
Journal of Wind Engineering & Industrial Aerodynamics 250 (2024) 105760

Available online 10 May 2024
0167-6105/© 2024 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Journal ofWind Engineering & Industrial Aerodynamics

journal homepage: www.elsevier.com/locate/jweia

Design and demonstration of a sensing network for full-scale wind pressure
measurements on buildings
John Hochschild ω, Catherine Gorlé
Stanford University, Y2E2 Building, 473 Via Ortega, Stanford, CA, 94305, United States of America

A R T I C L E I N F O

Keywords:
Full-scale measurements
Non-Gaussian wind pressures

A B S T R A C T

There is a need for full-scale wind pressure measurements to evaluate the accuracy of peak wind load estimates
from wind tunnel measurements, numerical simulations, or building codes. The objective of this study was to
design a sensing network for obtaining long-term records of fluctuating wind pressures, and to demonstrate
the network’s potential through deployment. A custom data-logger using the BMP388 absolute pressure sensor,
which can measure pressure coefficients within ±0.1 at a wind speed of 10 m/s, was designed. The accuracy of
the measured statistics was established through comparison with a standard differential sensor in a wind tunnel
experiment. A network of 10 motes was deployed on the sloped roof of the 184 m tall Space Needle, obtaining
over 1000 h of fluctuating pressure data. The measurements reveal a windward separation region with strong
dependency of the approach wind turbulence on the pressure statistics, but positive skewness limits the peak
values. The skewness becomes negative near the edge of a second, leeward separation region, resulting in peak
factors up to 2.6 times larger than the code-prescribed value of 3.4. The results demonstrate that long-term
full-scale measurements provide valuable insight into peak wind pressures and their dependence on approach
wind characteristics.

1. Introduction

As more and more of the world’s population lives in dense cities,
the need to accurately characterize wind loads experienced by high-
rise buildings is greater than ever. One only needs to read the news
to see examples of high-rises experiencing wind effects that negatively
impact their design integrity. In March 2023, failure of glass cladding
panels on a San Francisco office building during a wind event sent
the neighborhood into lockdown to prevent pedestrians being hit by
falling glass. In New York City, the highly-slender 432 Park Avenue
provides an example of a building that is reportedly uninhabitable due
to uncomfortable displacements during high winds: residents complain
of creaking, plumbing issues, and elevator malfunctions (Chen, 2021).

Currently, wind loads on buildings are estimated either using build-
ing codes and standards, which are based on empirical information
from wind tunnel pressure measurements on canonical building shapes,
or using dedicated wind tunnel measurements for the specific build-
ing under consideration. There are two important limitations to this
approach. First, it is assumed that peak pressures measured on small-
scale wind tunnel models are representative of those experienced by
full-scale buildings. Previous studies comparing wind loads measured
at model- and full-scale on low-rise structures have consistently found
peak pressures to be underestimated at model-scale (Richardson and
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Surry, 1991; Richardson et al., 1997; Okada and Ha, 1992; Cochran
and Cermak, 1992; Ho et al., 2003; Liu et al., 2009). The discrepancies
are attributed to differences in the approach turbulent wind fields as
well as to suppression of the smaller turbulent scales at lower Reynolds
numbers (Re) (Richardson et al., 1997; Hagos et al., 2014; Okada and
Ha, 1992; Tieleman, 2003; Morrison et al., 2013). Both approach flow
and Re effects can be expected to also occur on high-rise buildings;
however, there is presently a lack of full-scale data for high-rises.

Most of the data used for investigating statistical treatment of
peak pressures are sourced from wind tunnel measurements and full-
scale measurements of low-rise buildings (Wacker et al., 1991; Peng
et al., 2014; Liu et al., 2017; Subramanian et al., 2012; Sridhar et al.,
2021). Two exceptions are data from full-scale measurements on a
45-story rectangular office building in Montreal (Dalgliesh, 1971) and
on a 57-story building in Toronto (Dalgliesh et al., 1980). However,
both of these experiments used differential sensors and so obtained
wind pressure coefficients highly influenced by the building’s dynamic
internal pressure.

The objective of this study is to design and demonstrate a wireless
sensor network for recording long-term full-scale wind pressure mea-
surements on high-rise buildings. The time period of the measurements
should be sufficiently long to obtain independent measurements over
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a range of atmospheric wind conditions. The network uses absolute
pressure sensors to obtain measurements that are independent of in-
ternal pressurization and support comparison with wind tunnel or
numerical simulation results. A suitable sensor was identified through
testing in a small wind tunnel and subsequently validated in a large
atmospheric boundary layer wind tunnel. A network of wireless data-
logging ‘‘motes’’ that features the absolute sensor was then designed
and fabricated. To demonstrate the sensor network’s capabilities, the
network was installed on the Space Needle for several months. The
pressure measurements were post-processed to obtain the statistical
moments of fluctuation pressure coefficient 𝜔 ε

𝜀 and the corresponding
peak gust factor. The resulting values are compared with those from
building codes to evaluate code accuracy and potentially identify any
shortcomings. In the future, the data can be used to make direct com-
parisons with wind tunnel experiments and computational simulations,
supporting quantitative validation of these methods.

Section 2 explains the need for a custom datalogger and details the
resulting design and validation testing. Section 3 describes the Space
Needle deployments, and Section 4 presents and discusses the results
of the full-scale experiment. Conclusions are presented in Section 5.

2. Sensor selection and testing of a pressure-sensing mote

2.1. Quantities of interest

In experiments and simulations of wind loading, the quantities of
interest are the statistics of the pressure coefficients 𝜔𝜀 on the building
surfaces:

𝜔𝜀(𝜗) =
𝜛 (𝜗) ϑ 𝜛 𝜚𝜍𝜑

1

2
𝛻𝜕

2
(1)

where 𝜛 (𝜗) is the time series of the absolute pressure measured on a
building, 𝜛 𝜚𝜍𝜑 is the time-averaged reference pressure, 𝛻 is the density,
and 𝜕 is the time-averaged windspeed at building height. The key
statistics calculated from each time series are the mean, standard
deviation, peak value, skewness, and kurtosis.

When using differential sensors, 𝜛 𝜚𝜍𝜑 is the reference end of the
sensor. When using absolute sensors, a second sensor is necessary to
measure the barometric reference 𝜛 𝜚𝜍𝜑 . In either instance, obtaining
a stable and appropriate measure of 𝜛 𝜚𝜍𝜑 in full-scale experiments is a
difficult task (Dalgliesh, 1971; Dalgliesh et al., 1980) that can introduce
significant uncertainty in the values of 𝜔𝜀(𝜗). While this uncertainty will
directly affect the mean value of the time series, the statistics of the
fluctuating pressure coefficient can be recovered with high accuracy.
Considering that the turbulent statistics are also considered the more
difficult quantities to predict accurately, both in scaled wind tunnel
experiments (Richardson et al., 1997; Cochran and Cermak, 1992;
Okada and Ha, 1992; Liu et al., 2009) and in CFD simulations (Ricci
et al., 2017, 2018; Cao et al., 2019), we therefore define our quantities
of interest for the full scale measurements as the statistics of the
fluctuating pressure coefficient 𝜔 ε

𝜀:

𝜔 ε

𝜀(𝜗) =
𝜛 (𝜗) ϑ 𝜛
1

2
𝛻𝜕

2
(2)

where 𝜛 is the time-average of 𝜛 (𝜗). The specific statistics of interest
are the second, third, and fourth moments of 𝜔 ε

𝜀(𝜗), i.e. the root-mean-
square (rms), kurtosis, and skewness respectively. The rms value will
be denoted as 𝜔𝜀,𝜚ℵℶ, since 𝜔 ε

𝜀,𝜚ℵℶ = 𝜔𝜀,𝜚ℵℶ. In addition, we will consider
the minimum peak value 𝜔 ε

𝜀,ℵℷℸ and the peak factor ⊳, which is the ratio
of 𝜔 ε

𝜀,ℵℷℸ to 𝜔𝜀,𝜚ℵℶ.
The calculation of these statistics from full scale measurements

introduces additional challenges due to the variability in the natural
wind. The mean wind speed and direction can vary considerably within
the length of time that is typically used for sampling in wind tunnel
experiments (often at least 2 h full-scale equivalent (Kasperski, 2003;

Pomaranzi et al., 2022)). When considering shorter time periods, inter-
nal variability in the turbulent flow can result in significant differences
in the turbulent statistics for the same mean wind speed and wind
direction. To understand and quantify these effects, one of the main
requirements for our sensor network is that it should support long term
measurements of the fluctuating pressure coefficients, such that a large
number of independent shorter (10-min) time series can be obtained to
quantify these effects. The calculation methods to obtain the fluctuation
statistics from these time series are detailed in Section 3.3.

2.2. Sensor network requirements

The goal is to support deployment of a network of about 20 sen-
sors on buildings for a period of several months. The sensors should
be able to make repeatable 𝜔 ε

𝜀 measurements even in relatively low
winds so that we may gather many independent time series. These
objectives necessitate unique requirements for the sensor and network
design: low-noise sensing at a sufficiently high temporal frequency in
a compact and unobtrusive housing.

First, the pressure sensor used must have low-noise and be able
to measure small changes. To support measurements in relatively low
wind conditions, we specified that the pressure coefficient uncertainty
⊲𝜔𝜀 should not exceed 0.1 at windspeed 𝜕 = 10 m/s, so the sensor
uncertainty must not exceed 6 Pa. Furthermore, a resolution in 𝜔𝜀 of
0.005 or lower was desired, meaning required sensor resolution was
0.3 Pa or lower. Wind tunnel measurements typically measure pressure
at tap locations with frequency ∱(500ϑ1000 Hz), assuming 1:100 scale
this is equivalent to ∱(10 Hz) at full-scale.

The objective necessitated further requirements for the sensor’s data
logger, which together with the sensor comprise a mote in the network.
Because each is fixed to the exterior of a large building, access is
difficult so they must be solar-powered and record data wirelessly. They
also must be as unobtrusive as possible, to prevent influencing the flow
and mitigate building owners/operators’ concerns on their aesthetic
impact. Finally, they must of course be weatherproof.

No commercially available solutions meeting the requirements were
known so a custom mote was designed and manufactured for the
experiment. The characteristics of the sensor used and the design details
of the data-logging mote are described in the next subsection.

2.3. Sensor selection and validation

The selection and validation of the pressure sensor was performed in
two steps. Initial tests of several high-resolution pressure sensors were
performed in Stanford’s small-scale teaching wind tunnel to determine
the sensors’ capability to measure accurate pressure coefficient fluctu-
ation statistics. Next, we performed further validation of the selected
sensor during an experiment performed in a larger scale atmospheric
boundary layer (ABL) wind tunnel. This section summarizes the set-up
and results of these tests.

2.3.1. Initial sensor selection and validation in small-scale wind tunnel
Fig. 1(a) shows a diagram of the tests performed in Stanford’s small

scale teaching wind tunnel. A 20 cm cube was placed in the 76 cm 0
76 cm test section and exposed to a uniform, low turbulence, incoming
velocity profile. Several candidate absolute sensors were embedded in
the top surface, along with a differential sensor as a baseline. Rect-
angular cutouts were etched into the cube surface so that the sensors
would be flush with the face. The sensors were arranged along a line
perpendicular to the incoming flow and as close together as practical to
ensure they see similar flow conditions. A low-profile vented enclosure
installed upstream of the cube housed an additional absolute sensor and
the reference port of the differential sensor, both to measure reference
pressure.

The test was divided into regions of approximately constant
freestream velocity (⊲𝜕 < 0.12 mϖs) and at each 𝜕 the pressure
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Fig. 1. Schematic and results of initial wind tunnel test for sensor selection.

coefficient was calculated for each sensor. RMS and minimum 𝜔𝜀 were
calculated as a function of 𝜕 and compared between the different
sensors. Fig. 1(b) shows the comparison between the differential sensor
and the Bosch Sensortec BMP388 sensor, which we found to be the most
optimal. The BMP388 is a MEMS (micro-electromechanical systems)
sensor with very small footprint and a built-in 24-bit analog-to-digital
converter (Bosch Sensortec, 2018). For ease of use, we use sensors pre-
installed on breakout boards, which are 2 cm square in dimension. The
results show that with 1.7 Pa RMS noise, the sensor’s signal-to-noise
ratio is sufficiently high to make meaningful 𝜔𝜀 measurements when
𝜕 > 10 m/s. The 𝜔𝜀,𝜚ℵℶ plot indicates that sensor noise dominates
at low wind speeds. However, given constant sensor noise, the noise
contribution to 𝜔𝜀,𝜚ℵℶ decreases proportionally to 𝜕2, and accurate
measurements of the turbulent fluctuations are obtained at velocities
exceeding 10 m/s.

Finally, although sensor drift is not a driving concern because it
only affects the mean and not the turbulent measure 𝜔 ε

𝜀, a long-term
test over several weeks showed the maximum half-span of the drift to
be 5.5 Pa, which corresponds to ⊲𝜔𝜀 = 0.09 when 𝜕 = 10 mϖs. The
sensor measures at 12.5 Hz and has 0.17 Pa resolution, exceeding both
requirements identified in the previous section.

The next subsection details a validation of the BMP388 against
differential sensors nominally used in experiments at an atmospheric
boundary layer wind tunnel facility.

2.3.2. Sensor validation in ABL wind tunnel test
During a series of tests at the Florida International University’s Wall

of Wind, an open section wind tunnel with a 6.1 m wide and 4.3 m
high test section, two pressure taps on a scale model of a low-rise
building were each simultaneously connected to a standard differential
sensor (Scanivalve ZOC33) and to a BMP388. The barometric reference
pressure was measured with a third absolute sensor. The building
model, shown in Fig. 2, was a 1:100 model of Stanford’s Y2E2 building,
measuring 1 m long, 0.64 m wide, and 0.21 m high. The model was
tested for a suburban terrain exposure at 36 wind directions spanning
the full range [0, 360]⋛. 117 s (1468 samples at 12.5 Hz) of time series
was obtained for each wind direction and from each a peak value was
estimated using the statistical method introduced in Cook and Mayne
(1979, 1980), which is explained in more detail in Section 3.3.2. Fig. 2
includes the model orientation and the locations of the two pressure
taps on the North facade and South facades. Inflow profiles and other
details of this experiment are available from Vargiemezis and Gorlé
(2024).

𝜔𝜀 statistics from the test are plotted as a function of wind direction
in Fig. 3. Although the root-mean-squared difference, annotated on the
plots, is below 0.1 for all statistics, we observe a noticeable bias for
tap 418: 𝜔𝜀,ℵ𝜍1ℸ is higher for the absolute sensor than the differential
sensor at all wind directions. This bias is attributed to the difficulty of

Fig. 2. Three views of the Y2E2 building, indicating the tap positions on the facade.

measuring a valid reference pressure, and will not affect our main goal
of measuring 𝜔 ε

𝜀 statistics.
The spectra are compared in Fig. 4 and the distributions of 𝜔 ε

𝜀 are
compared in Fig. 5. Although the distributions shown in Fig. 5 are very
similar, we see that the absolute sensors measure fewer data points with
𝜔 ε

𝜀 very close to 0, which can be attributed to these sensors’ higher
noise. To illustrate this, ±𝜔 ε

𝜀 corresponding to ⊲𝜛 = 1.7 Pa is shown on
the plots by dashed lines.

2.4. Mote design

2.4.1. Sensor waterproofing
The BMP388 sensor is not inherently waterproof so a system was

designed to prevent water reaching the sensor during rain. Fig. 6 shows
the design. Hydrophobic acoustic mesh (not pictured but denoted by a
dashed line) prevents most water from entering the tubing system. The
small amount of water that does pass through preferentially flows down
through the Y-connector away from the sensor and collects in a capped
reservoir. An additional layer of acoustic mesh between the Y-connector
and the sensor further prevents water from reaching the sensor. Any
water that collects in the reservoir will gradually evaporate out.

The wind tunnel setup introduced in Section 2.3.1 and shown
in Fig. 1 was used to ensure the waterproofing system was not affecting
sensing dynamics. The inflow port of the waterproofed sensor and a
fully-exposed sensor were installed in the top face of the cube. A time
series portion and spectrum for both waterproofed and the exposed
sensors are compared in Fig. 7. The excellent agreement between the
results confirms that the waterproofing system does not affect the
sensor dynamics.

2.4.2. System and electronics design
Traditional environmental sensing networks require two types of

components: motes with sensors and base station(s) that receive data
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Fig. 3. Comparison of 𝜔𝜀 statistics for both differential and absolute sensors as a function of wind angle. Root-mean-squared difference is annotated in black/blue.

Fig. 4. Comparison of spectra for both differential and absolute sensors, at 1.8⋛ wind
direction. The differential sensor data has not been filtered here.

Fig. 5. Comparison of fluctuating component of pressure coefficient 𝜔 ε

𝜀 for both
differential and absolute sensors. The dashed lines, denoting the range of sensor noise
contribution, are at 𝜔 ε

𝜀 =
1.7 Pa

0.5𝛻𝜕 2
= 0.028.

from motes and upload it to the cloud (Liao et al., 2014; Subramanian
et al., 2011). For our network we instead use Wifi or cellular enabled

Fig. 6. Sensor waterproofing system.

Arduino microcontrollers on each mote. Power consumption analysis
showed that a Wifi-enabled Arduino board uses comparable power
as a Zigbee RF transceiver, which is commonly used to send data to
base stations in the traditional network architecture. Using internet-
enabled Arduinos in each mote removes the need for base-stations and
eliminates associated range concerns. Measurements are logged directly
to an Amazon Web Services database using the MQTT protocol.

While Wifi-connected motes use the Arduino Nano 33 IoT or MKR
1010, cellular-connected motes use the Arduino MKR 1500 NB. Both
varieties can go into a low-power deep sleep mode, which is used when
windspeed is low. When in sleep mode, they connect to the internet
every 20 min to check the windspeed. If it meets a threshold value, the
mote awakens and starts acquiring data.

Initial deployments of cellular- and Wifi- connected motes on the
Space Needle failed to gather significant amounts of data because of
high RF noise at the top of the building. The Wifi router we installed
measured the noise to be as high as ϑ55 dBm: a level so high that even
motes a few meters away could not connect to the network. Because
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Fig. 7. Waterproofing wind tunnel test results.

Fig. 8. Mote housing.

of this, we later retrofitted the motes to be disconnected and log data
to SD cards. Instead of checking the windspeed, every 20 min the SD
motes check 𝜛𝜚ℵℶ measured by the onboard sensors and only wake if
𝜛𝜚ℵℶ > 10 Pa, where this threshold value was chosen based on analysis
of previous measurements.

A 2 W solar panel was chosen to power the mote, which allows
for several hours of acquisition per day, but the exact number highly
depends on climate and orientation. In addition to power components,
a DS3231 high-precision real time clock (RTC) is used in the mote
to provide greater time precision than is possible with only an Ar-
duino. Testing showed that the use of the precision RTC allows for
synchronization between motes with an offset of less than 0.1 s.

2.4.3. Housing design
The housing was designed to accommodate the solar panel, three

sensors, and other electronics. A schematic is shown in Fig. 8(a) and
a photo of a mounted mote is shown in Fig. 8(b). The housing is 3D
printed in white to minimize solar heating. It was designed to be as
compact as possible to minimize aerodynamic influence on the pressure
measurements. Since it can be expected that aerodynamic effects will
occur under certain flow conditions, the three sensors incorporated on
different faces of each mote are used to exclude data whenever the
three sensors measure significantly different statistics. Section 3.3 fur-
ther describes how our post-processing routine checks for data outliers
due to possible aerodynamic influence from the mote geometry.

3. Space needle experimental setup and post-processing methods

The first building on which we deployed the absolute pressure
sensor network was the Space Needle, a 184 m tall observation tower
in Seattle, Washington. The building is just north of Downtown Seattle,
about 700 m inland from Elliot Bay. There are no other tall buildings
in the immediate vicinity, which will simplify future efforts towards
comparison with wind tunnel or CFD models.

To measure 𝜔 ε

𝜀, the pressure 𝜛 on the building was measured by the
motes and 𝜕 was determined from anemometer measurements. The de-
tails of these are given in the following subsections. The data is accessi-
ble on Mendeley at https://data.mendeley.com/datasets/8pxgdp7cn7/3.

3.1. Anemometers

Three ultrasonic anemometers were installed to characterize the
wind incident on the building. Two were installed on the roof of the
Pacific Science Center (PacSci), a mid-rise building that is about 150 m
upstream of the Space Needle for the dominant wind direction. The
PacSci anemometers were installed primarily to aid future comparisons
to CFD simulations. Photographs of the installed anemometers are
shown in Fig. 11(a)–(c).

Calculation of 𝜔 ε

𝜀 requires knowledge of the freestream velocity at
building height. The wind speed measured by the anemometer installed
at the top of the Space Needle has to be corrected to account for the in-
fluence of the building geometry. We determined this correction factor
by performing a large-eddy simulation that showed a 32% acceleration
of the flow measured at this position relative to freestream velocity
at building height. Therefore, measurements from this anemometer
are used in the calculation of 𝜔 ε

𝜀 but with a 0.76 correction factor
multiplied.

3.2. Mote placements

Table 1 summarizes the four deployments on the Space Needle’s
roof. The motes were placed around the perimeter of the sloped roof
(see Fig. 9), about 30 cm from the edge. Due to connectivity issues
and water ingress, not all sensors gathered data. Specifically, electro-
magnetic noise on the building meant that connecting to either Wifi or
cellular networks was often difficult. Furthermore, given the exposure
of the building and the typical wet conditions in Seattle, rain penetrated
a few sensors through either the housing seal or the hydrophobic
mesh. (December 2022 and January 2023 were especially wet, even by

https://data.mendeley.com/datasets/8pxgdp7cn7/3
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Table 1
Number of sensor-hours of time series data obtained per deployment, with the mote
technology used for each.
Deployment Technology Sensor-hours of data

May–Jul 2022 Cellular motes 282
Nov–Dec 2022 Wifi motes 0
Dec 2022–Jan 2023 SD motes 145
Feb 2023 SD motes 608

1035

Fig. 9. Space Needle, with sloped roof perimeter indicated in red.

Seattle’s standards, which explains the lower amount of data for this
period.) Future iterations of the mote housing will have more robust
sealing to minimize water ingress. Ultimately, data was successfully
gathered at the 10 distinct positions shown in Fig. 10.

3.3. Post-processing methods

The measured wind velocity and fluctuating pressure time series are
divided into 10-min periods during which the mean wind speed and
wind direction can be considered constant. These time series are used
directly to calculate wind velocity and pressure statistics. In addition,
we calculate statistics over ensembles of 10-min time series to char-
acterize the effect of the approach wind turbulence intensities and to
calculate minimum peak pressure coefficients using longer cumulative
time records. Because of the circular shape of the building, the fluc-
tuating pressure statistics will be presented as a function of the angle
along the perimeter of the roof, where the 0⋛ point is defined as the
most upstream point on the roof given the mean wind direction during
the specific measurement period. The following sections introduce the
equations and calculation methods used.

3.3.1. Turbulent wind statistics from anemometer data
From the anemometer time series, we calculate the streamwise

turbulence intensity 23 = 43ϖ𝜕 , as well as the streamwise integral
time scale 53. 43 is the standard deviation of the streamwise velocity
time series and 𝜕 the mean streamwise velocity. 53 is computed by
integrating the autocorrelation of 𝜕 (𝜗). Taylor’s hypothesis can then be
used to approximate integral length scale:

63,0 ϱ 53𝜕 (3)

Past studies have shown a dependency of wind pressure fluctua-
tion statistics on both the turbulence intensity and the length scale
(e.g. Saathoff and Melbourne, 1997; Lamberti and Gorlé, 2020; Yang
et al., 2022a). To investigate this relationship based on our full-
scale measurements we also define the turbulence parameter 7 as
follows (Saathoff and Melbourne, 1997):

7 = 23
⌋

63,0ϖ8
⌈0.15 , (4)

where 8 = 37.2 m is the roof diameter.

Fig. 10. Positions of motes that gathered data. Blue corresponds to the cellular mote
deployment, green to the first SD mote deployment, and red to the second.

As mentioned in Section 3.1, the rooftop anemometer does not pro-
vide a freestream measurement. In the current analysis, we therefore
assume that the turbulence intensities and length scales measured by
the rooftop anemometer are representative of those in the freestream.
The relationships between these quantities in the freestream and at the
rooftop anemometer will be estimated using large-eddy-simulations in
future work. We also note that the anemometer measurements support
calculation of spanwise turbulence intensities and length scales. These
spanwise statistics are not used or reported in this paper, but they will
be used to inform future computational modeling efforts.

3.3.2. Calculation of statistics over 10-min periods
The 10-min time series are used directly to calculate the rms,

skewness, kurtosis, and spectra. The minimum peak fluctuation values
𝜔 ε

𝜀,ℵℷℸ are obtained from an extreme value analysis. The time series of
𝜔 ε

𝜀 is divided into 16 windows, and the peak value from each window
is recorded. Assuming a type I (Gumbel) extreme value distribution for
the peak samples, the peak values with a non-exceedance probability
of 78% are then given by ℵ+ 0.6364, where ℵ and 4 are the mean and
the rms value of the 16 peak values (Cook and Mayne, 1979, 1980).
When dividing the 10-min sampling time into 16 windows, the length
of each window is less than the minimum window length 5𝜗1𝜚⊳𝜍𝜗 = 10

min suggested by Cook and Mayne. The values are therefore corrected
to account for the actual sampling time 519𝜗31. as follows (Kasperski,
2003):

𝜔 ε

𝜀,ℵℷℸ = ℵ +

⌉

0.636 +
{

6

,
.ℸ

5𝜗1𝜚⊳𝜍𝜗
519𝜗31.

}

4 ℵ
⦃ℵ⦃

(5)

We calculate the peak factor ⊳, as defined in Eq. (6).

⊳ =

𝜔𝜀,𝜀𝜍1< ϑ 𝜔𝜀,ℵ𝜍1ℸ

𝜔𝜀,𝜚ℵℶ
=

𝜔 ε

𝜀,𝜀𝜍1<

𝜔𝜀,𝜚ℵℶ
(6)

The resulting values will be interpreted by comparing them to the
constant value of 3.4 prescribed by the North American building code,
ASCE 7-22 (American Society of Civil Engineers, 2022).

The reported values for these statistics will be affected by uncer-
tainties introduced by the relatively short sampling window used for
their estimation. These effects will be more important for higher order
statistics and for the peak fluctuation and peak factor estimates. The
calculation of 𝜔 ε

𝜀,ℵℷℸ includes the correction factor for the sampling time
(Eq. (5)), which is equal to 2.2 when using 10-min time series, but
uncertainty associated with this correction factor remains (Kasperski,
2003).

Lastly, to account for the possibility that the mote shape influences
the pressure measurements, our post-processing routine checks for
differences between the values measured at the three pressure ports,
each positioned on different faces. For any given 10-min window, if
the range between 𝜔𝜀,𝜚ℵℶ measurements exceeds 0.04 or if the range
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Fig. 11. Summary of anemometer placement and measurements.

between 𝜔 ε

𝜀,ℵℷℸ measurements on a single mote exceeds 0.4, this 10-min
window is excluded for all sensors. The choice of these threshold values
represents a trade-off between retaining data and excluding suspected
outliers and could be adjusted based on the requirements of specific
experiments.

3.3.3. Ensemble post-processing
During the analysis, we observed significant variation in the turbu-

lent wind statistics between different 10-min sampling periods, as well
as a correlation between these velocity statistics and 𝜔𝜀,𝜚ℵℶ and 𝜔 ε

𝜀,ℵℷℸ.
To analyze this effect, we group the measurements in ensembles with
similar turbulence intensities and position along the perimeter within a
10⋛ sector. For 𝜔𝜀,𝜚ℵℶ, we then calculate the mean and 1.964 confidence
interval over all 10-min time periods in each of these groups. For 𝜔 ε

𝜀,ℵℷℸ,
we calculate the values from an extreme value analysis performed over
all the 10-min time series available within the group. This calculation
follows the process outlined in Section 3.3.2, but since it employs at
least 16 10-min windows the correction term expressed as a function
of 5𝜗1𝜚⊳𝜍𝜗ϖ519𝜗31. in Eq. (5) reduces to 0. Spectra will also be ensemble

averaged over the groups. We note that the calculation of statistics
over ensembles of 10-min time series offers one way to reduce the
uncertainty related to convergence of the statistical estimation process,
provided that the underlying distributions of the 10-min windows are
the same.

4. Space needle results

4.1. Windspeed

Wind roses and histograms of 10-min mean turbulence intensities
and length scales are shown in Fig. 11. We are only plotting measure-
ments during acquisition periods, i.e. when the rooftop anemometer
10-min mean exceeded 10 m/s. Note that the results from the PacSci
anemometers are not used here but will be used for comparison and
validation of CFD simulations.

Fig. 11(f) shows how acquisition was largely at the dominant wind
direction as measured at the top of the building: for 87% of the 10-min
measurement periods the wind direction is between 180⋛ and 220⋛.
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Fig. 12. Spectra of the turbulent wind velocity measured by the rooftop anemometer, binned by turbulence intensity.

Fig. 13. Possible shapes of the windward and leeward separation regions. The arrow
denotes wind direction.

Fig. 11(i) shows a joint histogram of the streamwise turbulence inten-
sities and length scales measured at the same location. 23 varies from
around 5% to 15%, with a few measurement periods showing slightly
higher or lower values. The length scales 63,0 non-dimensionalized by
roof diameter predominantly lie within the range 2 < 63,0ϖ8 < 8. To
explain the reason for the variability in the turbulent wind statistics, we
explored correlations between the turbulence intensity and the mean
wind speed, mean wind direction, temperature, and Richardson number
at roof height, but all correlations were found to be negligible.

Fig. 12 shows the dimensional (a) and normalized (b) spectra of the
measured wind velocity. Individual spectra were calculated for each 10-
min period, followed by grouping them in 3 turbulence intensity bins
and then ensemble averaging. The dimensional plot indicates an overall
increase in fluctuation across all scales, with the strongest increase at
the largest scales. The normalized spectra further show that during
periods with higher turbulence intensity there is comparatively more
energy content at the larger scales in the flow.

The effect of the variability in turbulence intensity on the measured
pressure time series is analyzed in the following sections.

4.2. 𝜔𝜀,𝜚ℵℶ and 𝜔 ε

𝜀,ℵℷℸ

To support the presentation and discussion of the fluctuation pres-
sure coefficient statistics, it is useful to first consider the flow pattern
expected on the Space Needle’s sloped roof. Overall, we expect to see
three key flow regions, as illustrated in Fig. 13, with the perimeter
band emphasized to show where we measured 𝜔 ε

𝜀. First, there is a
windward separation region, caused by the flow separating over the
vertical glazed panels mounted around the observation deck below,
as illustrated in Fig. 9. This flow separation happens before the flow
reaches the roof edge. Second, there is a region aft of this separation,
where the flow recovers to attached flow. Last, there is the cylinder
wake region behind the central raised roof section.

𝜔𝜀,𝜚ℵℶ and 𝜔 ε

𝜀,ℵℷℸ around the perimeter of the roof are shown in
Fig. 14. Each data point corresponds to statistics calculated from a 10-
min time series. For 𝜔 ε

𝜀,ℵℷℸ, the 10-min is subdivided into 16 intervals
and the extreme value analysis described in Section 3.3 is performed
using the 16 intervals. The plot shows symmetrical behavior, as ex-
pected given the geometrical symmetry. The highest 𝜔𝜀,𝜚ℵℶ values occur
around 0⋛ (or 360⋛) in the windward separation region (see Fig. 13).
𝜔𝜀,𝜚ℵℶ then gradually decreases across the attached flow region until
the values increase again in the shear layer between the attached flow
and the cylinder wake. In the cylinder wake, the 𝜔𝜀,𝜚ℵℶ values decrease
again. 𝜔 ε

𝜀,ℵℷℸ shows the same trend, but with opposite sign. The data
points are colored by the turbulence intensity measured at the rooftop
anemometer, indicating a correlation between the turbulence intensity
and the intensity of the pressure fluctuations.

Fig. 15 further visualizes these trends by calculating the fluctuating
pressure statistics using ensembles, grouping the data points by position
(in 10⋛ increments) and by turbulence intensity. For 𝜔𝜀,𝜚ℵℶ the plot
shows the mean and 95% confidence interval (defined as 1.964) of
the 𝜔𝜀,𝜚ℵℶ values obtained from all time series in each group. For
calculation of 𝜔 ε

𝜀,ℵℷℸ, instead of subdividing the 10-min period in 16
windows, the absolute minima from each 10-min window in a group
is taken to be an independent sample when performing the extreme
value analysis described in Section 3.3. Missing datapoints are where
a bin had insufficient data for the extreme value analysis. The plot
confirms the above observations, and further highlights the dependency
of the fluctuating pressure statistics. In particular, it appears that 𝜔𝜀,𝜚ℵℶ
depends quite strongly on the freestream turbulence intensity in the
upstream separation region, while the dependency is reduced in the
shear layer and wake forming around the cylinder further downstream.

To further investigate the influence of the incoming flow’s tur-
bulence on pressure statistics, we can isolate measurements in the
windward separation and cylinder wake regions. As indicated by the
dividing lines in Fig. 15, [0, 45]⋛ and [315, 360]⋛ is considered windward
separation, while [160, 200]⋛ is leeward separation. Fig. 16 shows scatter
plots of the 𝜔𝜀,𝜚ℵℶ measurements as a function of the turbulence param-
eter 7 (see Section 3.3) for each of these regions. The plots also indicate
linear fits to the data. In both flow regions, increased 7 results in more
turbulent pressure measurements. However, the slope of the fit is more
than twice as large in the windward separation region, indicating a
greater sensitivity of 𝜔𝜀,𝜚ℵℶ to 7. In other words, 23 and 63,0 have a
lesser influence in the leeward wake compared with the windward side
of the building.

4.3. Power spectra

Fig. 17 shows ensemble averaged spectra from measurements in the
windward separation region and the cylinder wake region. Individual
spectra were calculated for each 10-min period, followed by group-
ing them according to turbulence intensity bins and then ensemble
averaging. For reference, the anemometer measures with a sampling
frequency of 1 Hz, so its turbulence intensity only characterizes the
timescales to the left of 0.5 Hz. For both locations, higher turbulence
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Fig. 14. 𝜔𝜀,𝜚ℵℶ and 𝜔 ε

𝜀,ℵℷℸ around the perimeter of the Space Needle’s sloped roof. Marker color corresponds to turbulence intensity as measured by the rooftop anemometer and
marker shape corresponds to the mote that took the measurement. The meaning of the x-axis is illustrated by the diagram at bottom left.

Fig. 15. 𝜔𝜀,𝜚ℵℶ and 𝜔 ε

𝜀,ℵℷℸ around the perimeter of the Space Needle’s sloped roof, binned by position (10⋛ bins) and turbulence intensity. The shaded regions in the 𝜔𝜀,𝜚ℵℶ plot
represent the 95% confidence interval, defined as 1.964.

Fig. 16. 𝜔𝜀,𝜚ℵℶ versus 7 for the alternate separation regions. The Pearson Correlation
Coefficient (PCC) of the fit is annotated.

intensity measured by the anemometer results in increased spectral
density in the fluctuating surface pressures. The increase occurs pri-
marily at the larger scales: the curves of different turbulence intensities
start to collapse on each other at a lower frequency. The increase is also
more pronounced in the windward separation region compared to the
cylinder wake region. The windward separation region has overall more
energy content at the larger scales, indicating that the larger scales in

the approach wind field break up due to the interaction of the flow with
the building. The difference observed in the spectra is consistent with
the findings of the previous subsection that inflow turbulence plays a
dominant role for the windward region, but its influence is diminished
on the leeward side in the secondary separation zone and the shear
layers that originate from the raised central roof geometry.

4.4. Peak factor

Fig. 18 shows the peak factor magnitude ⦃⊳⦃, calculated from each
10-min measurement period, around the building perimeter. The mean
of each 10⋛ position bin is also shown. No binning is done by measured
turbulence intensity because of its correlation with 𝜔𝜀,𝜚ℵℶ - i.e., dividing
by the latter when calculating ⊳ removes the dependence. In most
locations, the estimated peak factor exceeds the value of 3.4 used in
ASCE 7–10, which is shown on the plot as a dashed line. The peak
factor falls approximately within the range 4 < ⦃⊳⦃ < 7 for most of
the building perimeter, but the two shear layer regions on the leeward
side see considerably higher values of ⦃⊳⦃. For the 130⋛ position, the
maximum value over an individual 10-min window is as high as 14.6,
while the mean value across all 10-min periods is 9.0. We note that
the peak factor at this same position, calculated from the ensemble
estimates for 𝜔 ε

𝜀,ℵℷℸ and 𝜔𝜀,𝜚ℵℶ (shown in Fig. 15), are very similar with
values of 8.4, 9.0 and 9.3.
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Fig. 17. Ensemble averaged pressure spectra for measurements in the two separated flow regions.

Fig. 18. Peak factor magnitude around the perimeter of the Space Needle’s sloped roof, with mean for each 10⋛ position bin.

4.5. Skewness and kurtosis of 𝜔 ε

𝜀 fluctuations

Skewness and kurtosis of the 10-min 𝜔 ε

𝜀 time series are plotted in
Fig. 19. As with peak factor, no trend with the measured turbulence
intensity was observed and so the coloring is not shown. The skewness
plot shows that the fluctuation distributions of the two separation re-
gions are highly skewed, but with opposite signs: the windward region
of high 𝜔𝜀,𝜚ℵℶ has positive skewnesses up to +2.4 while the leeward
regions have negatively-skewed fluctuations, down to ϑ2. In the kurto-
sis plot, the dashed line indicates a kurtosis of 3.5, which (Kumar and
Stathopoulos, 2000) considers to be the threshold of non-Gaussianity.
The high kurtosis values in both separation regions confirm that the
pressure time series are strongly non-Gaussian.

The positive skewness in the windward region is noteworthy, since
skewness is typically observed to be negative in separation regions.
The positive values induce less negative minimum peak pressures, and
lower values of the peak factor in the windward separation region com-
pared to the shear layers adjacent to the cylinder wake (see Fig. 18).
Analysis of individual pressure time series in this region indicates that
the signal exhibits intermittent high positive fluctuations relative to the
mean. We hypothesize that this positive skewness is induced by the
flow intermittently impinging on the sloped windward side or the roof
and will further investigate this result in future work that will leverage
computational modeling.

Fig. 20 presents the same data as Fig. 20, but in the form of
a scatter plot of kurtosis versus skewness. The color of the points
corresponds to location on the sloped roof perimeter with the angle in
the range [0,180]⋛ as the two sides of the building have been collapsed
on account of the symmetry. The gray area indicates 𝜔𝜀 distributions
with a skewness less than 0.5 and kurtosis less than 3.5, which can
be considered to be Gaussian (Kumar and Stathopoulos, 2000). The
figure confirms how frequent non-Gaussian pressure fluctuations are:
only 43% of distributions fall inside the shaded region. Furthermore,
most non-Gaussian distributions occur in regions of separation, as
repeatedly noted in the literature. The dashed black line in Fig. 20 is the
relationship expected for a log-normal distribution; the close adherence

of datapoints to this line indicates the 𝜔 ε

𝜀 distributions can be reason-
ably well-modeled as being log-normal. A similar correlation between
skewness and kurtosis has previously been identified from wind tunnel
experiments on a high-rise building (Yang et al., 2022b) and on low-
rise building roofs (Kumar and Stathopoulos, 2000), although those
experiments only revealed regions with negative skewness.

Finally, we note that Yang et al. (2022b) identified a correlation
between skewness and kurtosis and the turbulence length scale in the
approach flow, but we could not identify a similar correlation from
our field measurements. This result could indicate an actual absence
of correlation for the specific combination of building geometry and
approach flow characteristics considered here. However, it could also
be a result of insufficient convergence of the skewness and kurtosis esti-
mates calculated from the available 10-min time series. This possibility
is evident from the wide spread of the kurtosis values calculated in
the windward separation region and the leeward shear layers. A larger
number of samples obtained under similar approach wind conditions
(in terms of the length scales) might therefore be needed to obtain
skewness and kurtosis estimates with an uncertainty that is lower than
the expected correlation effect. The relationship between the distribu-
tion shape and the turbulence length scale will be further investigated
using future computational analysis, where longer time series under
quasi-steady approach wind conditions can be recorded.

5. Conclusions

A sensing network to unobtrusively measure wind pressure fluc-
tuations on buildings was designed, and the potential of the network
for gathering long-term data on a high-rise building was demonstrated.
The network design involved the development of a custom data-logger
that uses the Bosch Sensortec BMP388 absolute pressure sensor. With
only 1.7 Pa RMS noise and low long-term drift, the sensor is able to
measure pressure coefficients within ±0.1 at relatively low windspeeds
(𝜕 > 10 mϖs). The sensor’s capability to accurately measure fluctuating
pressure statistics was verified through a comparison with measure-
ments obtained from a standard differential sensor in an atmospheric
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Fig. 19. Skewness (top) and kurtosis (bottom) of 𝜔 ε

𝜀 distributions for time series measured at locations around the perimeter of the Space Needle’s sloped roof, with mean for
each 10⋛ position bin. Data point shape corresponds to mote.

Fig. 20. Kurtosis versus skewness of 𝜔 ε

𝜀 distributions for time series measured at
locations around the perimeter of the Space Needle’s sloped roof.

boundary layer wind tunnel experiment. The comparison showed differ-
ences in fluctuation pressure coefficient statistics less than 0.1 between
the two sensor types, confirming the ability to accurately measure
turbulence statistics. The network motes are discreet, customizable,
and weatherproof, and they are also lower-cost than any commercially
available alternatives: each mote costs only between $200 and $300 in
materials. The data-logger will work with almost any I2C or SPI sensor,
such that it can be used for a wide range of environmental sensing
applications.

To demonstrate the potential of the pressure sensing network, we
obtained over 1000 h of time series data at 10 positions along the
perimeter of the sloped roof of the Space Needle, a 184 m tall ob-
servation tower. Statistics of the fluctuating pressures, 𝜔𝜀,𝜚ℵℶ, 𝜔 ε

𝜀,ℵℷℸ,
and peak factor, as well as skewness and kurtosis were calculated
based on the time series. The measurements indicate two separation
regions. On the windward side, the flow separates at the glass wall
around the observation deck. On the leeward side, flow separation is
induced by the cylindrical extrusion that supports the upper deck. In
both regions, 𝜔𝜀,𝜚ℵℶ and 𝜔 ε

𝜀,ℵℷℸ were found to depend on the freestream
turbulence intensity and length scale, but the dependency is strongest
on the windward side. The pressure fluctuation distributions in both
regions were observed to be non-Gaussian, with positive skewness in
the windward separation region, and negative skewness in the leeward
separation region. The most severe peak pressures occur near the edge
of the leeward separation region, where the peak factor was found to be
up to 2.6 times larger than the value of 3.4 used in the North American
building code.

The measurements presented in this paper demonstrate how full-
scale measurements performed over long time periods can provide
significant insight into full-scale wind pressures and their dependence
on the approach wind characteristics. In future work we intend to
combine the measurements with large-eddy simulations for validation
of the numerical models and for further analysis of the flow physics
that produce the observed pressure time series. We also envision future
measurement campaigns combining the deployment of the pressure
sensors with more extensive measurements of the turbulence in the
incoming wind field, for example using LiDAR profilers. While such
measurement campaigns will be costly, the results presented in this
paper indicate that combined measurements of the approach wind and
the resulting pressure field offer unprecedented potential for improving
our understanding of peak wind loading.
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