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Abstract— Previous research has shown how statistical model
checking can be used with human task behavior modeling and
human reliability analysis to make realistic predictions about hu-
man errors and error rates. However, these efforts have not ac-
counted for the impact that design changes can have on human
reliability. In this research, we address this deficiency by using
similarity theory from human cognitive modeling. This replicates
how negative transfer can cause people to perform old task be-
haviors on modified systems. We present details about how this
approach was realized with the PRISM model checker and the
enhanced operator function model. We report results of a valida-
tion exercise using an application from the literature. We discuss
the implications of our results and describe future research.

I. INTRODUCTION

Human error is regularly cited as a source of system
failure [1], [2], [3]. It has been a contributor to more than
1,000,000 injuries and between 44,000 and 98,000 deaths
annually in medicine [4]; roughly 75% of all accidents
in general aviation and 50% in commercial aviation [5],
[6]; one third of unmanned aerial system (UAS) accidents
[7]; 90% of automobile crashes [8]; and many high-profile
disasters. Humans are often blamed for failures. However, the
contemporary view presumes that human errors occur because
of deeper system problems. Unfortunately, the complexity
of modern systems and human-automation interaction (HAI)
makes it extremely difficult to predict when and how human
error can cause problems. For this reason, research has
investigated how the proof techniques offered by formal
methods can be used to evaluate and design HAI [9], [10],
[11]. In particular, techniques have been developed where
models of human tasks are coupled with models of system
functionality. Then, formal verification/proof determines if
normative or unexpected erroneous human behavior can result
in safety violations [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23].

These powerful techniques are well-suited to discovering
HALI design flaws. However, they have limitations. One is
that errors and failures are traditionally modeled without
probabilities. Thus, analysts must rely on intuition to deter-
mine which errors and/or failures are more risky and thus
worthy of attention. Additionally, addressing errors is perilous
because system changes can be disruptive and introduce new,
previously unforeseen, errors [24]. For example, new tasks,
even when adequately learned and practiced, may be more
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error-prone than tasks they replace [25], [1], [16], [26]. Worse,
changes can create negative transfer [27], [28], a condition
where a human’s skilled behaviors encourage them to behave
in ways that are now inappropriate [29].

In previous work, we introduced a method that combined
human reliability analysis (HRA) with task-based erroneous
behavior generation and formal verification to enable prob-
abilistic predictions about human error and system failures
[30]. In this paper, we extended this approach to account
for negative transfer. In what follows, we present necessary
background, the method we created, and a validation study
based on an example from the literature. We ultimately discuss
our results and suggest directions for future research.

II. BACKGROUND

A. Formal Erroneous Human Behavior Generation

Task analysis is a systematic process that describes how
humans normatively achieve goals with a system [31]. This
is commonly documented as a hierarchical task model. Task
models can be interpreted formally. This allows them to be
included in a larger formal model that contains descriptions
of other relevant system behaviors. Formal verification like
model checking evaluates modeled behavior (including human
errors generated in the task model) on system performance
and safety (see [9] for a review). One of the most advanced
formal task modeling languages (and the one used here) is
the enhanced operator function model (EOFM).

EOFM [15], [32] is an XML-based task modeling for-
malism. EOFMs represent tasks as a hierarchy of goal-
directed activities that ultimately decompose into actions.
A decomposition operator specifies the temporal and cardinal
relationships between decomposed acts: sequential or parallel
execution, execution order, and how many can execute. Two
of EOFM’s nine decomposition operators are presented in
this work. xor indicates that exactly one sub-act can execute.
ord indicates that all must execute, one at a time, in their
presented order. EOFMs also express task strategic knowledge
explicitly as Boolean logical conditions on activities. These
assert what must be true to start (preconditions), repeat (repeat
conditions), and complete (completion conditions) execution.

Critically, EOFMs have formal semantics that enables
inclusion in formal verification. For model checking, an
automated translator [15] uses EOFM’s formal semantics to
convert a given task’s XML into the input language of a model
checker. This treats each activity and action as a state machine
that transition between three states: ready, executing, and done.
Transitions are based on Boolean conditions created using
act strategic knowledge; the execution state of parent, sibling,
and child acts; and the relationships between these dictated
by task position and decomposition operators. This task state
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TABLE I
EQ. (1) PARAMETERS FOR DIFFERENT COGNITIVE FUNCTIONS [34]

Cognitive Function

Parameter ~ Observation  Interpretation  Planning  Execution
a 0.0055 0.0041 0.0052 0.0065
b -0.2458 -0.2046 -0.2828 -0.2860
c 0.2840 0.2244 0.4019 0.4079
d -2.0775 -1.3495 -2.0000 -2.4120

machine model is composed with formal models of the rest
of the system [14] for end-to-end behavioral verification.

When erroneous behavior generation is used with EOFM,
a version of the formal model is created that allows task
formal semantics to be violated in accordance with different
theories of human error [33], [18], [19]. This allows model
checking to discover how human errors could cause failures.

More recent work showed that these analyses could be
merged with human error rate predictions based on a variant
[34] of the Cognitive Reliability Error Analysis Method
(CREAM) [35]. In this, each task (or task part) has an
analyst-specified CPCSum. This numerical value (presumably
derived from a subject-matter-expert) indicates how well the
environment supports the human based on common perfor-
mance conditions (CPCs): quality of the organization, work
conditions, human-machine support, procedures, simultaneous
goals, time availability, time of day, work experience, and
team collaboration. Each of these conditions can be rated
as improving (1), reducing (-1), or not affecting (0) human
performance. The CPCSum is the aggregate of these ratings.
Then, based on a regression model Bedford et al. [34] fitted
to a large human error probability database, human error rates
are predicted by:

2
PHumanError = 1O(a'CPCSum+b'CPCSum+C+d) . (1)

Here, a, b, and c¢ are determined by the cognitive function
of the task and d is the log;, of the nominal error proba-
bility. Importantly, this makes predictions for four cognitive
functions (Table I): observation, interpretation, planning, and
execution. These are used in different parts of task execution
and associated with different human errors [34], [35], [30].

When this was used with EOFM [30], our automatic
translator would read in an EOFM and create a formal model
in the input language of the PRISM model checker [36]. The
formal model was based on the architecture in Fig. 1, where
the human task model interacts with the formal representa-
tion of the other system elements. Importantly, the formal
task took inputs from concurrent (synchronously composed)
cognitive function models. These, using a CPCSum Eq. (1),
probabilistically indicated if an error in each function occurred
in each modeled step. The task model would see these inputs
and, if the current part of task execution was associated with
a given cognitive function, execute the task normatively or
erroneously accordingly (see [30] for details).

This approach was able to accurately predict the probability
of post completion errors for different versions of an ATM
[30]. However, the method could not account for negative
transfer that can occur during a design change.

Formal
Observation EOFM

Observation Eror |/
Function )
Interpretation Human Actions

—CPCSum

Interpretation|  Error :

Planning Task Display and System
Planning Error Environmental | Elements
Function Information

Execution

Execution Error
Function

Fig. 1. Architecture used for supporting prediction of probabilities of
human error with EOFM in formal methods analyses.

B. Negative Transfer and Similarity

Negative transfer occurs in a design change when the
alterations are incompatible with the way the task was
previously performed [27], [28]. This can result in the human
performing an old (wrong) act. In particular, negative transfer
occurs when two conditions are present. First there needs
to be “surface similarity” between conditions (interface or
environment states) that trigger changes in tasks. There also
needs to be “structure discrepancy” (the tasks are performed
differently) between the tasks that are triggered [27].

“Surface similarity” has been studied in cognitive science.
In rule-based models of human cognition [37], humans recog-
nize situations where different behaviors are appropriate based
on whether features are present. This is typically expressed
as a set of features being satisfied (in a Boolean antecedent
expression where features are separated by “and”/A operators)
that produce a result or consequent:

IF Featurey N Featurey A ... N\ Feature,, THEN Result. (2)

Then, the similarity of two situations (A to B, with feature
sets F4 and Fp respectively) is computed as the proportion of
shared features to the total number of features of the situation
being compared to (B) [38]:

Similarity = |Fy 0\ Fp|/|Fa). 3)

III. OBJECTIVES

This research sought to use similarity from Eq. (3)
[38] to account for negative transfer in our EOFM-based
formal, probabilistic, error prediction. Specifically, in EOFM,
surface similarity will manifest as similarity in the condition
under which an activity or action will nominally execute.
Furthermore, CREAM can account for problems with surface
similarity by adjusting the CPCSum to account for the impact
a change will have on error rates. Thus, we hypothesized
that the impact of negative transfer could be incorporated in
probabilistic EOFM error rate predictions by:

1) Explicitly including the replaced parts of the task in

the formal representation of the task model;

2) Having the formal model (during execution) compute
the surface similarity of the current situation to the
original execution condition of replaced acts; and

3) Adjusting the CPCSum proportionally downwards
based on the potential maximal impact on CPCs.

The following describes how we realized this approach in
EOFM and PRISM.
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TABLE 11
INEQUALITY TO BOOLEAN EQUALITY EXPRESSION TRANSFORMATION

Original Transformed
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Assume X is an integer variable with range [x...x,]

IV. METHOD
A. Boolean Expression Parsing

The formal version of a task model provides the Boolean
expression indicating when the original (old task) would
execute. However, this can be expressed using combinations of
equalities and inequalities across all the variables that describe
a task or inputs to it. To be able to reason about these concepts
with Boolean logic engines, these needed to be converted into
simple equalities.! Fortunately, all variables in EOFM can
be expressed purely as Boolean variables or finitely ranged
integers. Thus, every part of such Boolean conditions can be
converted to a Boolean expression of strict equalities as shown
in Table II. In cases where equalities or inequalities express
relationships between two variables, recursive algorithms
iterate through possible values for each to create the aggregate
(V) of all appropriate Boolean expressions.

Once these substitutions have been made, the Boolean
expression can be converted into a form consistent with the
antecedent of Eq. (2). This is accomplished by converting
the formula into conjunctive normal form: a collection of
Boolean “or” clauses (V) separated by “and” operations ().
Thus, in this interpretation, each “or” clause represents a
feature in surface similarity assessment.

If we let 6(Feature;) be a function that evaluates a Boolean
expression constituting a feature (Feature;) that is 1 if the
expression is true and O otherwise. Then, (in accordance with
Eq. (3)) the degree of similarity a given situation has to an
old context with n features is expressed by:

0 (Featurey) + ...+ 0 (Featurey)

Similarity = " . 4

B. Formal Model Integration

To account for negative transfer in the formal model, we
extended our method to use the architecture in Fig. 2. When
part of a task is replaced or modified, the original part is
included in the formal EOFM representation. This Old Task
Part is paired with three addition constructs:

1) SimilarityComputation is a formula (see Fig. 2) that
used the original condition the task part would execute
under as the condition from which features were
extracted and similarity (Section IV-A) computed.

2) CPCAdjustment is a formula that uses the produced
SimilarityScore to reduce the original CPCSum by
an amount proportional to the Similarity Score:

AdjustedCPCSum =CPCSum
— A-SimilarityScore,

'We make use of the jbool_expressions library (https:/github.com/
bpodgursky/jbool_expressions).

~——CPCSum Formal
 Observation EOFM
Observation | Error
Function | ‘ Human Actions
——————Interpretation >
Interpretation|  Error :
H Function | ) ) Other
N Planning Task Display and System
Planning |  Error Environmental | Elements
Function | Information
= Execution
Execution |  Error
M ,,‘ Task System
. . State State
Planning )
Planning Error’ OldTask Similarity
Function’ Part Computation
AdjustedCPCSum
SimilarityScore

Fig. 2. Updated formal modeling architecture (from Fig. 1) for accounting for
negative transfer. New elements use black lines and text. Parallelograms are
formulas that compute values from other model variables during execution.

where A is the maximum CPC sum change. Because
a change in a task relates to a human operator’s
knowledge about procedures, only the procedures CPC
is adjusted. This restricts the range of A to [0, 2], where
the actual upper bound would depend on the original
assessment of the procedures CPC.

3) PlanningFunction’ is a new concurrent module that
uses the AdjustedCPCSum to compute whether a
planning error occurs (PlanningError’).

If PlanningError’ indicates that a planning error is occurring,
then the OldTaskPart is executed. To enable OldTaskPart to
execute in place of the part of the replacing task, the formal
model sets the execution state of the replacing task to done
when OldTaskPart becomes done.

V. APPLICATION

As a first step towards validating our approach, we used it
to model and evaluate a fruit packing case study introduced
by Besnard et al. [29]. This was an appropriate application
because Besnard et al. designed this problem to specifically
evaluate the impact of negative transfer on human error.> In
particular, the researchers designed a task where human users
were expected to sort a selection of four fruit types (Bananas,
Pears, Cherries, and Strawberries) into separate boxes and
then (when a box was full with three fruits) packing the box
into a larger container. In particular, participants used the
interface in Fig. 3 to perform the following steps until all 9
of each types of fruits were processed:

1) Point: Instruct the system to randomly select a specific

type of fruit to process.

2) Select: Select the box for the fruit that was pointed to.
This is an iterative process where the user may need
to perform multiple selects to cycle to the proper box.

3) Fill / Empty: If the box is not full (has less than
three fruits), then the human adds one to the box (from
the remaining unprocessed fruits) by performing the
Fill operation. Otherwise, the human will perform the
Empty operation to pack the three fruits into the larger
container: leaving zero fruits in the box.

2It also appears to the definitive source for empirical evidence of the
effects of negative transfer.
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Fig. 3. Reproduction of the interface used for the fruit packing application
[29]. The number of fruits remaining to be processed are shown at the
bottom of the window. The pointed fruit is underlined. The fruit boxes are
shown in the center of the display, where each box shows the number of
each fruit in the box. The selected box has a black bar at its top. The large
container in the upper left represents the container boxes are emptied into.

Originally, four separate keyboard keys were assigned to each
action: for point, for select, for fill, and
for empty. However, after training people on this
version of the task (and evaluating error rates), Besnard et al.
[29] changed/swapped the keys’ functions to investigate how

negative transfer changed error rates: for point,
for select, for fill, and for empty.
A. Task Modeling

To apply our method to this domain, we first modeled
the task in EOFM (see Fig. 4) to conform to the procedure
described above. The original version of this model used the
original key mapping employed by Besnard et al. [29].

B. Formal Modeling

We translated this model into PRISM’s input language and
paired this with a system behavior model. This kept track
of the system state (corresponding to the pointing, selecting,
and filling/emptying phases); the number of each fruit left to
be sorted; the state of each fruit box; and pointing behavior.?

Because Besnard et al. observed low error rates in their
original condition, we assumed a maximal CPCSum = 9.
Then, to enable prediction about total numbers of errors, the
formal model was augmented with a reward construct that
would count the total number of erroneous actions: counting
whenever the performed action did not match the state of the
system (e.g., pointing when not in the pointing state).

C. Specification Properties
We formulated a specification property for calculating the
expected number of errors to complete the task:

iBananasLeft=0 A iPearsLeft=0

A iCherriesLeft=0 A iStrawberriesLeft=0
R=?|F . (6)

A sBananBox=0 N sPearBox=0

N sCherryBox=0 N sStrawberryBox=0

3A full listing of models used in this analysis can be found at https:
//drbolton.org/resources/

That is: calculate the expected reward/cost (R =7?; in this case
the number of human errors) associated with eventually/finally
(F) reaching the system condition where there are no fruits
left to be sorted and all the fruit boxes are empty.

D. Verification

The specification in Eq. (6) was verified against the formal
model using PRISM’s statistical model checker* with a path
length of 10000 and 0.99 confidence. This was done on a
laptop computer with an Intel Core i7-10510U CPU and 16
GB of RAM running Microsoft Windows 10. This showed
that humans were expected to (on average) make 1.837 errors
(with 99% confidence +/- 0.111 around this number) in the
original, familiar condition. Verification took 23.771 seconds.

E. Model Modification

This normative model was then modified so that the
swapped key configuration was used. In doing this (to account
for negative transfer), each of the original model constructs
for hitting the individual keys were treated as a separate
OldTaskPart (Fig. 2) and given their own SimilarityCompu-
tation, CPCAdjustment, and PlanningFunction’ constructs
in accordance with the previous section. In all of these,
the original CPCSum was modified based on similarity (in
accordance with Eq. (5)) by using A = 2. This was done
because a CPCSum =9 indicates all CPCs were assessed
at the highest level, thus the procedures CPC would have
a maximum A of 2 (going from improved to reduced). We
felt that swapping keys was a significant enough change to
constitute this shift.

FE. Second Verification

With this new formal model for capturing the potential
effect of negative transfer, we re-verified the specification
from Eq. (6) (same analysis machine and settings). This time,
verification took 214.574 seconds to show an expected 2.286
errors (99% confidence with +/- 0.121).

G. Results Comparison

We compared our results to those Besnard et al. [29]
observed in an experiment with 10 human subjects.’ This
(Fig. 5) showed that our method accurately predicted the
number of errors in the original condition: our prediction of
1.837 was between the experimentally observed range of [0,3]
and was close to the observed average of 0.7. Additionally,
our method made an accurate prediction of the impact of the
change that negative transfer caused in the swapped condition:
our prediction of 2.286 was in the experimentally observed
range [2,15] and almost identical to the observed 2.3 average.

VI. DISCUSSION

In this work, we introduced a new method to account
for negative transfer in formal verification analyses that
probabilistically predict human errors. This combines previous
work that synthesized EOFM-based formal HAI and CREAM-
based HRA with cognitive similarity theory. To provide

4Per the recommendations of Bolton et al. [30], statistical checking was
used due to concerns about the scalability of probabilistic checking.

SBesnard et al. [29] ran three replications of each condition with the
same participants. We are reporting the results from the first replication only
because this best represents the negative transfer condition.
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a preliminary validation of this approach, we used it to
replicate a leading experiment that demonstrated the effect of
negative transfer on human error. That our method was able to
accurately predict the number of errors both before and after
the negative transfer condition, speaks to its validity. This is
a significant contribution because it increases the accuracy
of human error rate prediction and should allow analysts
to evaluate the impacts of design changes across multiple
design concepts. Because this is a model-based approach,
these capabilities are achieved without having to evaluate
all options with human subjects experiments. Additional
contributions and validations of our method are expected
in future work. This is discussed below.

A. EOFM Language and Translator Extensions

The implementation of our approach is currently semi-
automated. The parts supported by previous work [30] are
fully automated as is Boolean expression parsing and similar-
ity formula creation (see Section IV-A and Eq. (4)). However,
the other process steps are done manually. Current efforts are
focusing on fully automating the model construction around
the new architecture (Fig. 2) as an optional feature of the
EOFM-to-PRISM translator. As part of this, language features

ord ord
A J A J

hEnter

hTab

Fig. 4. A visualization [39] of the EOFM for performing the fruit sorting task. Activities are rounded rectangles.
Actions are pointed rectangles. Activity decompositions are rounded rectangles below an activity, connected by an
arrow. The arrow is labeled with a decomposition operator. Preconditions are down-pointing yellow arrows connected
by on the left of the activity. Completion conditions are similar, up-pointing magenta triangle. Repeat conditions are
recursive arrows on the top of the activity.

are being added to the EOFM-XML notation to allow analysts
to specify how parts of tasks were replaced in revisions.

B. Scalability

In the presented application, the original system verified in
23.771 seconds. The swapped keys condition (with negative
transfer prediction) verified in 214.574 seconds: a 802.671%
increase. This is a significant jump, possibly indicating limits
on the scalability of the method.

Based on the combinatorics of formal models, the com-
plexity increase is likely caused by the additional Planning
Function’ modules. This is because these are stateful and
concurrent. As such, each increases total model state-space
size by its number of states times the number of states in the
remainder of the model. Our example application contained
four such modules (one for each swapped action).

It may be the case that this feature will limit method
applicability. However, four task changes would likely be an
upper bound on typical application. We envision the standard
use case for the method only making one task change in any
given analysis. Thus, our method should still scale reasonably.
In fact, if we create a version of the fruit packing model that
only includes one additional Planning Function’ module, this
verifies in 29.835 seconds: a reasonable 25.510% increase.

Future efforts will more deeply explore method scalability
and methods for improving it.

C. Additional Application and Validation

The fruit packing application [29] is admittedly simple.
Given its prominence in the literature, it is an appropriate
one for validating our approach. In fact, this was the only
published study we could find that explicitly dealt with error
rates and negative transfer. However, the small sample size
and artificiality of the task leave room for improvement. In
future work, we plan to model a real-world application in the
form of the Open EMR electronic medical record system. We
also plan to validate our prediction using a human subjects
experiment involving this application.
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D. Automated Model Repair

The effort documented here is a part of a larger project
for quantifying human-machine reliability and automatically
repairing interfaces [40], [30], [41], [42]. Future effort
will investigate how negative transfer prediction can be
automatically inform automated interface repair methods.

VII. CONCLUSIONS

This work demonstrated that probabilistic predictions about
human error rates using task models, HRA, and statistical
model checking can be made to account for negative transfer
effects. This had important implications for engineering and
making changes to safety-critical HAI. Future work will seek
to validate results will a more realistic application and a more
robust number of measured samples.
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