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ABSTRACT

We performed 3D hydrodynamic simulations of the inner &~ 50 per cent radial extent of a 25 Mg, star in the early phase of the
main sequence and investigate core convection and internal gravity waves in the core-envelope boundary region. Simulations for
different grid resolutions and driving luminosities establish scaling relations to constrain models of mixing for 1D applications.
As in previous works, the turbulent mass entrainment rate extrapolated to nominal heating is unrealistically high (1.58 x
10~* Mg yr~!), which is discussed in terms of the non-equilibrium response of the simulations to the initial stratification. We
measure quantitatively the effect of mixing due to internal gravity waves excited by core convection interacting with the boundary
in our simulations. The wave power spectral density as a function of frequency and wavelength agrees well with the GYRE
eigenmode predictions based on the 1D spherically averaged radial profile. A diffusion coefficient profile that reproduces the
spherically averaged abundance distribution evolution is determined for each simulation. Through a combination of eigenmode
analysis and scaling relations it is shown that in the N?-peak region, mixing is due to internal gravity waves and follows the
scaling relation Digw.-hydro & L*3 overa & 2 dex range of heating factors. Different extrapolations of the mixing efficiency down

to nominal heating are discussed. If internal gravity wave mixing is due to thermally enhanced shear mixing, an upper limit is
Digw < 2103 x 10* cm? s~! at nominal heating in the N>-peak region above the convective core.
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1 INTRODUCTION

The properties of core convection determine the observational prop-
erties of main-sequence stars individually and as a population and set
the stage for all subsequent evolutionary phases of intermediate mass
and massive stars. Convective boundary mixing (CBM)' infuences
the main-sequence lifetime and the internal stratification for later
evolutionary phases. It has been calibrated in 1D stellar evolution
models by comparing model predictions with the observed width
of the main sequence either from photometry or spectroscopy (e.g.
Schaller et al. 1992; Kozhurina-Platais et al. 1997) or from eclipsing
binaries (e.g. Stancliffe et al. 2015; Claret & Torres 2019; Tkachenko
et al. 2020). It is now also possible to constrain CBM through
asteroseismology observations (e.g. Moravveji et al. 2015; Noll,
Deheuvels & Ballot 2021), and even more detailed model properties
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Following the reasoning of Denissenkov et al. (2012), the broad term
convective boundary mixing is meant to include a wide range of mixing
processes at a deep-interior convective boundary irrespective of physical
origin, such as overshooting, penetration, or entrainment in rapidly evolving
convection zones.
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such as the temperature gradient or mixing in the stable layer may
be constrained in the future (Pedersen et al. 2018; Michielsen et al.
2019; Bowman & Michielsen 2021; Michielsen, Aerts & Bowman
2021). For massive stars, the observed width of the main sequence
appears to require more efficient mixing beyond the convective core
compared to the range of values typically calibrated with the methods
mentioned above (Castro et al. 2014; Schneider et al. 2018).

Observations of massive main-sequence stars also show clear
observational evidence of mixing in the stable layers all the way
to the surface. Venn et al. (2002) reported depletion of B and
simultaneous enrichment of N in B-type stars that generally matched
the predictions of rotating stars. However, more recent work has
revealed a picture that appears to be more complicated, such as
larger N enhancement and B depletion than predicted by rotating
models (Mendel et al. 2006; Martins et al. 2015) and slowly rotating
N-enriched stars (Hunter et al. 2008; Morel, Hubrig & Briquet 2008;
Dufton et al. 2018) in which rotation-induced mixing predictions
seem to fall short and additional physics processes must be at work.
In a careful statistical analysis, Aerts et al. (2014) found that observed
stellar rotation rates have no predictive power regarding the observed
N enhancement (see also Markova, Puls & Langer 2018). This adds
to the motivation to investigate and possibly identify and quantify
mixing processes that are unrelated to rotation in the stable layers of
massive stars.
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One such possible transport mechanism is internal gravity waves
(IGW; Press 1981; Talon & Charbonnel 2005) that would transport
species (Garcia Lopez & Spruit 1991; Denissenkov & Tout 2003)
and angular momentum (Kumar, Talon & Zahn 1999). Analytical
approaches such as those mentioned rely on a number of assumptions,
such as the wave-generating mechanism and power spectrum as well
as the fundamental transport physics of IGWs (Lecoanet & Quataert
2013). Ultimately, realistic representations of these complicated
fluid-dynamics properties can be revealed by multidimensional
hydrodynamic simulations. IGWs have indeed been observed and
analysed in numerous simulations, for example of solar-type stars
(Dintrans et al. 2005; Rogers, Glatzmaier & Jones 2006; Alvan
et al. 2015), of He-shell flash convection (Herwig et al. 2006), and
of O-shell and core convection (Browning, Brun & Toomre 2004;
Meakin & Arnett 2007; Gilet et al. 2013). Based on 2D simulations,
Rogers et al. (2013) investigated the role of IGWs in transporting
angular momentum in massive stars. Predicting (Aerts & Rogers
2015) and indeed observing (Bowman et al. 2019a,b; Bowman et al.
2020) oscillations due to stochastically excited IGWs in massive stars
has triggered renewed efforts to determine the quantitative properties
of IGW spectra from 2D (Horst et al. 2020) and 3D (Edelmann et al.
2019) simulations.

Despite great progress in multidimensional convection simulations
in general and of core convection in massive stars specifically,
the computational cost of these simulations is still placing severe
limitations on obtaining quantitative and even qualitative results.
Attempts to determine quantitative mixing efficiencies of IGWs
from simulations are still in their infancy. As far as we are aware,
only Rogers & McElwaine (2017) derived a diffusion coefficient
profile for IGW mixing for the radiative envelope from anelastic 2D
simulations of a 3 Mg, star based on a tracer-particle post-processing
approach (similar to the approach by Freytag, Ludwig & Steffen
1996; Herwig et al. 2006). However, the actual magnitude could
not be reliably determined. When applied in 1D stellar evolution
calculations, the diffusion coefficients from the 2D simulations
had to be reduced by approximately four orders of magnitude in
order to match asteroseismic observations (Pedersen et al. 2018,
2021).

The computational challenge is indeed substantial and multi-
faceted. In order to explore both convective boundary and IGW
mixing quantitatively, simulations must represent the core and a
good portion of the radiative envelope with sufficiently fine grid
resolution to resolve both convective and wave fluid motions. The
simulations should include the global morphology of the largest
core-convection modes, which requires 47 3D domains of the
complete sphere. As the large-scale convective motions approach
the convective boundary, the spatial resolution should be sufficient
to capture the relative shift of spectral power to smaller scales
and the interaction of these convective boundary motions with the
radiative layer above, within a narrow interfacial region. Simulations
need to have sufficient resolution in the stable layer to capture
the dominant wavelength of IGWs (Gilet et al. 2013). Even if
simulations are targeting only the dynamic response to a given
thermal state, for example the radial structure from a stellar evolution
model, they need to cover enough star time, so that any inevitable
initial simulation transients can be excluded from the analysis of a
sufficiently long subsequent quasi-steady state. Another challenge
is the likely discrepancy between a stellar evolution structure and
the thermal-dynamic equilibrium at which the 3D hydrodynamic
simulation would ultimately arrive. The computational demands
for sufficient spatial resolution are very significant. For example,
even one 3D simulation of adiabatic interior convection with ten
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convective turn-over times with a heating boost factor (1000x)
resulting in ten times higher convective velocities can take several
tens of millions of core hours (Horst et al. 2020). Even with the
most efficient codes and on the largest available supercomputers, it is
therefore impractical to just run such 3D simulations for years of star
times.

The aim of this work is to report the results of our initial set of
3D hydrodynamic simulations of a 25 Mg main-sequence star with
the PPMstar code. We characterize the flow morphology of core
convection and boundary layers, the mixing processes in the core-
envelope interfacial region, and the excitation and mixing of IGWs in
the stable layers immediately adjacent to the convective core, based
on high-resolution simulations. We establish the behaviour of our
simulation results under grid refinement and as a function of heating
factor. In order to establish a baseline for future work, we adopt
idealized input physics by assuming an ideal gas equation of state.
Additional physics ingredients, such as radiation pressure, radiative
diffusion, and rotation will be deferred to a later time at which
we plan to document the differential effect of adding those physics
processes one at a time. In this way, we hope ultimately to get
a clearer understanding of the impact of each individual physics
aspect and their mutual interaction. This paper has a companion paper
(Thompson et al. 2023, Paper II) that focuses on the asteroseismic
properties and predictions of our simulations.

In Section 2, we present the simulation method and simulation
setup and assumptions, as well as our wave and mixing analysis
techniques. Section 3 describes the general flow morphology and
the entrainment process. The convective boundary section Section 4
includes a discussion on the location of the boundary and the simul-
taneous presence of convective and wave motions in the boundary
region. In Section 5, we estimate the mixing efficiency of IGWs
and briefly demonstrate possible implications for physical mixing
process of IGWs. The paper closes with conclusions in Section 6.

2 METHODS AND ASSUMPTIONS

2.1 Base state for 3D simulations from stellar evolution

2.1.1 Properties of the 1D model

One goal of this work is to establish how convection and wave mixing
based on a particular base state stratification behave in three dimen-
sions. In 3D simulations, the complete fluid-dynamics equations are
solved as opposed to the 1D picture that we obtain from stellar
evolution, in which convection is approximated by the mixing-length
theory (MLT) and supplemented by a convective boundary mixing
model. Obviously, the representation of the important boundary
layer is qualitatively and conceptually different in the two cases.
The results of the 3D simulations are the dynamic response to
the given base state, and in as much as the 1D base state is not
realistic, the 3D dynamic response will not be either. In fact, since
the dynamics of the 3D simulation are obviously going to be different
compared to the picture of the dynamics of the 1D model according
to the MLT, we must expect the 3D simulation to evolve on a local
secular time scale toward a different dynamic-thermal equilibrium.
The diffusive time scale to equilibrate, say one pressure scale height
above the convective core, is of the order of thousands of convective
turn-over times, whereas in these simulations we cover less than a
hundred convective turn-overs (at 1000 x heating factor). Thus we
cannot expect to reach a new thermal equilibrium, which justifies
ignoring radiation diffusion altogether in this initial investigation.
By investigating the 3D dynamic response, we aim to reveal the
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Figure 1. Kippenhahn diagram of the 25 Mg MESA stellar evolution model
template from Davis et al. (2018) during H-burning core-convection phase.
The vertical dotted line shows the time of model 4000 that has been used for
the initial stratification of the 3D hydro simulations shown in this paper.

fundamental dynamic processes of the configuration taken from the
1D model, which will hopefully lead in turn to a better understanding
of the complex dynamic interactions and physical processes at the
convective boundary, and ultimately to more realistic CBM models
for 1D stellar evolution.

As outlined in the introduction, in many 3D simulations enhanced
heating rates are assumed to accommodate various computational
limitations. As we will show in this paper, in simulations with
larger heating factors, for example 1000, mass entrainment rates
are large enough and simulations can be followed long enough so
that the initially assumed boundary stratification will be completely
rearranged after an initial phase of a few hundred hours (cf.
Section 4.1). The detail of the initial stratification in the boundary
region is then obviously no longer important. At lower heating rates,
for example a boost factor of 100, the original boundary interface
will not be changed very much over months of simulated star time
(cf. Section 4.1).

The base state is constructed from the 25 Mg MESA stellar
evolution model (time-step 4000 of the template run from Davis,
Jones & Herwig 2018) 1.64 x 10° yr after the start of H burning
on the zero-age main sequence (Fig. 1). The central H mass fraction
has decreased to X(H). = 0.606 from initially 0.706. In the MESA
simulation H-core burning ends after 6.91 x 10° yr.

The fact that the mass of the convective core of 1D main-
sequence models is decreasing throughout the H-core burning phase
(Fig. 1) determines how the convective boundary mixing model
shapes the mean molecular weight w profile at the boundary (Fig. 2).
The diffusion coefficient profile reflects efficient convective species
mixing inside the Schwarzschild boundary and the decrease of the
mixing coefficient according to the exponential boundary mixing
model outside the Schwarzschild boundary. For the H-core burning
phase, the template model Davis et al. (2018) adopted fo, = 0.022.

The effectiveness of convective boundary mixing depends on how
fast the boundary is changing its location. For a given Lagrangian
boundary velocity a certain part of the exponential CBM region
is essentially instantaneously mixed. For a faster moving boundary
this layer is smaller. The relationship between the progression of
the convective boundary and the mixing properties of exponential
convective boundary mixing has already been described in detail by
Herwig (2000) in the context of the formation of the '*C pocket for

Figure 2. Profile of the diffusion coefficient and mean molecular weight
w of the MESA model from which the base state for the 3D hydrodynamic
simulations is derived. Shown is the convective boundary region. The solid,
horizontal black line indicates the range from the convective boundary
according to the Schwarzschild condition (rsg = 1395 Mm) to rsg + 0.18Hpg
where Hpg =417.8 Mm is the pressure scale height at rgg . The vertical-dashed
line marks the approximate radius to which the exponential CBM has mixed
species essentially completely. The time of the model is indicated in Fig. 1
with a vertical dotted line.

the s process at the bottom of the convective envelope in AGB stars
and the modelling of the third dredge-up phenomenon. In Fig. 2, the
instantaneously mixed layer outside the formally convective core is
indicated by the horizontal solid line and this region has an extent
of ~0.18Hpy. The boundary of the instantaneously mixed layer is
indicated by the vertical-dashed line. The p gradient above the
dashed line is due to two processes. In the immediate vicinity of
the dashed line the profile is the result of the exponential mixing,
but the bulk of this profile is due to the receding core convection. It
reflects the history of the core shrinking, which in turn is impacted
by the assumed value for f,, in the stellar evolution model. In this
work, we show that the region of the p gradient hosts a particular
set of internal gravity waves that is associated with mixing. The u
gradient is a dominant contribution to the N? profile, where N is the
Brunt—Viisila frequency. It is useful to keep in mind what the origin
of this u profile and thus the N?-peak profile in the underlying 1D
model is.

Another point deserves explanation. According to the exponen-
tial convective boundary mixing model, the region outside the
Schwarzschild boundary obeys the radiative temperature gradient.
This assumption stems from the original work by Freytag et al.
(1996) who based their analysis on the shallow surface convection
of white dwarfs and A-type stars. Whether or not this assumption
is appropriate in the deep interior is uncertain. Recent idealized
simulations (Anders et al. 2022) in plane-parallel geometry that
ignore the p gradient suggest that if applied to a 25 M, stellar model,
a very large penetration zone forms over time-scales corresponding
to 60 000 convective turn-over times, much longer than the thermal
time-scale of the envelope of this 25 Mg stellar model (*5000
convective turn-over times). The question of the temperature gradient
in the convective boundary layer may be constrained in the future
by asteroseismology (e.g. Michielsen et al. 2019, 2021). But in any
case it requires including radiation diffusion. We plan to report on
such simulations in the future (Mao et al. 2023, Paper III) and
just note that the results reported here for the dynamic response
to the adopted MESA base state do not change qualitatively when
radiation pressure and diffusion are added. In our 3D simulations, we
assume that the entire instantaneously mixed core up to the location
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Figure 3. Entropy S and mean molecular weight p 1D stratifications (cf.
Fig. 2) adopted as the base state for the 3D hydrodynamic simulations.
Entropy is given in terms of code units. The PPMstaxr code units are length
L = 108 cm, mass M = 10%7 g, time 7 = s, and temperature ® = K.

where Vuu # 0 (indicated by the dashed vertical line in Fig. 2) is
adiabatically stratified. In other words, initially and contrary to the
1D model the entropy and p gradient are assumed to be the same
across the convective boundary except where they have to diverge
where the p gradient becomes zero outside the core, yet the entropy
gradient remains positive, see Fig. 3 just above =~ 1550 Mm. As
the simulations progress the p and entropy gradients can decouple
depending on the relative strength and physical processes of species
and heat mixing or diffusion, the latter due to radiation (not included
here) or numerical effects.

2.1.2 Constructing the 3D base state

The radiation pressure fraction is & 20 per cent throughout the stellar
model in the core and the envelope with the exception of the
outermost ~300 Mm, where it amounts to &~ 50 per cent. In the 3D
simulations presented in this work, we adopt the ideal gas equation of
state and ignore the radiation pressure. With this assumption we
plan to establish a baseline of idealized simulation results in the
same spirit as Jones et al. (2017), from which we can establish the
impact of adding additional physics, such as radiation pressure, in the
future.

We construct the base state or initial stratification of our sim-
ulations as follows. We use the MESA density, temperature, and
mean molecular weight  profile and calculate the entropy profile
according to the assumed ideal gas EOS. We then smooth the S and
1 profiles (see below) and enforce a zero gradient for entropy in the
core. This determines the central pressure. The density and pressure
profiles of the base state then follow from requiring hydrostatic
equilibrium and mass conservation together with the equation of
state.

Quantities that represent derivatives, such as the Brunt—Viisild
frequency N, are usually quite noisy when using a default MESA inlist
file, unless special care is taken to optimize for smooth stratification
profiles (e.g. Michielsen et al. 2021). However, such smoothing
measures may reflect stellar physics assumptions that are uncertain
and that the 3D hydrodynamic simulation is supposed to reveal. Any
given 1D stellar evolution profile carries assumptions about turbulent
and IGW mixing, CBM mixing, and how the turbulence and wave
motions are interacting with radiative diffusion. Certain properties of
the 3D simulation may depend sensitively on the assumptions made
to construct the 1D base state from a stellar evolution model, while
others may be more robust. Ultimately, an iterative process involving
parameter studies with different physics assumptions and careful
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analysis is required to disentangle these complex interrelations,
which are beyond the scope of this paper. In view of this complication
to constructing a base state for the 3D simulations, we adopt an
approach in which we take the MESA profile as it is calculated with
standard assumptions and then apply a smoothing procedure in a
post-processing step (see Section A for details). The resulting base
state definition consists of the central pressure and the entropy S and
mean molecular weight p profiles (Fig. 3).

Because the radiation pressure contribution is ignored, not all state
variables can match the MESA profile. This is a common problem
when mapping between 1D and 3D simulations with different
equation of state assumptions. One can only select two variables
to match the other state. Our 3D base state matches the entropy and
the u profiles of the 1D MESA profiles in the transition from the top
of the convection zone and throughout the envelope because these
two quantities determine the stability of the stratification. There is
still some freedom in selecting the central conditions. In our base
state, the central pressure and density are 20 per cent and 15 per cent
smaller while the temperature is 17 per cent larger than in the MESA
model. Additional technical details and a comparison with the MESA
profiles are given in appendix Section A.

2.2 Stellar hydrodynamics simulations

We use the PPMstar gas dynamics code (Woodward, Herwig &
Lin 2015; Jones et al. 2017; Woodward et al. 2019; Andrassy et al.
2020, 2022), with several important updates. This version solves
the conservation laws in terms of perturbations with respect to a
base state. As a result, the computation can be carried out in 32-
bit precision and at high accuracy. The other update relates to an
improvement of how accurately mixing at the convective boundary is
treated. In the past, our simulations had often focused on the ingestion
of small amounts of material from the stable layer into the convective
layer, and great care had been taken to advect correctly such small
amounts of entrained material. In the main-sequence simulations it is,
however, equally important to understand how much convective core
material is mixed outward into the stable layer. Therefore, envelope
fluid concentrations close to one are now treated equally accurately
as those close to zero.

The nuclear energy input from H burning that drives the convection
is represented by a constant volume heating with a Gaussian profile
in the radial direction that matches the heating profile in the MESA
model.

PPMstar performs its computations in Cartesian coordinates
using a uniform 3D grid of cubical grid cells. This structure of
the computation optimizes numerical accuracy for a general fluid
flow problem. It also gives rise to a simple and highly effective
design in which the computation proceeds in symmetrized sequences
of 1D passes in the 3 coordinate directions, a procedure called
directional operator splitting. One consequence of our coordinate
choice is that the application of boundary conditions becomes more
difficult. We generally place the grid boundaries at radii that are well
removed from the action that is under study. Boundary conditions
are implemented at specific radii, an inner radius (or optionally no
inner radius) and an outer radius. Because we place these bounding
spheres well away from the region of study, we handle them in ways
that make their implementation easy. It is important to realize that we
do not attempt to apply our boundary conditions on truly spherical
surfaces. Instead, we approximate the sphere by the nearest set of
cubical grid cell faces. This means that the bounding sphere is ragged
at the scale of the grid. Since the grid is made fine enough to faithfully
compute the fluid flow, this raggedness of the bounding spheres is
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usually not a concern, especially since they are located well away
from the convection zone. When studying core convection, we have
no inner bounding sphere, and the outer one, given the Cartesian
grid, is better resolved than any spherical surface inside it. At the
bounding sphere we impose a reflecting boundary condition. This is
imposed using ghost cells that mirror the cells across the bounding
surfaces. This is done in each 1D pass, and in each such pass the
bounding surface is perpendicular to the direction of the pass, but it
is not perpendicular to the gravitational acceleration vector. For our
convenience, we therefore smoothly turn-off gravity beginning a few
grid cell widths in radius before the bounding sphere is reached. This
allows us to implement a trivially simple boundary condition in each
1D pass. The cost of this approach is that we introduce a very thin
layer in which the gravitational acceleration smoothly drops to zero
right next to the boundary. In the simulations, we have performed
with this code to date, this has caused no noticeable problems. If one
is only interested in the convection flow and the behaviour near the
convective boundary or boundaries, this approach is easily defended.
If one is also interested in studying the internal gravity waves that are
excited by the convection and that propagate in the stably stratified
regions outside it, the reflection properties of the gravity waves at
the boundaries, if those boundaries are reached by the waves, could
matter. Any impact this approximation may have on our results would
be revealed in the resolution study we typically do on any problem
we work on.

We perform simulations for a range of heating rates and grid
resolutions. Simulations with different grid resolutions allow some
estimate about the numerical convergence properties. In most cases it
is sufficient to determine if simulations are approaching convergence
under grid refinement, i.e. does the ratio of quantities of interest
become smaller for equal ratios of grid refinement. If this is the case,
a simulation series with different grid sizes gives an indication of the
accuracy of quantitative results.

All of our simulations have a larger driving luminosity compared
to the nominal energy generation rate of the 25 Mg, stellar model.
This is necessary because at nominal heating the Mach number M
of the convective flow is very small. According to the MLT velocities
from the MESA template model the average is M ~ 5 x 107%.
Prohibitively small computational grid cells would be required for
accurate simulations. Recall that the PPMstar code is an explicit gas
dynamics code, and although it is optimized to efficiently perform
low- M number stellar convection simulations, there is a natural limit
for what can be expected of any such numerical approach. We vary
the heating factor from 10'> to 10*. Such a heating series allows
us to extrapolate relevant quantities to the nominal heating of the
simulated star (Table 1).

As in previous work (Andrassy et al. 2020; Stephens et al.
2021), the analysis is based on three different types of output from
the PPMstar code. In these main-sequence simulations, detailed
outputs that we call dumps are written to disc every 42.6 min of star
time (in most of the simulations discussed here) which corresponds
to ~2400 time-steps on a 768> grid and correspondingly more on the
larger grids. For each dump, radial profiles of spherically averaged
quantities are written out as well as briquette data that contains
relevant derived quantities, such as the vorticity, calculated from the
full-resolution grid and then averaged to a 3D grid that is four times
smaller in each Eulerian grid dimension. This filtered data is of high
quality and can usually be analyzed conveniently in a post-processing
step. The third output type are the 3D full resolution byte-sized
data cubes used to generate images. A number of default images
are also written out for convenience during the simulation at each
dump.
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Table 1. Summary of simulations used in this paper. Given are the run ID,
number of grid zones in each dimension, the length of the simulated time
in hours, the heating factor compared to the nominal luminosity of the 1D
stellar model and the number of convective turnovers N¢ony computed. For
the latter the length of the run from column three is divided by the convective
turnover time for 1000 x heating runs of 128 h (cf. Section 3.1.1) scaled
according to Ugony o< L3 (cf. Section 5.1).

D Grid fena/h log L/L, Neonv
M109 768 885 40 149
M118 1152 905 4.0 152
M108 768 1414 35 16.2
M119 1152 1414 35 16.2
M107 768 7049 3.0 55.1
M114 1152 4189 3.0 32.7
M115 1728 2473 3.0 19.3
Ml11 2688 1355 3.0 10.6
M106 768 3472 25 185
M100 1152 1531 2.5 8.1

M105 768 2847 2.0 10.3
M116 1152 2885 2.0 10.5
M110 768 2155 1.5 53

M117 1152 3370 1.5 8.3

2.3 Wave analysis

A key analysis of our simulations is to determine the oscillation
properties of our 3D simulations. Paper II is dedicated to a com-
prehensive wave analysis of these simulations, including predictions
of asteroseismic observations. Here, we use the wave analysis to
identify fluid motions due to IGWs in the layers immediately above
the convection zone, as these may be relevant for the convective
boundary mixing as discussed in Section 4.3.

In brief, our wave analysis consists of two parts. We determine the
vibrational modes present in the simulations to generate a frequency-
wavenumber diagram by post-processing the 3D briquette (cf.
Section 2.2) velocity data. The GYRE code (Townsend & Teitler 2013;
Townsend, Goldstein & Zweibel 2018) searches for eigenfrequencies
of standing wave modes for a specified value of / and a range of n. We
calculate eigenfrequencies of IGWs for spherical harmonic degrees
1 <1< 50 and radial ordersn € [ — 1... — 20] according to the 1D
spherically averaged stratification of the 3D simulation using GYRE.
By comparing the GYRE predictions with the spherical harmonics
decomposition of the 3D simulation, we can identify the dominant
presence of certain IGWs in the 3D simulation and ascertain the wave
nature of the fluid motions.

First, we decompose each of 2000 dumps into spherical harmonics
using the SHTools library. We then take the discrete Fourier
transform of each spherical harmonic coefficient after applying
a Hanning window to control spectral leakage. Finally, for each
frequency bin, we compute the spherical harmonic power spectrum
normalized by degree /. This results in a grid of power spectral
density as a function of temporal frequency and spherical harmonic
degree [, the [ — v diagram. It can then be compared to the theoretical
dispersion relations and calculations from GYRE.

To calculate properties of IGW modes from the radial profiles
of the spherically averaged stratification for a given dump of a 3D
simulation with the stellar oscillation code GYRE, the radial profile
data from the 3D simulation is transformed to the MESA input format
readable by GYRE as explained in Paper II. By tuning the control
parameters of the GYRE code, we have been able to determine the
spherical harmonic degree / from 1 to 50, finding g-mode oscillations
of the orders n from —1 to —20, f modes, and a few low-radial order
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p modes. The results of this analysis are described in Section 4.3.
Throughout this paper, N is the angular Brunt—Viiséld frequency.

2.4 Mixing analysis

We determine radial diffusion coefficient profiles by feeding appro-
priately averaged radial abundance profiles into the inversion of the
diffusion equation and determine the profile D(r) that would have
been needed in 1D to generate the observed evolution of abundance
profiles from spherically and time-averaged 3D data as first intro-
duced by Jones et al. (2017). The method is based on comparing
angle-averaged radial profiles of composition at two points in time
with some time averaging applied around both endpoints to suppress
statistical noise. The transformation from the first profile to the
second is then assumed to be due to a diffusive process, and the
diffusion coefficient is derived by inverting an appropriate discrete
diffusion equation. The most important updates as compared to Jones
et al. (2017) are: (1) we formulate the diffusion equation using the
mass coordinate as an independent variable and (2) we take the
star’s spherical geometry into account. The mapping from Eulerian
to mass coordinates becomes important where mixing is slow and
differences between the two composition profiles become dominated
by 1D compression and expansion of the stratification.

We will critically interpret the IGW mixing results obtained in
this way in terms of mixing due to IGWs inducing shear mixing
(e.g. Denissenkov & Tout 2003, and references therein) in the gen-
eral framework of shear-induced mixing by small-scale turbulence
(Garcia Lopez & Spruit 1991; Zahn 1992a; Prat et al. 2016). In this
picture, IGWs are generating shear motions reflected in magnitude by
the vorticity acting against the stabilizing effect of positive Brunt—
Viisidld frequency. For w <« N, the IGW fluid motion is nearly
horizontal with a vertical velocity shear

duh N
—— R unky X upky | — |,
dr w

where up is the horizontal (vertical) velocity component, kp) the
horizontal (vertical) wave number, w the wave frequency, and N the
buoyancy frequency (Garcia Lopez & Spruit 1991).

The diffusion coefficient for shear-induced mixing by small-scale
turbulence has been estimated by Zahn (1992b) as

(4)°
Dshear ~ U%K (1)
where
4acT?
= 2 2
3kp?Cp

is the thermal diffusivity and =~ 0.1. Using the definition of the
Richardson number Ri (equation 8.13, Shu 1992, Section B)

N2
R = dunjary ®
the diffusion coefficient is

Dghear ~ 77£ )

Ri
This estimate of shear-induced mixing is supported by 3D hydrody-
namic simulations by Prat et al. (2016) for horizontal velocity shear
artificially set up in a box. If the Richardson number in equation (4)
exceeds its critical value 1/4, the vertical variation of the horizontal
velocity of IGW oscillations is stable for adiabatic fluid motion.
Through radiative heat losses, perturbed fluid elements can lose some
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of their entropy memory and shear instability can develop even when
Ri > 1/4 (Townsend 1958), provided that the viscosity is too small
to stabilize it. Zahn (1974) proposed a new instability criterion that
takes into account a finite viscosity, according to which shear mixing
may occur when Ri Pr < 10~% (Garaud 2021). For extremely low
Prandtl numbers Pr = v/K <« 1 in stellar interiors, e.g. for Pr ~
1079 in the radiative envelope of our 25 My model, such instability
and shear-induced mixing may develop at relatively large values of
Ri <10°.

The horizontal components of the vorticity of the IGW fluid motion
can be estimated as

ou, ou,

4

(Vxu), =

0z 0x

N
~ upky — uyky ~ unkp— , ()
w

or (V x w2 & (upky)? (%)2 ~ (upky)?. A similar estimate can be
obtained for the x component of the vorticity. If the total vorticity
magnitude |V x u| is dominated by the horizontal vorticity magni-
tude |V x u|y (as is the case in our simulations, Section 5.2), then
(upky)? ~ (V x u)? and

(V x u)?
Digw = HTK (6)
which implies in this case Ri & %. The factor n of order unity

reflects the specific type of shear motion. It has been determined
for specific flow morphologies from hydrodynamic simulations
(Prat et al. 2016; Garaud, Gagnier & Verhoeven 2017). The exact
morphology of IGW-induced instabilities is not yet clear, and it
therefore remains to be shown if these calibrations can be applied
directly in this case. We apply these concepts to interpret IGW mixing
efficiencies measured from our 3D simulations in Section 5.3.

3 GENERAL FLOW MORPHOLOGY

3.1 The velocity field

An initial impression of the general flow morphology is provided by
central plane slices of velocity components, vorticity, and concen-
tration of the fluid in the stable layer shown in Fig. 4. The highly
turbulent convective core with finely granulated 3D distribution of
vorticity is clearly distinguished from the orderly and layered motion
patterns seen in the stable envelope. These regular fluid motions
that are well distinguished in both velocity components and in
the vorticity are dominantly IGWs, as we demonstrate in detail in
Paper I1.

3.1.1 The dipole dominating the convective core

The largest scale motion in the convection zone is the single dipole
mode that is best seen from the radial velocity image. For the
dump shown in Fig. 4, the dipole is almost exactly aligned along
the north—south direction. It is well known that the largest scale
mode of a convectively stratified layer fills the largest vertical size
of the convection zone. For a fully convective non-rotating sphere,
this mode is the dipole (Jacobs, Porter & Woodward 1998; Porter,
Woodward & Jacobs 2000; Kuhlen, Woosley & Glatzmaier 2003).
Our core convection simulations are no different in that regard. Only
non-spherical macro physics processes such as rotation may break
up this symmetry (Woodward et al. 2019) .

The large-scale dipole flow passes right through the centre and
diverges when reaching the boundary in this case near the south pole.
The convective fluids return to the downflow origin at the antipode
located near the north pole in a sweeping tangential flow along the
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1607

Figure 4. Renderings of vorticity (left top, from red to yellow, white, light, and darker blue represents decreasing magnitudes of vorticity), horizontal velocity
magnitude (right top, the same colour sequence as for vorticity represents decreasing magnitudes of the horizontal velocity component), radial velocity magnitude
(bottom left, blueish colours are inward motions, red-orange colours are outward directed flows), and fractional volume of the material initially only in the
radiative zone of a central slice at £ = 1615.25 h (dump 2275) from simulation M115 (1728 grid). These images have non-linear colour and transparency maps
intended to bring out important flow patterns as clearly as possible. The images are not intended to provide a quantitative scale, which can instead be derived
from line plots such as Fig. 5 and Figs 7 and 8. Movies and full-resolution images of these quantities are available at https://www.ppmstar.org.

convective boundary along both the east and west meridians. The
visualization of the tangential velocity magnitude (Fig. 4) resembles
the shape of a horseshoe (dark red indicating the largest tangential
velocity magnitudes) that is aligned with the convective boundary and
open to the north. At about the location of the equator for the flow
along the western meridian and about 30 deg further north along the
eastern meridian, the tangential boundary layer flow starts to separate
from the boundary and begins to develop an inward-directed velocity

component. The flow forms a characteristic wedge in these locations
that is also seen in the vorticity image.

In Woodward et al. (2015), we have identified this boundary layer
separation region as the key feature that facilitates the entrainment
of fluid from the stable layer into the convection zone for the case
of the upper boundary of He-shell convection in a low-mass star.
Boundary-layer separation is a basic phenomenon in fluid dynamics
and described in introductory textbooks (e.g. Kundu & Cohen 2008).
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Figure 5. Radial and tangential velocity component of run M114 (1000 x
heating, 11523 grid). For each velocity component three different times are
shown to demonstrate the typical amplitude of fluctuations.

Flow separating from a boundary experiences additional non-linear
instabilities that resist analytical descriptions. However, the reason
for the separation of the flow from the boundary is straightforward.
The M number of the simulated convection, for example in sim-
ulation M114 (1000 x heating factor, 1152% grid) is M = 0.015
with maximum values reaching 0.06 in some locations near the
convective boundary. At such low M numbers, the flow is nearly
incompressible. Momentum conservation dictates that a flow against
an opposing pressure gradient has to develop a perpendicular velocity
component. In this case, the opposing pressure gradient originates
from the opposite tangential boundary-layer flow heading towards
the origin of the downdraft. The outward-directed perpendicular flow
direction is prohibited by the stiff convective boundary and therefore
only the inward-directed perpendicular flow is possible. Because of
the low M number, this boundary separation starts already at a large
distance away from the antipode near the north pole, where the centre
of the downdraft is located. As we discuss below, the boundary-layer
separation wedges are where the entrainment of material from the
stable layer into the convective core takes place. The wedges are also
a key mechanism in exciting IGWs (Paper II).

Finally, for later use it is useful to specify a convective time-scale.
If we adopt for the 1000 x runs an average convective velocity of
Ucony ~ 6.5km s™! (Fig. 5) and adopt as convective crossing distance
the diameter of the convective dipole to be 2Rony & 3000 Mm then
the convective time scale is 128 h (or 2180 dumps).

3.1.2 Radius dependence of the velocity spectrum in core
convection

The global dipole nature of the flow is also revealed in spherically
averaged radial and tangential velocity component profile plots
shown in Fig. 5. The convective boundary is located approximately
at mass coordinate 12.5 Mg (cf. Section 4.3 for more details
on the determining the location of the convective boundary more
accurately). Near the convective boundary inside the convection zone
(7.5-12.5 My,), the tangential velocity component is up to 50 per cent
larger than the radial velocity. This broad peak of the tangential
velocity magnitude represents the sweeping circular boundary layer
flow from where the dipole approaches the boundary towards the
antipode where the downdraft originates. Correspondingly, the radial
velocity component continuously decreases towards the boundary
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Figure 6. Top panel: Spectra of deep core and core close to boundary show
how the turbulent spectrum changes from Kolmogorov to flat (the legend
gives the mass coordinates where each spectrum was calculated). The power
in the radial velocity component is binned as a function of the spherical
harmonics angular degree ¢, and the spectra are averaged over dumps 1900—
2300. Bottom panel: Spectra at a fixed mass coordinate but with different grid
resolutions (see legend) as well as for lower heating rates. The same dumps
as in the top panel are used.

with peak values found in the central region of the convective core.
This asymmetry between radial and tangential velocity components
is similar to what shell convection shows where the tangential
velocity magnitude peaks both just below the upper boundary and
above the lower boundary (Jones et al. 2017; Andrassy et al. 2020;
Stephens et al. 2021).

The change of the convective flows from radial-component dom-
inated in the deep core and tangential-component dominated near
the boundary has important consequences for power spectra of
convective motions that break down radial velocity by spherical
harmonic degree /. In the deep core, the scales from the large dipole
mode to the smallest homogeneous turbulent motions assume a
turbulent spectrum in which the largest scales dominate (Fig. 6).
However, closer to the boundary, large-scale radial motions are
suppressed compared to the deeper layers, simply because they
do not fit into the smaller remaining vertical distance to the stiff
convective boundary. The spectrum of U, becomes flatter and the
relative importance of smaller-scale motions increases. At or just
below the convective boundary the spatial radial velocity spectrum
is indeed flat. Interestingly, the spatial spectrum of the horizontal
velocity component remains o< /=3 near the boundary, and even into
the stable layer (cf. Section 4.2).

This change of the spectrum of scales from the central region of
the convection zone to the boundary has already been noted for the
case of He-shell flash convection in rapidly accreting white dwarfs
by Stephens et al. (2021), who used this spectral profile information
from the 3D simulations to feed a reduced-dimensionality advective
mixing and nucleosynthesis post-processing scheme. The centre-
plane images in Fig. 4 reveal that the boundary-layer separation
wedges described above are locations where motions of all scales
including very small scales originate. This spectrum of motions is
also an important ingredient in modelling the excitation of IGWs.
One key result is that the immediate convective region below the
boundary is not dominated by a few low wave numbers, but rather
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Figure 7. Spherically averaged radial velocity magnitude time evolution
for grid resolutions 768% (M107), 11523 (M114), 17283 (M115), and 2688°
(M111, cf. Table 1) at ry2 _peq = Hpo (labels -8 Hy), where ry2_peqi is Where
N? has a maximum in the boundary region and 8H), is in units of Hpp. At
N2 _peak Hpo = 349 Mm or 4.6 Mg at r = 1662 h of simulation M115.

power of the radial velocity component is almost equally distributed
over a wide range of represented scales.

3.1.3 Wave motions in the stable envelope

The time evolution over long and short periods of radial and
tangential velocity components in the core, boundary, and envelope
region is shown in Figs 7 and 8. The amplitudes of the tangential
velocity component waves in the envelope are larger by about a factor
~2.5 than those of the radial component in both temporal and spatial
dimension (see also Fig. 5), as expected for IGWs.
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Figure 8. Similar to Fig. 7 for the tangential velocity component, except in
decimal logarithms.

Both the tangential and the horizontal velocity component ulti-
mately adopt a steady-state in which neither velocity component
changes nor drifts noticeably as a function of time. The 768-grid
simulation M107 has been followed for 7059 h and does not show
a trend of the velocity magnitude in the envelope beyond the time
shown in Figs 7 and 8.

For the tangential velocity component, the initial transient to reach
this steady state is of the order of a convective turn-over time (see
also discussion in Section 5.2). The radial component appears to go
through a longer transient period of & 1500 h until it settles into
the steady state value. This longer time-scale is also the time it
takes for the boundary to migrate through the initial N?> profile due
to mass entrainment (cf. discussion in Section 2.1.1 and results in
Section 4.1). Possibly the radial velocity component is more sensitive
to the exact shape of the boundary in the N?-peak region.

The time-evolution comparison of results obtained from simu-
lations on different grid sizes indicates that velocity component
magnitudes and their oscillation properties are essentially in good
agreement among the different grid resolutions. Only the 7683-
grid results diverge by a small amount in predicted envelope
velocities.

3.1.4 Statistics of convective and wave motions

Another way to visualize the fundamental difference between the
flow patterns in the core and the envelope is to use velocity images
on spheres of constant radius. Fig. 9 shows such images for the radial
velocity component for a radius well inside the convection zone and
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Figure 9. Mollweide projections of the radial velocity component and probability distribution function on the 47 sphere for run M115 (17283-grid). Left:

For radius 7 = ry2_peax

— Hpp = (1536 — 349) Mm = 1187 Mm in the convective core. Right: For r = N2 _peak + Hpo = (1536 4+ 349) Mm = 1885 Mm in

the stable envelope. The radius ry2_peqy is at or just above the convective boundary as discussed in Section 4.3. The black solid lines are Gaussian fitted to the
PDFs. Labels provide the values for the moments mean, standard deviation, skew, and excess kurtosis.

a radius one pressure-scale height above the convection zone in the
stable layer.” These projection images on to a sphere reveal large
and coherent upflow areas and somewhat more narrow downflow
lanes. Smaller-scale structures are distributed throughout the sphere
and blur the distinction between up- and downflow areas. In the
stable layer, smaller regions of upward- and downward-directed
flow are ordered in a semiregular fashion. This difference can be
expressed quantitatively through the probability distribution function
(PDF) shown below each image and its higher-order moments.
The convective PDF has a large skew, meaning it has significant
asymmetry compared to a Gaussian. There are more units of area on
the sphere with downflows than upflows. However, the largest radial
velocities are found in areas with upflows rather than downflows.
The relative strength of the far tail is measured by the excess
kurtosis. Large values of kurtosis indicate an overabundance of
far-tail events. Turbulent convection is intermittent with gusts of
larger-than-average flow speeds occurring at random times. This is
reflected in the larger kurtosis compared to the PDF of the stable
envelope.

The PDF of radial velocities in the envelope on the other hand
is represented almost perfectly with a Gaussian distribution. An-
ticipating the presentation of the spectra of IGWs in the boundary
region in Section 4.2 and in the entire envelope (Thompson et al.
2023, Paper II), we note that the IGWs in the stable layers of
these simulations have power in the radial velocity component
peaking at spherical harmonic degree / ~ 30 and that IGWs
with all eigenfrequencies below the Brunt—Viisild frequency are
well-represented. As demonstrated elsewhere in more detail, the
coherent superposition of this wide range of IGW eigenmodes

2Movie versions scanning through radius are available in the digital supple-
ment at http://www.ppmstar.org
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results in a Gaussian PDF. This feature of the U, PDF is thus a
quantitative symptom of a velocity field dominated by IGWs. We
use this statistical difference between convective and wave motions
in Section 4.3 to characterize the motions in the convective boundary
region.

3.2 Entrainment

In Section 3.1.1, we discussed the fluid morphology of the giant
dipole modes and the intimately related boundary-separation wedges.
The orientation of the dipole drifts as the simulation proceeds, which
can be best observed by watching the movies.? This drift time-scale is
that of several convective turnovers of &~ 128 h (Section 3.1.1). The
convective boundary is stiff, and at the location where the uprising
flow impacts the radial position of the convective boundary it is only
minimally displaced. At the boundary, the flow is redirected from
a radial to a dominantly horizontal component. The large impact
zone of the outward flow of the dipole approaching the boundary
at the south pole in Fig. 4 would be the closest thing to what
one might consider a plume in these simulations. However, the
Southern hemisphere where this impact takes place is not where
the entrainment takes place. The bottom-right panel in Fig. 4 shows
the concentration of the material initially only in the stable layer that
we refer to as the H + He fluid.

The instabilities induced by the boundary-layer separation flows
that we call the wedge features are responsible for the entrainment of
material from the stable layer into the convection zone. This is evident
by comparing the velocity centre-plane images (Fig. 4) with the
image of theH + He fluid, where orange, yellow, and white colours
indicate partially mixed zones. These regions of effective entrainment

3Movies are available in the digital supplement http:/www.ppmstar.org
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Figure 10. Fractional volume of the fluid in the stable layer (H + He) for
three grid resolutions at different times. The vertical dashed line shows the
location where the radial gradient of the tangential velocity has a minimum
(min d|U;|/dr) in run M107 at t = 1600 h, which can be taken as the location
of the convective boundary (see Section 4 for a discussion of where the
convective boundary is located).

are located opposite to each other on the boundary circle near the
east and west equator coordinates. The dipole axis is tilted a bit to the
west in the dump shown. The dominant hydrodynamic mechanism
of entrainment is here, as it was in He-shell flash convection
(Woodward et al. 2015), the instabilities induced by boundary-
layer separation of large-scale flow sweeping along the convective
boundary.

The continuous entrainment process leads to an accumulation of
H + He fluid in the convective core. Spherically averaging the
H + He concentration leads to profiles as shown in Fig. 10 for
the three different grids used in the 1000 x heating simulations.
After 4000 h, or 31 convective time-scales (128 h, Section 3.1.1) the
H + He stable-layer fluid has accumulated to a level of ~3 x 1072
in the convective core.

Integrating over the H + He fluid concentration from the centre
to the convective boundary gives the total entrained mass. With
respect to the upper boundary for the entrained mass integration,
we use a similar approach as Jones et al. (2017), but instead of the
minimum gradient of the tangential velocity component we adopt
here the maximum gradient of the H 4+ He fractional volume FV
reduced by one FV scale height. This is essentially equivalent to
integrating to the radius at which FV = 0.1. Using FV instead of U,
gives a smoother boundary evolution for main-sequence simulations
because the min d|U,|/dr criterion often finds a location just outside
the dynamic boundary that is dominated by the n = —1 IGWs
(Section 4.2). The entrained H 4 He mass evolves linearly with
time, and examples are shown in Fig. 11 for simulations with different
grid resolutions and heating factors. In each case, the initial transient
(~300 to ~1000 h) of the simulation was discarded for the purpose of
fitting a linear relation to the entrainment evolution. During this initial
transient, the entrained mass as a function of time would still show
non-linear behaviours that can in part be understood in terms of the
evolution of the convective boundary profile as a function of time and
heating factor as discussed in Section 4. This fit of the entrained mass
determines an entrainment rate for each simulation. For simulations
of O-shell convection in massive stars, we have previously found
a linear relation between the heating factor and the entrainment
rate (Jones et al. 2017; Andrassy et al. 2020). Fig. 12 shows the
entrainment rates for all heating factors and grid resolutions included
in this paper.
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Figure 11. Time evolution of the convective boundary radius (top panel).
Shown is the radius r, where max dFV/dr and the radius ri,p which is one F'V
scale height further inward (rop = r, — Hpy). The mass integration is carried
out to rp. A linear fit of the resulting entrained mass evolution (bottom
panel) yields the entrainment rate.

For a few heating factors, we have carried out simulations for
multiple grid resolutions. The entrainment rate does not depend
systematically or significantly on grid resolution for our simulations.
Next, we note that again, as in O-shell simulations, the entrainment
rates follow a linear trend over a wide range of heating rates. Two
linear fits are shown in Fig. 12. One includes only the three highest
heating rates 1000, 3162, and 10 000, while the other fit includes all
heating rates.

Either way the resulting mass entrainment rate at nominal heating
is unrealistically large, ~ 5 x 10712 Mg s™! for the second fit. This
is 992 M, applied over the H-core burning lifetime of 6.91 x 10° yr.
This interpretation of the derived entrainment rate obviously does not
make sense. Our simulations are not alone in predicting very large
entrainment rates, but in good agreement with those of Gilet et al.
(2013), who used a low-M number solution scheme. They include
radiation pressure but like us ignore radiative diffusion. Meakin & Ar-
nett (2007) report an entrainment rate about three orders of magnitude
higher than our simulations and included both radiation pressure and
radiation diffusion. Preliminary tests that we will describe in detail in
a forthcoming publication indicate that neither the addition of radia-
tion pressure, radiative diffusion, or the addition of rotation resolves
the unrealistically high entrainment rate. Instead, the strong time-
dependence of the response of the 3D hydrodynamic simulation to the
adopted MESA base state signals that the initial MESA base state is
out of thermal-dynamic equilibrium in the 3D hydro framework. The
large entrainment rate leads to an increasing nearly adiabatic layer
outside the initial convective boundary. Thus the large entrainment
rate phase of these 3D simulations represents the approach towards
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Figure 12. Entrainment rates as a function of driving luminosity for runs
with different grid resolutions as indicated in the legend. Two linear fits are
provided. Fit M), (dashed line) is based on the highest resolution run available
for each heating rate. The second fit (dotted line) includes only the 7683
grid runs for the three highest heating rates. Fit parameter uncertainties are
standard deviations of the fitting only. The vertical grey dotted line indicates
the nominal luminosity of the underlying 1D MESA model. The intercept
values of both fits with the nominal heating ordinate are indicated as well as
the entrainment rates reported by Gilet et al. (2013) and Meakin & Arnett
(2007) for similar simulations.

a thermal-dynamic equilibrium state with a larger nearly adiabatic
core. Our own preliminary tests and simulations by Anders et al.
(2022) show that indeed such simulations reach a quasi-equilibrium
state.

4 THE CONVECTIVE BOUNDARY

An important goal of this paper is to improve our understanding of the
hydrodynamic processes and properties of the convective boundary.
In this section, we describe the properties of the boundary, how
to determine its location, and the different types of motions in the
boundary region. Again, an important aspect is to demonstrate how
the results depend on grid resolution. We will focus the discussion
on the 1000 x simulations, for which simulations with four grid
resolutions have been used (M107-7683, M114-11523, M115-
17283, and M111-2688°).

4.1 Evolution of the boundary in terms of spherical averages

Radial profiles of 3D simulation quantities averaged on spheres
are an obviously useful dimensional reduction when the goal is
to develop models for applications in 1D stellar evolution codes.
We are mentioning two complications. The first is that because
we keep heating the core at rates that are much larger than the
nominal heating rate, and we do not include radiation diffusion
(simulations with radiative diffusion will be presented in Paper III
Mao et al. 2023), the core is expanding and thereby the radial
coordinate of the boundary is moving slightly. This effect is easily
taken care of by working with radial profiles in terms of the mass
coordinate.

The second point is a bit more subtle. The boundary according
to the adopted MESA base state is very stiff, which implies that the
boundary layer is narrow in the radial direction. The largest-scale
modes of the convection may lead to a non-spherical deformation
of the position of the convective boundaries, or of certain features.
When taking an average over a deformed surface, for example of
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Figure 13. FV profiles (left ordinate) and FV gradients from FV spline
interpolations of FV (right ordinate) at the boundary for 2450 h (thick lines)
and 2350 h (thin lines), run M115 (1000 x heating factor, 17283 grid).
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Figure 14. Radial profile of Brunt—Viisild frequency for low heating factor
runs (Table 1).

the concentration, one obtains a smoothly varying profile. However,
when averaging over an undeformed surface, which has for each
boundary surface element a turbulently mixed interface where each
vertical volume element truly consists of a mix of the two materials
separated by the boundary, then the resulting averaged vertical profile
is likewise a smoothly varying profile. Only in the latter case does the
radial concentration profile represent partial mixing. The situation is
like that of ocean swell from a distant storm on a calm day. Taking
horizontal averages will yield a smoothly varying vertical profile, but
nowhere except on the molecular level can there be found a volume
element that contains water and air. This second aspect of radial
profiles from spherical averages of 3D data is much more difficult to
take into account.

An estimate for the magnitude of this effect can be obtained
from the 3D spherical rms-deviations of the FV profile. Fig. 13
shows these for two times approximately one convective turnover
apart, as well as their derivatives, which would correspond to the N?
profiles. The maximum of the gradient differs by £ 3 Mm between
FV £ §FVin profiles, whereas the radius at which FV = 0.5
differs at both times by &~ 5 Mm. Further insight into how much
the dominant spherical boundary features are subject to deformation
and what the internal structure of the boundary is will be explored in
Section 4.3.

The key quantities are shown for the narrow ~100 Mm-wide
boundary layer region in Fig. 14 for lower heating runs and for
1000 x heating factor simulations in Fig. 15. The concentration of
the core material traces mixing while N? (which is proportional to
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Figure 15. Radial profiles of the core fluid, N2, and the magnitude of the
tangential velocity component. The legend gives the run ID (Table 1), the grid
size, and the time in hours. Markers are shown every three data points. The
vertical line shows for run M107 and 1350 h, the location of the minimum
(steepest) gradient of the tangential velocity component, which is one of
the criteria for the boundary of the convection zone (cf. Section 4.3). For
reference, the size of 0.1Hp is shown with a horizontal arrow. The abscissa
at the top gives the radius according to r(m) for 1350 h of run M 107, see text
for details.

the entropy gradient) represents the stability of the stratification, and
the magnitude of the tangential velocity represents the average of
the actual fluid flow. For low heating factors, the initial boundary
stratification (cf. Section 2.1) is somewhat deformed but the entrain-
ment rate overall is too small to migrate the boundary significantly
over the duration of the simulation. At 1000 x heating rate the initial
boundary structure is entirely erased after about 1000 h, as discussed
already in Section 3.2. In these simulations, the entrainment rate is

1613

so high that the boundary migrates through the mass region of the
original N? peak region and establishes a new N? profile that has no
memory of the initial stratification and is only due to hydrodynamic
processes. The N?-peak becomes higher and narrower, and this trend
is more pronounced for higher-resolution grids. Visual inspection
of the peak N? values as a function of grid resolution shows that
the maximum steepness of the boundary is increasing with grid
resolution. This can be understood in terms of IGW mixing in the
N?-peak region decreasing with grid resolution, as explained below.
The rate of boundary progression is constant and the same for each of
the three grids, and it is equal to the mass entrainment rate reported in
Fig. 12.

N? (which is o dS/dr) follows dFV/dr in this transition region
except where these gradients transition to different envelope values
at the top of the N? profile. Once the N> peak has passed through
the initial N?-peak region given by the initial stratification, it
migrates outwardly in a self-similar form. The same is true for
the concentration profile which, like the N?>-peak region, has an
approximate width of 0.2Hp, as shown in the top panel of Fig. 15. This
means that mixing processes must occur on both sides of the peak
of N? and across the entire peak region. We establish in Section 5
that the N?>-peak region experiences mixing due to IGWs. It then
follows that the shape of the N*-peak profile is a convolution of
its migration in mass coordinate and the IGW mixing, similar to
how it works for the convective boundary in a 1D stellar evolution
model (second-last paragraph in Section 2.1.1). IGW mixing in
the N?-peak region is inversely proportional to grid resolution
(Section 5.3.2), while the entrainment rate is essentially independent
of grid resolution (Fig. 12). Therefore, the N?>-peak profile for
higher-resolution runs is narrower as the simulation evolves toward
quasi-equilibrium.

Jones et al. (2017) adopted the criterion min d|U;|/dr to locate the
convective boundary. In Figs 10 and 15 that location is shown by
a vertical line for run M107 at ¢+ = 1000 h. It is also clear that the
decrease of |Uy| is not monotone nor steady in many of the cases
shown, as we would expect from an exponential decay of convective
velocities assumed for the 1D exponential diffusive CBM model.
At times, the tangential velocity component can even increase with
radius, indicative of wave motions. For this reason, as discussed
in Section 3.2, we did not adopt the mind|U,|/dr criterion as the
entrained mass integration boundary but instead the max dFV/dr
criterion.

4.2 The n = —1 IGW mode in the convective boundary region

In the 1000 h profile of M107 (Fig. 15), the dashed vertical line
indicates the location where the dominant convective flow velocities
are dropping off rapidly. In this section, we demonstrate that the
velocity field transitions rapidly above the vertical-dashed line from
convection-dominated to wave-dominated, and that the layers at
and above N?-peak, according to our diagnostics, are exclusively
populated by wave motions.

This is demonstrated by performing a spatio-temporal wave
analysis (see Section 2.3 for details). [ — v diagrams for core and
envelope radii are be presented by Thompson et al. (2023, Paper II).
Here, we focus just on the wave analysis of the immediate convective
boundary layer. Fig. 16 shows the / — v diagram derived from the
3D simulations for the N?-peak radius along with the n = —1 modes
predicted by GYRE for the M114 stratification.

As expected for IGWs, low-frequency modes have overall a large
ratio of horizontal to vertical velocity component (uy/uy 3> 1). Given
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Figure 16. Power spectral density as a function of spherical harmonic
angular degree [ and cyclic frequency (/ — v diagram) for the radial (top)
and horizontal (middle) velocity components in simulation M114 (1000,
11523 grid) at r = 12.6 Mg, where the peak of N? is located. Dumps 3925
to 5924 were used. The white line with dots are n = —1 modes determined
from the GYRE calculations for the spherically averaged stratification of
dump 3925. The abscissa and ordinate include projected spectra in terms of
spherical harmonic / and frequency, respectively.

the kinetic energy flux of IGWs (e.g. equation (39), Press 1981)

F 2N /1 w? ) o a ’ )12 %
= u. — —_—— = U, ——— —_ —
IGW = PUy . N2 P hNkh N2

the frequency dependence of the ratio of the velocity components is

0)2

T N1 — w?/N?) ®)

:-.xw‘c:m

and shown in Fig. 17. The velocity ratio is u,/u, > 1 for /N > 0.7 but
for w < N the power of the horizontal velocity component exceeds
the power in the radial component by two orders of magnitude.*
The power spectral distribution shown in / — v diagrams for
the radial and horizontal velocity components (Fig. 16) reflect this

#We use both r, v and 7, h indices synonymously for the vertical/radial and
tangential/horizontal components.
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Figure 17. Top panel: Ratio of vertical to horizontal velocity component
according to equation (8) for N at the N?-peak location of run M 114 (Fig. 15).
Bottom: Radial &, and horizontal L&, = /I(I + 1)&, oscillation displacement
amplitudes of two n = —1 modes with / = 3 and / = 30 calculated with GYRE
for dump 3925 of simulation M 114 (cf. Section 2.3).

expectation that U, is overall larger than U, power. The power in
the radial component U, is dominantly associated with the n =
—1 mode at high /. At low frequencies, a much smaller amount
of power is associated with higher n modes. The U, power is largest
at high / > 50 and high frequencies f =~ 140 uHz. This frequency
is much higher than the convective frequency, which is ~ 2.5uHz
at 1000 x heating. Power associated with convective motions is
found in the lower-left corner at f < 50uHz and / < 60 (Fig. 13;
Thompson et al. 2023, Paper II). The U,/ — v diagram shows
essentially no power that could be associated with those frequencies.
The U, power on the other hand is dominantly concentrated in
eigenmodes with low frequencies and correspondingly low wave
numbers.

Fig. 17 (bottom panel) shows the radial and horizontal components
of the displacement amplitude of two n = —1 modes from the GYRE
calculation, for / = 3 and / = 30. The high-/ modes have peaks of
opposing direction bracketing a node at the N? peak location. The [ =
3 mode as an example for a low-/ mode also has a sign change in the
horizontal velocity component at the N?-peak radius. This means that
these IGW modes have horizontal components exactly opposite right
above and below the N2-peak location, where the radial component
has a single maximum. For high [ values, the mode amplitude is
sharply peaked in and around the narrow N>-peak region and falls
off quickly both outwardly in the stable layer and inwardly in the
convectively unstable layer.

Inspection of centre-plane horizontal-velocity component slices
(Fig. 18) immediately reveal these n = —1 modes and specifically
the nodal location that separates opposite directions of horizontal
flow. The location of the N?-peak radius is shown as a thin black line
and coincides for most of the boundary arc shown with a minimum
in |U,|. Along the boundary, the IGW fluid motion is detached from
the convective horizontal flow and its independent and distinct nature
becomes apparent. The vorticity image also reveals the layered nature
of the flow in the N?-peak region, which is distinctly different from
the irregular vorticity distribution characteristic of convection as seen
in the core.
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1615

Figure 18. Zoomed-in images of the tangential velocity component (top) and vorticity magnitude in the convective boundary region from run M111 (26883

grid) dump 1225. The black circular lines show the radial location of the N?-peak.

The discussion of IGW mixing in terms of the shear-mixing model
[(6), Section 5.3] involves scaling relations of vorticity (Section 5.2).
The spatial spectra represent the scale distribution of velocity power
and therefore determines the denominator of the velocity derivative
vorticity. It is therefore useful to establish how the spatial spectra
at N*>-peak depend on heating factor and on grid resolution. This

is shown in Fig. 19. For both velocity components, the spectra
are truncated at high [/ according the grid resolution. The spectra
are extracted from the filtered briquette data outputs (Section 2.2)
with grid resolution reduced by a factor 4 in each dimension. If N;
is the radius of N?-peak in units of simulation grid cells then the
maximum resolvable [ is I = 7 N,/4 which is 174 for a 768> grid,
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Figure 19. Spatial power spectral distribution of radial (top row) and horizontal (bottom row) velocity component for different resolutions at 1000 x heating
factor (left column) and for different heating factors (right column, 11523 grids) at the location of the maximum of the N?-peak. Spectra for different heating
factors are scaled according to the velocity scaling relations established in Section 5.2 as indicated in the legend. Various power laws are shown to guide the

eye. Spectra with different boost factors shown in the right-hand panels are also averaged over 300400 dumps.

and accordingly higher for finer grids. Of course, the largest / that
can be captured on the simulation grid that has 4x higher resolution
than the briquette data is accordingly higher. In simulations with
radiation diffusion high-/ modes would be truncated due to radiative
damping. Thus, while in these simulations the downturn or truncation
at high [ is impacted by the given resolving power the overall shape
of the spectrum is expected to be similar to that in simulations with
radiative damping in which the high-/ truncation is not caused by the
limited grid resolution.

The radial and horizontal velocity components have very different
spatial spectra. U, spectra are peaked around / ~ 60 with a steep
decline at higher wave numbers. U, appears to resemble the power
law characteristic for turbulence. However, carefull inspection of the
bottom-left region of low / and v in Fig. 16 shows that in the / —
v diagram power is associated with discrete IGW eigenmodes, and
not chaotically distributed at lower wave number and frequency as is
typical for convection (see Paper II for examples of / — v diagrams
for the proper convection zone). In addition, the spectra further away
from N?-peak (see Fig. 20) show the same spectral shapes and power
laws for both radial and tangential velocity components at a location
where the velocity is undoubtedly purely of IGW nature. In particular,
also in the envelope does the horizontal velocity component power
spectrum follow up to the / where the peak in power for U, is located,
the —5/3 power law. The only difference is that the peak in power
for U, is at [ ~ 30 in the envelope rather than near ~60 at N*-
peak. The envelope IGW spectrum is further discussed in Paper II.
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Figure 20. Horizontal and radial velocity component power spectra as in
Fig. 19 for run M114 (1152-grid) averaged over dump range 1900-2300 at
two radii in the envelope one to two pressure scale heights above the N%-peak
location.

It therefore appears that the familiar —5/3 power law that U; IGW
spectra show at lower [ is not a symptom of the flow actually being
turbulent. However, IGW eigenmodes have a radial displacement
amplitude profile (Fig. 17) and spectra are global. Since there is little
resistance to flow in the horizontal direction it is maybe reasonable
to expect that the turbulent excitation spectrum manifest at least in
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the horizontal velocity component does imprint itself on to the IGW
spectrum. However, as shown here, the radial velocity component
does not follow this pattern.

According to our analysis the U, power is independently of heating
distributed along the n = —1 and other IGW eigenmodes (Fig. 16).
Run M119 should have more power at larger / than the lower heating
runs which is not the case. Irrespective of heating rate, the U, spectra
drop off steeply at high / in a similar manner. The spectrum of neither
velocity component depends much on grid resolution for / & 60, but
more power appears for higher wavenumbers for finer grids. For all
cases shown in the top-left panel, the peak of the spectrum falls in
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the range [ € [60...74]. The details of the spectra depends on the
exact shape of the N?-peak feature. In the left-hand panels, the M114
case is shown for both the later dump range when the boundary has
migrated through the initial profile, and the earlier dump range that is
also available for the highest resolution run M111 (cf. Section 4.1).
For the U, power the M114 run for the early dump range and M111
(also for the early dump range) agree very well on the left up-sloping
part of the spectrum. At the peak, these two lines depart from each
other and at the down-sloping high-/ part to the right of the peak
instead both M 114 spectra for the different dump ranges agree very
well. This indicates that for the left part of the spectrum corre-
sponding to larger-scale modes the shape of the N>-peak dominates
over grid resolution, whereas for high wavenumbers the resolving
power of small scales corresponding to grid resolution becomes
important.

For the tangential velocity component (bottom row in Fig. 19), the
spectrum does not depend significantly on heating rate, nor on grid
resolution, except that again for more refined grids power extends
to higher wave numbers. If anything, it appears that lower heating
rates have less power at the lowest wave numbers which generally
for IGWs correspond to lower frequencies, despite having lower
convective frequencies. However, this difference is probably rather
attributed to the systematic difference in N?>-peak shape considering
the discussion above concerning the two dump ranges shown for
M114.

The conclusion of this section is that the various diagnostics of the
velocity field support the finding that at the radius of the N>-peak the
flow is dominantly due to IGWs, and that the radial velocity power
is dominantly in the n = —1 mode.

4.3 Where is the convective boundary?

As shown in Section 3.1.4, convective and wave fluid motions
have very different statistical properties. Convective flow has an
asymmetric (high skew) and fat-tailed (high excess kurtosis) radial
velocity distribution function. Wave motions have a Gaussian PDF.
In addition to the wave analysis presented in the previous section, we
can use this statistical property to characterize the boundary layer and
determine quantitatively how convective motions transition into wave
motions.

Using the 3D briquette data output, we determine the higher-
order moments skew (S) and excess kurtosis (K) as a function
of radius. Fig. 21 shows the profiles of these quantities for three
times in the M115 simulation. The times were selected to demon-
strate properties of different quantities to track the location of the
convective boundary, as explained below. The general behaviour
of the higher-order moments is to increase substantially outward
towards the convective boundary. Both skew and kurtosis have a
prominent peak approximately 20—40 Mm below the location of the
N? peak. However, for the kurtosis this may be a local maximum,
with the global maximum at times aligning with the peak of N? as
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Figure 21. Radial profiles of kurtosis K, weighted skewness S (scaled a
factor of 10 for visibility), their product S - K, the norm of the tangential
velocity |U;|, and the Brunt—Viisild frequency N? in units of rads~!. Top:
M115 at 1615.25 h (dump 2275 shown in Figs 4 and 22); middle: M115 at
1444.15 h; bottom: M114 at 1619.5 h.

in the example shown in the bottom panel of Fig. 21. The skew
may have a second local maximum just outside of the N? peak.
However, the product S - K has one easily detectable maximum
at the top of the convection zone, close to the location where the
gradient of the tangential velocity has a minimum most of the
time.

In Fig. 22, we show radial velocity projections using the same
colour maps as in Fig. 9. Now, the PDFs are on a logarithmic scale
to better show the far-tail distributions. Shown are the projected U,
image and PDF for the radius of max S - K and max N?> for dump
2275, which is also shown in the top panel of Fig. 21. In both distri-
butions, maximum and mean are now nearly identical, reflecting the
symmetry of up- and downflows for most fluid elements. Comparing
the left-hand panels of Fig. 9 with both panels in Fig. 22 shows that
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Figure 22. Mollweide projections of the radial velocity component and PDF on the 47 sphere. Left: At the location of the convective boundary according to

the K-S-product-peak criterion at rgs.peak = 1511 Mm. Right: At the location of the peak of N2 at e

two side-by-side upflow regions at longitude —60 and —100 deg and
latitudes ranging from +15 to —45 deg leave clear imprints at the
location max (S - K), where they represent the largest radial velocities.
These convective motions are still identifiable in the right-hand panel
of Fig. 22 at the radius of max N?, although at velocity magnitudes
that represent less of an outlier to the general distribution. While most
surface areas at the location of max (S - K) approach the Gaussian
distribution characteristic of wave motions with generally lower and
symmetric radial velocities, substantial convective incursions take
place, especially where the dipole impacts the convective boundary.
These populate the far tail of the distribution, leading to very large
kurtosis values. These far-tail velocity elements are predominantly
contributing positive radial velocities as shown in the PDF in the
left-hand panel of Fig. 22, which causes the asymmetry of the
distribution reflected in the large skew. However, only about 0.1 Hp
further out, at the location of max N?, the skew has a minimum
close to values of 0.0 in all cases. The n = —1 IGW mode (cf.
Section 4.2) enforces an almost perfectly symmetric radial velocity
distribution.

At this location, the kurtosis has smaller values than where max S
- K, but not always. The bottom panel of Fig. 21 shows an example
where the global maximum of K coincides with max N?.However, the
skew is nearly zero at this location, which excludes the possibility that
far-tail events indicated by high K are due to a convective intrusion of
the dipole impacting the convective boundary, as that would be a far-
tail event with only positive velocity. Fluctuating kurtosis and nearly
zero skew may rather be the signature of a time-variable spectrum of
n = —1 modes.

S has at all times a clear minimum of nearly zero values at the
location of max N?, where the radial oscillation amplitude of the n =
—1 mode has a maximum (bottom panel Fig. 17). The n = —1 mode
enforces the symmetry of the flow pattern at this location. Just above
S sees a low relative maximum. This is where oscillation power shifts
from the n = —1 to more-negative modes, and a mix of distributions
with different mean values causes asymmetry.
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~peak = 1536 Mm.

Although the eye is able to recognize the convective flow pattern
in the radial velocity projection at max N? (right-hand panel, Fig. 22),
the PDF does not show the characteristics of convection (large K and
S). This suggests that coherent convective motions are not able to
penetrate past the max N? radius.

The increasing stability of the stratification from the convection
zone to the radius of max S - K and max N? is reflected by the decrease
of the variance (given along with each PDF plot in Figs 9 and 22)
as the average of the convective radial velocity magnitude decreases.
At max N2, the variance is the same as it is further above in the stable
layer. This is consistent with the notion that at and above the radius
max N2, convective motions play a minor role, and that max N? is
above the convective boundary.

The maximum of kurtosis and skew at the convective boundary
can then be interpreted as the result of a radial velocity PDF generally
contracting in terms of variance across the boundary, supplemented
however with occasional massive incursions of the large-scale
convective system, most prominently the large dipole mode. We
therefore propose the condition max S - K as a dynamic criterion for
the convective boundary, above which fluid motions are dominated by
waves and below which fluid motions are predominantly convective.
This criterion is more reliable than the min d|U;|/dr criterion used in
Jones et al. (2017). As shown in Fig. 21, the min d|U,|/dr location is
not well-defined in these main-sequence simulations due to the strong
IGW velocity component in the region just above the convective
boundary, and it can also be located above max N2, as in the case
shown in the middle panel. This effect only becomes noticeable in
simulations with high grid resolution in which the radial morphology
of the IGWs is sufficiently resolved.

The long- and short-term evolution of the different convective
boundary criteria candidates are shown in Fig. 23. The derivative of
this boundary mass migration gives the same entrainment rate as in
Section 3.2. The difference in the variability of the three locations is
noteworthy. As explained above, the min d|U,|/dr location is highly
variable, as high-resolution simulations resolve IGWs and place it
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Figure 23. Time evolution of the mass coordinate of the maximum of the skew—kurtosis product SK, the steepest radial gradient of the tangential velocity
component mind|U,|/dr and the peak of the squared Brunt—Viisili frequency max (N?) for simulation M114 (11523) and, in the inset, more detail from the
M115 simulation (17283). These three quantities mark the location of the convective boundary in different ways, see text for discussion.

on the edge of individual oscillations or at the edge of the convection
zone in some erratic and alternating fashion. The max S - K criterion,
on the other hand, is well-defined, and the radial fluctuation of the
convective boundary according to this criterion is ~ 15 Mm or
0.05 Hp. However, the radial variability of the location of max N?
is ten times smaller, corresponding to only 1/2 grid cell size of
run M115 with a 17283 grid. This small variability over long time-
scales corresponds to the estimate of the magnitude of spherical
deformation’s effects discussed in Section 4.1 (cf. Fig. 13).

5 MIXING DUE TO INTERNAL GRAVITY
WAVES

In this section, we determine the mixing efficiency in the convective
core and at the N?-peak location using the technique outlined in
Section 2.4. We present scaling relations with heating and interpret
the simulation results in the framework of shear-induced mixing
outlined in Section 2.4.

5.1 Mixing in terms of diffusion due to convection and IGWs

In the previous section, we have demonstrated how the flow
transitions from convective advection-dominated to wave motion-
dominated in the region between the S - K peak and the N? peak
(Fig. 21, Section 4.3). Around the N?-peak radial fluid motions are
dominated by the n = —1 IGW mode (Fig. 16), and to the left of the
N?-peak mixing is mostly due to the decaying convective boundary
flow.

Fig. 24 shows the determination of the D profile from the
diffusion equation inversion method (as described in Section 2.4).
For this method to work well, it is required that the FV gradient
be not almost zero. For this reason, we measure the convective
mixing well inside the convective boundary but not too deep
inside the core where the FV gradient is very small (Fig. 10).
The coefficient Deony-nyaro in the convection zone is taken at the
radius 0.75Hpy below the radius of the Nz-peak. The diffusion
coefficient Digw.nhydaro is recorded at the radius where the Nz-peak
is located and where IGWs dominate mixing (Section 4.2). These
two mixing coefficients are measured in the same way for all runs
listed in Table 1 and shown as a function of the heating factor in
Fig. 25.

Just as found previously (Miiller et al. 2016; Jones et al. 2017;
Andrassy et al. 2020), both convective velocity components follow
the scaling Ueony o< L' (Fig. 26). The convective mixing coefficient
follows the same scaling, consistent with the usual expression
Deony = _%lmix Veony Where Iy is the mixing length. Since both
Deonv-hyaro and the convective velocities scale with the heating factor
with the same power, then, assuming the above expression for D¢opy,
the mixing length [« is independent of the heating factor. Fig. 27
shows

1 3 Dconvfhydm
Omix = 7lmix

HP - Hp u (9)

for u = U,, the radial velocity component, and u = Uip =
/U2 + U2, the total velocity magnitude.

The mixing-length parameter determined in this way> increases
from the convective boundary, where it is essentially zero, to order
unity at almost one pressure scale height into the convective core,
i.e. at about one pressure scale height into the convection from
the Schwarzschild boundary opix & 1. A gradual increase of the
mixing length from the boundary to well inside the convective
core has previously been observed in hydrodynamic simulations
of O-shell convection in a massive star by Jones et al. (2017,
equation 4), who suggested that the mixing length parameter
should be
= min(ar, ). (10)

Hp
adopting amix = 1. oy calculated in this way is shown in Fig. 27,
and the slight bend reflects the radius dependence of Hp. In these
core-convection simulations, the mixing-length parameter is better
modelled with an exponential

_|r — sl
Hp

Sr , 0 = Min(omiy, 4¢’® D) (11)
again adopting ot ,yix = 1. As shown in Fig. 27 this matches the mixing-
length parameter profile determined from the simulations using the
total velocity magnitude better.

SThis mixing-length parameter is just a quantity as defined and measured
from our simulations. It may or may not be related to the mixing-length
parameter from MLT.
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Figure 24. Diffusion coefficient D from evolution of spherically averaged
abundance profiles for heating factors 1000 x (M114, top) and 100 x (M116,
bottom). D is calculated according to the diffusion equation inversion method
(Section 2.4). For M116 the two time average dump ranges are [1050, 2050]
and [3050, 4050], respectively, and for M114 the averaging dump ranges are
[2725, 3200] and [3450, 3925], respectively. Shown also is the Brunt—Viisild
frequency squared (blue dashed—dotted) and the gradient of the fractional
volume concentration (dotted grey lines, taken of the FV profile at the dump
in the middle of the total range used for this analysis, which is dump 2550
for M116 and 3325 for M114, and scaled so that the FV gradient and N?
curve peaks match). The thin, blue-dotted vertical lines to the right indicate
the radius of N?-peak for which a power spectrum is shown in Fig. 16 and
where Digw-hydro is measured. The left vertical lines are at the location
0.75Hpy further inward, where the convective diffusion coefficient Deony-hydro
is measured. Also shown are the two fractional volume concentration profiles
FV1 and FV2 (scaled to match the range on the right axis, FV € [0, 1]) at the
first and last dump of the overall dump ranges used for the D analysis.

The diffusion coefficient determined at the radius of the N>-peak
follows a scaling with heating factor o« L*? for heating factors
>10%3. This is distinctly different from the mixing scaling found for
Deony-nyaro measured in the convective core and implies that the physi-
cal mixing process is fundamentally different from turbulent convec-
tion. This adds evidence to the expectation that mixing at the N>-peak
is caused by IGWs. In Section 5.3, we compare this mixing with pre-
dictions in terms of IGW-induced shear according to equation (6), and
we turn therefore now to exploring the properties of vorticity in our
simulations.

5.2 Vorticity scaling relations

Expression equation (6) relies on the assumption that the horizontal
vorticity component is much larger than the radial vorticity com-

MNRAS 525, 1601-1629 (2023)

16.0 14.0
e 768
* 1152 - o 135
e s
155 + 1728 P ]
- X 2688 P e 13.0
& ° K 2ot Y
£ s t125 &
s} B S 7 &
< 15.01 Y £
9 e SYR Vs r12.0 S
o - - 8
¢ 7 t115 &
2 ,‘ 50
£ 145 5 =
o v F11.0 ©
g & 08
o v 7 v 768 |
14.0 AT L3 A 1152 [ 10
7
1 L < 1728 | 199
e > 2688
13.5 +— . T —L-9.5

1.0 15 2.0 2.5 3.0 3.5 4.0 4.5
log heating factor

Figure 25. Scaling of diffusion coefficients determined by the diffusion
equation inversion method (Section 2.4) as a function of heating factor.
Hexagons, stars, plusses, and crosses represent convective diffusion coef-
ficients Dcony-hydro taken at 0.75Hpg below the Nz—peak radius (left axis).
Triangles show the diffusion coefficients DiGw-nydro at the Nz-peak radius as
shown in Fig. 24. Two power laws shifted to be nearer to where the points are
located are shown with dashed and dashed—dotted lines.
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Figure 26. Horizontal and radial velocity magnitude in the convection zone
at the same radius, 0.75Hp( inward from the radius of the N -peak.
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Figure 27. Mixing-length parameter opix as a function of radius in the outer
third of the convective core for simulation M 116 (100 x heating factor, 11523-
grid) using equation (9) with radial velocity component (blue solid) and total
velocity magnitude (dashed orange) as well «; according to equation (10)
and o according to equation (11). See text for details.
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Figure 28. Top: Vorticity profile as well as the radial and horizontal

components. Bottom: Profiles of | V x u|2, NZ2, and the Richardson number
Ri ~ % (cf. Section 2.4). The orange star indicates the radius of the
N2-peak. Both plots are for run M114 (11523 grid, 1000 x heating factor) at

dump 4425 corresponding to time 3142 h.

ponent, so that | Vx u| ~ | Vx ul,. This is indeed expected for
IGWs and borne out by our simulations, as shown in Fig. 28.
The bottom panel shows the exact location of the N?-peak in
relation to the vorticity profile, as well as the Richardson number
calculated from the vorticity as outlined in Section 2.4, using spline
representations to find the precise vorticity at the radius of the N*-
peak. This shows that the local vorticity magnitude peak is & 25 Mm
further inward relative to the N?-peak, and that at that radius
and above, the ratio of horizontal to vertical vorticity components
exceeds ~10.

The vorticity profiles for four different grid resolutions are shown
in Fig. 29. The lower three grid resolutions are shown averaged over
a time range after the convective boundary has migrated through the
initial N?-peak profile (Fig. 15). The idea was that we may avoid in
this way a possible dependence of the vorticity profile on the shape
of the N?-peak profile. The highest resolution run was not followed
to those late times. For this reason, the time ranges over which we
average the three lower resolution runs and the highest resolution runs
are not the same. In any case, in these simulations vorticity magnitude
of IGWs in the stable layer shows no sign of convergence. At N>-peak
| V x u|? scales o« N? (Fig. 30). The question of whether or not the
IGW vorticity converges in the simulations will depend on the effect
of radiative diffusion, which could dampen small-scale fluctuations.
This question will therefore be revisited with simulations that include
radiative diffusion and have reached a quasi-equilibrium.
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Figure 29. Spherically averaged vorticity profiles for 1000 x heating runs
in M107 (768%), M114 (1152%), M115 (17283), and M111 (2688%). Solid
lines show the average of 442 dumps between ¢ = 1349 and 1662 h, except
for M111, where 817 dumps in the time range 569-1316 h are averaged. The
dashed, dotted, and dashed—dotted lines show spherically averaged profiles
for individual dumps in this time range every 100 dumps. The 3D vorticity
data is calculated from the briquette data.
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Figure 30. | V x u|? at N*>-peak radius as a function of grid resolution. Ny
is the number of grid cells in one dimension. The legend gives the heating
factor.

The analysis of the time evolution of vorticity shows fluctuations
over long periods. The M107 time evolution of the average in the
range 1900 < R/Mm < 2100 shows long-term ~700 h variations
with amplitudes of ~ 10 per cent.

Next we establish how vorticity scales with heating rate. The
simulation vorticity in the convection zone displays the scaling
relation |V x U| o< L'3 (top panel Fig. 31). The spectrum represents
the spatial scale distribution and therefore the denominator of the
velocity gradient. The spectrum (Fig. 6) remains approximately the
same as a function of heating, and thus the vorticity scaling follows
the velocity scaling (Section 5.1).

The expected scaling of IGW vorticity with heating factor is based
on the assumption that the kinetic energy flux of IGWs is proportional
to the convective flux

Fiow = MFconvy

where M & veony is the Mach number (e.g. Rogers et al. 2013).
Given equation (7) and veony o< L'/ o Fclo/tfv, it follows that

U, o< L3
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Figure 31. Vorticity as a function of heating. Top: envelope (orange) and
convection (blue); bottom: at N>-peak radius. The vorticity values for the
envelope are obtained by time-averaging the spherical averages (Fig. 29)
over the range R/Mm € [1800, 2000]. The convective vorticity values are the
radial average over the range 800 < R/Mm < 1100. On the right ordinate,
the Richardson number according to equation (3) is shown. Strictly speaking,
each point would have its own value of N2, and points can’t simultaneously
be on the same vorticity scale and on the same Ri scale. Here, the Ri axis is
indicative, assuming for all points the average value for N? at the N?-peak
of all 11523-grid simulations (< N> >= 1.5 x 107%, 1572, N? € [1.1, 1.9]
1075, 1572).

and
U, « L*3

for fixed values of n and / and for the same stellar model. Our
simulations are mostly consistent with this scaling. Fig. 32 shows
the tangential and radial velocity component magnitudes at the
radius of the N?-peak. For the simulations with the lowest heating
factors the grid resolution becomes insufficient and the radial velocity
component values drop below the scaling relation. Note how the
7683-grid simulations drop more than those with 11523 grid. The
scaling relation for these velocities one pressure scale height Hpg
further out in the envelope looks the same, except with tangential
velocities roughly a factor of 2 smaller (Figs 8 and 7). However, at
both locations, the tangential velocity component deviates from the
scaling relation for IGWs derived above to follow oc L' for heating
factors >1000.

One may think that this break from the scaling relation by the
tangential velocity component is due to lower heating factor runs
retaining most of their original N>-peak profiles, while velocities for
higher heating factor runs have been measured at later times, when
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Figure 32. Tangential and radial velocity components at the N?-peak radius
as a function of heating factor. Upside-down triangles are from the 11523-
grid simulations. The lower sequence of blue and light grey symbols show
the radial velocity component. Orange and dark grey symbols represent the
tangential velocity component. Dashed—dotted lines show scaling o 2/3 and
the dotted line shows scaling o 1/3.
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Figure 33. Tangential and radial velocity magnitude at the radius of the
N?-peak for run M115 (1728 grid, 1000 x heating factor) and the value of
N? at the radius of the N?-peak. N> gradually increases over the first 1500 h
while the boundary migrates outward through the initial boundary profile (cf.
Section 4.1 and middle panel Fig. 15).

the boundary has migrated through the initial N>-peak profile as
discussed previously in Section 4.1. If this were the case, we would
see variation in the tangential velocity component during the initial
1500 h as the convective boundary migrates through the initial N*-
peak profile in a 1000 x heating run. Fig. 33 shows that this is not the
case. Immediately after the initial &~ 100 h (about a convective turn-
over time), when the first convective plumes reach the boundary, the
horizontal velocity magnitude reaches its steady-state value. During
the initial ~ 1500 h, the maximum N? value gradually increases,
signalling the continued change of the profile. After this time, the
N? max remains constant, corresponding to the phase of self-similar
migration of the boundary. During this entire time, the tangential
velocity magnitude remains constant, demonstrating that it does not
depend on the shape of the N*>-peak.

Instead, a different explanation of the break from the tangential
velocity scaling relation is more plausible. The velocities of IGWs
scale with twice the power the convective velocities scale with. At
some heating factor the IGW velocities would exceed the convective
velocities. For heating factor 10* x, the tangential velocity according
to the scaling law would be 18.6 km sec™! at the N?-peak whereas the
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convective tangential velocity component at 0.75Hp, further inward
is 22.6kmsec™!. Since IGW motions are excited by convective
motions in the core, it makes sense that at some point the IGW
velocities cannot continue to follow their steep power law, but
instead will follow the shallower power law of the convective
motions.

For heating rates <100 x for an 1152 grid and <316 x for a 7523
grid, M numbers become too low for the given grid resolution to
resolve the flow velocities accurately (see Andrassy et al. 2020, for
same effect in O-shell convection simulations, fig. 15) which shows
first in the smaller U, component.

Again, since the IGW spectrum does not depend much on the
heating factor, especially at high wave numbers (Fig. 19) the
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IGW vorticity follows the same scaling |V x U| o< L¥* as the
velocity. The IGW vorticity data in the radiative envelope from
our simulations is consistent with this scaling for heating factors
in the range 100-1000 (Fig. 31) for both the envelope and the N*-
peak radius. Extra care has been taken in view of the steep vorticity
gradient at N?-peak to retrieve the values from spline interpolations
(bottom panel, Fig. 28). Fig. 31 shows the vorticity scaling for both
the envelope (orange symbols in top panel) and for the N>-peak
(bottom panel).

The simulation vorticity follows the scaling pattern of the tangen-
tial velocity component oc L>? for heating factors <1000 and oc L'3
for larger heating factors. Since the vorticity magnitude for IGWs
is essentially the horizontal vorticity component (Fig. 28), this
implies that the total vorticity magnitude is dominated by the
term dUy/dr in equation (5), and it confirms that the simulated
IGW vorticity magnitude represents dominantly horizontal shear
motions.

The 7683-grid simulations generally fall below the scaling L??,
and the change to 1/3 scaling is not as clear as it is in the 11523-
grid simulations. This is especially so for the lowest heating factor,
where also the 11523-grid vorticity falls below the L*3 scaling. This
effect can be attributed to insufficient grid resolution at the lowest
M numbers. Since the tangential velocity component does trace
the 2/3 power law down to the lowest heating factors, it is likely
that at these low heating rates, the radial resolution of horizontal
flow features is insufficient to capture the smaller scales, hence the
calculated velocity gradients are too small.The peak of the U, spectra
is somewhat lower for the highest and lowest heating rates. However,
for the lowest heating rate the deviation of spherically and time-
averaged radial velocities from the scaling laws established by the
higher heating-rate runs (Section 5.2) suggests that the lowest heating
rate case shown (M116) has insufficient grid resolution at 11523
grids to resolve the U, velocity component accurately. Saux et al.
(2022) suggested that higher heating rates with their larger convective
frequencies would excite IGWs with higher frequencies. There is no
evidence for that in these spectra at the N>-peak location. However,
if such differences appear only near the convective frequency then
higher frequency resolution, i.e. longer time series than available
from these simulations may be required to detect such trend if it
exists.

5.3 Critical interpretation of measured IGW mixing as
shear-mixing

In this section, we discuss the scaling relations from the simulations
for IGW mixing and vorticity under the assumption that IGW mixing
is due to shear mixing as described in Section 2.4, specifically
equation (6). We thereby test whether, based on the simulations
presented here, we are able to confirm or rule out that this is the case.

Figure 34. IGW mixing diffusion coefficient at the N?-peak radius as in
Fig. 25 as a function of 1/Ri = ‘V}i]‘iﬁ'lz
the variation of N2, open symbols show 1/Ri values calculated with the N?
average of the 11523-grid simulations (see caption of Fig. 31). A thin solid
orange line provides the relation between D and 1/Ri along the N?-peak profile
for M116 (Fig. 24) for the radius range R € [1465, 1555] Mm, where values
of large 1/Ri correspond to small radii.

. In order to show the magnitude of

5.3.1 Scaling of Digw.-nyaro With 1/Ri

Fig. 25 shows that, focusing on the 11523-grid simulations, the
measured Digw.nyaro mixing coefficients follow the scaling o L3
for logheating factors & 2. This would be consistent with the
shear-mixing model equation (6) with IGW vorticity scaling with
L?3. However, | Vx u| o< L'/? and not o< L¥3 for heating factors
>1000 x, yet Digw-hyaro does not follow this power-law change
towards a slower increase with heating. Again, as in the previous
section, we consider if this behaviour could be due to the somewhat
different N?-peak profiles for lower heating rate runs versus the
higher heating rate runs. The possible effect of the N? dependence in
equation (6) can be eliminated by establishing the scaling relation of
DIGW—hydm with 1/Ri:

1 (Vxuy
R N?
If IGW mixing is due to shear mixing following equation (6), then
we should find Digw_hydro X % for all heating factors. However,
as shown in Fig. 34, this is not the case. Focusing again on the
higher accuracy 11523-grid simulations, the scaling follows the trend
expected for shear mixing for heating factors <1000 x. But for larger
heating factors, the scaling power changes by a factor of 2, consistent
with the change of vorticity scaling being the dominant aspect. Thus,
the small variation of N? as a function of heating is not responsible
for the change of scaling at heating factors >1000 x. To make
this point even clearer, we show each pair of (1/Ri, Digw-hydro) in
Fig. 34 using both the actual N? value measured for each simulation
(filled symbols), as well as the 1/Ri values resulting from using
an average, constant value for N> (open symbols). This shows that
while individual points may shift a bit, the break from the scaling in
equation (12) does not depend on the minor dependence of N? on the
heating factor.

The change of scaling in Fig. 34 seems to be in contradiction to
the hypothesis that the measured IGW mixing is due to shear mixing
according to equation (12). Even though the vorticities do not follow
the scaling law expected for IGWs for heating factors >1000 x
because the tangential velocity does not follow the IGW scaling
relation in those cases (Section 5.2), we may still expect equation (12)
to hold. But this is not the case, as the break from scaling in the

DiGw—hydro X o L3 (12)
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relation of DiGw-nydro With 1/Ri (Fig. 34) shows. A complicating factor
could be that equation (6) also contains the thermal conductivity,
which will be discussed in the next section.

The 7683-grid simulations follow the scaling Digw.nydro ¢ 1/Ri for
all but the lowest heating factor. However, as pointed out before,
7683-grid vorticities less accurately follow the L3 IGW vorticity
scaling and therefore do not exhibit the change in scaling from power
2/3 to 1/3 as clearly. For the lowest heating factors, mixing is larger
compared to the L*? scaling (Fig. 25), and more so for smaller
grids. This is consistent with numerical diffusion contributions, to be
discussed further below.

A question arises as to how sensitive the determination of D and
1/Ri is to the exact position of where the values are taken (cf. Fig. 28).
Mini-profiles provided for runs M114 and M116 as short solid lines
in Fig. 34 show the simultaneous change of both quantities accross
the N?-peak feature. For each of these lines, the large 1/Ri end of
the line corresponds to the inside of the N?-peak profile, and this
is the convection side. For the broader M116 peak, the mini-profile
is approximately aligned with the o 1/Ri scaling law. The M114
mini-profile follows the heating-series scaling relation broadly but
deviates on the stable side of the N?>-peak profile.

5.3.2 Thermal conduction

These simulations do not include thermal conduction. However,
the shear-mixing model described in Section 2.4 requires that
DiGw-nydro o the thermal diffusivity K ((2)). As discussed in Sec-
tion 2.4, thermal loss of entropy memory enables shear flows to
cause mixing for Ri > 1/4. Without thermal conduction, displaced
fluid elements would remember the entropy of their origin and
return ultimately to that radial position. Thus, thermal conduction
would facilitate partial or complete entropy memory loss without
which mixing according to the shear mixing mechanism outlined
in Section 2.4 would be impossible. Since these simulations do not
include thermal conduction explicitly, numerical diffusion of entropy
would be facilitating IGW mixing if it is caused by shear according
to equation (2). The numerical entropy diffusion would be related
to the accuracy of PPM used to calculate the hydrodynamics, with
error terms expected to scale with the number of grid points (in
one dimension) Ny as N 3 (Porter & Woodward 1994). However,
the advection of concentration FV is done in PPMstar with the
higher-order PPB method. Due to this feature of PPMstar treating
hydrodynamic and concentration advection at different orders, these
simulations could capture mixing due to small-scale shear at Ri >
1/4 calculated with high-order PPB aided by thermal conduction due
to more efficient entropy diffusion resulting from the lower order of
PPM.

More specifically, in the presence of fluid shear the PPM difference
scheme has an effective numerical viscosity that has been measured
and characterized quantitatively in Porter & Woodward (1994). This
viscosity arises from interpolation errors that cause a slight diffusion
of momentum. The diffusion of entropy in such a flow should occur
through the same sort of interpolation errors and thus should be
characterized in the same way in terms not of effective viscosity but
instead of effective thermal diffusivity. The effective viscosity of the
PPM scheme in this context consists of two terms, one that scales
as Ax’/A? and another scaling as Ax*/A3 where Ax is the cell width.
The second term becomes important only for sinusoidal disturbance
wavelengths, A, that are smaller than about 10Ax. For reasonably
resolved wavelengths A the dominant term in the effective viscosity
of the PPM scheme scales as Ax*/A2. This means that for a given
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grid cell size Ax the effective viscosity is inversely proportional
to the square of the disturbance wavelength. Consequently, there is
no single viscosity that one can ascribe to a PPM simulation on a
given grid, because the effective viscosity rapidly becomes smaller
as the wavelength of the disturbance of interest increases. In the
flows discussed here, we consider shear generated by IGWs in the
region of N?-peak at the convective boundary. If we consider grids
that all capture the spectrum of such IGWs fairly well, then we
would expect the resulting diffusion of entropy to scale with Ax>. If,
instead, more of the IGW spectrum at shorter wavelengths is captured
as the grid is refined, and if this newly captured spectrum component
contains sufficient power to be important in diffusing entropy, then
the effective entropy or species diffusion could scale differently with
Ax. As shown in the left column of Fig. 19 the overall spectrum is
captured fairly well by all grids, but it is also correct that more power
appears at higher wave numbers.

In PPMstar species advection is followed with the higher-order
PPB scheme (Woodward et al. 2015) whereas the hydro is computed
using PPM. Formally, PPB is two orders more accurate than PPM, so
its numerical diffusion should scale with grid resolution not as Ax>
but as Ax>. Ultimately, an advection scheme can capture species
flows in absolute terms only as accurately as the underlying velocity
field. In the bottom panel of Fig. 24, it can be seen that the FV
gradient profile differs slightly from the N? profile. In a hypothetical
simulation without physical heat conduction in which the numerical
species and entropy diffusion are the same, initially identical FV
(concentration) and entropy profiles must remain identical with time
everywhere in the simulation. In the bottom panel of Fig. 24, it can
be seen that the FV gradient profile is slightly different from the N?
profile. Despite not including thermal diffusivity in these simulations,
numerical diffusion of heat changes the entropy profile in addition to
dynamic process, which for concentration mixing are followed with
the higher accuracy of the PPB scheme. This is an indication that
in these simulations species mixing and entropy mixing are indeed
subject to different numerical accuracy.

DiGw-nydro 18 the measurement of species transport determined from
the time evolution of FV profiles of the simulations (Section 5.1).
Fig. 34 shows that Digw.hyaro o (1/R)™"2 as a function of grid
resolution for heating factor 1000. This suggests to analyse the
dependence of the species and entropy diffusivity on grid resolution
a bit further. Fig. 35 shows that Digw_nyaro o< Ny !, where Ny is the
number of grid points in one direction. This would be consistent with
the case of numerical diffusivity proportional to Ax mentioned above.
N? does not depend significantly on Ny,. However, | Vx u|?> o« N?
(Fig. 30), and if IGW mixing is due to shear according to equation (6)
the scaling of Digw.nydro With grid resolution can also be understood
as a consequence of numerical entropy diffusion scaling with N3
Using the measured Digw-nyaro and | V x u|a hydrodynamic IGW
diffusivity can be determined according to

2
D hydro N

IR -

Khydro =
This would be a reflection of the numerical PPM entropy diffusivity
if the measured Digw.nydro is due to shear mixing according to
equation (6), and using n = 1. Then the scaling for Kyyar, With Ny
follows from that of vorticity and Digw-nyaro andis x N;' /N2 = N3
as shown in Fig. 36. This corresponds to the expected scaling of the
PPM error terms if all grids resolve the relevant scales reasonably
well (Porter & Woodward 1994).

Khydro 1s a possible expression of the entropy diffusion in the sense
that if IGW mixing is due to shear mixing according to equation (6),
then the PPM entropy diffusion has the same cumulative effect on
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Figure 35. Top: DiGw-hydro at Nz—peak radius as a function of grid resolution.
Ny is the number of grid cells in one dimension. A power law with exponent
—1 is also shown. The power-law fit gives an exponent —0.85. Bottom: N?
at peak. The lower N? for the 26883-grid 1000 x run (M111) is due to the
shorter duration of that run, in which the initial N>-peak profile still dominates
over the dumps averaged (cf. Fig. 33).
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Figure 36. IGW effective entropy diffusivity in terms of Khydro calculated
from equation (13) under the assumption that measured IGW mixing is due
to shear mixing, and using the simulation values DiGw-hydro | V X u| shown
in Fig. 35, and n = 1. Dotted horizontal lines indicate the radiative diffusivity
when scaled as K « L, from bottom to top for heating factors 1000x, 3162 x,
10000x.

entropy memory loss of perturbed fluid elements that a thermal
diffusivity of this magnitude would have, given the measured mixing,
the vorticity and N? of the simulation. However, as explained earlier
in this section numerical entropy diffusivity has a very different
dependence on the spatial spectrum than radiative diffusion would
have. Therefore, the values and scaling relations determined for Kpyaro
are specific to the particular setup and are not numerically equal

1625

to a numerical viscosity. With these caveats in mind, we can then
ask what the grid size would be so that for a given simulation of
this setup, the effect of thermal conductivity K is approximately as
large as the measured Kpyqro- In order to maintain the same thermal
equilibrium stratification, K would be added o L in simulations
with radiative diffusion. The K values according to this scaling
have been added as horizontal dotted lines for three heating factors
to Fig. 36. Assuming n = 1 simulations with Ny £ 1400 would
satisfy Kpydro X K for 1000 x heating factors. At this or finer
grids, a physical diffusivity scaled proportionally to the heating
factor would dominate over numerical entropy mixing in its impact
on IGW mixing if that mixing is due to shear mixing. Thermal
diffusivity would have a number of other effects on the dynamic
evolution of the overall simulation, for example in establishing the
quasi-equilibrium state. The grid dependence of those effects would
be different for numerical entropy diffusion compared to thermal
diffusion.

Using a larger heating rate would in principle require a smaller
Ny, except that the measured mixing does not follow the shear
mixing scaling in that case, thus making application of equation (13)
questionable.

Considering the complex nature of the flow under consideration
this analysis of cumulative effects of different types of error terms
in the framework of a specific physics model may necessarily
remain somewhat inconclusive. However, having established the
dependencies of various quantities related to cause and effect of
IGW mixing on grid resolution in these simulations without thermal
conduction provides a valuable reference point for simulations that
do include thermal diffusion.

5.4 Discussion
The main results and findings of this section are as follows:

(i) We measured convective mixing and mixing due to IGWs
for heating factors from 31.6x to 10000x, for at least two grid
resolutions in each case, and for four grid resolutions for heating
factor 1000x . These two sets of mixing coefficients follow distinctly
different scaling relations Deony-hyaro ¢ LY and Digwnyaro o< L*.
This confirms their distinctly different underlying mixing physics.

(i) The convective mixing results are consistent with the com-
monly adopted relation Deony-hydro X ImixUconv- Our simulations
support a new exponential model ((11)) of how the mixing-length pa-
rameter decreases toward the convective boundary of main-sequence
core convection in a massive star. This mixing-length parameter can
be used to relate the MLT convective velocity to the species-mixing
diffusion coefficient, instead of using a constant MLT mixing-length
parameter throughout the entire convection zone.

(iii)) We probe to what extent the measured IGW mixing is
consistent with the predictions of shear-induced mixing (Section 2.4,
equation 6). The total vorticity magnitude of IGWs is dominated
by the horizontal component, which in turn is dominated by the
derivative of the horizontal velocity component in the radial direction.
It follows a scaling law | V x u|?> oc L*3 for heating rates up to
1000 x, but oc L*? above, likely because the higher power of
IGW velocity scaling relative to convective velocity scaling leads to
IGW velocities approaching those of the convective core. No matter
what the cause of this change in scaling the measured DiGw-nydro
values should remain o 1/Ri o< | Vx u|? according to the shear-
mixing prediction of IGWSs, which they do not (Fig. 34). This
finding questions the interpretation of IGW mixing measured in these
simulations as due to shear mixing according to equation (6).
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(iv) In these simulations without radiative conduction, the role
of K in equation (6) would be that of numerical entropy diffusion,
which can be expressed as an equivalent Kyyqro (13). This inferred
diffusivity follows the scaling as a function of grid resolution that is
consistent with the expected PPM error term if the relevant spectrum
of IGWs is reasonably resolved on all grids.

This leads to the question of what can be concluded about the
IGW mixing at nominal heating in a real star. By conducting a grid of
simulations as a function of heating factor and grid resolution we have
measured mixing due to IGWs in the N?-peak region. The measured
scaling for Digw-nyaro ¢ L** does not explicitly take into account
the expected dependence on K. If we use the scaling relation as it
derives from the simulations (Fig. 25), then extrapolating the 1000 x
measured Digw.-hydro values to nominal heating yields Digw ~ 2.5 x
107 cm? s~!. Such a large IGW mixing value would lead to significant
changes of the evolution of a 25 Mg star, in the Hertzsprung—Russell
diagram and in terms of internal mixing that would lead to surface
enrichment of He and CNO elements.

However, if we assume that IGW mixing is due to thermally
enhanced shear-mixing according to equation (6) (adopting for this
estimate n = 1), we can arrive at an estimate in the following way. The
dependence of Kyyqr, on the heating factor is rather small (Fig. 36).
We tentatively interpret Fig. 36 to suggest that a simulation with
a heating factor of 1000x and a grid size Nx somewhere between
the 11523 and 1728 grid would be equivalent to a simulation with
a radiative diffusivity K that has been scaled o L, because at that
Ny the inferred Kpyaro is approximately the same as would be the
scaled radiative diffusivity. A simulation with such a Ny therefore
mimics a simulation with radiative diffusion included at the scaled
rate. Then, interpolating between the measured diffusivities of the
11523- (M114) and 17283%-grid (M115) runs, the resulting IGW
diffusivity at 1000x heating factor would be ~ 3 x 10'! cm?s~!,
Adopting from Section 5.2 that | V x u|?> oc L*3 and that N> does not
contribute significantly to the scaling of DiGw.thermal» and considering
that we assumed K o L, the scaling for IGW shear mixing would
be DiGw-thermat o L™ and 3 x 10'" cm? s~! at 1000 x heating factor
would correspond to & 3 x 10* cm?s~! at nominal heating. This
would be an upper limit, since it is possible that n < 1.

Alternatively, scaling Ri ~ N?/|Vx ul|>~50 at N>-peak
(Fig.28) using | V x u|> o« L*? and adopting for the nominal thermal
diffusivity K ~ 10'° cm?s~!, the estimate for IGW diffusivity is
Digw ~ K /Ri =2 x 10* cm® s™!, again adopting n = 1. Such a
low value would have a limited and local effect on mixing in the
boundary region immediately above the convection-dominated core
but would not contribute to mixing from the core to the surface over
the main-sequence lifetime of a 25 M, star.

6 CONCLUSIONS

Our 47 3D simulations include the entire convective core and an
additional ~1000 Mm in radius of stably stratified star above the
convective core, amounting in combination to & 50 per cent of the
radial extent of a H-burning 25-Mg, star. Convective flows are large-
scale, and the largest coherent structure is a drifting dipole in which
flows are passing through the centre to the convective boundary and
returning along the boundary to the antipode. There, mutually op-
posing horizontal pressure gradients of the converging flow force the
flow inward and create highly unstable boundary-separation wedges.

Itis interesting to compare these results with the picture of convec-
tion on which MLT is based. The convection zone contains radially
just over two pressure-scale heights. The notion of a dominant fluid
element descending for a distance of about a mixing length towards
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the centre, and fluid elements rising from the centre to the boundary,
can indeed be observed in the 3D simulations. But in the simulations,
these same fluid flow elements simply stream right through the centre
and do not turn around there. Our simulations show instead large-
scale flows that flow directly through the central region but that do
not originate nor terminate there, as in a flower petal pattern.

The power spectrum shows the familiar turbulent cascade in the
inner regions but the spectrum of the radial velocity component
flattens towards the boundary, while the spatial spectrum of the
tangential velocity component remains close to o< /3. Interactions
of a broad spectrum of equally powerful convective motions excite
IGWs in the stable layer. These IGWs display eigenmodes in good
agreement with the predictions of GYRE models based on the
spherically averaged radial structure of the 3D simulations. The
transition from convective-dominated to wave-dominated flows can
be characterized from the 3D data through the higher-order moments
of the PDF of the radial velocity on the sphere of a given radius.
The product of the skew and excess kurtosis has a maximum at the
dynamic boundary, and for IGWs the PDF is Gaussian.

Our simulations show an unrealistically high mass-entrainment
rate, similar to previous simulations (Meakin & Arnett 2007; Gilet
et al. 2013). The reason for these high entrainment rates is that
the underlying MESA model, from which the initial setup for the 3D
simulation is derived, is not in dynamic-thermal equilibrium (Anders
et al. 2022). Simulations with radiative diffusion included, and with
a sufficiently large nearly adiabatic penetration zone, show a realistic
mass-entrainment rate and will be presented in a forthcoming paper.

In Section 5, we showed that we measure mixing due to IGWs in
the N?-peak region. In order to determine IGW mixing at nominal
heating, it is essential to identify the actual physical mechanism
of IGW mixing in order to apply the correct scaling relation.
In this paper, we have explored the shear-mixing model to this
end (Section 2.4). The simulations presented here do not provide
conclusive evidence for this physical mixing process. If IGW mixing
is due to shear, as described by equation (6), then the simulations
presented in this paper suggest that Digw &~ 2 to 3 x 10* cm?s™!
in the N?-peak region above the convective core. Such mixing
rates would at most have local impact on mixing but would not
lead to mixing that alters the surface composition in a 25 Mg, star
over the main-sequence lifetime. However, other physical mixing
mechanisms are possibly responsible for IGW mixing. For example,
in a forthcoming paper, we will explore a process that we call
advective stochastic mixing, which would scale as Djgw o Ur2 /N
and may depend less or not at all on thermal diffusivity. This model
would also be compatible with the scaling relations established here
but would lead to larger IGW mixing efficiencies when extrapolated
to nominal heating.
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APPENDIX A: CONSTRUCTING THE 1D BASE
STATE

In order to construct the base state from a MESA profile, the entropy
and pressure is calculated from the MESA temperature, density, and
mean molecular weight profiles.

R
Pgas =—pT (A1)
"
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Figure Al. Filtering of MESA radial entropy derivative through recursive
spline fitting, done separately for the core-envelope transition (top) and the
envelope (bottom).

R
Seas = v log T — — log p + const. (A2)
w

With a maximum radius of R,x = 2700 Mm, for these sim-
ulations a grid cell is Ax = 7.03 Mm on a 7683-grid. This is
usually the smallest grid used in our simulations. The following
filtering procedure is performed on a ten times finer radial grid. The
entropy on this filtering grid is obtained by interpolating the entropy
calculated with equation (A2) from the MESA T, p, and p using
scipy.interpolate.PchipInterpolator.

In order to remove short wavelength noise in the radial MESA
profile and obtain profiles with smooth first derivatives and continu-
ous second derivatives, we have tried a number of strategies to filter
the MESA entropy profile, including moving averages with different
filter width, fitting the boundary with up to three Gaussians, or fitting
with up to 20th-degree polynomials. None of these methods was
particularly satisfactory. We found that the best way to preserve
the overall shape of the radial entropy gradient without introducing
short wavelength oscillations or ringing is with recursive spline
fitting.

For up to =10 iterations, the grid is moved by a small amount
and the entropy is interpolated onto this moved grid using the
SciPy method interpolate.splrep, with small values for
the smoothing condition s and the spline function defined for the
previous grid. The best result is achieved when moving the grid by
a single-digit percentage pny of the interpolation grid. The number
of iterations nje q1; 1S selected by visual inspection with the goal
to filter small wavelength noise from the MESA profile, retain the
overall stratification, and not introduce new spatial oscillations not
present in the MESA profile.

To filter the core-envelope transition s = 0.04, p,,, = 5 per cent
and nyer iy =4 (iter = 3 in Fig. Al), and for the envelope
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Figure A2. Comparison of adopted base state for the 3D simulations and
the MESA radial profile. From top to bottom: mean molecular weight, mass,
pressure, density, temperature. Except for mass, quantities are given in their
code units.
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s = 0.1, pmy =20percent and njer =5 (iter = 4). The
exact values are sensitive to the specific underlying MESA model
and details of the interpolation grid. The entropy gradient in the
core is set to zero and a radius range is determined by visual
inspection in which the core solution is stitched to the transition
region (Rgichenv € [1460, 1490]) and in turn to the envelope profile
(Rstich-eny € [1550, 1570]). The transition from one solution to the
other in the stitched region is modelled with sin (x), x € [ — pi/2,
/2], appropriately scaled.

For the u profile, we model the transition to have in the core-
envelope transition the same radial gradient profile as the entropy
normalized by Au/AS, where each of these quantities is the integral
across the transition. The p gradient has to approach zero at the
top of the core-envelope transition, while the entropy gradient
stays positive. This difference is accommodated by adding another
stitching radius range ([1551,1560]) at the top of the core-envelope
transition. The resulting w profile is shown in comparison with the
MESA profile in Fig. A2 along with the other state variables and the
enclosed mass.

APPENDIX B: DERIVATION OF RI

Here, we show that equation (3) is equivalent to the definition of Ri.

Hydrodynamic simulations of main-sequence stars — 1. 1629
The first term can be written as
0 oT dpP ) S dp
- I = (B3)
aT |p, 0P |g, dz aS|p, 0P|y, dz
where we have made use of the Maxwell relations g—‘” P =
0> % T and g%’su = —p'—z g—’s’ P The second term of equa-
tion (B2) can be expresed as ’
3 dr ) N dr
_ % a__% - i (B4)
oT |p, dz a8 |p, 0T |p, dz
and the third term as
9 d 9 N d
_ | dw_ dp| 0S| duw (B5)
I lpr dz S |pr Op|pr dz
Now, since
ds N dp S dr N d
— = — — + = —+ — ﬂ’ (B6)
dz aP |y, dz oT |p, dz ou|pr dz
substituting equations (B3)—(B5) into equation (B2) yields
—g(0p/3S)p(dS/d
N2 = —80p/05)p(dS/dz) B7)
0

In equation (3), N? can be expressed as

88 ¢
N’=°>-(Vy—V+=-V s B1
HP ( ad + s p.) ( )
where § = — j 11:; P ¢ = g;“:z ’P - and the different gradients

have their standard meanings. Using those definitions, we have

N2:§ al dﬁ
p\d prdz )’

(B2)

oT
pu 0P

dpP ap

spdz 0T

dr ap

ppdz Ou
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‘We can then see that equation (3) is equivalent to the definition of Ri
(equation 8.13, Shu 1992)

Ri= —8(0p/3S)p(dS/dz) _ N?
- p(dU /dz)? (dU /dz)?’

(B3)

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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