; At dg;

‘H is conserved in time, and orbits are periodic.
Consider a leap-frog numerical scheme:

At At
q;(t+ 7) =q;(t) + ij(t)
At
pj(t + At) = pj(t) + AtUj(t + 7)
At At

q;(t + At) = g (t + 7) + ij(t + At)
with the acceleration U; = —q;/(q} + ¢3)*/2. If the initial data is ¢;(0) = 1 — a, ¢(0) = 0, p;(0) = 0, p,(0) =
2/ }f—g, with timestep At = 0.0005, the leapfrog scheme preserves the Hamiltonian to 4 digits of accuracy, for

50,000 steps, which translates to 4 complete periods of the dynamics. Using the initial data a as a variable parameter,
compute solutions for a = 0,0.1,0.2,...0.9. From these 10 computed solutions, choose 9 at random as training data;
the objective is to emulate the 10th. We find the emulated solution conserves H to at least 3 digits over the time
interval 0.0005 x 50,000 = 25, with the largest variation at the times when the orbit (in (g, p)-space) is returning
to its starting location. The orbit is periodic to about 10~*, and the error in the prediction — emulated solution -
computed solution — is less than 1073, One example run is shown in Fig.

We remark that the errors were largest if the randomly selected test run was for parameter value ¢ = 0.0
or a = 0.9, where the PPE was extrapolating (a little) in parameter space. In spite of the larger error, however,
periodicity in the dynamics was preserved.

6. PPE AND MATERIAL PHASE CHANGE

Shape memory alloys (SMAs) can recover significant strain during temperature and stress-induced transformations
between low temperature martensite and high temperature austenite phases. Martensite and Austenite phases have
very different mechanical, electrical, thermal and optical properties due to different crystallographic properties of
the two phases, which necessitates the consideration of phase-dependent material coefficients in SMA models with
phase transitions. The interested reader may consult [19].

There are a number of materials, including the alloys NiTi, CuAINi, CuZnAl and FeMnSi, that exhibit shape
memory effects. We examine a model of NiT{"|due to its superior structural and memory capability. However much
of the description and analysis that follows can be applied to other compounds. Smith [[19], Chapter 5, develops a
model of temperature- and stress-induced phase transformations. His homogenized energy model smoothly joins
two locally quadratic energy potentials with a Boltzmann relation for temperature, and rate laws for phase change
and temperature evolution. See [19], Section 5.5 for all the governing equations of the model, and [20] for code to
solve the governing equations, based on this model and calibrated with experiments.

Consider a material sample composed of an austinite A phase and two martensite variations //*. The lattice
volume is V, with total mass v, and x4 (t), x4 (t) are the volume fractions of the three configurations. At a tem-
perature 7" a piecewise quadratic Helmholtz free energy is constructed, based on a shear strain €, where € = 0 for

*More generally, one can consider an alloy Ni, T4 —,, usually with z ~ [0.47 to 0.51].
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austenite and € = e is the equilibrium value for martensite in a stress-free configuration:

(e +er) e < —en(T)

BT (e 4 eo(T))2 + 20(T)  —en(T) < € < —ea(T)
D(e,T) = ¢ e’ + AB(T) le| < ea(T)

%(T)( —e(T))* +Po(T) ea(T) <e<en(T)

(e —er) e>en(T)

Here Y, Y4 denote the Young’s moduli for the martensite and austenite phases, €7, €4 are the inflection
points in the energy, and Af is the energy barrier. The total Gibbs energy adds a work term to the free energy,

G(o0,e,T) = ®(e,T) — oe.

Examining this energy, it may be guessed that critical values of stress occur at 04(T') = Yaea(T) and o5, (T) =
YA(EM(T) — ET).

Local average strains must balance the Gibbs energy with the relative thermal energy through a Boltzmann
relation u(G) = Ce=CGV/FT,

Probabilities for a transformation among the different phases, pa+1 (0,T),p+(0,T) are defined by the appro-
priate value of p, normalized over all possible strain configurations.

Finally the evolution of phase transformations is given by rate laws:

i (t) =pa—za(t) — p-z_(t)
@y (t) = paszalt) — prai(t)
Ea(t) = —pa—za(t) + p-z—(t) — parza(t) + pra4(t) ®

Thermal evolution is also given by a rate equation
me(t)T(t) = —QUT — To( Z Dok o

where the first term defines heat exchange with the environment, J characterizes Joule heating, and the last term
characterizes the heat generated during phase transformation with specific enthalpy h .

At a specified temperature, a stress is applied. As the temperature is lowered we observe a change in the
deformation, depending on the initial and final temperatures and the amplitude of the applied stress — (7, 71, 0),
resp.

Figl6] shows the strain vs. time, and stress vs. strain, for two sets of initial temperature and applied stress,
exhibiting a hysteresis effect.

To study the accuracy of PPE for this model, we focus on the strain evolution as our quantity of interest.
We select testing and training inputs among the (Tp, T}, 0) triples. For temperatures T, = 400,401, ... 440K
we select intervals of change AT to characterize numerical experiments. So, for example, AT = 20 means that
Ty = 400,420,440 K are selected. Thus when AT is relatively large, the corresponding training sample set is small,
and vise versa. We then select combinations Tp, 0 as inputs. Other values of (Tp, 7}, o) are used as test inputs. Fig
shows PPE predictions based on a fixed applied stress and 3 different temperature intervals: AT = 20, 10, 5 in
yellow, green and blue, respectively; the simulation result is in red. (Note: Because the starting strain values for each
solution are almost identical, we ignore the first 50 time steps and only consider time steps from 51 to 401. ) Not
surprisingly, reducing the temperature gap AT in the training data yields an emulation that is closer to a simulated
result.

6.1 PPE and errors

Without an exact solution or a conserved quantity against which to compare, we use the temperature step AT training
structure in order to estimate an effective rate of convergence for the emulator, using a Richardson extrapolation.
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FIG. 6: Strain versus time, and stress-strain hysteresis curves, for two different values of temperature and applied stress.
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That is, we ask how rapid is convergence in a realistic range of parameter spacing, for a highly nonlinear model
. . . 1 . . .

system? Consider the mean squared error in emulation, ( ft (e*—€)%dt)> where €* is the emulated strain as a function

of time, across all of the spatial dimension, and € is the simulated strain. We substitute a sum over time steps for

the time integral. We postulate an emulation error of the form Ea7 = C(AT)* for constant C, P. Manipulating the
Ear—EaTp

. _ 1
ratio D = Ear—Earym TP

we can estimate the effective convergence P.

Fixing o then, we run simulations with AT = 20, 10,5,2.5 (where the AT = 2.5 error is the average of the
errors of AT = 2, 3). Using these AT values yields P = 2.4. We can also make a best fit polynomial approximation
of the data. Fig shows this best fit, a quadratic in AT

To gain some intuition about this convergence, consider an ODE

du
7 St usq) )
with initial condition u(t = 0) = uo and parameter vector g. Solve this equation to obtain a solution at discrete

times 0 = %o, 1,2, ...t; = T and for parameters q, qy, ...qx . PPE makes a prediction of the solution for any time
t not necessarily one of the ¢;, and for a parameter q*.

A Taylor series approximation suggests the total error in approximation is a sum of errors, of differing order,
in At and Aq. The numerical solver is assumed to have O({At}Q) accuracy. To estimate the accuracy in param-
eter space, first define Aq to be the diameter of the the largest ball that “fits” between parameter points in the
d-dimensional space of q. To gain some intuition, it is useful to remember that, using a power exponential with
power 2, a GaSP is, essentially, a RBF with a squared exponential as the basis functions. Approximation theory sug-
gests that RBF with squared exponential basis functions leads to an exponential convergence rate in Aq, at least in
the asymptotic range. The default exponent in ppgasp is 1.9 and not 2, but this intuition ought to hold approximately
(see [21422]] and references therein). The extrapolation results above yield an effective convergence rate of P ~ 2.4.
Of course we can improve the numerical solver, to increase its order or convergence. Reducing the emulator approx-
imation error depends on selection of appropriate correlation function and Agq. It is typical that space-and-timesteps
are small, but sampling in parameter space is usually sparse, and the total error in an emulation is dominated by
Aq” with an effective convergence rate P.
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7. CONCLUSIONS

We have studied the output of Parallel Partial Emulation, and demonstrated that emulated output fields retain several
properties possessed by simulation outputs. In particular we show that conservation properties — such as norms of
the outputs — are preserved in the emulation process, without the need for any additional constructs to enforce this
conservation. In retrospect this may not be too surprising — a GaSP, because it is a BLUP, is a linear combination
of the training data. If each of the training datasets exhibits conservation, one might think the prediction likewise
should. Such intuition certainly guides one’s consideration of conservation in an application such as Burgers’ equa-
tion in Sec[3] However, this intuition breaks down when studying the reaction-diffusion system of Sec[] For this
system, different input parameters lead to different total mass C. The PPE makes a prediction for a q* which is not
among the training data, and which possesses a mass which is not equal to the mass of any of the training data.
Nevertheless, the parallel partial emulated solution accurately predicts and conserves the correct mass.

In spite of the successes of Gaussian process emulation, there is some hesitancy to applying emulated predic-
tions in sensitive applications because of the accuracy in parameter space. Our results show that PPE outputs can
accurately emulate space-time fields arising as solutions to highly nonlinear systems of differential equations. In
practical applications, the error between simulations and PPE outputs depends principally on the gap between the
parameter values used in training. In these sensitive applications, we suggest employing a hierarchical experimental
design. That is, an initial design can provide a broad sampling of parameter space, and PPE predictions can identify
a region of particular interest. Additional simulations in this region can reduce PPE error to acceptable size for the
application at hand. These findings should help disciplinary scientists when considering design of experiment, and
provide confidence when using PPE as a surrogate, even when high fidelity approximations are required.
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