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Abstract

We present 3D hydrodynamical simulations of core convection with a stably stratified envelope of a 25Me star in
the early phase of the main sequence. We use the explicit gas-dynamics code PPMstar, which tracks two fluids
and includes radiation pressure and radiative diffusion. Multiple series of simulations with different luminosities
and radiative thermal conductivities are presented. The entrainment rate at the convective boundary, internal
gravity waves in and above the boundary region, and the approach to dynamical equilibrium shortly after a few
convective turnovers are investigated. We perform very long simulations on 8963 grids accelerated by luminosity
boost factors of 1000, 3162 and 10,000. In these simulations, the growing penetrative convection reduces the
initially unrealistically large entrainment. This reduction is enabled by a spatial separation that develops between
the entropy gradient and the composition gradient. The convective boundary moves outward much more slowly at
the end of these simulations. Finally, we present a 1D method to predict the extent and character of penetrative
convection beyond the Schwarzschild boundary. The 1D model is based on a spherically averaged reduced entropy
equation that takes the turbulent dissipation as input from the 3D hydrodynamic simulation and takes buoyancy
and all other energy sources and sinks into account. This 1D method is intended to be ultimately deployed in 1D
stellar evolution calculations and is based on the properties of penetrative convection in our simulations carried
forward through the local thermal timescale.

Unified Astronomy Thesaurus concepts: Astrophysical fluid dynamics (101); Hydrodynamics (1963);
Hydrodynamical simulations (767); Stellar oscillations (1617); Stellar interiors (1606); Stellar convective zones
(301); Massive stars (732); Stellar structures (1631)

1. Introduction

Convective transport can be very efficient in stellar interiors,
owing to the high energy densities there (Kippenhahn et al.
1990). At the convective–radiative boundary, it can play a
crucial role in mixing chemical species (e.g., Denissenkov et al.
2013, in novae). Yet convection is one major uncertainty in the
1D stellar evolution model (e.g., Sukhbold & Woosley 2014;
Davis et al. 2019; Kaiser et al. 2020, in massive stars), with a
set of parameters to calibrate to match with the observations
(e.g., Schaller et al. 1992; Ribas et al. 2000; Trampedach et al.
2014; Tkachenko et al. 2020; Higl et al. 2021). For example,
the efficiency of convective boundary mixing (CBM) during
the main sequence directly affects the model’s brightness and
main-sequence lifetime (Salaris & Cassisi 2017; Higgins &
Vink 2019). The local theory of convection, mixing-length
theory (MLT) formalized by Böhm-Vitense (1958) and Cox &
Giuli (1968) is widely used in 1D stellar evolution codes (e.g.,
Paxton et al. 2011). Other sophisticated theories on convection
have also been proposed. For example, Xiong (1986)
developed a nonlocal MLT that indicates penetrative convec-
tion. Pasetto et al. (2014) removed the mixing length in their
convection theory. A spectrum of turbulent eddies instead of a
typical rising blob is considered in Canuto & Mazzitelli (1991).

Convection is not only an important mechanism to transport
energy and species, but also excites internal gravity
waves (IGWs; Lecoanet & Quataert 2013; Pincon et al.
2016). It is predicted theoretically that radiative diffusion
damps traveling IGWs, which carry angular momentum
(Rogers & McElwaine 2017; Aerts et al. 2019). This process
leads to deposition of angular momentum where the IGWs are
damped, and hence to redistribution of angular momentum
(Zahn et al. 1997). Asteroseismological observations help
constrain CBM and diffusive mixing in the radiative envelope
(Moravveji et al. 2015; Michielsen et al. 2019, 2021).
Penetrative convection has been investigated in theory and

through numerical simulations for decades in various contexts,
core convections, and shell convections, for example (Rox-
burgh 1989; Arnett et al. 2015; Korre & Featherstone 2021;
Anders et al. 2022; Blouin et al. 2023). The extent of
convective penetration and its dependence on various proper-
ties of the Schwarzschild boundary (SB) have been studied
(Hurlburt et al. 1994; Baraffe et al. 2021). The temperature
gradient in the convective boundary (CB) region may be
deduced by asteroseismological observation and modeling
(Michielsen et al. 2021). Current treatment of the convective
boundary in 1D stellar evolution simulations includes fitted
overshooting (Herwig 2000), instantaneous overshooting
(Maeder 1976), and entrainment (Staritsin 2013; Scott et al.
2021). In this work, we define the SB to be the location where
the rising radiation diffusion energy flux as we go outward in
radius in the core convection zone first equals the total
luminosity. We find that this is not the location where the
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entropy gradient first becomes positive and the temperature
gradient first becomes subadiabatic, as we will discuss later.
Beyond the SB we have a region of penetrative convection
leading up to the CB. We here define the CB to be that radius at
which the radiative energy flux becomes equal to the total
luminosity, the convective entropy flux vanishes, and also the
turbulent dissipation of kinetic energy of the convection flow
vanishes.

Previously, in the first paper of this series, we introduced the
general properties of core-convection simulations of a 25 Me
star approximated with an ideal gas equation of state (Herwig
et al. 2023, hereafter Paper I). We confirmed earlier results of
massive main-sequence-star simulations by Meakin & Arnett
(2007), Gilet et al. (2013) and more recently by Baraffe et al.
(2023) that entrainment rates of envelope material into the
convective core are orders of magnitude larger than what is
compatible with stellar models and basic observational proper-
ties. These large entrainment rates are the response of the 3D
hydrodynamic simulation to a radial stratification, for example,
from a 1D initial state, that is not in dynamic and thermal
equilibrium.

The properties of IGWs in our 3D PPMstar ideal gas
simulations are presented in Thompson et al. (2024, hereafter
Paper II). One important aspect of IGWs excited by core
convection is the possibility that they may cause material or
angular momentum mixing in the radiative layer. Radiative
diffusion permits the entropy in the stably stratified envelope to
no longer be a constant of the motion. As a consequence,
irreversible envelope mixing becomes possible, even though
IGW velocity amplitudes are damped by radiative diffusion.
Our strategy in this paper is to study the impact of radiation
pressure and radiative diffusion on the convection zone in our
model star and on the structure of the CB region. We will
analyze the spectrum of IGWs that are excited at the CB for the
purpose of comparison with the studies of Papers I and II in this
series, but we will leave the issue of potential material mixing
in the envelope to a forthcoming paper.

The main goals of this work are as follows: to test whether
adopting a more realistic simulation approach that includes
radiation pressure and diffusion can reduce the entrainment rate
significantly; to study the effect of radiative diffusion on the
spectrum of IGWs in the stable envelope; to investigate the
stratification of penetrative convection; and develop a method
to predict the convective penetration depth.

The first three Sections discuss flow phenomena on a short
timescale (convective timescale) and the following two
Sections investigate the growing penetrative convection on a
thermal timescale. Finally, we discuss our results and
conclusions in the last Section. Specifically, in Section 2 we
present the simulation method, simulation setup, and assump-
tions. Section 3 describes the general flow dynamics from the
onset of core convection to a 3D quasi-steady state on a
convective timescale, introduces CBM, excitation of IGWs,
and their power spectra, and discusses the effect of radiative
diffusion on CBM and IGWs. Simulations of different
luminosities, thermal conductivities, and resolutions are
tabulated in Table 1, with their entrainment rates that quantify
the efficiency of CBM. In Section 4, the long-term behaviors of
stellar stratification and convective penetration are discussed.
The gradual development of the penetration region beyond the
SB is observed in a very long-duration simulation. In this
simulation, the development of a positive entropy gradient in

the penetration region that is sustained despite efficient species
mixing is identified as a key structure that acts to bring the
intensity of convective motions down, so that further entrain-
ment and outward motion of the convective boundary is greatly
reduced. In Section 5, a method to predict the penetration depth
and the stratification within the penetration region is presented
in terms of a 1D model of the core convection zone that can be
worked out if the kinetic energy dissipation rate up to the SB
has either been determined from a short 3D simulation on a
modest grid or has been approximated by interpolating between
such simulations under similar conditions. We summarize and
discuss our main results and conclusions in Section 6.

2. Methods and Assumptions

To study the effect of radiation, we apply the equation of
state that includes radiation pressure in addition to that of a
monatomic gas. This allows for direct application of the MESA
(Paxton et al. 2011, 2013, 2015) model with minimal fitting
and approximation in going from 1D to 3D initialization. The
base state is constructed from the 25Me MESA stellar evolution
model (Davis et al. 2019) 1.64× 106 yr after the start of H
burning on the zero-age main sequence. The exponential CBM
model is used. In this model, the region outside the SB obeys
the radiative temperature gradient. Details on the 1D model can
be found in Paper I. Figure 1 shows the agreement of radial
profiles of the initial state on the 3D Cartesian grid with the
MESA model.
We use the PPMstar gas dynamics code described in

Woodward et al. (2015) and applied in Woodward et al. (2015),
Jones et al. (2017), and Andrassy et al. (2020). The PPMstar
code tracks the H-rich materials in the stable envelope by
fractional volume fV, and materials in the convective core by
1− fV. The mean molecular weight of each cell is a weighted

Table 1
Simulation Summary Providing the Run ID, the Grid, Luminosity L Boosting
Factor, Thermal Conductivity k Boosting Factor, End Time of the Run, and

Entrainment Rate

ID grid L/La k/ka tend/h ( )-M M yr 1 

M200 7683 1000.0 0.0 1817.6 6.82 × 10−1

M201 11523 1000.0 0.0 3556.3 6.85 × 10−1

M202 11523 100.0 0.0 2439.2 3.60 × 10−2

M203 11523 3162.0 0.0 1468.1 2.41 × 100

M204 11523 1000.0 100.0 3362.9 6.53 × 10−1

M205 11523 100.0 21.5 2648.4 3.91 × 10−2

M206 11523 3162.0 215.4 1549.8 2.16 × 100

M207 11523 1000.0 1000.0 3838.4 3.69 × 10−1

M208 11523 100.0 100.0 2446.4 2.00 × 10−2

M209 11523 3162.3 3162.3 1465.3 1.36 × 100

M210 17283 1000.0 1000.0 3495.3 3.91 × 10−1

M211 7683 1000.0 100.0 2089.7 6.31 × 10−1

M212 11523 31.62 31.62 2297.4 6.03 × 10−3

M213 7683 1000.0 1000.0 3537.5 3.72 × 10−1

M284 26883 1000.0 1000.0 4669.3 3.38 × 10−1

M250b 8963 3162.3 3162.3 20769.0 5.77 × 10−1

M251b 8963 1000.0 1000.0 18444.4 1.74 × 10−1

M252b 8963 10000.0 10000.0 25137.6 1.40 × 10−1

Notes.
a Denotes values from the MESA Model.
b Runs that are long duration, the entrainment rates of which decline over time.
Hence, we fit them by a straight line from 14,323–17,188 hr to compute the
corresponding entrainment rates.
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average of the mean molecular weights of the envelope
material and the core material,

· ( ) · ( )m m m= + -f f1 . 1V env V core

Here, μenv= 0.6171 and m = 0.6689core . The simulations are
initialized such that the fV transitions from 0 to 1 at the
convective boundary, as μ changes from mcore to μenv. In this
version, the contribution of radiation is included in the internal
energy per unit mass e, pressure p and specific entropy s
according to the equation-of-state relations:
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where μ is computed by Equation (1), ρ is the density, T is the
temperature, R is the gas constant, γ= 5/3, and a is the
radiation constant. In the PPMstar code, a model equation of
state (Woodward 1986), is fitted to local conditions in each grid
cell and upon each time step:

( ˜ ) ( )g r= + -p p e1 . 500

Here the coefficients p00 and g̃ are determined upon the
outset of every time step in each grid cell such that the correct
sound speed cs and energy density ρe are recovered:

˜ ( ˜ ) ( )g
r
r
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+
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c

p e
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00

The radiative flux,

( )= - F k T 7

is implemented explicitly in PPMstar as a part of the
energy flux in every time step update, with radiative thermal

conductivity (Kippenhahn et al. 1990)

( )
kr

=k
acT4

3
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3

Here, κ is the opacity, and c is the speed of light.
Specifically, the interface values are taken for κ and ρ, and
the temperature gradient is calculated by differencing the cell
averages of temperature from the grid cells on the left of the
interface and to the right of the interface. Simulations from
M200 to M213 (see Table 1) use the following opacity fit as a
function of hydrogen mass fraction xH and temperature:
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The coefficients above have the following values:

[ ]k k =, 0.32009677883170023 0.3420244849271527 ,min max

κtot= 0.66, =Tlog 7.0610 0 , w= 13.0, and

[ ]= - -a 0.21193353 4.58822546 33.25338915 80.22027956 .

Simulations M284, M250, M251 and M252 use another
opacity fit to the OPAL opacity (Iglesias & Rogers 1996) as a
function of density, temperature, and hydrogen mass fraction:
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-a t . 10
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i
i
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5

7
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In Equation (10), = -t Tlog 77 10 and
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[ ] =a a a a11 12 21 22
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⎤
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3.517557 3.80745443 2.89317784 3.30952768
5.08986892 5.62926873 5.70900505 6.48609904
2.26446972 2.57639712 3.44350707 3.91848895
0.18902794 0.23571381 0.57976535 0.67356251
0.01369687 0.01629371 0.06750886 0.07837157
0.33163233 0.37333938 0.35946486 0.40405573

,

[ ]=x 0.5562991483419806 0.7564365605920813 ,T

[ ]= - -r 4.178136499095293 3.7948565951463475 .T

The resulting opacities are in cgs units.
We apply a reflecting boundary condition at radius 2670

Mm, and make the heat fluxes at opposite cell interfaces equal
for three grid cell widths inside this reflecting sphere. We
perform a series of 25 Me simulations (Table 1), with varying
driving luminosities and radiative thermal conductivity k.
Properties such as the mass entrainment rate at the CB at the
nominal luminosity are extrapolated from simulations with

Figure 1. Comparison of adopted base state for the 3D simulations and the
MESA radial profile of density and temperature. Quantities are given in their
code units.
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boosted luminosities. For a luminosity boosting factor X, we
have cases with 0, X2/3, and X boosting factors for radiative
diffusion. Henceforth, we refer to them by “no diffusion,”
“intermediate diffusion,” and “high diffusion.”

3. From the Initial Transient to a Quasi-steady 3D Flow

Here we briefly describe the dynamics of the initial transient
and the following quasi-steady 3D flow. The initial transient is
complete after the first few convective turnover times for the
largest eddies. In the many cases we consider here, we find that
the visualization looks qualitatively similar regardless of the
boosting factor for luminosity and radiative diffusion. See our
representative simulation M252 (luminosity and radiative
diffusion boosted by a factor of 10,000).4 In the discussion
below, we will point out the effect of radiative diffusion when
it matters qualitatively and quantitatively.

3.1. The Development of the Fully Convective Core

At time 0, the initial state is in perfect hydrostatic
equilibrium. The radiative diffusion is transporting heat
according to the stratification and opacity. As in Paper I, the
nuclear burning is emulated as a time-independent Gaussian
volume heating ( ( ))s~ -rexp 22 2 , σ= 280Mm. The change
of chemical composition due to nuclear burning is negligible
on the timescale that we simulate and thus ignored as an
approximation. Given the temperature gradient, there is the
excess heat in the core accumulating due to insufficient
radiative energy transport. The center of the core becomes
convectively unstable as a result. The central gas parcels rise
because of the buoyancy force, and thereby convection starts.
Because the convective core is almost adiabatic, the moving
fluid elements move effortlessly on the same adiabat. The
excess heat unable to be carried by the radiative diffusion is
now transported by the emerging convection within the core
until the rising, relatively buoyant fluid elements encounter the
positive entropy gradient where the stratification becomes
convectively stable.

Once the rising plumes encounter the entropy gradient, the
buoyancy force restrains them from going farther outward in
radius. The interaction between the plumes and the convective–
radiative boundary excites IGWs that propagate in the stable
envelope. During the first few convective turnovers, the core
convection becomes fully turbulent and excites IGWs of a
broad range of wavelengths. An analysis of the power spectrum
of the IGWs in the stable envelope after the initial transient
adjustment of the flow to its 3D degrees of freedom is
presented at the end of this Section.

The convective core soon develops the characteristic dipole
circulation pattern that was first seen in the 3D simulations of
Porter et al. (2000). It has been noted by many investigators that
convection tends to develop convection cells that extend to the
largest vertical scale (Hurlburt et al. 1986; Freytag et al. 1996;
Porter et al. 2000; Andrassy et al. 2022). In Figure 2, when the
dipole plume hits the CB and diverges, the flows become mostly
horizontal near the boundary, bringing along buoyant materials
from the boundary. This behavior is evident in both images at
the top of Figure 2 from the red lanes of very high horizontal
velocity uh perpendicular to the radial direction, which are seen
along the CB in both images. Entrainment of the fluid from the

stable layer into the convection zone is facilitated by the
boundary layer separation, as discussed in Woodward et al.
(2015). This boundary layer separation occurs when the flows
along the boundary collide and are forced downward toward the
center of the star, bringing some of the entrained gas from above
the CB with them. In the lower images in Figure 2, the highest
vorticities shown in yellow and red delineate the strong shear
layer where the gas of the convection zone flows along the CB
and later separates from it. This shear layer is more difficult to
identify in the image from run M201 at the bottom left, because
this run with no diffusion cannot generate a region of penetrative
convection. In the image from run M201, a movie5 makes clear
that the upwelling of the global dipole circulation is aimed
roughly at the five-thirty position, and the flows along the
boundary separate at roughly nine o’clock and two o’clock. It is
hard to trace the shear layers in this image, because they are
pressed right up against the CB. In the configuration seen in the
image from run M284 at the right, the position of the shear
layer shows that it is separated from the CB by a thin layer of
gas along most of its length. This is a signature of penetrative
convection. The cause for this difference in behavior is
discussed in Section 4. Simply stated, in the absence of heat
transport by radiation diffusion in run M201, heat energy is
being transported outward by convection right up to the CB.
This heat cannot be transported farther outward in M201,
because the convection stops at the CB. Hence heat must
accumulate inside the CB, and as a whole, the convection zone
must therefore slowly expand. In run M284, with high
diffusion, the radiation transports heat outward at more than
the full luminosity in a significant region of convective
penetration between the SB, at roughly 1420Mm, and the
CB, at 1530Mm. Radiation then carries the full luminosity
outward beyond the CB. In the penetration region inside the
CB, convective heat transport is inward rather than outward,
and the turbulence of the convective flow is less vigorous. We
will see in Section 4 how this all works out in detail.
In both flows shown in Figure 2, a state of dynamical

equilibrium is achieved in the relatively short time of several
turnover times of the largest convective eddies, that is, of the
large dipole circulation. We define dynamical equilibrium as a
state in which the kinetic motions become statistically time-
independent on the convective timescale. The approach to
dynamical equilibrium is shown in Figure 3. In that Figure, we
plot the magnitude of the horizontal velocity component uh half
a pressure scale height (Hp=−pdr/dp) below and above the
peak in the Brunt–Väisälä (BV) frequency squared, N2

(Equation (11)), which marks the convective boundary.
Although there is noise, it is clear from this Figure that
dynamical equilibrium is established after a time of about
400 hr. While in dynamic equilibrium, the mass entrainment
rate slowly decreases as the simulation approaches a state
closer to thermal equilibrium. The entrainment analysis can be
found in Section 3.3 using the same methodology as in Paper I.
The radius of the CB is marked by a fairly sharp peak in the

Brunt–Väisälä (BV) frequency. In the equations below, we
decompose N2, the square of the BV frequency, into contribu-
tions Nt

2 and mN
2 that arise from the temperature and composi-

tional gradients, respectively. A positive N2 indicates stability,
suppressing convective processes, and a negative N2 implies
instability to convection. A sharp peak in N2 at the CB therefore

4 See https://ppmstar.org and https://www.lcse.umn.edu. 5 See https://ppmstar.org and https://www.lcse.umn.edu.
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strongly impedes any residual convective motions there.
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Here ρ is density, T is temperature, Hp is pressure scale
height, μ is mean molecular weight, S is specific entropy, ∇star

Figure 2. Images of a thin slice through the center of the star of the horizontal velocity component uh (top row) of M201 (left column, no radiative diffusion, 11523

grid, time 3183.2 hr) and M284 (right column, 1000× radiative diffusion, 26883 cells, time 3266 hr), and of the vorticity magnitude |∇ × u| (bottom row). The units
used in the colorbars are Mm s−1 on the top row and s−1 on the bottom row. Movies of these quantities are available at https://ppmstar.org as well as at https://www.
lcse.umn.edu. In the images in the top row, internal gravity wave (IGW) motions excited by the convection are clearly visible in the elongated blue and aqua-white
features that delineate the mostly horizontal gas motions in these waves. In the vorticity images in the bottom row, the shear from these wave motions in the stably
stratified envelope, shown again in blue and aqua-white, has amplitudes an order of magnitude or more smaller than the vorticity values in the turbulent convection
zones of these two simulations. The length scale in these images can be determined by the radius of the convective boundary, which is 1530 Mm in the images on the
right and is 1546 Mm in the images on the left.
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is the actual temperature gradient, ∇ad is the adiabatic gradient,
and ∇star−∇ad is the superadiabaticity.

In stellar evolution models, the CB is usually defined as the
radius at which the adiabatic gradient is equal to the radiative
gradient, also known as the SB. Based on our discussion of a
very long-duration simulation in Section 4, we choose to define
the CB in this work as the radius where, in statistical dynamical
and thermal equilibrium, the radial derivatives of the radiative
and convective heat fluxes as well as the convective heat flux
itself and the kinetic energy dissipation rate all vanish. The CB,
thus defined, is different from the SB, because at the SB, the
radial derivative of the radiative heat flux does not vanish.

3.2. Dynamics and Kinematics in Dynamical Equilibrium

The convection rapidly organizes itself such that the total
convective flux becomes the luminosity minus the total
radiative energy flux (Figure 4, Equations (14), (15)). There-
fore, our simulated star reaches a dynamical equilibrium over
the first few convective turnovers and stays in dynamical
equilibrium thereafter.

3.2.1. Effect of Radiative Diffusion

Figure 5 shows how N2, fV, and uh, evolve for different
strengths of radiative diffusion at 1000× the nominal
luminosity. Outward from the SB by about 120 Mm (10% in
radius) in the initial state of the simulation, N2 has a strong,
slowly migrating peak, reflecting the sudden change of entropy
mainly caused by the change in μ at that location.

Perhaps the most important effect of the radiative diffusion is
that, as this is increased, the position of the composition
change, traced by the fV profile, moves outward less rapidly.
This effect can also be seen in the position of the N2 peak
feature. This behavior can be explained by the fact that when
we add radiative diffusion, we introduce into the problem a
mechanism for carrying the heat introduced into the convection
zone outward through the stably stratified envelope. In the
absence of this mechanism, in addition to entraining high-
entropy materials from the envelope, heat must pile up in the
convection zone, and this must cause it to expand. This is
analogous to the helium shell flash in that the ignition of helium
fusion in a thermal pulse produces more energy temporarily

than can be carried away by radiative diffusion, causing the star
to expand and brighten (Herwig et al. 2006). In our high-
diffusion case, heating by nuclear burning is, on average,
removed by the heat energy flowing through the reflecting
sphere at our outer boundary in the form of radiation (Figure 4).
The total convective flux and total radiative energy flux are
calculated by Equations (14) and (15).
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The convective flux is the flux of enthalpy plus the kinetic
energy summed over the sphere at radius r. c is the speed of light.
In cases of no diffusion, there is no diffusive heat flux across

the stably stratified gas in the outer part of our computational
region. The heated convective core pushes the envelope,
resulting in positive convective flux at all radii. We measure
that about 55% of the nuclear heating becomes potential energy
by expanding the convective core and compressing the stable
envelope (i.e., redistributing mass in a static gravitational
potential), while 45% becomes internal energy by heating the
star up. In the intermediate-diffusion case, M204, 42% of the
nuclear heating expands the core, and 46% heats the star up.
About 10% of the nuclear heating is transported outward by
radiative diffusion in that case. In Figure 5, the convective
velocity is slightly smaller in the high-diffusion case, but the
profile of the magnitude of horizontal velocity remains similar.
In all cases, the kinetic energy is negligible. Once a dynamical
equilibrium is established, it mostly does not change over time
and stays negligible. The effect on the motion in the stable
envelope, i.e., IGWs, is discussed in Section 3.
The differences in the heights and shapes of the N2 peaks,

between the cases of no diffusion and intermediate diffusion at
the same time (1000 or 2000 hr), are very small (Figure 5),
because most of the heat injected (90% and 100%) piles up in
the convective core, which leads to quantitatively similar
dynamics. However, in the case of high diffusion, the change
of location and shape in the N2 peak is noticeably smaller than

Figure 3. The overall magnitude of horizontal velocities 0.5 Hp below and
above the N2 peak (see Equation (11)) becomes constant after an initial
transient (400 hr) when we average over the persistent fluctuations. The three
runs shown all have grids of 11523 cells. M201, M204, and M207 have no,
intermediate, and high diffusion, respectively.

Figure 4. Total convective (radiative) energy flux normalized by the
luminosity for the no-diffusion (M201, 0×), intermediate-diffusion (M204,
100×), and high-diffusion (M207, 1000×) simulations with 1000× luminosity
enhancement at the same data dump (2556.6, 2470.7, and 2470.7 hr), all with
grids of 11523 cells. The curves are smoothed by using moving averages three
times over a window 120 Mm wide and time-averaged over 100 dumps
∼70 hr. The fluxes are defined in Equations (14) and (15). Temperature,
opacity, and density in Equation (15) are spherical averages.
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in the other two cases given the same amount of time
(Figure 5). However, the overshoot and undershoot of the
convective flux, and the overshoot of radiative flux at 1500 Mm
suggest the thermal structure is adjusting, at a small rate.
Hence, any significant change in the stratification for the high-
diffusion cases happens on a longer timescale than no or
intermediate diffusion. To reduce the computational cost of
studying the evolution on a longer timescale, we investigate
the effect of enhancing luminosity in the next Section and the
possibility of accelerating the evolution by enhancing the
luminosity in Section 4.

The heat piling up in the no- or intermediate-diffusion cases
explains the fact that the star lifts the convective core and
compresses the envelope. This process will continue and
completely change the stratification because the total energy of
our simulation keeps increasing in these two cases. Hence, to
simulate a realistic star in thermal equilibrium, the only
reasonable scenario is the high-diffusion one, and we later
discuss the effect of enhancing luminosity using the high-
diffusion cases only. In addition, as discussed in Section 3.3,
the entrainment continues at a relatively constant rate, which
suggests that the star is still adjusting its stratification and has
not yet reached a thermal equilibrium. In such an equilibrium,
all of the temporal dependence on timescales longer than
several large eddy turnovers in the convection zone could be
expected to very nearly vanish. By definition, the total heat
content will be radiated away at the rate of the luminosity on a
thermal timescale, if there is no nuclear heating. Therefore, it is
not feasible to investigate the dynamics on a thermal timescale
in the cases of no or intermediate diffusion without disrupting
the thermodynamical structure completely. Hence, the discus-
sion on the evolution on a thermal timescale in Sections 4 and 5
focuses on the high-diffusion cases.

3.2.2. Effect of Enhancing Luminosity

Figure 6 shows the profiles of N2, fV, and horizontal velocity
for a series of runs in which we vary the luminosity. For each
boosting factor, we also enhance the radiative diffusion by the
same factor. Cases of enhancement factors of 31.62, 100, 1000,
and 3162 are used. For the two lowest-luminosity cases, we
observed essentially no change within 2000 hr in the profile of
fV, and in the position and the shape of the N

2 peak during these
simulations. This certainly does not mean that changes would
not result were these two simulations run longer in time.
Runs M207 and M209, with luminosity enhancement factors

of 1000 and 3162, reshape the initial fV radial profile within
relatively short times of <2500 hr. After this initial reshaping
in these high-power cases, the fV radial profile translates while
maintaining its shape as the gas from above the convection
zone is entrained. As will be discussed in Section 4, boosting
the nuclear heating and the radiative diffusion by a common
factor can be regarded as accelerating the time rate of change of
the stellar model. In order to probe the long-time behavior of
the stellar model, this balanced enhancement of the luminosity
and radiation diffusion is appealing for our explicit PPMstar
code, because it dramatically lowers the cost of finding the
long-time behavior.
Figure 7 confirms that the magnitude of velocity scales with

L1/3 in the presence of radiation pressure and radiative
diffusion. This scaling is also observed in Paper I.

3.2.3. Convergence

In Figure 8, the profiles of N2, fV, and horizontal velocity are
presented for a sequence of simulations carried out at different
grid resolutions to show the effect of refining our computa-
tional grid. These simulations are performed with a luminosity
and radiation diffusion enhancement factor of 1000. We see
that the N2 peak becomes higher with increasing grid
resolution. However, the location of the N2 peak is roughly
the same regardless of the resolution. The radial profile of fV
becomes steeper with grid refinement, and it is clear that this
steepening is not complete even on the highest-resolution grid

Figure 5. Profiles of N2, fV, and the horizontal velocity magnitude uh of the
simulations with 1000× luminosity enhancement (M201: no diffusion, M204:
k ∼ L2/3, M207: k ∼ L, all at the 11523 grid resolution).
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shown in the Figure. Although there is some statistical noise
evident in the plots of the horizontal component of the velocity
in Figure 8, it is clear that these simulations have converged
upon mesh refinement to a well-defined state. Even the radial
profiles of fV near the CB appear to have converged in terms of
the position of the sharp increase in fV though not in its
steepness. The interpretation of the N2 peak and the slope of the
fV not converging on grid refinement is that we have not
converged on mixing. In Section 4, convergence will be shown
for turbulent dissipation measured from the simulations and for
vorticity in the stable envelope.

3.2.4. Mixing Length Parameter

We first check the efficiency of convection. The mean free
path of a photon inside our star is of the order of 1–10 cm; i.e.,
our star is opaque, and radiative transport of energy can be
treated as a diffusion process. We take rc= 1500Mm as the
radius of our convective core; the thermal adjustment timescale
of the convective core will be t r= r c kc pt

2 . The convective
timescale is τc= 2rc/vc. For our M207 case, the boosting
factor for the radiative diffusion can be interpreted as
increasing the thermal conductivity by a factor of 1000. Given
that

t
t r
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the convection in our simulations is efficient in transporting
excess heat. We measure the superadiabatic temperature
gradient in our simulations and hence can derive numerical
values of the standard mixing length parameter α.
In MLT, the total convective flux is modeled as linearly

proportional to α2 (Prialnik 2000), the square of the mixing
length parameter:

( ) ( )p r r a=  - L r c p4 16pconv
2

star ad
3 2 2

where symbols have their usual meanings.
From the superadiabaticity in Figure 9, we see that the

temperature gradient is nearly adiabatic throughout the
convective core (∇star−∇ad∼ 10−4). The convective core is
slightly superadiabatic inside 1000 Mm and becomes slightly
subadiabatic beyond 1000 Mm. This is where the radial
entropy gradient dS/dr becomes positive, and the convective
flows start to encounter the marginally stable stratification.
Though the convective stability criterion indicates the stratifi-
cation is stable at 1000 Mm and outward, this slightly
subadiabatic temperature gradient cannot bring the convective
motion to a halt. The flows continue before arriving at the far
more significant entropy gradient at the CB.
The convective flux is proportional to ( ) - star ad

3 2.
However, the temperature gradient is not superadiabatic
throughout the entire convective core (Figure 9). If we take
the approach in Porter et al. (2000), redefining the super-
adiabaticity as ∇star− f∇ad where f= 0.999, we find that the

Figure 6. Profiles of N2, fV, and uh of M212 (31.62× L* & k*), M208 (100×
L* & k*), M207 (1000× L* & k*), and M209 (3162× L* & k*), all at the
11523 grid resolution.

Figure 7. Luminosity vs. convective velocity magnitude in the convection zone
at 1000 Mm averaged over 20 data dumps. All cases are high diffusion.
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entire convective core is superadiabatic and the mixing length
parameter α, solved from Equation (16), is in the range from
0.4–1.2 (Figure 10). This value of f is different from the value
0.98 used in Porter et al. (2000). Chan & Sofia (1989)
suggested that the superadiabaticity might depend on the aspect
ratio of the convective spherical shell and upon the equation of
state. We find that ∇star−∇ad is positive inside 1000 Mm and
negative beyond 1000 Mm for all of our different heating rates,
but its magnitude increases with the boosting factor. This is
qualitatively in agreement with the MLT assertion that
the convective flux scales with superadiabaticity to the power
of 3/2.

3.3. Mass Entrainment Rate

We determine the entrainment rate of the envelope gas from
above the CB into the convection zone using the same
methodology as in Paper I. As in Paper I we define the
entrained mass as the total mass of the envelope material within
rb. rb is the location of the maximum gradient of fV less one fV
scale height. This entrained mass evolves linearly with time; an
example is shown in Figure 11.
Compared to the Pgas-only case (M114 in Paper I), the

entrainment rate is 14% smaller when adding Prad (M201),
and decreases by 50% when also adding radiative diffu-
sion (M207).
We estimate the entrainment rate at nominal heating by

extrapolating separately from three sets (no, intermediate, and
high diffusion) of simulations (Figure 12). The entrainment
rates for no diffusion and intermediate diffusion are practically
the same. The difference between the entrainment rates
extrapolated from these two sets is due to the uncertainty of
the fitting slope.
The extrapolated entrainment rate cannot persist for a

significant fraction of the main-sequence lifetime (Section 4).
We believe instead that the large entrainment rates that we
observe after our simulations have initially established a
dynamical equilibrium are the result of thermal non-equili-
brium. We will discuss the development of penetrative

Figure 8. Snapshots of N2, fV, and uh of M213: 7683, M207: 11523, M210:
17283, and M284: 26883, all with 1000× L* and 1000× k*.

Figure 9. The superadiabaticity (∇star − ∇ad) of M201 (1000× heating, 0×
diffusion), M204 (1000× heating, 100× diffusion), and M207 (1000× heating,
1000× diffusion), averaged over 100 dumps (∼70 hr) and 30 Mm.

Figure 10. The mixing length parameter squared α2 of M201, M204, and
M207 averaged over 100 dumps (∼70 hr) and 30 Mm.
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convection on a longer timescale and the effect on the
entrainment of the resulting subadiabatic temperature gradients
within the penetrative region between the SB and the CB in
Sections 4 and 5.

3.4. IGWs

One important consequence of radiative diffusion is damping
of IGWs in the stably stratified layers of the star (Zahn et al.
1997). We study this effect of radiative diffusion in our model
star by observing the wave motions in the envelope surround-
ing the convective core. Using the same approach as in
Paper II, we decompose the radial component of the velocity
field into complex spherical harmonics coefficients using the
SHTools package (Wieczorek & Meschede 2018). We then
perform a Fourier transform on each coefficient time-series.
Then we use the SHTools package to calculate the power
spectral density of the radial velocity oscillations normalized by
degree ℓ for each frequency bin. The time interval between data
dumps in our simulations determines an upper limit to the
frequencies that we can observe. This upper limit is ∼200 μHz
for the simulations reported here, corresponding to
»43 minutes between dumps. In these simulations, we have
located our outer boundary so that the radius of the convective
core is ∼60% of the boundary radius. The degree l of the
spherical harmonics gives the number of nodes going along a

meridian from one pole to the other. Hence at the CB (60% of
the maximal radius in our computational region), with a 11523

grid, we can resolve, in principle, spherical harmonics up to

·
= »p

D
l 250r

x4
CB , where rCB is the radius of the CB and Δx the

cell width, because the data we use in this analysis has been
averaged over cubical bricks of grid cells four on each side
before being written to disk (Stephens et al. 2021).
As shown by the velocity profile in Figure 5, the convection

in the core is less vigorous (smaller u) in high diffusion.
Therefore, the excitation of IGWs (Edelmann et al. 2019)
becomes less efficient due to radiative diffusion. Radiative
diffusion damps both the IGWs and the excitation of IGWs,
resulting in the power spectra we observe.
As shown in Figure 13 for the radial velocity component,

most of the power of the wave motions is concentrated at
frequencies below the maximum Brunt–Väisälä (BV) fre-
quency in the stable envelope (see also Paper II). It is also
concentrated in ¢l s smaller than 80. Modes with small-scale
structures l> 100 are damped in simulations with high
diffusion, and less so in intermediate diffusion. Figure 14
shows the damping effect in terms of the power ratio of M204
and M207 to M201. Modes of l> 80 are reduced in power by
more than 95% in high diffusion and by 50% in intermediate
diffusion. However, for the more important frequencies below
the BV frequencies, radiative damping in high-diffusion
simulations reduces the wave amplitudes by a factor 2.5–5.
In Paper I, a formula is considered for predicting the

diffusion coefficient that might produce material mixing in
the stably stratified envelope due to IGW-induced motions.
According to that relation, the diffusion coefficient should scale
with the square of the vorticity in the envelope, among other
factors. In that study, working with simulations without
radiative diffusion, it was found that this envelope vorticity
shows no sign of convergence under grid refinement. The
power spectra in Figure 14 show that radiative damping of the
high l IGW modes in our high-diffusion cases allows the
vorticity in the envelopes of these simulations to converge with
mesh refinement. In Figure 15, the vorticity in the envelope
does not change when the grid is refined in the presence of
radiative diffusion.
The amount of radiative damping of the IGWs in the

envelope is of interest when we consider the possibility that
these IGWs cause material mixing in the envelope. The short-
wavelength waves that are damped substantially, as seen in
Figure 13, have no effect upon the asteroseismology observa-
tions of the waves at the stellar surface of massive stars, as they

Figure 11. The time evolution of the radius of maximal dfV/dr minus one fV
scale height, and the entrained masses of M201.

Figure 12. Entrainment rates of simulations (hollow symbols); extrapolated
entrainment rates at nominal heating (solid symbols).
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would be located in the region of white noise (Bowman et al.
2020). However, it is possible that the short-wavelength waves
have a significant impact on the efficiency of material mixing.
This potential for IGW envelope mixing is explored at length in
Paper I. Here we see that the short-wavelength waves are
damped by radiation diffusion. It is generally believed that
radiative diffusion can play an essential role in IGW-induced
mixing (e.g., Townsend 1958; Zahn 1974; Press 1981; Garaud
et al. 2017; Paper I).

4. On the Long-term Evolution

The entrainment rate implied from linear growth of the
entrained mass is too large to be compatible with the stellar
model and observational properties (Section 3.3). Similar to the
argument in Paper I, if we assume that this entrainment rate
applies for the entire 6.91× 106 yr main-sequence lifetime of a
25 Me star, a total entrainment of 630 Me would be implied.
This indicates that the entrainment we extrapolate cannot
persist for even a fraction of the main-sequence lifetime before
the star goes through significant evolutionary changes. A
motivation for the present work is to investigate whether or not
including radiation pressure and radiative diffusion can result
in entrainment that is more consistent with the main-sequence
stage of the stellar model. We have seen in Section 3 above that
this additional physics causes the entrainment to decrease by
only about 30%. However, the linear growth of the entrained
mass, the motion of the BV frequency peak, and the overshoot
and undershoot of fluxes at the CB (Figure 4) suggest that the
simulated star is still in the process of thermal adjustment.
Nevertheless, the velocity distribution in both the convective
core and the radiative envelope has reached a dynamical
equilibrium. We would like to establish whether or not
continued entrainment and motion of the CB outward might
alter the character of the flow in such a way that the
entrainment rate might slowly diminish. This possibility is
suggested by the recent work of Anders et al. (2022)
investigating the long-term secular changes driven by thermal
adjustment in a simplified Boussinesq, plane parallel, pene-
trative convection context.

Figure 13. Spectral power density of ur at 19 Me of M201 (top, 1000×
heating, 0× diffusion), M204 (center, 1000× heating, 100× diffusion), and
M207 (bottom, 1000× heating, 1000× diffusion) averaged over ∼ 1160 hr
centered at 2556.6 hr).

Figure 14. Power of radial velocity of M201, M204, and M207, as well as the
power ratio of M204 and M207 to M201 at 19 Me as functions of spherical
harmonic degree l (top) and as functions of frequency (bottom).

Figure 15. Vorticity of simulations with luminosity and radiative diffusion
enhanced by 1000: M213 (7683), M207 (11523), M210 (17283), and M284
(26883) at 1518 hr. Although the vorticity increases with grid resolution inside
the convection zone, it does not do so in the stably stratified envelope. This
behavior has consequences for our ability to estimate gravity-wave-based
mixing rates in the envelope using simulations with only modest grid
resolution.
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Our explicit numerical technique in PPMstar requires us to
explicitly follow sound wave signals in the low Mach number
stellar flow. We have seen in Paper I and also here in Figure 12
that we can overcome this limitation by appealing to
empirically observed scaling laws. By enhancing the luminos-
ity and the radiative diffusion by a common factor X, we speed
up the evolution by a similar factor (actually slightly larger than
X, as we will discuss later). In Paper I, we saw that under these
circumstances the velocities in the convection zone are
enhanced by the factor X1/3. If this enhancement of the
velocities leaves them still at low Mach numbers, we do not
expect the character of the flow to change significantly. As a
rule of thumb, we might attempt to hold the resulting Mach
numbers below 0.1, for which compressibility effects should be
roughly of 1% importance. A possible consideration is that we
might raise velocities of wave motions in the stably stratified
envelope to the level that either makes the waves break or that
causes pressure to become an important restoring force
influencing their dispersion relation. No wave breaking is
observed in the stable envelope in the visualizations of any of
our flows. To validate this technique for speeding up the
evolution of our flows, we can generate a series of simulations

at modest grid resolution that have different enhancement
factors X and that can be compared over at least an initial time
interval of reasonable length, which is long enough to go
through a noticeable re-adjustment of thermal structure.

4.1. Key Properties of the Long-term Evolution

We have performed such a series of simulations for the
25 Me star that have enhancement factors X= 1000, 3162, and
10,000. These all have a grid resolution of 8963 cells, and all
were run for relatively long periods of 507, 1189, and 1054
days for the star. For the case of largest X, this time duration is
comparable to the thermal timescale of the simulated part
of the 25 Me star, namely GM2/2RL≈ 1000 days, where
R= 2500Mm and L= 10,000L*. This should be sufficient for
the flow to relax to a state much closer to thermal equilibrium.
In the top panel of Figure 16, we show the outward

movement of the BV frequency peak. This peak marks the
location within the radial entropy profile where the gradient is
largest. This is also the location of the sudden jump in fV, the
fractional volume of the stably stratified envelope gas. It is
evident that the outward motion of the CB is continually
slowing down as this simulation proceeds. The CB is still
moving at the last time shown, but clearly it has slowed
considerably.
Looking at Figure 16, we notice that as the outward motion

of the CB slows, there is an increasingly large region inside the
CB (for time 17,188 hr between r= 1600 and 1750 Mm) where
the BV frequency rises in the absence of any substantial
contribution from the composition gradient. This feature of the
later flow structures causes the convection to be reduced in
intensity without causing additional entrainment. It would seem
that this is a necessary feature for the entrainment rate to be
diminished. The positive entropy gradient that is established in
the growing penetration region between the SB and the CB,
results from a balance between convective mixing of entropy,
which tends to reduce this gradient, and the small region of
negative gradient of the radiative diffusion flux, shown in
Figure 17, which tends to build up the gradient. There is no
corresponding mechanism to counteract the convective mixing
of the composition, because the negative radiative diffusion
flux gradient deposits entropy and has no effect upon the gas

Figure 16. Top: N2 and its compositional component (see Equation (11)) for 0,
5729, 11,459, and 17,188 hr. Bottom: radiative gradient, adiabatic gradient,
and actual temperature gradient for M252 (10,000×) for the same dumps. The
location of the SB is denoted by the thick vertical line around 1415 Mm, which
does not move much during the simulation. All profiles are computed from
averages over 100 dumps.

Figure 17. Total radiative and convective energy fluxes (normalized by the
luminosity L) for M252 (10,000×) at 0, 5729, 11,459, and 17,188 hr, computed
from averages over 100 dumps and 120 Mm.
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composition. Hence, we see that fV is efficiently mixed, even in
the penetration region.

In Figure 16, we plot the radiative gradient

( )k p º Lp acGmT3 16 ,rad
4

the actual gradient ∇star, and adiabatic gradient ∇ad. The
radiative gradient is defined as the gradient required so that all
of the luminosity is carried outward by radiative diffusion. The
location, at roughly 1400 Mm, of the SB, where ∇ad=∇rad,
does not change much during the course of the simulation. The
actual gradient is strictly adiabatic inside the SB at t= 0 by
design via initialization. When the convection is fully
developed, the actual gradient becomes slightly superadiabatic
inside 1000 Mm and slightly subadiabatic above 1000 Mm
(Figure 9) and gradually approaches the radiative gradient
above the SB, as seen in Figure 16. The outward motion of the
CB noted earlier slows down, which is also shown by the
change of the actual gradient with time. The penetration region,
where the convective flux is negative above the SB, ends at
1850 Mm, where the actual gradient starts to follow the
radiative gradient, and the full luminosity is then carried
outward by radiative diffusion alone (Figure 17).

4.2. The Governing Equations

Similar to Roxburgh (1989), Arnett et al. (2015), Anders
et al. and (2022; see also Korre & Featherstone 2021), we
attempt to model the convection zone by reducing the full set of
hydrodynamic equations to 1D with reasonable assumptions.
The governing hydrodynamics equations are as follows:
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where S is the specific entropy, ò is the rate of nuclear energy
generation per unit mass, and F is the heat flux vector by
radiative diffusion. These equations (Equations (17)–(19)) are
equivalent to the Euler equations in conservation form solved
by PPMstar. Taking the dot product of the equation for the
conservation of momentum, Equation (18), with the velocity
results in the equation for kinetic energy:
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Without any assumption so far, we integrate the kinetic
energy density over a thin spherical shell between radius r and
r+ dr and determine its rate of change in time,
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where the kinetic energy Equation (20) is applied. We apply
the divergence theorem to the second term on the right-hand
side and then approximate the resulting difference of surface

integrals at r and r+ dr with a differential, and finally
approximate other volume integrals by surface integral multi-
plied by the shell thickness dr to get
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as dr→ 0, where p= p0+ p1, ρ= ρ0+ ρ1,∇p0= ρ0g. Note
that subscript 0 denotes the initial hydrostatic state (or base
state) quantities, subscripts 1 denotes deviation from the initial
hydrostatic state, ur is the radial velocity, Φ is the local
dissipation rate of kinetic energy into heat, and the over-bars
represent averages over the 4π sphere at the radius r. Note that
we assume that the viscosity does not enter directly, but only
enters through the kinetic energy dissipation source term and
entropy source term. We make this assumption because the
viscosity of the stellar gas is several orders of magnitude
smaller than the thermal diffusivity, k/(ρcp), where cp is the
specific heat under constant pressure. (The Prandtl number is
Pr∼ 10−6 for the stellar interior conditions considered here.)
Still, the viscosity is effective in dissipating the motions in the
convection zone, while not dissipating motions elsewhere. The
reason for this effectiveness of a truly tiny viscosity is that the
convection zone is fully turbulent. The turbulent cascade brings
the motions there down to the tiny scales where the viscosity
can act on them very efficiently to dissipate them into heat. We
will discuss how to determine this dissipation rate in
Section 4.3.
We treat the entropy equation, given below, in a similar

fashion to the kinetic energy equation:
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Here, for our convenience, we have defined Γ as the energy
flux vector whose divergence gives us the nuclear energy
generation rate, òρ: ∇ ·Γ= òρ. Equations (23) and (22) are the
entropy equation and kinetic energy equation, respectively, for
each spherical shell.

4.3. Reduced Equations for Kinetic Energy and Entropy

4.3.1. Reduced Kinetic Energy Equation

In our simulations, the gravity is static and determined by the
base hydrostatic state. Therefore, the radial component of the
base pressure gradient cancels out with the gravitational
acceleration by design ∇p0= ρ0g. The gradient of the pressure
perturbation, however, is not purely radial. Local high
pressures can result in expansion in all directions. Hence, the
pressure gradient term in the kinetic energy equation, which,
from the dot product, evaluates to a scalar quantity, gives the
work done by pressure per unit time per unit volume. The
contribution of the horizontal components of the pressure
gradient force u ·∇p1 is not negligible (Figure 18). In
particular, the peak in u ·∇p1 near the CB comes mostly from
the horizontal component of the pressure perturbation gradient.
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In this region, rising gas hitting the CB causes local high
pressure, and the resulting flows are turned horizontal with
large uh ·∇hp1. Thus, the pressure gradient force term is
significant, even in low Mach number flows, and cannot be
found in a 1D computation except through a model, because of
the 3D nature of convection.

The PPMstar code solves the inviscid compressible fluid
dynamics equations, and physical viscosity is not included.
This is reasonable, because the viscosity of stellar gas is truly
minuscule. However, in the convective core, the convection is
turbulent. Turbulent dissipation of kinetic energy is important
in the convection zone. This dissipation occurs via the turbulent
cascade, which excites progressively smaller scales of motion
until the viscous dissipation scale is finally reached. In our
simulations, this dissipation is carried out by numerical
truncation error terms, some of which act like viscosity, but
with different dependence upon the spatial scale of the motion;
see Porter & Woodward (1994). The effectiveness of numerical
methods like PPM in simulating turbulent flows in this fashion
has been discussed at length and in detail, with many examples,
in Sytine et al. (2000) and Grinstein et al. (2007). There has

been much work on modeling and theories for turbulent
dissipation for stellar convection (for example, Zahn 1989;
Porter et al. 1998; Woodward & Porter 2006; Arnett et al.
2009). From the averaged kinetic energy, Equation (22), the
dissipation term can be deduced from the rest of the other
terms,
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Woodward & Porter (2006) estimated the turbulent dissipa-
tion as a function of density, and turbulent kinetic energy
density for homogeneous, isotropic turbulence,

( )
r

¶
¶

= -
E

t
A

L
E

1 2
25turb

0
0

turb
3 2

where L0 is the integral length scale, which is the scale
containing most of the kinetic energy, a dimensionless
parameter A0= 0.51, and r=E uturb

1

2
2, where u is the turbulent

velocity. By inserting the spherical averages of density and
velocity magnitude of M252 in Equation (25) and using
1500Mm here empirically as the spatial scale that contains
most of the kinetic energy, we get an estimate of turbulent
dissipation from the model.
Figure 18 presents the terms in the kinetic energy equation,

including the dissipation rate implied by the simulation from
assuming that all of the measured terms plus this dissipation
must add to zero, and it also shows the dissipation rate derived
using the turbulence model. The core convection is not truly
homogeneous, isotropic turbulence. However, its implied
dissipation rate according to Equation (24) agrees very well
with the turbulent dissipation model. The same model for
turbulent dissipation with a different factor has been reported in
Frisch (1995) and Arnett et al. (2009). The agreement between
the turbulent dissipation model Equation (25) and the
dissipation rate indirectly measured from the simulation is
striking. Note that the turbulent dissipation model does not
apply above the CB, where, by our definition of the CB, the net
convective entropy flux becomes essentially zero and any
motions are no longer turbulent. We therefore do not apply the
turbulent dissipation model at the CB and beyond. The
dissipation in the convection zone is a result of the turbulent
cascade only. This is confirmed by the dissipation from the
simulation decreasing smoothly to zero at around 1835 Mm in
Figure 18. The dissipation of kinetic energy implied by the
simulation is negligible in the radiative envelope.
For a disturbance of a fixed wavelength, the effective

viscosity of the PPMstar method scales as the cube of the grid
cell size Δx (Porter & Woodward 1994). Therefore, each 1.5×
grid refinement implies a decrease in the numerical viscosity at
each wavelength by a factor of 3.375. Nevertheless, the results
plotted in Figure 19 show that the dissipation of kinetic energy
in the convection zone is independent of the grid resolution for
grids equal to or finer than 7683 for our PPMstar code. This
apparent contradiction can be explained by the action of the
turbulent cascade, in the effective absence of viscosity,
transporting kinetic energy from larger to smaller scales at a
rate that is independent of scale. This self-similarity of the

Figure 18. Top: work by pressure gradient and gravity field per unit time per
unit radial distance, rate of change in kinetic energy per unit radial distance,
radial derivative of total kinetic energy flux, dissipation derived from the
turbulent dissipation model, implied dissipation rate per unit radial distance,
averaged over 399 dumps (∼1145 hr) centered at 17,188 hr of M252. Bottom:
time sequence of measured turbulent kinetic energy dissipation of M252 at
5729, 8594, 11,459, 14,323, and 17,188 hr.
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turbulent flow is the basis of the Kolmogorov (1941) argument
for the power-law spectrum shown in Figure 20. When the
kinetic energy reaches scales small enough that the viscosity
becomes important, this energy is damped and transformed into

heat. In the star, this occurs at tiny length scales much smaller
than the width of a single cell on any of our computational
grids. In our simulations, this occurs on length scales of a few
grid cell widths. In Figure 20, we see that the damping, which
causes the power at a given wavelength to fall below the
Kolmogorov trend, sets in at shorter wavelengths as the grid is
refined.

4.3.2. Verification of Turbulent Dissipation Measurement

Three simulations are performed, which restarted from a late
time (dynamical equilibrium already established) of the 1000×
heating and 1000× radiative diffusion cases with three
resolutions (M213, M207, and M210). Volume heating and
radiative diffusion are turned off from the beginning of these
three new runs. The intent is to measure the decay rate of the
kinetic energy in the convective core, which should be the same
as the turbulence dissipation rate. The kinetic energy per unit
volume is plotted about every 8.5 hr in Figure 21. Before the
nuclear heating is removed, we have a slightly convectively
unstable stratification. The unstable stratification continues
driving the convection for a short while before it is eliminated.
Hence, the decay of kinetic energy is barely noticeable in the
first couple of dumps. The total decay rates of kinetic energy
are estimated from the first 60 hr to be 20.5%, 17.8%, and
19.3% (from low to high resolution) of the luminosity. Again,
we do not see kinetic energy dissipated in the stable envelope.

4.3.3. Reduced Entropy Equation

Now we proceed to investigate the reduced entropy equation
to see if it leads to useful 1D modeling that has predictive
power on whether the star is in equilibrium or how big the
convective penetration region should be. There is no approx-
imation in deriving Equation (23). The entropy equation simply
states that the rate of change of entropy in a spherical shell is

Figure 19. Work of pressure/gravity per unit time per unit radial distance, rate
of change in kinetic energy per unit radial distance, radial derivative for the
total kinetic energy flux, dissipation implied by the kinetic energy equation,
dissipation from turbulence model for three resolutions of 1000× simulations
(top to bottom: M213, M207, and M210) at 1576.2 hr averaged over 401
dumps (∼286 hr). Inside the SB at about 1400 Mm, there is little dependence
of these values on grid resolution. This means that we can get a good
measurement of the implied turbulent kinetic energy dissipation rate using only
a modest grid.

Figure 20. Velocity power spectra at radius 1000 Mm for three runs, at grid
resolutions of 7683, 11523, and 17283 cells, averaged over 573 hr (800 dumps)
centered at 1576 hr. These spectra were calculated using the filtered briquette
data outputs of PPMstar, which has four times less resolution in each
dimension than the actual grid.
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the sum of turbulent dissipation of kinetic energy, heating and
cooling of nuclear burning and radiative diffusion, and the
advective flux of entropy. To further simplify, we assume the
radiative energy flux vector is a function of radius alone and is
radially directed, which is not strictly true, because the
adiabatic motion will heat or cool fluid parcels, and then the
heat flux can have a nonzero horizontal component. The second
term on the right-hand side then becomes
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This relation serves as a definition for Lnuc and Lrad.
The terms in the reduced entropy equation
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are shown at a very late time in Figure 22 for our run M252. By
the time shown, namely 17,188 hr, the time rate of change of
entropy is nearly zero at all radii, and the convection zone has
expanded considerably from its position at early times in
Figure 19. The time shown in Figure 22 matches that shown in
Figure 18. With this very long-duration run at the luminosity
enhancement factor of 10,000, we have been able to bring both
the kinetic energy equation (Figure 18) and the entropy
equation (Figure 22) simultaneously into very near equilibrium.

4.3.4. Accelerating Stellar Evolution by Enhancing Luminosity and
Radiative Diffusion

A key challenge of core convection simulations is the large
ratio between the thermal and convective timescales. We
address this disparity by boosting the luminosity and reducing
the opacity by a common factor b. Because the thermal
timescale scales with b−1 and the convective, or dynamic
timescale scales with b−1/3, the ratio of thermal to dynamic
timescale becomes smaller with larger boost factors. Boosting
the luminosity therefore makes it computationally less costly to

carry the simulation forward long enough to approach a
dynamic and thermal equilibrium. For this reason, luminosity
boost factors of 105 and 106 are commonly found in the
literature (see, for example, Edelmann et al. 2019; Andrassy
et al. 2024). Restriction of the problem to just two dimensions
(see, for example, Baraffe et al. 2023) or to plane-parallel
geometry (Anders et al. 2022) are other strategies to keep
computational costs down. To capture the largest convective
eddies in core convection requires simulating the entire core
convection zone (in three dimensions of course), as can clearly
be seen from the results shown in Figure 2. For our very long
run M252, with a luminosity boost factor of 10,000, we are
able to carry the simulation forward for a thermal timescale,
which brings the convection flow into very near thermal and
dynamical equilibrium.
Comparing the vertical scales of Figures 18 and 19 suggests

that the terms in the kinetic energy equation scale linearly with
the boosting factor. The scaling of convective velocity with
luminosity (Figure 7) and the turbulent dissipation model
Equation (25) also imply that the turbulent dissipation scales
linearly with the luminosity enhancement. Hence, the turbulent
dissipation, F, and Γ in Equation (23), all scale linearly with
the boosting factor L/L*. The time rate of change in entropy is
driven to become very small on the thermal timescale, so that
the star is nearly thermally relaxed, as is clear in the late-time
plot for our run M252 shown in Figure 22. Once the time rate
of change of entropy is driven nearly to zero in this way, we
have argued above that all of the terms in the entropy equation
except the convective entropy flux scale linearly with
luminosity. Because all of these terms plus the convective
entropy flux term then add to essentially zero, that flux term
must also scale linearly with luminosity. Therefore, we
conclude that when the stratification is close to equilibrium,
and the time rates of change for both kinetic energy and
entropy nearly vanish, then all of the other terms in the kinetic
energy and entropy equations must scale linearly with the
luminosity enhancement factor. It is natural to hope that the
rates of change with time of kinetic energy and entropy also
scale linearly with luminosity enhancement, so that we can

Figure 21. Time sequence of kinetic energy density every 8.5 hr for the
rundown experiments of M210: 17283, M207: 11523, and M213: 7683 (upper,
medium, and lower groups of lines) where the medium and lower resolutions
have been translated downward by 2 and 4, for easy visual comparison; note
that essentially no dissipation is seen outside the convection zone.

Figure 22. The gradient of energy flux from nuclear heating and radiative
diffusion, gradient of the advective entropy flux multiplied by temperature, rate
of change in entropy multiplied by temperature, and dissipation of kinetic
energy measured at 17,188 hr of run M252. Note the small role played by
turbulent kinetic energy dissipation relative to the other terms in the entropy
equation.
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accelerate our simulations by boosting the luminosity and
thermal conductivity by the same factor.

We have performed a series of very long simulations on
grids of 8963 cells for luminosity enhancement factors of 1000,
3162, and 10,000. These are the final three runs listed in
Table 1. These long runs give us an opportunity to test the
conjecture that boosting the luminosity and thermal conductiv-
ity by the same factor speeds up the approach to a single
common equilibrium stratification by approximately that same
boost factor. In the bottom panel of Figure 23, we show the
radiative heat fluxes, normalized by the boosted luminosities,
of the two higher-luminosity runs at times proportional to the
inverse of their boost factors. To the degree that these curves
agree, the conjecture is true. In the top panel of Figure 23, we
show the square of the BV frequencies for these two runs,
plotted at three different times when these frequency peaks had
moved to the same location in radius. These BV frequency
curves are quite similar. The times when these two runs have
their BV frequency peaks at the same location differ not strictly
by the 3.162 factor by which their luminosities differ, but
instead by a factor of about 3.6. For our two long runs, M250
and M252 at luminosity boost factors of b= 3162 and 10,000,
the Brunt–Väisälä frequency peaks for the run with higher
luminosity are not as high. This means that the strong changes
in entropy and composition at the convective boundary have
somewhat gentler slopes in this case.

The lower BV frequency peaks in our higher-luminosity
simulation are consistent with a trend that we have noticed
before in the thickness of the CB region, as measured by the
fitted overshooting parameter f, scaling with luminosity to the
1/3 power (Denissenkov et al. 2019; Woodward et al. 2019).
Baraffe et al. (2023) also reported a dependence of the
overshooting length of convection in 2D simulations on the
1/3 power of the luminosity. More direct evidence of such a
dependence of the thickness in 1D averages of the convective
boundary region, and also of the convective boundary location,
has been recently reported by Andrassy et al. (2024). Earlier
studies published by Baraffe et al. (2021) and by Käpylä et al.
(2020) were inconclusive on this point. Baraffe et al. (2021)
used 2D simulations and did not carry them out through a full
thermal adjustment time. Their results were consistent with our
arguments here that higher-luminosity boosts accelerate the
outward motion of the convective boundary toward its
equilibrium position. Käpylä et al. (2020) did not find any
significant luminosity dependence of their penetration depths,
but those penetration regions were constrained in size by the
nearby location of the boundary of their computational region.
Reviewers of the manuscript for this article encouraged us
indirectly to consider that a model of the convective penetration
region must involve some parameter that accounts for the
dependence of the penetration depth on luminosity. Our
procedure described in the next Section shows how we can
model the equilibrium structure of the convection zone
appropriately for large-luminosity boosts, such as the factor
10,000 used in our run M252 that is discussed above, and
sketches how the procedure can be modified to incorporate a
parameterized convective boundary thickness in future work.

5. A 1D Model of a Convection Zone with Penetration That
Is in Dynamic and Thermal Equilibrium

We have shown in Figures 18, 22, and 23 that our very long
simulation, run M252, has come very close to a state of

dynamic and thermal equilibrium. At the latest times in this
run, as are shown in Figure 24, the convective boundary is still
moving outward but at a pace reduced by a factor of 17. In its
long evolution, this run provides us with sufficient information
to extrapolate its approach to equilibrium and thus to
approximate its ultimate equilibrium state. Our analysis of the
1D kinetic energy and entropy equations, Equations (22) and
(27), provides the context for this extrapolation procedure. We
note that the dynamic equilibrium expressed by the kinetic
energy equation with vanishing time derivative (Equation (24))
with the first term on the right set to zero, is established
relatively rapidly. As the region of penetrative convection is
slowly extended, the kinetic energy dissipation rate, Φ(r),
changes hardly at all for r inside the SB, as is shown in
Figure 18. We can therefore use Equation (24) with zero time
derivative to solve for Φ(r) in this region. This requires, of
course, that we perform a short 3D simulation, but our results
(see Figure 21) show that a modest grid of 7683 cells is
sufficient. We have remarked earlier that a 3D simulation in the
correct spherical symmetry is needed to determine the pressure
gradient term in Equation (24), but if we were to have available
a series of such short simulations for stars of different masses

Figure 23. N2 of M250 (3162×) and M252 (10,000×) at three different times
when they proceed to the same location. Bottom: total radiative heat flux of
M252 (10,000×) and M250 (3162×) normalized by their respective
luminosities L. Considering that N2 depends upon the local entropy gradient,
it is remarkable how similar the results of these two runs are at these times,
especially considering the more-than-three-times-greater computational cost of
the M250 results.
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and evolutionary states, we would be able to find a very good
approximation for Φ(r) inside the SB by means of interpolation.
We can also see from Figure 18, and the results in Figure 19 as
well, that we may extend Φ(r) to the CB, where we know it
must vanish, by using the unique quintic polynomial that
assumes the known value of Φ(r) at the SB, vanishes at the CB,
and has vanishing first and second derivatives at the SB and
CB. This approximation assumes that we know the radius, rCB,
of the CB. We will make a guess at rCB and improve it
iteratively.

We now turn our attention to the entropy equation,
Equation (27). We will set the time derivative term to zero,
since we seek an equilibrium state. As we have remarked
earlier, we can use this equation to solve for the convective
entropy flux term, ( ( ))p r¶

¶
4 r Su

r

2
r . Inside the SB, we have this term

already from our short 3D simulation, but especially at lower
luminosities, this term tends to exhibit far more fluctuations
than the others in Equation (27), so that our short simulation
might not have provided a good estimate. We will use
Equation (27) to solve for the convective entropy flux term
in the entire convection zone, all the way out to the CB. We
take the nuclear heating rate, the term ¶

¶
L

r
nuc , from our short

simulation inside the SB and assume it to vanish outside that
radius. Now, in order to use Equation (27) to solve for the
convective entropy flux term, we must extend the radiative
diffusion flux, Lrad(r), which is known inside the SB, outward
to the CB. A simple model for this flux is to use the unique
quintic polynomial that assumes the values of Lrad(r) and its
first two radial derivatives at the SB and that also assumes the
value L, the total luminosity, at the CB, with its first two radial
derivatives vanishing there. We have found that this continua-
tion of Lrad(r) from SB to CB is appropriate for a very large
luminosity boost factor, such as the value 10,000 used in our
run M252.

Once we have chosen the forms of the continuations of both
Φ(r) and Lrad(r) from the SB to the CB, we seek the value of
rCB that results in a vanishing value there of the convective
entropy flux, ( )rSur . In order to evaluate the convective flux at
the CB, we integrate the convective entropy flux term,

( )p r ¶r Su r4 2
r , outward from the origin to the CB. We find

that a unique value of rCB results from the demand that the
entropy flux ( )rSur must vanish at the CB. We may then derive
the entire stratification in the convection zone by demanding
that the gas be hydrostatic and lie on the same adiabat as the
gas at the origin up to the SB, and by demanding that it be
hydrostatic and produce the prescribed extended Lrad(r) values
from the SB to the CB. Such a projected equilibrium state for
the case of our run M252 is shown in Figure 25 for projections
made at three different times during that simulation. These
three projections are very closely the same. Projected
equilibrium states made at two different times for run M252
are plotted against the simulation in Figure 26. The results
shown in Figure 26 show that we have assumed in our
projections that the composition jump, parameterized via
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where rfoot< r< rCB, begins arbitrarily at the point where the
radial derivative of the extended Lrad(r) has its most strongly
negative value. The plots in Figure 26 indicate that this is likely

Figure 24. Entrained mass as a function of time of M252. Over the course of
this long simulation, the entrainment rate has dropped by about a factor of ∼17,
although it has not fallen to zero when the simulation was stopped.
The entrainment rates are measured from 2865–5729 hr, and from
14,323–17,188 hr.

Figure 25. Top: dissipation measured from M252 at 17,188 hr and interpolated
beyond the SB. Bottom: entropy flux implied by the predicted hydrostatic
equilibrium stratification using the measured dissipation inside the SB and the
interpolated dissipation above the SB. The fist prediction uses central density,
entropy, and fV and turbulent dissipation below the SB at 5729 hr, the second at
11,459 hr, and the third at 17,188 hr.
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to be a mistake, because the projected composition jumps are
much gentler and thicker than those in the simulations at both
times shown. Instead, it appears that the composition jump, the
jump in our variable fV, should begin very close to the CB. Our
results of the convergence study shown at an early time in
Figure 8 indicate that the thickness of the composition jump is
likely to be unresolved on our 8963 grid in run M252. The
simulation produces fairly sharp jumps in entropy near the CB at
both times shown in Figure 26. A strong component of these
jumps comes from the composition jump in fV. However, the
entropy jump at the later time shown has a gradual rise before it
that is caused by a balance between local heating from a
declining radiative flux and cooling by the action of penetrative
convection, as we have remarked earlier. The thickness of the
entropy jump at the CB in a case where there is no composition
difference between the convection zone and the radiative
envelope will therefore be determined solely by the thickness
of the region where the radiative flux returns from its
overshooting value to the total luminosity in the penetrative
region. In the projected equilibrium models shown in Figures 25
and 26, we have essentially assumed that the thickness of this
transition of Lrad(r) from the adiabatic value to L is simply the
width of the penetration region. This assumption is appropriate
for high luminosities, as is the case for our run M252.

We argued earlier that all of the terms in the kinetic energy
and entropy equations should scale linearly with luminosity.
Some of these terms clearly do scale this way, and in an
equilibrium state, the time derivative terms will vanish.
However, this scaling cannot be precisely exhibited by all of
the terms in these equations, because this would result in
impossible entropy structures in the equilibrium penetration
regions. To see this, consider the gradual entropy increases in
approaching the CB that are plotted for the projected equilibria
in Figure 26. At a high-luminosity value, with an equally
enhanced value of the convective entropy flux in the
penetration region, the convection will have no problem
continuing despite the small but nonzero adverse entropy
gradient in this region. However, as the luminosity is reduced,
the weakening convection will be stopped by this small entropy
gradient. At a lower luminosity, the entropy gradient in the
penetration region would have to be reduced toward zero for
the convection to exist there. This reduction in the entropy
gradient would have to be accompanied by a change in the
radial behavior of Lrad(r) in the penetration region.
We have performed a series of simulations at different

luminosities all beginning with a projected equilibrium state for
our 25 Me model star at an earlier time in its evolution, when
there is no composition gradient. These simulations will be
reported in a future article. They do show, however, that both
the thickness and the radial location of the entropy jump at the
CB change, as anticipated above with luminosity.
To find equilibria for different luminosities using our

approach described above, we need to allow the functional
form of our extension of either Lrad(r) or Φ(r) or both to change
with luminosity. The behavior in the penetration region of
Lrad(r) is likely to be the more important of these two. Our
presently assumed functional form allows for a gradual change
in Lrad(r) that reflects the conditions seen in our higher-boost
factor simulations.
At lower luminosities, our above argument indicates that the

jump in entropy that results should be sharper, since it must
begin at a lower value in order for the convection to reach this
far. This conclusion is supported by our simulations. In our
preliminary work to find equilibria for a series of luminosity
values, we found that we can parameterize the jump in Lrad(r)
from its value along a local adiabat and the ultimate value L,
the total luminosity, in such a way that the thickness of this
jump scales with the 1/3 power of the luminosity. This power
is consistent with and motivated by the discussion at end of
Section 4.3.4.
We can use a function like ( ( ))xtanh arcsinh with a jump

thickness δx, over which x increases from −1 to +1, that scales
with b1/3. We then find the radius, rCB, of the CB iteratively by
demanding that the convective entropy flux must vanish there.
To do that, we use the entropy equation, with our Φ(r) from the
3D simulation, to solve for the radial gradient of the convective
entropy flux, as described in this Section.
A series of five such projected equilibrium states for the

stellar model studied here, at the beginning of the main
sequence when there is no composition gradient, and for boost
factors from b= 104 to nominal, are shown in Figure 27. These
involve jump thicknesses of 151, 70, 32.5, 15.1, and 7Mm and
result in jump-center radii of 1486, 1572, 1603, 1616, and
1622Mm. These equilibrium models are presented here only to
show the qualitative, rather than any quantitative, implications
of the 1D convection zone modeling method presented in this

Figure 26. The thermal equilibria predicted by the 1D method and the
stratifications of M252 (10,000× L* & k*) at 5729 hr (top) and 6000 (17,188
hr, bottom).
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Section. If we define the CB as we have done here so far, then
as the luminosity increases, so also does the CB radius.
However, if we define it as the center of the transition region,
then its radius decreases with increasing luminosity boost for
models with the same central entropy. We stress that the plots
of the convective entropy fluxes in Figure 27 are normalized by
their luminosities. Their appearance is counterintuitive, because
the center of the transition region at the CB moves slightly
outward with decreasing luminosity. However, the amplitude
of this extension of the convective flux in the penetration
region is 104 times smaller than that shown for the most
luminous case plotted in Figure 27.

In any case, the dependence of the equilibrium penetration
depth, rCB− rSB, on the luminosity is quite weak, as we might
have expected, in qualitative agreement with the results of
Andrassy et al. (2024). We see a change from a penetration
depth, measured using the center of the transition region, of
166–302Mm as the luminosity varies over 4 orders of
magnitude. In this sense, even though the change in penetration
depth is by a factor of 2, it is nevertheless weak relative to the
change in luminosity.

6. Conclusions and Discussion

We have carried out an extensive study of core convection in
a model star of 25 Me near the beginning of its main-sequence
life. We have focused our attention on the process of CBM, by
which the convection zone increases in size as the convective
boundary, the CB, moves outward. We have simulated the
convection using the PPMstar code, which employs accurate
explicit numerical techniques for the gas dynamics and still
more accurate moment-conserving advection techniques to
track the concentration of the gas that is originally located
above the convection zone. We find that despite the small value
of the radiative diffusivity in the star, it is nevertheless essential
to incorporate radiation diffusion into such simulations. Doing
so allows the simulation to ultimately reach a dynamic and
thermal equilibrium state in which radiation diffusion carries
heat outward through the convective boundary, so that the
convection zone does not need to continually expand in time.
There is a relatively short timescale of several turnovers of the
largest convective eddies in which the turbulent convection
becomes thoroughly established and a dynamical equilibrium is
achieved. That equilibrium can be expressed via the kinetic
energy equation in one dimension, our Equation (22). After this
short time, even on a modest grid of only 7683 cells, the kinetic
energy equation can be used together with radial profiles from
the simulation to determine the kinetic energy dissipation rate
Φ(r).
We carry out such a 3D simulation to measure Φ(r) using a

luminosity boosted by a factor b of 1000 or 10,000, with
radiative diffusion boosted by the same factor, to keep
computation costs down. So long as this boost does not
significantly alter the near adiabatic structure of the convection
zone up to the SB, we have argued that Φ(r) will scale linearly
with the boost factor, so that we can obtain this dissipation rate
at the nominal luminosity of the star by a simple division by b.
Φ(r) is a key ingredient in our procedure for obtaining a 1D
model of the convective penetration region beyond the SB.
Boost factors, b, are widely used in simulating stellar core

convection. We have shown that the mass ingestion rate, and
hence the rate of expansion of the core convection zone, scales
linearly with b (Figure 12) and that the velocities in the
convection zone scale with b1/3 (Figure 7). These scaling laws
have been known for many years. The first speeds up the
approach to an equilibrium convection zone size, and the
second speeds up the approach to the dynamical equilibrium
inside the convection zone. Thermal adjustments also are
accelerated by the factor b. Due to the lengths of these
adjustment times and the cost of simulating the entire
convection zone in three dimensions, which is required to
capture the largest and most important convective eddies and
thus to evaluate Φ(r) correctly, boosting the luminosity is a
technique that is used regardless of whether or not simulation
codes are explicit (like ours), anelastic, or fully implicit. We
have found in our study here that the values of b needed to
bring the thermal adjustment timescale into a practical range
also boost the velocities sufficiently to make our explicit
approach practical as well. We of course are simulating
different stars on different grids, so that direct comparisons are
difficult, but our luminosity boost factors are modest in
comparison with much other work.
We have shown results of varying the luminosity boost

factor b over more than an order of magnitude. The scaling
behavior is observed as discussed above, and the resulting

Figure 27. The radial profiles of entropy (top) and of the normalized entropy
flux (bottom) are shown in the region of penetrative convection beyond the SB
(at 1316 Mm) for a constant-μ stellar model of 25 Me (the same stellar model
used for run M252, but at the beginning of its main-sequence life). A sequence
of equilibrium models is shown that have been constructed by the method
described in Section 5 for luminosity boost factors, as indicated in the legend.
These correspond to transition thickness parameters δ = 150.8, 70, 32.49,
15.08, and 7 Mm. For the largest luminosity boost of 10,000, the transition
region extends nearly to the SB. For the nominal luminosity of this star, the
transition region in which the convection zone structure is not adiabatic is
nearly a discontinuity, at a thickness of only 7 Mm.
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convective fluid behaviors are essentially the same at all boost
factors studied. This result should not be a surprise, because at
our largest boost factor of 10,000, the Mach numbers in the
convection zone are still small, having been boosted by only a
factor of 21.5, so that the character of the convective flow is
essentially unchanged. This flow is visualized in Figure 28,
where we show the magnitude of the vorticity at early and late
times in our very long run M252.

In the early flow, we see that the classic core-convection
dipole circulation hugs the CB closely over about a quarter of the
extent of this circle. The flow separates from the CB where the
prominent shear layers, marked by very strong vorticity (shaded

yellow), bend inward from the boundary. At the top right, we see
the flow much, much later. The convection zone has expanded
substantially, and the dipole circulation “contacts” the CB only
along a very small segment, from which it immediately
separates. Just 0.35 day later, at the bottom right, the dipole
circulation has left the CB entirely, leaving a thin layer of
somewhat higher-entropy gas between it and the boundary. In
the image at the bottom left, despite the vigor of the dipole
circulation flow, we see no contact with the CB, but we do see at
about two o’clock, a strong gravity wave interfacial mode
propagating along the CB, with a node in its flow pattern right at
the CB radius. Our model of the convection zone identifies the

Figure 28. Four views of the vorticity magnitude in the far hemisphere of very long simulation M252 (b = 10,000, 8963 grid). Top left: t = 12.06 days, the dipole
circulation pattern characteristic of core convection has become well established, and the radius of the CB is 1535 Mm. The other three views (clockwise from top
right are at times 732.41, 732.76, and 737.66 days) show later times, when the flow has developed a much larger region of penetrative convection above the SB. The
CB radii in these images are 1810, 1811, and 1812 Mm, respectively.
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thin, higher-entropy layer of convection zone gas right next to
the CB as a key feature of this near-equilibrium penetrative
convection structure. This layer is generated by local heating
from a declining radiative diffusion heat flux that is approaching
the total luminosity in this region from above. This flow can be
compared with that shown in the lower-right panel of Figure 2,
which was computed at triple the grid resolution for the same
stellar model with a boost factor 10 times lower.

We have presented a 1D method for finding the equilibrium
state of the convection zone complete with its penetration
region. We first simulate the core convection in three
dimensions on a modest grid for several turnovers of the
largest convective eddies, in order to establish a dynamical
equilibrium. Using the 1D kinetic energy equation, we solve
for the kinetic energy dissipation rate, Φ(r), in the region inside
the SB. This dissipation rate is an inherently 3D phenomenon,
because it depends upon the 3D turbulent cascade, and it is
affected by pressure accelerations in nonradial dimensions that
do not cancel out upon averaging. To avoid this 3D simulation,
one might instead interpolate Φ(r) between such 3D results
obtained for similar stellar models. One might also use a
mixing-length type model to obtain Φ(r). It is very computa-
tionally costly to simulate the core convection flow until it
comes into thermal as well as dynamical equilibrium. However,
we can estimate the equilibrium state quite accurately by
analytically continuing Φ(r) and Lrad(r) between the SB and the
CB, as described in Section 5.

The task ahead is to determine extrapolation functional
forms for Lrad(r) and/or Φ(r) and their dependence on the boost
factor that can be validated by simulations. This will inevitably
involve an iterative procedure in which 1D stellar evolution
simulations that include our 1D equilibrium prediction and 3D
simulations are alternated a few times until, within the possible
numerical accuracy, dynamic and thermal equilibrium can be
confirmed. The preliminary results of our 1D model predictions
as a function of boost factor shown in Figure 27 imply that the
transition layer is extremely thin at nominal luminosity. It
would likely be best simulated in 1D stellar evolution as an
adiabatic step penetration layer, the thickness of which can be
determined by our 1D model calibrated with turbulent
dissipation from 3D simulations. For our preliminary 1D
model prediction for nominal heating, shown in Figure 27,
which is, as mentioned, calibrated with a zero-age main-
sequence simulation, the predicted penetrative overshoot would
be 0.7Hp, which is almost a factor of 3 larger than the
prediction by Johnston et al. (2024) for the same mass.

Our very long simulation, M252, has shed light on the
approach to equilibrium in core convection. Our analysis of the
entropy equation reveals that at the SB, the convective entropy
flux does not vanish (see, for example, Figure 25), and
therefore there must be a region of penetrative convection. The
convection is brought to an end by the joint actions of kinetic
energy dissipation and a positive entropy gradient that develops
of necessity in the penetration region as a result of the decrease
with increasing radius of the radiative energy flux there. For the
energy balance, especially in the penetration zone, the work
done by global 3D pressure fields is a key factor that enters our
1D model predictions through the determination of the implied
dissipation. Taking this effect into account is facilitated by our
simulations adopting the correct 3D 4π geometry that captures
these global pressure fields as a result of the global dipole
circulation. In the equilibrium state, the core convection

maintains this propensity to organize into a prominent dipole
circulation, with prominent shear layers where the diverted
upward flow streams along the convective boundary. However,
in this equilibrium, as distinct from at earlier times when the
CB is still moving outward, these shear layers separate the
upwelling and diverted flow from a thin layer of heated gas that
shares the well-mixed composition of the convection zone as a
whole. We have remarked upon this earlier, but it can best be
seen in flow visualizations like those in Figure 28.
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