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Abstract
We propose a screening method for high-dimensional data with ordinal compet-
ing risk outcomes, which is time-dependent and model-free. Existing methods are 
designed for cause-specific variable screening and fail to evaluate how a biomarker 
is associated with multiple competing events simultaneously. The proposed method 
utilizes the Volume under the ROC surface (VUS), which measures the concordance 
between values of a biomarker and event status at certain time points and provides 
an overall evaluation of the discrimination capacity of a biomarker. We show that 
the VUS possesses the sure screening property, i.e., true important covariates can 
be retained with probability tending to one, and the size of the selected set can be 
bounded with high probability. The VUS appears to be a viable model-free screen-
ing metric as compared to some existing methods in simulation studies, and it is 
especially robust to data contamination. Through an analysis of breast-cancer gene-
expression data, we illustrate the unique insights into the overall discriminatory 
capability provided by the VUS.

Keywords  Biomarker evaluation · Kendall’s tau · Model-free screening · Sure 
screening property · U statistic

1  Introduction

Variable screening becomes increasingly necessary with the availability of ultra-
high dimensional data. The goal of variable screening is to reduce the number of 
covariates to a moderate size, which would then allow the use of traditional or high-
dimensional variable selection methods (Fan and Lv 2008). Fan and Lv (2008) pro-
posed the sure independent screening (SIS) method, simply keeping covariates that 
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are independently highly correlated with the outcome of interest, and introduced 
the sure screening property, which means that the screening method would keep all 
important covariates with probability tending to one.

Various screening methods have been developed for survival outcomes, assum-
ing non-informative right censoring. Tibshirani (2009), Fan et al. (2010), Zhao and 
Li (2012) proposed screening procedures assuming that event times follow Cox’s 
model. Gorst-Rasmussen and Scheike (2013) justified their method for single-index 
hazard rate models. These methods may not be adequate when the model assump-
tion is violated, and model-free methods have thus been developed; see Song et al. 
(2014), Li et al. (2016), Hong et al. (2018) and Pan et al. (2018) for instance. All of 
these methods were shown to possess the sure screening property.

With the existence of competing risks, subjects are exposed to more than one 
event. Screening methods designed for survival outcomes may not be directly 
applied, as the competing events cannot be treated as non-informative censoring 
when dealing with the event of primary interest. Several methods have been intro-
duced recently for variable screening under the competing or semi-competing risk 
setting. Lu et  al. (2020), Peng and Xiang (2021), and Liu et  al. (2021) proposed 
screening methods for semi-competing risks data. These methods require two time 
values being observed, one is the minimum of non-terminal event, terminal event, 
and censoring time, and the other is the minimum of terminal event and censoring 
time, and thus semi-competing risk methods may not be applicable to the compet-
ing risk setting where only the minimum of the censoring time and all event times 
is observed. For competing risks data, Li Erqian (2018) developed a feature screen-
ing method for the proportional subdistribution hazard model by maximizing the 
log-likelihood function with constraints using Taylor’s expansion and then selecting 
variables based on a penalized log-likelihood function. Chen et al. (2022) proposed 
a sure independent screening procedure by ranking the marginal correlation between 
each single covariate and the estimated cumulative incidence function of the event 
of interest (crCRS). Tian et  al. (2022) considered a feature screening method for 
a varying coefficient proportional subdistribution hazard model via maximizing 
a constrained local partial likelihood. Wang et  al. (2022) developed a safe feature 
elimination (SAFE) algorithm for Lasso-type variable screening based on a propor-
tional subdistribution hazard model, which eliminates features that are guaranteed to 
have zero coefficients in the Lasso estimator. These methods designed for competing 
risks data mainly evaluate whether biomarkers are related to the occurrence of one 
particular event with the presence of competing risks. In practice, we sometimes 
encounter situations where biomarkers may be related to several competing events, 
and continuous changes in biomarkers, either increasing or decreasing, are associ-
ated with changes in event statuses, which results in a naturally ordered sequence of 
competing events. When the goal is to find such covariates that can predict different 
event statuses at a given time, existing methods may not be adequate, since they 
cannot evaluate biomarkers’ ability to discriminate subjects from multiple compet-
ing event groups simultaneously, but mainly focus on their ability to distinguish the 
event group of interest from the event-free group. Therefore, in this article, we aim 
to fill this gap and consider variable screening for covariates that are related to ordi-
nal competing risks simultaneously.
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We utilize the volume under the ROC surface (VUS) proposed by Zhang et al. 
(2022) as our screening metric. Details are provided in Sect. 2. In Sect. 3, we show 
that VUS possesses the sure screening property under certain conditions. In Sect. 4, 
we run simulation studies to examine the performance of VUS. A real data analysis 
is carried out in Sect. 5.

2 � Method

2.1 � Volume under the ROC surface

We focus on cases with two ordered competing events, and cases with more than 
two competing events can be generalized. For convenience we assume that cause-1 
event is the most severe condition, such that as the value of biomarker decreases, the 
event status would be likely to evolve from event-free to cause-2 event, and then to 
cause-1 event, forming a natural order.

Considering a three-dimensional ROC surface formed by the correct classifica-
tion probabilities for subjects from cause-1 event, cause-2 event, and the event-free 
groups, the VUS is the volume under this ROC surface, and it corresponds to a con-
cordance index (Mossman 1999; Nakas and Yiannoutsos 2004) as described below. 
Let T be the time to any ordinal competing events and let � = 1, 2 be the cause indi-
cator. Let � be a p-dimensional vector of covariates. For three randomly selected 
subjects i, j and k such that Ti ≤ t0, �i = 1 , Tj ≤ t0, �j = 2 , and Tk > t0 , the VUS at t0 
for a single covariate Zl is

where Zil , Zjl and Zkl are the lth covariate for subjects i, j and k. Therefore, VUS 
measures the concordance probability of a biomarker and a sequence of events 
(Zhang et al. 2022).

Let C denote the time of censoring and assume that C is independent of T and 
covariates Z . Define X = min(T ,C) , and � = I(T ≤ C)� , and the observed data con-
sist of independent and identically distributed triplets {(Xi, �i,Zi)}, i = 1… n . Let G 
be the survival function of C and denote its Kaplan-Meier estimator as Ĝ . Then from 
Zhang et al. (2022), an estimator of the VUS at a pre-specified time t0 for the l-th 
covariate based on inverse probability of censoring weighting is given by

VUSl(t0) = P(Zil < Zjl < Zkl|Ti ≤ t0, 𝜖i = 1, Tj ≤ t0, 𝜖j = 2, Tk > t0),

�VUSl(t0) =

∑
i≠j≠k

I(Xi≤t0,𝜂i=1,Xj≤t0,𝜂j=2,Xk>t0,Zil<Zjl<Zkl)

Ĝ(Xi−)Ĝ(Xj−)Ĝ(t0)

∑
i≠j≠k

I(Xi≤t0,𝜂i=1,Xj≤t0,𝜂j=2,Xk>t0)

Ĝ(Xi−)Ĝ(Xj−)Ĝ(t0)

.
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2.2 � Screening procedure

Zhang et al. (2022) showed that VUS provides an assessment of the overall discrim-
ination capacity of a continuous marker for multi-level categorical outcomes with a 
natural order. Due to its nice property and interpretation, we consider using VUS(t) 
as a metric for screening variables predictive of competing risk outcomes. Define 
M

∗ as the set of true active variables such that

In practice, the conditional distribution given a marker is unknown, and a working 
distribution is needed to estimate the true active set M∗ . To avoid imposing specific 
model assumptions, we use the VUS to select important biomarkers whose continu-
ous changes would lead to changes in event statuses. We thus implicitly restrict M∗ 
to be a set of biomarkers with an ordinal relationship with the event status.

When a covariate Zl has no association with event time, its true VUS would be 
1/6, as for three subjects randomly selected from three distinct groups, there are six 
possible rankings of their biomarkers with equal probabilities, and Zil < Zjl < Zkl 
appears with 1/6 probability; see also Nakas and Yiannoutsos (2004) and Li and 
Fine (2008). Ties in biomarkers can be handled following Zhang et al. (2022). We 
therefore select a set of important covariates by comparing their VUS estimates 
V̂US(t0) with 1/6. Suppose �n is a pre-specified threshold. The selected set is denoted 
by

Basically, t0 can be selected as any time points of scientific interest satisfying certain 
conditions, which will be mentioned in later sections. By the definition of VUS and 
the ordinal relationship between true active covariates and the sequence of events, 
ℳ̂ provides an estimator of M∗.

Note that there are several cases where the VUS falls below 1/6. In construct-
ing the ROC surface, we assumed that a smaller covariate value would indicate a 
more severe condition. This assumption may be violated in practice. For example, 
the important covariates can still be related to the outcomes in an ordinal manner, 
but with larger values indicating more severe conditions. Although these covariates 
have a strong association with the events, they are less likely to be selected than 
variables satisfying the assumption because their VUS values are below 1/6, and 
their absolute deviations from 1/6 are bounded by 1/6. In this case, we would reverse 
their signs to satisfy the assumption. After taking reverse, |VUS − 1∕6| would largely 
increase, and these important variables are much more likely to be captured. How-
ever, if the relationship between a covariate and the outcomes is not in the assumed 
order or its opposite, the value of the VUS would be relatively small, even after 
taking inverse, and our metric is less likely to pick such covariates. Additional simu-
lation results have been provided in Supplementary Material showing where VUS 
would locate under different possible relationships between the biomarker and the 
event status.

M
∗ = {l ∶ P(T ≤ t, � = 1 or 2|Z) depends on Zl}.

ℳ̂ = {l:|V̂USl(t0) − 1∕6| ≥ �n}.



739

1 3

VUS screening for ordinal competing risk outcomes

3 � Sure screening property

In this section, we establish the sure screening property of the VUS method. The 
following conditions are required.

Condition 1 There exists a 𝜈 > 0 such that P(C = 𝜈) > 0 and P(C > 𝜈) = 0.
Condition 2 minl∈M∗ |VUSl(t0) − 1∕6| ≥ c0n

−� for some 0 < 𝜅 < 1∕2 and 
c0 > 0.

Condition 3 There exists 𝛿 > 0 , such that P(Ti ≤ t0, �i = 1, Tj ≤ t0, �j = 2,
Tk > t0) > �.

Condition 1 is used to show asymptotic properties in Song et  al. (2014) for 
survival outcomes. Condition 2 shows that true active covariates can be distin-
guished from pure noise by the definition of VUS, and further links the selected 
set M̂ with M∗ . Condition 3 requires that there are subjects in each of the event 
groups. It is used to show asymptotic properties and can be easily satisfied with 
a properly selected t0.

Theorem 1  Under Conditions 1–3, for any positive constant c6 , there exist positive 
constants c3 , c4 and c5 such that c6 =

1

�
(2c3 + 2)c4 +

1

�
c5 , and for any single covari-

ate Z,

Taking �n = cn−� with c = c0 − c6 , we have

where s = |M∗| is the cardinality of M∗.

Theorem 2  Under the conditions of Theorem 1, with p = o(exp(n1−2�)) and assum-
ing 

∑p

l=1
�VUSl − 1∕6� = O(n�) for some 𝜉 > 0 , we have

The detailed proofs of Theorems  1 and  2 can be found in the Supplementary 
Material. We assume the sparsity of true active covariates; thus, Theorem 1 shows 
the sure screening property of the VUS method. Theorem 2 demonstrates that the 

(1)

P(|V̂US − VUS| ≥ c6n
−�) ≤ 10n3 exp{−

1

36
�8n} + 4 exp{−

2

3
c2
3
�6n}

+ 4 exp
{
−

2

27
c2
4
�6�2(1 + c4n

−�)−2n1−2�
}

+ 2.5n3 exp
{
−
1

9
c2
4
�2�8(3 + 3c4n

−� + c4n
−��)−2n1−2�

}

+ 4 exp{−
2

27
c2
5
�6n1−2�}

+ 2.5n3 exp{−
1

9
c2
5
�8(3 + c5n

−�)−2n1−2�}.

P(M∗ ⊂ M̂) ≥ 1 − sP(|�VUS − VUS| ≥ (c0 − c)n−𝜅),

P(|M̂| ≤ O(n𝜉+𝜅)) ≥ P(max
1≤l≤p

|�VUSl − VUSl| ≤
1

2
c6n

−𝜅)

≥ 1 − pP(|�VUSl − VUSl| ≥
1

2
c6n

−𝜅).



740	 Y. Qu, Y. Cheng 

1 3

size of selected important set M̂ can be controlled when p = o(exp(n1−2�)) and ∑p

l=1
�VUSl − 1∕6� = O(n�).

4 � Simulations

We evaluate the finite sample performance of the VUS-based screening under differ-
ent scenarios. The VUS is compared with three existing methods, PSIS (Zhao and Li 
2012), Kendall’s � (Song et al. 2014) and crCRS (Chen et al. 2022). crCRS can screen 
variables that are related to each specific cause of events under the competing risk set-
ting. Therefore, for the crCRS method, we show variables selected for each cause of 
event separately, and we also consider a combination of variables selected for each 
cause to obtain the set of variables that are related to multiple events. For the PSIS 
method originally designed for survival outcomes using Cox model, we make adap-
tions to competing risk setting. For each cause of event, we combine subjects who had 
competing events and those who were censored, and treat them as independent cen-
soring. Then we fit a cause-specific hazard model for each cause of event based on 
each single biomarker, and look for important biomarkers associated with each cause-
specific hazard. Again, we show variables selected for each cause of event, and also 
the union of important biomarkers from the two events. Kendall’s � method can only 
handle typical survival outcomes with independent censoring, and cause-1 and cause-2 
events are typically not independent given covariates. Thus, subjects who have expe-
rienced either event 1 or event 2 are combined together as the overall event group in 
implementing this method to satisfy the independence assumption. By comparing VUS 
with existing methods or their adaptions, we would like to investigate different behav-
iors of possible ways of variable screening under competing risk settings.

We considered the following four scenarios. Under each scenario, we simulated 200 
datasets with the number of subjects n = 200 and the number of covariates p = 5000 . 
Covariates Z = (Z1,… , Zp)

� were generated from a multivariate normal distribution 
with mean 0 and correlation 0.5|i−j| between Zi and Zj . For each scenario, there are four 
true covariates Z1, Z2, Z3, Z4 . Censoring times under each scenario were generated from 
uniform distributions to achieve 20% or 40% censoring.

Scenario 1: Latent event times were generated from log-logistic models

with � = 0.2 , e following standard logistic distribution, ��
1
= (1, 0.9, 0.8, 0.5, 0,… , 0) 

for the cause-1 event and ��
2
= (0.5, 0.3, 0.2, 0.1, 0,⋯ , 0) for the cause-2 event. If 

T1 < T2 , the time to the first event T was set as T1 , and the event indicator � was set 
as 1; otherwise, the first event time was set as T2 with � being 2. As only the time to 
the first event is recorded, T1 and T2 cannot be observed simultaneously, and they are 
thus referred to as latent event times. The VUS was estimated at t0 = 1.5.

Scenario 2: Event times were generated from a proportional subdistribution hazard 
model (Fine and Gray 1999) with the cumulative incidence function (CIF) for cause-1 
being

log(Tj) = ��
j
Z + �e, j = 1, 2,
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The conditional distribution for T given the cause-2 event occurring first was set as

Y was a long vector containing all discretized biomarkers. Each observed continu-
ous biomarker Zk was discretized into three categories and denoted by three dummy 
variables: Yk1 = I(Zk < −0.5) , Yk2 = I(−0.5 ≤ Zk < 0.5) , and Yk3 = I(Zk ≥ 0.5) . 
The associated coefficients for the three corresponding Ys of Z1, Z2, Z3, Z4 were 
��
1k
= (log 3, log 1∕3, log 1∕6) for cause-1 and ��

2k
= (log 9, 0, log 1∕2) for cause-2, 

k = 1, 2, 3, 4 , and zero for all other Ys. The VUS was estimated at t0 = 17.
Scenario 3: Event times were generated from Gerds’ multinomial logistic regres-

sion model (Gerds et al. 2012) with the cause-1 CIF

and the cause-2 CIF

where a1 = a2 = 2 and b1 = b2 = −15 . Y was the same as in scenario 2, and 
the associated coefficients for Y were ��

1k
= (log 0.9, log 0.1, log 0.05) and 

��
2k
= (log 0.1, log 0.9, log 0.45) , k = 1, 2, 3, 4 for Z1, Z2, Z3, Z4 and zero otherwise. 

The cause indicator was generated from a Bernoulli distribution with probability 
F1∕(F1 + F2) where F1 and F2 were calculated at the simulated event time for each 
subject. The VUS was estimated at t0 = 9.

Scenario 4: Event times were generated from the cause-specific Cox proportional 
hazard model with constant hazard rates for both events. We first created a risk score 
�′
Z with � = (3, 2.5, 2, 1.5, 0,… , 0)� . Two cut points were selected with c1 = −2.5 

and c2 = 3 . For subjects whose risk scores were below c1 , the hazard rates were 0.9 
for cause-1 event and 0.1 for cause-2 event. For subjects whose risk scores were 
between c1 and c2 , the hazard rates were 0.1 and 0.9 for event 1 and event 2, respec-
tively. For subjects having risk scores above c2 , the hazard rates were 0.05 and 0.45. 
We estimated VUS at t0 = 1.

For VUS and Kendall’s � , we summarize how many true variables can be cap-
tured on average when we select 8, 20, 40, 60, 80 variables. For the PSIS and 
crCRS methods, first, for each cause of events we show the number of true active 
variables captured when 8, 20, 40, 60, 80 variables are selected for that particular 
cause (PSIS1, PSIS2, crCRS1 and crCRS2 in tables). Then we also estimate a set 
of important covariates that may provide overall predictive accuracy by selecting 
4, 10, 20, 30, 40 variables for each cause of events and then taking the union (PSIS 
and crCRS in tables). Following the investigation in Song et al. (2014), under each 

F1(t|Y) = 1 −

[
1 − 0.8

{
1 − exp

(
− (t∕20)5

)}]exp(��1Y)
.

P(T ≤ t|� = 2,Y) = 1 − exp
(
− exp(��

2
Y)(t∕20)5

)
.

F1(t|Y) =
exp(a1t + b1 + ��

1
Y)

exp(a1t + b1 + ��
1
Y) + exp(a2t + b2 + ��

2
Y) + 1

F2(t|Y) =
exp(a2t + b2 + ��

2
Y)

exp(a1t + b1 + ��
1
Y) + exp(a2t + b2 + ��

2
Y) + 1

,
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setting, we also examine the performance of four metrics when observed covariates 
Z are contaminated; with a probability of 0.1, each covariate could be contaminated 
by a t distribution with mean 0 and 1 degree of freedom.

Consistently shown in Tables 1, 2, 3 and 4, generally, the number of true vari-
ables captured by VUS decreases when we have a higher rate of censoring, as do 
Kendall’s � , PSIS and crCRS, except that under the Gerds model when very few 
true variables can be captured by Kendall’s � and crCRS, a lower rate of censor-
ing may not indicate a better performance of these two methods.

Regarding the average number of true active variables captured, overall VUS 
has comparable performance to the other three under latent log-logistic and 
Fine and Gray models and performs much better than Kendall’s � and crCRS 
under Gerds and Cox models. When data are not contaminated, PSIS1 and the 
union of PSIS perform consistently better than the VUS method. Yet the PSIS 
method doesn’t work well when trying to capture important features for cause-2 
events, and the good performance of the union of PSIS mainly relies on PSIS1. 
A possible explanation is that, when fitting cause-2 Cox models, the cause-1 
event is treated as independent censoring, as what is normally done for cause-
specific Cox models. However, under our assumption, the cause-1 event is the 
most “severe” event, and subjects in this group tend to have the smallest values 
of a biomarker. When mixing up the cause-1 group and the event-free group, for 
the latter of which subjects tend to have the largest values of the biomarker, it 
becomes much harder for the Cox model to distinguish the cause-2 group from 
the combination of the other two groups based on the ranking of the biomarker. 
Therefore, the PSIS method may not provide a thorough evaluation of the overall 
predictive accuracy across all events under the ordinal competing risks setting.

Kendall’s � method completely fails under the Gerds multinomial regression 
model. It is because in this model, after collapsing cause-1 and cause-2 events 
for Kendall’s � , the overall risk is the same for the two categories Z < −0.5 
and −0.5 ≤ Z < 0.5 , although the overall risk for subjects with large covariates 
is small. Due to the inability to distinguish these two categories, Kendall’s � 
isn’t able to fully capture the relationship between the covariate and the ordinal 
outcome, while VUS still works. For the crCRS method, we observe that true 
variables can rarely be captured under the Gerds and the Cox model. The crCRS 
measures the linear correlation between the covariate and the cumulative inci-
dence function, and fails due to the discretization of covariates and risk scores, 
and also the form of cumulative incidence functions under these two models.

With data contamination, all methods are negatively affected. The PSIS and 
the crCRS method perform poorly under all four models. In comparison, VUS 
is more robust to contamination across all four models. Kendall’s � works well 
under the log-logistic and Fine-Gray models, but becomes worse than PSIS 
under Gerds’ and Cox’ models.

In summary, compared to possible adaptions of existing screening meth-
ods to competing-risk outcomes and the crCRS method, VUS provides a dif-
ferent aspect of the association between biomarkers and the competing events, 
as it measures the overall ability of the biomarkers to distinguish subjects from 
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multiple groups simultaneously, which cannot be fully captured by existing 
screening methods, especially when distinguishing event-1 and event-2 groups.

5 � Data analysis

We applied our proposed screening method to a gene-expression dataset from a 
breast cancer study (van de Vijver et al. 2002). This dataset is obtained from the 
R package “cancerdata” (Budczies and Kosztyla 2021) and contains 295 women 
with breast cancer and expression values of 24,481 genes in tumor samples of 
each woman. Two events of interest are distant metastasis and death. Among 295 
patients, five (1.7%) patients died without metastasis, 101 (34.2%) experienced 
metastasis, and 74 (25.1%) died after metastasis. The overall censoring rate, i.e, 
patients survived without metastasis, is 64.1%. The objective of our analysis is to 
capture the genes that are associated with the progression from breast cancer to 
distant metastasis and/or death.

For our simulations, we’ve tried different t0 s (not shown here), and found that 
for the VUS, what really matters is the number of subjects falling in each dis-
ease category at the time of prediction. Therefore, t0 needs to be chosen carefully 
to guarantee enough samples in each category, which can be easily examined. 
In this data example, we looked at patients’ survival at t0 = 5 years and consid-
ered the most severe event each patient experienced before t0 . Particularly, death 
was treated as cause-1 event and metastasis was treated as cause-2 event. At five 
years, 48 patients died either with or without metastasis, 32 patients were alive 
but with metastasis, 207 patients were alive and metastasis-free, and 8 patients 
were censored before t0.

Different from simulation studies, in real data analysis, we are not sure how 
covariates are associated with the outcomes. As mentioned in Sect.  2, for covari-
ates whose larger values are associated with more severe conditions, we can reverse 
the relationship. In this dataset, it is not clear which genes violate our assumption. 
Therefore, for each gene, we calculated two VUS estimates, one assuming that lower 
values are associated with more severe states, and the other assuming that the rela-
tionship is in the opposite direction. For the latter, we used two minus the observed 
value of gene expression as values of the covariates to estimate VUS, where two is 
the maximum value of all covariates. We kept the VUS estimate that was further 
away from 1/6, which could better reflect the ordinal association between the varia-
ble and event groups, as illustrated by simulation results in Supplementary Material.

Following Fan and Lv (2008), we selected [n∕ log(n)] = 51 important variables 
for VUS and Kendall’s � . For the PSIS and the crCRS method, 26 variables were 
selected for each type of event, and the final important set contained the union of 
important variables of two events.

We show the top 51 genes selected by VUS in Table 5. Genes that are selected 
by both VUS and Kendall’s � are denoted by *, genes selected by both VUS and 
PSIS are denoted by &, and those selected by VUS and crCRS are denoted by #. 
Bold-faced genes are selected by all four methods, which include five genes. The 
same dataset was also analyzed in Song et al. (2014) and Lu et al. (2020). In Song 
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et al. (2014), the event of interest was the overall survival time, and only the top 
20 selected genes were shown. We compared the results and found that 13 genes 
were both selected by our VUS method and by Song et al. (2014).

Lu et al. (2020) treated the data as semi-competing risks outcomes. While explic-
itly handling semi-competing risks is beyond the scope of this work, the proposed 
VUS is still applicable by counting the most severe event that occurred. The authors 
selected 51 genes using the proposed method in Lu et  al. (2020) and improved 
the results based on an adaptive threshold rule, for which 25 genes were selected. 
They showed that the adaptive threshold rule would perform better than the pro-
posed method itself, so we compared the selected genes with their 25 selected genes. 
Among the 25 selected genes, 13 genes were selected by both our VUS method and 
Lu et al. (2020), and these 13 genes were partially different from those selected by 
VUS and Kenall’s � in Song et al. (2014). These comparisons imply that there is no 
one-size-fits-all metric, and our VUS method is a viable variable screening metric 
for competing risk outcomes as it focuses on a different aspect of the association 
between the covariates and the outcome than existing methods.

6 � Discussion

In this paper, we have shown that VUS possesses the sure screening property. The 
VUS can provide an overall assessment of diagnostic accuracy of covariates in pre-
dicting ordinal outcomes and has a straightforward interpretation as the concord-
ance probability between the value of covariates and the disease status. Simulation 
studies and data analysis have shown that compared to cause-specific screening 
methods, VUS can capture additional aspect of the association between biomarkers 

Table 5   Top 51 genes selected by VUS

Bold-faced genes are selected by all four metrics; ‘*’ are selected by VUS and Kendall’s � ; ‘ &’ are 
selected by VUS and PSIS; ‘#’ are selected by VUS and crCRS

U96131 & NM_005480 *# Contig29555_RC Contig31288_RC
M96577 NM_003494 NM_003295 NM_000987
NM_004219 NM_005733 NM_004701 *# Contig57173_RC
NM_001605 &# NM_019059 NM_004217 # NM_002466 *
Contig57584_RC * & NM_007019 *# NM_006607 NM_006579 *
NM_001809 # NM_006845 Contig6498 D38553 *#
Contig38288_RC * & NM_005804 NM_006623 & D43950 &
Contig35629_RC NM_018188 * NM_001673 D14678
Contig41828_RC NM_018410 *# NM_002624 NM_001255
NM_020313 NM_014454 NM_018688 Contig56390_RC *#
Contig38901_RC NM_003504 NM_001333 NM_007195
NM_019597 & NM_017761 * NM_018834 NM_003600 *#
Contig41977_RC Contig43747_RC NM_001168 *#
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and multiple competing events, therefore it can serve as an alternative for variable 
screening, especially with data contamination in covariates.

A limitation of VUS is that it is designed to pick covariates that have ordinal 
relationships with the outcomes, which means that as the value of the biomarker 
increase or decrease, the event status would change, and thus can be ordered by 
the values of biomarker. For convenience in this paper we have assumed that as the 
value of a covariate decreases, the disease status would evolve from the healthy con-
dition to event-2 and then to the most severe case (cause-1 event). For each single 
marker, we can visually examine the ordinal relationship by checking the weighted 
density plot by event status, as what have been done in Zhang et  al. (2022). The 
problem is that for variable screening, we have tens of thousands of variables. In 
practice, it may be more feasible to relax the ordinal assumption.

One possible solution is that instead of measuring the concordance between the 
value of a biomarker itself and the disease status, we may look at the concordance 
between some functions based on each single biomarker and the true event status, 
for example, the estimated CIF based on each single Z. Similarly, we may evalu-
ate how a group of biomarkers can be associated with the competing risk outcomes 
by modeling CIF based on this group of biomarkers to handle correlated biomark-
ers and categorical biomarkers. However, this solution will rely on additional model 
assumptions of CIF.

Another possible solution to relax the ordinal assumption lies in the definition of 
VUS. VUS actually measures the probability of concordance between the predicted 
class membership and the true class membership, and subjects are classified based 
on the value of their covariates. The classification rule is based on our knowledge 
of the relationship between the covariates and the event status. For three subjects 
i, j and k randomly selected from the cause-1 group, cause-2 group and event-free 
group respectively, there are six possible ways of ranking their covariates, indicat-
ing six possible ways of general ordinal relationship between the biomarker and the 
competing events. Based on each possible relationship, we can develop a classifica-
tion rule, and define the VUS accordingly, which would result in six different VUS 
values in total, and each VUS would be able to pick covariates that satisfy a par-
ticular relationship. When we are not sure how a covariate is associated with the 
competing events, we can estimate six different VUSs, and keep the one furthest 
away from 1/6, which can better capture the association between the covariates and 
the events. However, now the screening metric is the maximum of six VUS values 
that are based on different ordinal assumptions, thus the statistical property may be 
different from a single VUS metric. The detailed investigation is beyond the scope 
of this paper and warrants future research.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10985-​023-​09600-z.
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