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Abstract

Many medical conditions are marked by a sequence of events in association with con-
tinuous changes in biomarkers. Few works have evaluated the overall accuracy of a
biomarker in predicting disease progression. We thus extend the concept of receiver
operating characteristic (ROC) surface and the volume under the surface (VUS) from
multi-category outcomes to ordinal competing-risk outcomes that are also subject to
noninformative censoring. Two VUS estimators are considered. One is based on the
definition of the ROC surface and obtained by integrating the estimated ROC surface.
The other is an inverse probability weighted U estimator that is built upon the equiv-
alence of the VUS to the concordance probability between the marker and sequential
outcomes. Both estimators have nice asymptotic results that can be derived using
counting process techniques and U-statistics theory. We illustrate their good practical
performances through simulations and applications to two studies of cognition and a
transplant dataset.
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1 Introduction

In biomedical studies, it is often of interest to measure a biomarker’s predictive power
for future events. Accurate prognostic analysis can help clinicians screen high-risk
subjects, which in turn will lead to timely and efficient therapeutic interventions and
reduced mortality and morbidity. A time-dependent ROC curve was proposed by
Heagerty et al. (2000) to extend diagnostic accuracy analysis from a binary outcome
to a typical survival outcome by summarizing sensitivity and specificity at a specific
time #y. Assuming a lower biomarker value is associated with a worse outcome, the
area under the ROC curve (AUC) can be interpreted as a concordant probability that
for a randomly selected pair of a case (i.e., developing the event of interest by #y) and
a control (no event by #y), the biomarker value from the case is lower than that from
the control.

Competing risk censoring commonly arises in studies where subjects are at risk for
multiple failures, and one failure precludes or alters the occurrence probability of the
others (Gooley et al. 1999). For instance, in a liver transplant study that we discuss later
on, transplant and death without transplant are two competing events. With competing
risk censoring, a popular method for measuring the cumulative probability of the
target event by a specific time is the cumulative incidence function (CIF) (Prentice
etal. 1978; Kalbfleisch and Prentice 2002). It has been widely employed for its intuitive
probability interpretation and non-parametric identifiability.

Expanding the ROC concept to competing risk censoring, Saha and Heagerty (2010)
proposed estimating the sensitivity with cumulative cases accruing to a fixed time
and estimating the specificity among “healthy" control subjects (i.e., those without
developing any event yet). Following similar definitions of sensitivity and specificity,
Zheng et al. (2012) evaluated prognostic accuracy with multiple covariates using both
Cox (1959) and more flexible Scheike et al. (2008) models. Blanche et al. (2013) and
Wolbers et al. (2014) used nonparametric inverse probability of censoring weighting
(IPCW) to derive the estimators of AUCs and their asymptotic properties. All these
analyses compare cases from each cause to the event-free controls one at a time.
One limitation of such an approach is that there is no overall predictive accuracy
assessment across all events simultaneously, because different cases are considered for
each specific cause in separate ROC analyses. In contrast, Shi et al. (2014) evaluated the
improved accuracy of new markers for competing outcomes by defining “controls” that
combine both event-free subjects and those subjects who have developed competing
events. Though the definition of the “control” group is in line with the augmented
“at-risk” set in Fine and Gray (1999), it may not be ideal if subjects with competing
events are very different from those with no event. The existing methods either have
to force unnatural grouping of competing events with the healthy state or provide
evaluation of only one specific cause each time against the healthy state. It would be
of interest to evaluate a biomarker’s discriminatory power on competing risk outcomes
simultaneously, analogous to an overall assessment of group differences in addition
to pairwise group comparisons in a multi-group comparison setting.

Medical conditions often manifest a natural ordinal disease status. For example,
in the MYHAT and AD studies, disease progresses through several sequential stages:
healthy, MCI/dementia, and then death. An important aim in clinical practices is to
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Prognostic accuracy for... 3

characterize a sequence of progression based on continuous changes in a prognostic
biomarker. With multi-level progressive status, Obuchowski (2005) pointed out that
simply dichotomizing an ordinal outcome led to an upward bias in diagnostic testing
using the ROC curve. Mossman (1999) introduced the concept of multi-dimensional
ROC surface and Volume Under the ROC Surface (VUS) to evaluate discriminatory
accuracy of two diagnostic tests for three disease categories. The variance of Mossman
(1999)’s VUS estimator was derived by Dreiseitl et al. (2000) based on the theory of
U-statistics. Li and Fine (2008) applied the concept of VUS to unordered multilevel
categorical outcomes and further expanded multi-way ROC analysis and the summary
statistics of Hypervolume Under the ROC Manifold (HUM). Li and Zhou (2009)
studied the VUS using nonparametric and semiparametric methods and developed
asymptotic properties of the estimators. Wu and Chiang (2013) showed through a
rigorous proof that HUM is directly related to an explicit U-estimator.

However, there is no well-developed method to assess the global accuracy in a
biomarker’s prediction of which stage of disease progression a subject would land on by
a specific time. Thus, we propose to utilize the concept of the ROC surface and the VUS
to demonstrate the prognostic accuracy of a biomarker for competing risk outcomes.
As in the cognitive studies here we focus on competing events with a natural order in
severity as in the congitive studies and introduce the concept of the ROC surface and the
VUS from two perspectives. One is to employ the building blocks of an ROC surface,
namely correct classification probabilities (CCPs), to derive the VUS. The second is
to measure a concordance probability between a biomarker and ordinal competing
risk outcomes. This extension is certainly nontrivial. As the event status changes over
time, the ROC surface and the VUS are now time dependent. Moreover, right censoring
(e.g., administrative censoring) is often present in competing risk data and may lead to
an indeterminable event status at a time of interest. Thus, the development of the ROC
surface and the VUS for competing risk outcomes requires additional methodology
to handle “missing” event status. We will show through simulations that ignoring
indeterminable censored observations could lead to substantial bias in estimating the
VUS.

2 ROC surface for ordinal competing risk outcomes
2.1 Notation

Without loss of generality, we now consider the prognostic accuracy of one single
biomarker in predicting two ordered competing risk outcomes, called a cause-1 event
and a cause-2 event. The cause-1 event is assumed to be a worse medical condition as
compared to healthy controls. Let Y denote a prognostic biomarker where lower values
correspond to worse medical conditions. Let 7' be the time to any ordinal competing
events, and € = 1, 2 be the corresponding cause of failure. Even though the disease in
general progresses from mild cognitive impairment to a more severe form and then to
death, a subject may not be followed continuously and the first detected event could
be dementia without MCI, or a subject may die without dementia due to some other
disease processes. In the MYHAT and AD studies, as participants underwent annual
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assessment for cognition, we combined MCI and dementia together and simply refer
to as “impaired” or “impairment.” If both competing events (e.g., impairment and
death) have occurred at a fixed time #(, the more severe progression time is recorded
as T and € is set to be 1. We then define disease status D(fg) as:

D(ty) =1,ifT <ty,e =1,
D(tg) =2,ifT <ty,e =2,
D(ty) =0,if T > 1.

In practice, there may be administrative censoring C on top of competing risks.
Thus, we observe X = min (7', C) and the combined cause indicatorn = I (T < C) €,
where [ (-) is an indicator function. The observed data consist of i.i.d replicates
(Y, Xi,mi),i=1,...,n}

2.2 ROC surface

Analogous to sensitivity and specificity that describe the accuracy level by specifying
a series of cutpoints along with a continuous classifier for a binary outcome, we need
two cutpoints (c1, ¢2) € R2 from Y with ¢; < ¢ for the two competing events, where
we assign a subject to Class 1 if their biomarker ¥ < ¢1,to Class 2if¢; < Y < ¢,
and to Class 3, otherwise. Correct classification probabilities (CCPs) are then defined
for subjects experiencing a cause-1 event, a cause-2 event, or none of the events at a
given time #( as follows:

CCPi=P{i<c|T; <tg, =1) = Fyji(c1),
CCPL=P(c1 <Y<l T <t,€ =2) = Fyp(c) — Frp(cr),

CCP3=P{Y;>c2|Ti >190) =1— Fyj(ca),

where Fy(y) = P(Y < y|D(to) = d),d = 1,2,3, are conditional cumulative
distribution functions (CDFs) of Y, given that a subject is in disease status d. Similar
to the ROC curve that characterizes the full spectrum of sensitivity and specificity in
a two-dimensional space, the plot of (CC P;, CC P>, CC P3) at all possible values of
(c1, ¢2) generates a three-dimensional ROC surface for three-category time-dependent
outcomes. Following Li and Zhou (2009), the ROC surface is defined by expressing
CC P, as a function of CC P; and CC P5:

—1 -1 e -1
O, v) = FY|2{FY‘3(1 —u)} — FY|2{FY|1(U)} if FY|1€U) = Fy‘3(1 —u), (1)
0 otherwise.
The VUS is then defined as:
1 1
VUS = / / O(u, v)dudv. )
0o JO
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2.3 VUS as a concordance index

According to Mossman (1999), Dreiseitl et al. (2000) and Wu and Chiang (2013),
the VUS corresponds to a concordance measure between a biomarker and sequential
competing risk outcomes. For three randomly selected subjects 1, 2, 3 that 77 <
to,e1 = 1, Tp < tg,ex = 2, and T3 > ¢ with the corresponding biomarkers Y7, Y»
and Y3, we can show that

VisS=PY1 <Y<Y |Th <ty,e1=1,Tr <ty,e2 =2,T3 > 1y). 3)

3 Estimation
3.1 Nonparametric estimation of the ROC surface and the VUS

Nonparametric methods are used to estimate Fyz(y) = P(Y < y|D(tp) =d),d =
1, 2, 3 for any pair of (y, #p). In terms of estimating the conditional distribution of ¥
given the subjects experiencing either the cause-1 event or the cause-2 event by 7, we
have

P(Y; <y, T <tg, e =k)
P(T; <ty,e =k)

Fyp(y) =

3

where k = 1, 2. The numerator is a bivariate CIF, and the denominatgr is a univariate
CIF. We adopt the bivariate CIF estimator in Cheng et al. (2007), Fy 1 (t), to esti-
mate the bivariate probability, which includes the completely observed Y as a special
case. The univariate CIF, Fy(ty) = P(T < tg,€ = k), is estimated by the standard
nonparametric estimator Fy (to) (Kalbfleisch and Prentice 2002). Also, we formulate
the conditional distribution of Y for those subjects having no events by #( in terms of
bivariate and univariate survival functions

PYi=y Ti >1) P >1t0)—PXi>y, Ti > 19) Sr(to) — Sy,r(y, )

Fyj3(y)= P(T; > 1) P(T; > to) ST (19)

which can be estimated by using the bivariate survival estimator S'Y’T(y, to)
(Dabrowska 1989) and the univariate survival estimator S’T (to) (Kaplan and Meier
1958). Now plugging those estimators I:"y|,1, d = 1,2,3 into the definition of the
three-dimensional ROC surface, we have

O(u,v) = Fyp(Fy (1 —w)} — FyplFy )}, €

if ﬁY_‘ }(v) < ﬁﬂ;(l — u). The resulting estimated ROC surface is an increasing step
function jumping at observed event times. The estimated VUS is constructed as

1 1
VUS(ty) = / / Ou, v)dudv. 5)
0 0
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We approximate VUS(7p) by summing up the volumes of rectangular prisms whose
lengths, widths, and heights correspond to CC Py, CC P>, and C C P; at varying thresh-
olds of (cq, ¢2).

3.2 Concordance definition based estimation of VUS

Without independent right censoring, the disease status by a fixed time D (#y) would be
observed for each subject in the sample. A U-type VUS estimator can be constructed
by randomly selecting three subjects, one from each disease status, and computing
the concordance probability between the biomarker and the outcomes. However, in
the presence of independent censoring, there are four possible scenarios for the ith
subject:

HX; <to,ni=1}=HT; <ty,e =1,C; > T;}
HX; <to,ni =2} =H{T; <ty,e =2,C; > T;}

I{X; > 1w} = H{T; > 10, Ci > 1o}
H{X; <19,n7: =0} = 1{C; <10, T; > Ci}.

The disease status D(t) is determinable for the first three scenarios, but not for the
fourth one. To adjust for “missing" disease status due to independent censoring before
1o, we adopt the idea of inverse probability of censoring weighting (IPCW). The IPCW
is used to weight the observed subjects who have developed the cause-1 or cause-2
event by 1y, inversely proportional to their probabilities of being observed at the times
of occurrence, and weight those survivors without any events at #y with the inverse
probability of being censored at #y. For more information on the IPCW, we refer the
readers to Van der Laan and Robins (2003). Let G(t) = P(C > t) be the survival
function of censoring and G(¢) be the Kaplan-Meier estimator of G (). Following
that the Kaplan-Meier estimator is consistent (Andersen et al. 1993), I{X; <9, n; =
k}/G(X;) is an asymptotically unbiased estimator of P(T; < ty,¢; = k) fork =1,2
and I{X; > ty}/G(tp) is an asymptotically unbiased estimator of P (7; > f¢). Hence,
we propose the following IPCW U-type estimator of the VUS:

I(X; <to,ni=1,X; <to,n; =2,Xx >10,Y; <Y; <)
G(X;i—)G(X;-)G(t)

I(X; <to,mi=1,X; <to,n; =2, X > 19)
G(Xi—)G(X;—)G(t0)

Zi Z/#l Zk#lj
. (6)

VUS(19) =

2 2 Dkt

3.3 Adaption of ties in the biomarkers

We often encounter ties in a biomarker when its values are rounded to the nearest
integers. To handle ties in the biomarker, we can easily modify VUS(fo) in Eq. (6)
by substituting /(Y; < Y; < Yp) with I(Y; < Y; < Yp) + %I(Yi <Y =Y+
%I(Y,- =Y; <Y+ %I(Yi = Y; = Y}) similar to the ideas used in Wang and Cheng
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(2014). With the linear interpolation in the biomarker, uniform consistency and weak
convergence for VUS(1p) still hold, following similar arguments in Section 4.2.

To appreciate how ties affect the ROC surface, let us first carry out a geometry
exercise on the ROC curve for a binary outcome. We observe that the ROC curve is a
step function when there are no ties. Either sensitivity or specificity changes when the
ordered biomarker moves from one value to the next, as a unique value of the biomarker
is associated with either a case or a control. However, in the presence of tied scores in
the biomarker, when a single tied score is associated with both cases and controls, it
leads to changes in both sensitivity and specificity as the biomarker moves to the next
value, causing a sloped line segment in the ROC curve. Thus, the AUC can be under
or overestimated, depending on how tied scores affect the concordance between the
underneath true biomarker value and the outcome. This exercise can be carried over to
our proposed VUS. In practice, it is reasonable to assume that ties appear in a random
pattern without any systematic trend, e.g., due to rounding. Therefore, VUS is robust
against tied scores in a biomarker. Later we will show through simulations that the
proposed?/_lf(to) and VUS(fo) can both well handle ties in a biomarker.

4 Asymptotic properties and inference
4.1 Consistency and weak convergence of of ITLIS(to)

The VUS(#9) involves the estimation of the conditional CDF of the biomarker Y given a
disease status. Bayes’ principle allows formulating the conditional distribution Fy 1 (y)
as

P(T; <ty,e=1|Yi<y)PXi<y)
P(T; <ty,e =1)

Fyn(y)) =P =y | D@o) =1) =

)

The same idea also applies to Fy|(y) and Fy3(y). Counting process and martingale
theories (Kalbfleisch and Prentice 2002) were utilized to derive the influence func-
tions of the Kaplan-Meier estimator and nonparametric estimators of CIF. I, ,(y),
the influence functions of Fy4(y) ford = 1,2, 3, were developed through Taylor’s
expansion at the marginal and the conditional CIFs (or survival function). We further
derive the asymptotic linear representation of the ROC surface I, ) by applying
Hadamard’s differentiability and the functional-§ method to quantile functions and
compound functions, resulting in the following theorem on the asymptotic properties
of VUS(1y):

where P(T; <tp,¢; = 1|Y; < y)isthe conditional cause-1 CIF given that {¥; < y}.

Theorem 1 Let vi > inf{u : Fi(u) > 0, Fo2(u) > 0} and v» < sup{u : Sx(u) >
0}. @(to) is uniformly consistent for ty € [vi, v2], and has the asymptotic linear
representation:

n
n'2(VUS(t9) — vus(t0)} = n~ "2 Ty + 0p (D
i=1
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8 Song Zhang et al.

where Hmto) is the influence function of VUS(1y).

The detailed proof of Theorem 1 and the influence function I <75, ) are given in the

Supplementary Material. The variance of VUS(to) is estimated as

Q>

n
A2
_ =1
=n ZHVURIO)'
i=1

Given that VUS(19) is asymptotically normal at any fixed g,

{VUS(t0) = 21-a/26 55100y~ /*- VUS(t0) + 21-a/26 55000}

where z1_4/7 is the corresponding standard normal quantile, provides a Wald-type
(1 — ) confidence interval.

4.2 Consistency and weak convergence of VUS(to)
The IPCW is used to account for missing data due to independent right-censoring.

Again by the consistency of the Kaplan-Meier estimator G(1), coupled with Slutsky’s
theorem, as n — oo, n~! Z:’zl I1(X; <ty,n=1)/G(X;) converges to

E{I(X,- <to.ni = 1)} _E {E [I(Ti =06 = DI = ) IXi,m“

G(X)) GXo)
E{I(T; <C)) | X;, n;
=E{I(T,-§t0,6i:1)|: {I(T; < Ci) | X; 17,}“
G(X;)
= P(Tl < 1o, € = 1)’
in probability. Analogously, n~'3}_ I(X; < 1.n; = 2)/G(X;) and

n=USF_ I(Xx > 10)/G(tg) converge to P(T; < tg,€; = 2) and P(Tx > 1o),
respectively. By the functional §-method, we can show that VUS(r9) converges to
PY; <Y <Y | T; <ty =1,T; <tyg,e; =2,T; > 19), given the observed
data (X;, X, Xk, ni, nj, 71]2/Yi, Y, Y.

Weak convergency of VUS can be established using counting process techniques
and the theory of U-statistics. More specifically, we adapted the proof from Hung and
Chiang (2010) for typical survival data without competing risks. For a fixed 7, we
have

Gto) | __ /Ond,()
G Z sa  Tort: 2

where Mc,(to) = I(X; < to,ni = 0) — [’ I(X; > to)dAc(u), and Ac(-) is a
cumulative hazard function of the censoring time C. Ac(-) can be estimated by the
Nelson-Aalen estimator f\C(')’ and S(f9) = P(X > ftp) can be estimated by the

Kaplan-Meier estimator S(fp).
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Prognostic accuracy for... 9

Theorem 2 Given C is independent of T and to € [vy, v2] as in Theorem 1, we have
n
n'2{VUS(t0) — vUs(to)} = n 2 Tugi + 0p (D),
i=1

where I<55,,), 8iven in Eq. (9), is the influence function of VUS(19).

Proof We first define Aijk =I1X; <1, =1,X; <to,nj =2,Xk > 10,Y; >
Y; > Y)/{G(X;))G(X;)G(tp)}. Let A = E(Aijk) and derive A,-jk by plugging in
the Kaplan-Meier estimator G(~) for G(-) in Aijk. Let Cijp = I1(X; < to,m; =
1,X; <t,nj =2,Xx > to,Y; > Y; > Yi). By Taylor’s expansion, we have
CHGXNG(X )G (1)) =

C [1—{G(Xi)—1}—{G(Xj)—l}—{G(IO)—IH—i—op(l).
GXNGX)NG | |G G(X)) Gt

By Eq. (7) and the estimation theory of U-statistics, we have n!/ 2(& —A) =

n1/2 5 Xi dMc (1)
- Ajipdl -
oL [ ”‘{ +/0 S()

6/ ij#k#ptats
Xi dMc, (u) 0 dMc, (u)
—i—/o S0 +/O S }—A:| +op(1),

where (:1 ) is the number of combinations in choosing an m-element subset from n
objects.

B I(Xi<to.ni=1.X <to,1;=2,Xi>1
Next we define B;j; = (Xi =to.m j=lo.1) k>10)

G(Xi)G(X;)G(to)
expression for n!/ 2(B—B) is the same as n'/2(A — A) except for substituting A; jx and

, and similarly B and B. The

A with B; ik and B respectively. Applying Taylor’s expansion again yields % — % =
(A-A)—-£ B-B)

B + op(1). Assembling the aforementioned results, we derive
Dy nl/2

sup [n'/2{(VUS(t0) — vUS(t9)} — W Z Wijkpgr (t10)| = 0p(1),  (8)

f0 6/ istjtk#tprast
where

1/- XidMc,(u) Xi dMc,(u) 0 dMc (i)
W (1 =—A»-{1 i A / g f ; }—A
ikpar (10) B( i +/0 sl Tsw Tl Tsw

Al XidMc, () (%5 dMc, ) [ dMc, ()
_ﬁ[B”k[I/o Sw o Sw b Sw _BD'
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10 Song Zhang et al.

Applying Héjek’s projection theory (Van Der Vaart 1998) to this U statistic with a
6-degree kernel function, we have

a2

n
-1/2
@) Z Wijkpgr (o) = n /Zﬂwg(Xi,m,Yi,to)+0p(l),
o) ijtktprate i=1

where

HVK(XI" ni, Yi, 10) = E{\I’ijkpqr(IO) + \I’jikpqr(IO) + \I]jkipqr(IO) + ‘I/jkpiqr(t())
FWkpgir (t0) + Vjkpgri (t0) | (Xi, ni, Yi)} )

As E[5(Xi, ni, Yi, to)] = 0, the variance of VUS can be estimated by 8%{75/([0) =

1/n Z?:l ]Alﬁg(X i» i, Yi, 10)%. These conditional expectations can be estimated by
their corresponding sample means. However, the implementation of this variance
estimator in R is not trivial in order to avoid slow loops of summing over six
indices. We have used matrix operations and will make our R code available once
the article is accepted. An asymptotic (1 — «) confidence interval of VUS(#y) is
{ VUS(1) — Zl—a/z&ﬁg(,o)n*l/z, VUS(19) + Zl—a/z%g(m)n”/z}-

5 Simulation studies

In this section, we conducted simulations to assess the performance of our pro-
posed two VUS estimators. The following simulation strategy was adopted. We
first generated a continuous biomarker variable through a uniform distribution as
Y ~ Uniform(0, U], and specified two points (cj,c2), 0 < ¢; < ¢ca < U, to
break Y into three subsets (0, c1], (c1, c2], (c2, U]. We then generated 3 subsets
with an equal number of pairs (7y, €4), where T; ~ e~ Batra) s the time to the
first event, and €5 = I(¢pg = 1) + 2I(¢pqs = 0) is the type of the event with
¢a ~ Bernoulli(B;/(Ba+va)),d = 1, 2, 3. The parameters B4 and y,; determine how
cause-1 and cause-2 events are associated with the biomarker Y through the piecewise
hazard functions A1 (t) = exp{B1I(Y < c1)+ pal(c1 <Y <c2)+ BIY > )},
and A2(t) = exp{yi{(Y < c1) +y2l(c1 <Y < c2) +y3I(Y > )}, where 14
and Aj are the cause-specific hazard functions for cause-1 and cause-2 events. We
letT =10 <Y <c)DThi +1(ct <Y <) +1(cp <Y < U)T3 and
e=I10<Y <cper+I(cit <Y <c)ex+1(cy <Y <U)es.

We evaluated the performance of the estimators under various scenarios, including
three settings with different predictive powers of the biomarker to the competing
events. In all simulations, we assigned U = 20 and let c; = 5, ¢p = 10. The first
setting represented a strong association between the two by defining 81 = 50 and
y1 = 3whenY € (0,5]; o = 3 and y» = 50 when Y € (5,10]; and B3 = 1
and y3 = 1 when Y € (10, 20]. Here we allow the possibility of both events across
all marker values. By assigning a much larger value of 8; as compared to yi, those
individuals with marker values Y in the interval (0, 5] are more likely to experience the
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Prognostic accuracy for... 1

cause-1 event (the most severe state). In contrast, those with marker values ¥ € (5, 10]
are more likely to experience the cause 2 event (the less severe state) because 8 is
much smaller than y». For those with marker values above 10, both 83 and y3 are
small and thus they are more likely not to experience any event (the healthy state)
by a certain time point. The second setting simulated a moderate predictive power by
setting 81 = 8.0, 1 = 3.5, B2 = 3.5, y» = 3.0, B3 = 1.0 and y3 = 2.0. The third
one was for the null where 8y = 3 and y; = 3,d = 1, 2, 3. For each strength of
association, we selected three different s at which 25-30%, 65-70%, and 75-85%
subjects experienced the events. Independent censoring times C were generated from
Uniform distributions with censoring rates of 15%, 30% or 50%. We chose sample
size=150, 300 with 1000 simulated datasets for each combination of scenarios.

We computed both VUS(#p) and VUS(#o) for each simulated dataset, and compared
their performance with an existing nonparametric VUS estimator proposed by Li and
Zhou (2009), which is denoted as ﬁ;\z p (to) here to distinguish it from our proposed
estimators. However, VﬁN p(to) has not been designed for survival outcomes and
cannot deal with censoring. As a result, we removed all observations censored by
to when estimating VIEN p(tp), since the disease status D(ty) is indeterminable for
this particular group. The IPCW adjusted standard error 65 was calculated based
on Eq. (9). Forﬁ(to), its variance can be estimated from the influence function in
Theorem 4.1. However, the evaluation of the influence function is rather complicated.
Bootstrap with 250 replications was used instead to estimate standard error ¢ 55 For
VUSyp(to), & o5y, Was estimated also based on 250 bootstrap samples.

To assess the performance under tied scores in a biomarker, we generated tied
scores by rounding Y € (0, 5] or (10, 20] to the nearest 0.1 and rounding ¥ € (5, 10]
to the nearest 0.2. This design emulated real clinical studies in which some ranges of
values occur more frequently than others. We also tested the scenarios without ties
for sample sizes 150 and 300. However, for the sake of space, only the results from
tied data with n = 300 are reported here, and results from untied data are provided
in the Supplementary Materials. For biomarkers with ties, we compared the estimates
with the true VUS, which was obtained based on a large sample without censoring

(n=300,000), and report the biases B~ for WJ_S/(to), Bmforﬁ(to), and BmNP

for ﬁN p(tp) in Table 1. ES E<5¢ (empirical standard error), AS E<;5 (average of
model-based standard errors), and C P55 (coverage probability) for Vﬁg(to) are also
reported in Table 1 at different time points, based on 1000 samples of size 300 with
15%, 30% or 50% censoring. For ﬁ(m) and VIEN p (o), we report in Table 1 their
empirical standard errors ESE<—wand ESE<—= , average bootstrap standard errors

VUS VUSy P
BS E<5sand BS E<5, » and their coverage probabilities C Pg-and C P55, - The

VUSN p vus VUSNp*®
average frequencies of cause-1 event, cause-2 event, survivors and censored subjects
are reported in Supplementary Material.

Table 1 suggests that both VUS and VUS perform well especially when the censoring
rate is not too high. Their mean values are barely different from true values, and their
coverage rates are close to the nominal level 0.95. The model-based standard error, the
bootstrap standard error, and the empirical standard errors from the two estimators all
agree well with each other. In general, the standard errors increase with the increasing

censoring rate noticeably at later time points. At 50% censoring, VUS still has good

@ Springer



12 Song Zhang et al.

performance, while VUS is slightly less robust to the increased censoring rate with
a larger bias when the predictive power is strong. Compared to the two proposed
estimators, the existing estimator VﬁN p (o) cannot handle censored outcomes well,
and has much larger bias at later time points where more observations are censored
with D(t) indeterminable.

When there is no association between a biomarker and outcomes, the means of the
two proposed estimators barely deviate from the true value 0.167 and the coverage
rates are very close to 95%, which ensures the accurate type I error. Interestingly,
when we look closely at the two VUS estimates from each simulated dataset (data not
shown here), the discrepancies between the two are more apparent under moderate
association or non-informative association than under strong association, even though
their means are always very close to each other across different associations. For
example, the discrepancy between the two estimates from 1000 individual datasets
that we simulated with 30% censoring can be as high as 26% in moderate association
at fp = 0.3, and the maximum discrepancy between the two estimates is 18% for the
no association case at fp = 0.3. By contrast, the discrepancy is only as much as 9%
under the strong association at o = 0.05.

Averaging across 1000 simulations, we observe similar satisfactory performances
of the two estimators for untied data with n = 300 and n = 150, and the two proposed
estimators had overall better performance than VU\SN p(tp); see Table 1 and 2 in the
Supplementary Materials. Both proposed methods establish good behaviors even when
n = 150, with standard errors quite close to 21/2 times those when n = 300, indicating
that these standard errors go to 0 as n — oo.

6 Applications
6.1 Prediction of cognitive impairment and death in MYHAT

We applied our proposed methods to the MYHAT data. Beginning in 2006, a random
community sample with normal cognitive functioning to mild cognitive impairment
was recruited in three age strata 65-74, 75-84, and 85+ years. Participants were fol-
lowed prospectively for up to 9 annual visits at the time of data analysis for cognitive
decline and onset of dementia. Their cognitive status was evaluated at baseline and
follow-up visits using Clinical Dementia Rating (CDR). We classified CDR > 0.5 as
the occurrence of cognitive impairment or dementia, and treated death as the worse
competing event. Our analysis included 1,412 participants who were cognitively nor-
mal at baseline and completed their cognitive test battery in follow-ups.

We were interested in testing whether five cognitive domain scores of attention,
executive function, language, memory, and visuospatial at baseline predict subse-
quent cognitive impairment and death within a 5- or 7-year window. The cognitive
scores were standardized by subtracting the age-and-sex adjusted population means
and dividing by their standard deviations. According to the age-stratified design, our
analysis was conducted for each of the three age groups. The frequencies of observed
numbers of deaths, cognitive impairment, event-free survivors, and censored partici-
pants at the selected ¢y of 5 years were reported in the Supplementary Material, where
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Fig. 1 IPCW-weighted density plots of cognitive scores in the MYHAT young Group; the solid line is for
those who died, the dash line is for those who had impairment, and the dotted line is for those who had
experienced neither event in five years

82% of participants in the younger age group survived without dementia 5 years after
the study entry, and the survivor rates were 59% and 33% in the middle and older age
groups.

InFig. 1, we present the estimated density plots for the five domain scores for those
who experienced cognitive impairment (dash lines), those who died (solid lines), and
those who were alive and cognitively normal (dotted lines) after 5 years of follow-up
in the young age group. To handle missingness due to right censoring before 5 years,
we adopted the IPCW method by weighting domain scores for each disease status as
in Eq. (6), and then applied the Kernel smoothing method to generate the density plots
using the R function “density.” The three density curves are in general close to each
other, indicating poor separability of the disease progression in five years based on
those domain scores at baseline.

We next computed the VUSs using the two methods, as well as two AUC esti-
mates for each of the competing events (death and cognitive impairment) compared
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Table2 VU S and AUCs of 5 cognitive test scores at fo=5 years. AUC| compares deaths to healthy controls,
and AUC; compares subjects with cognitive impairment to healthy controls

Age group Cognitive test VUS (6 T VUS (6 ST AUC] (6 aucy) AUC (6 Aucy)
Attention 0.190 (0.030) 0.170 (0.032) 0.581 (0.048) 0.538 (0.054)
Executive 0.176 (0.030) 0.151 (0.027) 0.623 (0.044) 0.594 (0.056)
Young Language 0.168 (0.030) 0.160 (0.033) 0.547 (0.049) 0.636 (0.051)
Memory 0.184 (0.036) 0.181 (0.037) 0.572 (0.051) 0.722 (0.046)
Visuosptial 0.139 (0.026) 0.146 (0.029) 0.510 (0.048) 0.591 (0.058)
Attention 0.194 (0.022) 0.195 (0.021) 0.571 (0.036) 0.556 (0.031)
Executive 0253 (0.027)  0.233(0.026)  0.659 (0.035) 0.671 (0.029)
Middle Language 0.199 (0.024) 0.175 (0.022) 0.589 (0.035) 0.637 (0.029)
Memory 0.234 (0.028) 0.221 (0.026) 0.656 (0.036) 0.750 (0.028)
Visuosptial 0.216 (0.024) 0.216 (0.031) 0.622 (0.037) 0.623 (0.032)
Attention 0.276 (0.037) 0.272 (0.033) 0.684 (0.048) 0.619 (0.051)
Executive 0.303 (0.039) 0.273 (0.038) 0.690 (0.047) 0.648 (0.050)
Old Language 0.228 (0.034) 0.225 (0.034) 0.633 (0.050) 0.633 (0.051)
Memory 0.255 (0.036) 0.248 (0.037) 0.730 (0.045) 0.695 (0.048)
Visuosptial 0.209 (0.033) 0.247 (0.038) 0.612 (0.053) 0.665 (0.053)

to the event-free survivors (Table 2). The AUCs were derived using the R package
“timeROC.” The VUS estimates for the 5 cognitive test scores are all relatively small,
which are consistent with the results from the AUCs. Consistent with what we have
observed in Fig. 1, we conclude that the five domain scores at baseline exhibit poor
predictive power in discriminating the sequence of the competing events in five years.
Nevertheless, VUSs allow the measurement of the global concordance between the
continuous cognitive test scores and the sequence of cognitive impairment and death.
Moreover, the estimated VUSs from the two approaches are reasonably close and most
discrepancies are less than one standard deviation. This is consistent with what we
have discovered in simulations in which the two estimators differ more for weaker
association. We repeated the analyses at ) = 7 years and observed similar results
(not reported here). Interestingly, we observe stronger associations between baseline
domain scores and disease progression in older groups at both time points, despite that
the predictive power is generally weak.

6.2 Prediction of cognitive impairment and death in ADRC

We applied our proposed method to a dataset from the Alzheimer Disease Research
Center (ADRC). AD is a neurodegenerative brain disease that causes progressive
deterioration of episodic memory and a global decline of cognitive functions. Different
from the MYHAT study, here our interest is in how a paticular risk factor may predict
the progression from healthy state to cognitive impairment (cause 2) and further to
death (cause 1), at different time points. This analysis included 390 subjects who were
free of MCI/dementia at baseline. We used age at baseline as an example and evaluated
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Fig.2 IPCW-weighted distributions of the baseline age in the ADRC study; the solid line is for those who
died, the dash line is for those who had cognitive impairment, and the dotted line is for those who had
experienced neither event

its prognostic accuracy at ty = 2000, 3000, 4000, 5000 days through estimated VUSs
and AUCs.

To appreciate how age is associated with cognitive impairment and death over
time, in Fig. 2 we present IPCW density plots of baseline age at each time point. We
denoted subjects who died by black lines, those who developed MCl/dementia by
dashed lines and those who survived without MCI/dementia by dotted lines. There
are noticeable separations in the densities of the three classes at each time point, with
older participants more likely to fall into severe categories.

We then computed VUSs using the two proposed methods with 150-age (subtracting
age from 150) as the marker value to be consistent with our assumption of smaller
marker values associating with more severe disease status. The AUCs were estimated
for each competing event as compared to event-free survivors using the R package
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Table 3 VUS and AUC of age at o= 2000, 3000, 4000, 5000 days. AUC| compares deaths to healthy
controls and AUC, compares MCI/dementia to healthy controls

1 (days) VUS (6 <59 VUS (6 vo9) AUC| (Bauc)) AUC2 (Baucy)
2000 0.387 (0.087) 0.321 (0.098) 0.839 (0.055) 0.712 (0.068)
3000 0.379 (0.063) 0.361 (0.066) 0.794 (0.057) 0.657 (0.059)
4000 0.391 (0.047) 0.390 (0.053) 0.796 (0.049) 0.633 (0.052)
5000 0.409 (0.041) 0.448 (0.053) 0.807 (0.040) 0.647 (0.046)

Table 4 VUS and AUC of bilirubin at #g= 1000, 1500, 2000, 2500, 3000 days. AUC| compares deaths to
healthy controls and AUC, compares liver transplant to healthy controls

to (days) VUS (6 5) VUS (6 ) AUC| (6 aucy) AUC3 (6 aucy)
1000 0.486 (0.045) 0.486 (0.047) 0.823 (0.027) 0.799 (0.050)
1500 0.510 (0.039) 0.499 (0.042) 0.856 (0.022) 0.780 (0.049)
2000 0.513 (0.039) 0.502 (0.038) 0.864 (0.022) 0.827 (0.040)
2500 0.416 (0.046) 0.411 (0.047) 0.820 (0.028) 0.816 (0.560)
3000 0.390 (0.046) 0.384 (0.047) 0.805 (0.031) 0.822 (0.058)

“timeROC." The results are summarized in Table 3. Age is a clear risk factor for
cognitive impairment with AUCs nearly 0.8 or above at all time points. By contrast,
its effect on death is less prominent.

It is worth pointing out that higher values of AUCs do not necessarily translate into
higher values of VUSs, for example at 7 = 2000 vs. at T = 5000, and vice versa.
The strength of VUS depends on the association of the marker with each competing
event and whether the relationships are ordinal. This is analogous to the associations
of a covariate with ordinal outcomes in a regression setting — the overall covariate
effect may be stronger or weaker than individual effects depending on the ordinal
relationship. There are more clear ordinal separations at later time points as shown in
Fig. 2, which correspond to larger values of VUS. Across all time points, the overall
effects of baseline age in separating cognitive impairment, death and healthy controls
appear moderately strong.

6.3 Prediction of transplant and death in PBC

As the MYHAT and ADRC data are not generally available to the public, we next
applied our methods to a well-known public dataset from the Mayo Clinical trial of
Primary Biliary Cirrhosis (PBC) of the liver so that the analysis code can be made
available to the readers upon the publication of the manuscript. The PBC trial was
conducted between 1974 and 1984, and the analysis included 418 patients who met
eligible criteria with complete data. Bilirubin is a prognostic biomarker for PBC since
cirrhosis causes high bilirubin level. In the PBC data, bilirubin was heavily tied espe-
cially atlevels below 2 mg/dL. We reversed bilirubin values using a reciprocal function
to be consistent with our definition of the VUS. The aim of the analysis was to deter-
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Fig. 3 IPCW-weighted distributions of the reciprocal of bilirubin in the PBC study; the solid line is for
those who died, the dash line is for those who had transplant, and the dotted line is for those who had
experienced neither event

mine the time window by which bilirubin could reasonably predict liver transplant
(cause-2) and death (cause-1). Since liver transplants typically took place after 500
days of follow-up while death occurred from day 41, we picked 5 time points as
to = 1000, 1500, 2000, 2500, 3000 days. Based on the estimated VUSs and AUCs (in
Table 4), bilirubin presented an overall predictive power on both events across those
selected times, with highest discriminative power during 4-5.5 years. Consistently,
the three IPCW-adjusted density curves of the reciprocal bilirubin values for those
who died, had liver transplant, or survived without transplant were most separated at
to = 1500 days; see Fig. 3 for details. As expected, the estimates were closer than
the ones in the MYHAT study, as the associations between bilirubin and competing
events were generally stronger.
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7 Discussion

In this article we introduced the concept of the ROC surface and the associated vol-
ume under the ROC surface (VUS) in measuring prognostic accuracy of a continuous
biomarker to competing risks outcomes, where the samples were also subject to ran-
dom censoring. Our methods can be applied to both competing and semi-competing
data. In our PBC data example we considered standard competing risks data where the
occurrence of one event prevents the onset of the other events, i.e., liver transplant and
death before transplant. In the MYHAT and ADRC examples, death can occur after
cognitive impairment but not vice versa. Such semi-competing risk data occur more
naturally with disease progression. Our proposed methods can be readily applied to
semi-competing risk data by looking at the most severe state that an individual has
been at a particular time point.

One important task in clinical decision making is to identify those subjects who
will develop a certain severity in their disease progression by a specific time window,
thus providing targets for better prevention or treatment. The VUS allows projecting
a patient’s prognostic biomarker onto three-stage disease progression and provides a
complementary global discriminatory metric for assessing ordered events simultane-
ously. Because of the ordinal assumption, it remains important to examine weighted
density plots and individual ROCs and their associated AUCs for distinct events to
fully appreciate the relationship between a biomarker and competing events.

The VUS metric can be extended to higher dimensional outcomes as the HUM for
the ROC manifold (Li and Fine 2008). We can estimate the HUM as a U-type statistic,
as well as by integrating CCPs from multiple dimensions. Large sample properties
such as consistency and weak convergence still hold for the estimated HUM, and the
discussions on handling tied scores in a biomarker can be readily carried over to HUM
estimators.

Currently we included a single biomarker to predict a sequence of competing events.
In the MYHAT study, we evaluated discriminatory power of the five cognitive test
scores on cognitive impairment and death stratified by age. It may be more informative
in treating age as a covariate rather than a stratifying factor. To achieve this goal,
we can fit semiparametric regression models as in Zheng et al. (2012). Moreover, if
competing events are not sequential, the biomarker should not be a scalar, but rather a
vector (Obuchowski 2005). Subjects are assigned to the disease status category with
the highest probability given the vector of risk factors, which is estimated through
some regression models. The VUS can then be defined as the concordance between
the assigned disease category and the true disease status. Therefore, the extension of
the VUS to nominal competing outcomes is technically feasible. This will be a topic
of future research.

Supplementary Information  The online version contains supplementary material available at https://doi.
org/10.1007/510985-021-09539-z.
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