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Abstract—Combinatorial distribution system optimization
problems, such as scheduling electric vehicle (EV) charging
during evacuations, present significant computational challenges.
These challenges stem from the large numbers of constraints,
continuous variables, and discrete variables, coupled with the
unbalanced nature of distribution systems. In response to the
escalating frequency of extreme events impacting electric power
systems, this paper introduces a method that integrates sample-
based conservative linear power flow approximations (CLAs) into
an optimization framework. In particular, this integration aims to
ameliorate the aforementioned challenges of distribution system
optimization in the context of efficiently minimizing the charging
time required for EVs in urban evacuation scenarios.

Index Terms—evacuation, distribution systems, EV charging.

I. INTRODUCTION

Extreme weather events, wildfires [1], [2], and other natural
disasters [3] have introduced significant challenges in power
system operation. Broad efforts are being made to improve
the resilience of power systems to these challenges [1], [4];
however, they continue to pose unsolved problems.

Particularly, the increasing penetration of electric vehicles
(EVs) necessitates advanced evacuation scheduling techniques
[11, [5], [6]. Emergencies may come with inherently restrictive
time horizons; in contrast, charging times for large fleets of
EVs may be more flexible. Moreover, the resulting optimiza-
tion requires binary variables to ensure consistent charging
instructions to evacuating regions. These facts, combined with
the unbalanced nature of distribution networks, cause it to be
computationally intractable to incorporate the more realistic
AC power flow equations into evacuation optimization.

Therefore, we aim to solve these two problems jointly by
leveraging a surrogate linear approximation of a distribution
network model estimated from samples of circuit quantities.
In particular, we use an approximation that is conservative
[7], in the sense that the OPF constraint set is ensured to be
satisfied by the approximation for the sampled points. Thus far,
this technique has only been applied to transmission networks.
This work is the first to extend it to distribution networks.

A. Related work

1) Linear approximations of the power flow equations:
Analytical and data-driven linearizations of the non-linear AC
power flow equations are well-studied, with surveys in [8] and
[9]. Recognizing the limitations of conventional linearizations
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in security-critical contexts, we adopt the conservative lin-
earization framework from [7] that aims to minimize constraint
violations in optimal power flow (OPF) problems.

2) Evacuation of electric vehicles: The escalation of ex-
treme weather events motivates research into evacuation strate-
gies and their impacts on EV charging [3], [10]-[13]. Existing
research, employing stochastic models [6] and sequential
optimization [5], has been limited to balanced transmission
networks and small scales.

In contrast, our approach consolidates the optimization
across the entire time horizon into a single problem, coor-
dinating evacuation scheduling deterministically using binary
variables, realistic zoning analyses as in [12], [13] and conser-
vative sensitivity coefficient matrices as in [7]. This method
enables application to unbalanced distribution networks with a
significantly expanded node count, enhancing scalability and
applicability in comprehensive emergency scenarios.

B. Contributions and paper outline

To the best of our knowledge, past power system literature
has yet to consider the emergency EV charging problem at a
level of fidelity consistent with the state of the art of general
evacuation planning. In contrast with prior power systems EV
charging literature, the general evacuation planning literature
considers Transportation Analysis Zones (TAZs) [12], [13].
These TAZs are delegated at the level of towns and neighbor-
hoods—thus, in practice, emergency EV charging problems
should consider impacts on distribution systems. This fact has
been neglected by past literature on emergency EV charging,
which only considers transmission-level analysis [5], [10],
[11]. Our prior work in [14] shows that evacuation schedules
that do not consider electric vehicle charging can lead to
substantial overloads of distribution system components.

In summary, the contributions of this research are threefold:

1) An efficient and more realistic method to develop emer-

gency charging strategies for electric vehicles at the level
of TAZs—inherently a distribution systems problem.

2) A method to embed estimated conservative linear distri-

bution network models in optimization problems.

3) Increasing the computational tractability of the first con-

tribution by synthesizing it with the second contribution.

Section II presents an urban evacuation problem. Sec-
tion IV integrates conservative power flow linearizations and
constraint generation into the problem. Section V provides
numerical validation on a segment of the realistic distribution
network of Greensboro, NC using the testbed in [14].

II. URBAN EVACUATION PROBLEM

The urban evacuation scheduling problem aims to mobilize
all residents to safety in the shortest possible time before
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Fig. 1. Illustration of an evacuation plan where charging and travel times are
considered. The lightning symbol marks the beginning of a natural disaster.

the onset of a predictable natural disaster, such as a major
hurricane [3] or wildfire [10]. While scenarios involving solely
internal combustion engine vehicles need only focus on mod-
eling the city’s transportation network, evacuation planners in
cities with a high prevalence of EVs must account for the
coupling between the transportation and electric distribution
networks due to EV charging. Planners are then tasked with
coordinating not only the departure times and routing of all
neighborhoods, but also the charging instructions for all EVs to
minimize overloading of the power system. A comprehensive
evacuation timeline, which illustrates both the charging and
travel time components of the evacuation, is shown in Fig. 1.
This timeline is punctuated by four critical moments: (1) the
start of EV charging, (2) the beginning of evacuation, (3) the
end of EV charging, and (4) the completion of evacuation to
safe locations prior to the disaster’s onset.

Minimizing the entire timeline in Fig. 1 is a formidable
challenge. As a result, this study focuses on optimizing the
interval between moments (1) and (3) in the most effective
manner. Developing an efficient formulation for the charging
problem is a crucial step towards achieving our final objective:
a systematic iterative process that combines solutions for the
charging problem with the results for the departure-schedule-
and-routing problem, as outlined in [15], to compute an
optimal and comprehensive evacuation plan.

III. CHALLENGES OF THE EMERGENCY ELECTRIC
VEHICLE CHARGING (EEV-C) PROBLEM

We formulate and solve an emergency EV charging opti-
mization problem in the framework of a disaster evacuation
plan. Hereafter, we refer to this problem as the emergency
EV charging problem (EEV-C). As in most distribution system
optimization problems, the EEV-C problem is challenged by
both the problem size and the presence of non-linear, non-
convex engineering constraints.

Additionally, solving the EEV-C problem presents a
dilemma between (a) a longer charging schedule that avoids
network violations and electrical component overloads, or (b)
allowing violations to expedite the charging process. In the
following subsections, we describe these challenges in more
detail and propose methods to circumvent them.
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Fig. 2. Conceptual illustration of the conservativeness of a pair of CLAs (over
and underestimates). Using the pair of CLAs (top and bottom lines) would not
lead to violations of lower and upper bounds imposed on v as it would when
using the non-conservative linear fit in the middle. In this example, unlike the
overestimating CLA, the non-conservative approximation would erroneously
predict satisfaction of the upper bound vmax for the red point.

A. Distribution network modeling

Consider a distribution network model G = (B,&), where
the existence of a reference bus is implied. Each bus j € B can
have up to three phases p € P; C {a,b,c}. Each single-phase
node is denoted as the tuple ¢ = (j,p) € N. The size of G
adds substantial complexity on top of the fact that the power
flow equations that govern G are non-linear and non-convex.

Thus, for the EEV-C problem, we model the distribution
network through the sample-based linearization method first
proposed by [7] within the context of transmission networks.
This methodology uses constrained regression problems to
construct conservative linear approximations (CLAs) of target
quantities. The approximations are said to be conservative
since they are purposely constructed to either overestimate or
underestimate the desired parameters, as exemplified in Fig. 2.
The resulting affine equations can then be used to write upper
and lower bounds in optimization problems.

To provide a time-series model of an entire distribution
network, we propose constructing the following CLAs:

v; = gi(Pev) Vie N,Vte T (1a)
v} = gi(pey) VieNVteT, (b

where, unlike transmission network CLAs, the approximations
vf, v! € R represent overestimates and underestimates of the
squared voltage magnitude of each single-phase node i € N at
time steps ¢ € 7. These approximations are defined as affine
functions of pf,,, which denotes the vector of EV active power
demands at time ¢ of buses k € K C N with designated EVs
in them. We symbolize these functions as overestimating and
underestimating CLAs g! : RIXI — R and gt RIXI — R,
respectively. Note that each approximation is time specific,
and that the background loads at each time step are treated
as constants, not input variables to these functions. Rather
than voltage magnitudes, we construct approximations of their
squares to reduce linearization error, as suggested in [7].
Consider the construction of one CLA g!. Let a!, € RI*I,
and af, € R be coefficients such that g; takes the form

of an affine function. Let pgy(m) € RI®l denote vectors
of m = 1,..., M samples, where each vector randomizes
which EVs are charging in buses k € X C N. Collect these
sample vectors as columns in a sample matrix Pgy € RIFI*M
Furthermore, let v} € R be a vector of computed target



measurements of the parameter being approximated by gF.
Each entry in this vector is obtained by solving a power flow
for each sample vector pgy(m), and it takes the form

T
vl 2 [ul(1) ... wf(m) ..oH(M)] . )
Now we can construct an approximation of a specific squared
nodal voltage g! at each time step ¢ € 7 via an {;-norm
approximation program of the form

minimize ’ at o1+ Pgyat, — vt (3a)
t ’ El
@5,00%i,1
st alyl+ Pgyal; <v! if underestimate  (3b)
al ol + Pgyal, > vl if overestimate, (3¢)

where (-)T is the matrix transpose and 1 is an all-one vector.
If building an overestimate (resp. underestimate), constraints
(3¢) (resp. (3b)) are included to ensure that all predictions
made by the resulting CLA are above (resp. below) the sam-
pled measurements. The ¢;-norm objective can be motivated
by empirical indications that the coefficients corresponding
to linear approximations of distribution network models are
often sparse. The program (3) is a linear program with affine
inequality constraints, which can handled with mature solvers.
Lastly, a time-varying distribution network model can be
formulated within optimization problems using the previously
computed CLAs via the following upper and lower bounds:

Vie NVte T

Vi (4a)
v Vie N,Vte T,

(4b)

where v; and v; represent the maximum and minimum squared
voltage magnitudes at node i, respectively. We next explain
the need for conservative approximations to obtain stronger
constraints than simple linear regression, as in (4). We also
explain how to solve the EEV-C problem while only explicitly
enforcing a subset of these constraints.

B. Trade-off between charging time and constraint violations

The EEV-C problem balances an inherent trade-off between
the objective of minimizing total EV charging time and the
desire to protect the power system from dangerous constraint
violations. Given current distribution grid infrastructures, pre-
vious work on this topic in [14] has shown that network viola-
tions increase greatly with growing numbers of simultaneously
charging EVs. Since the optimization algorithm will naturally
try to simultaneously charge as many EVs as possible, grid
constraints may render infeasible some of the most desirable
solutions, thereby delaying the evacuation process.

For this reason and the urgency of an emergency evacuation,
grid operators may want to allow the network to operate
above its normal limits. To model this choice, we introduce
the non-negative slack variables )\E’J’ and )\f’_ for the upper
and lower bounds in (4), respectively. Additionally, we add a
new constraint (5¢) to the CLA distribution network model
that upper bounds the sum of all the slack variables. The
upper bound A, allows the operator to pick a tolerable

cumulative violation amount across the entire network. The
CLA distribution model with allowable violations is then:

Gt (Phy) < Vimax + AT Vie NVte T (5a)
9 (Pky) = Vimin — A Vic NVt €T (5b)
DN ST ENT) < A (5¢)
ieN teT

AT >0 Vie NVte T. (5d)

IV. ITERATIVE EEV-C PROBLEM USING CONSERVATIVE
LINEAR APPROXIMATIONS (CLA-EEV-C)

We formulate the EEV-C problem using the surrogate distri-
bution network model described in Section III-A. This grants
the grid operator the flexibility to select a tolerable threshold
of network violations throughout the system. Additionally, we
introduce an iterative constraint generation algorithm designed
to enhance tractability when solving the problem.

A. Formulation

We first state our modeling assumptions:

Assumption 1: The background loads (without any EV
charging) follow the patterns of a typical mid-summer day.
Assumption 2: EV loads operate at unity power factor, and
their charge rate is 7.5 kW. It takes 32 time periods (8 hours)
to charge an EV from 0% to 100% at this rate.
Assumption 3: When a TAZ is given the order to start
charging, its EVs must charge until they reach full capacity.
An EV may only charge after its TAZ was given the order
to start charging.

Assumption 4: There are no more than 96 time periods (24
hours) available to charge all EVs.

Assumption 5: The starting battery level of all EVs is
treated as a known input parameter.

Assumption 6: The linearized distribution system model
only considers nodal voltage violations.

We note that including line current limits is the subject of
ongoing investigation, to be covered in future work.

The objective of the EEV-C problem is to minimize the
number of time periods, each of 15 minutes, that it takes to
charge all EVs in a region while satisfying an upper bound on
the magnitude of grid violations imposed by the grid operator.
As a result, the algorithm pushes the charging of all vehicles
as close as possible to their evacuation departure deadlines,
thereby minimizing the amount of preparation time needed
ahead of an incoming disaster. The proposed model uses a
well-studied framework for evacuation that partitions a city
into Transportation Analysis Zones (TAZs). As evacuation
instructions are given at the TAZ level (rather than feeder,
street, or neighborhood levels), they are both realistic and com-
putationally meaningful [12], [13]. Concretely, we denote the
set of all TAZs as =, where every £ € = is an individual TAZ
with multiple EVs registered in it. Let Ee = {1,...,|E¢|}
be the set of electric vehicles registered within TAZ &, and K
denote the set of buses k € K C B with EVs in them.

Altogether, the EEV-C problem is presented in (6). We
denote I'y.x € R as the time step when the first TAZ starts
charging. The objective (6a) maximizes I'\,x to make it as
close as possible to the first moment of the evacuation. This



is defined implicitly via (6b) using 7* € {0,1}, where 7t =1
if some TAZ has started charging prior to ¢ and O otherwise.

Emergency Electric Vehicle Charging (EEV-C) Problem.

maximize ['n.x, subject to: (6a)
Tq,Cg’h,CE
Popax StTP +T(1—7) VteT (6b)
t !
=2, Ct
7-t Z M Vt c T (6C)
T|=|
Lt, =L+ Lot vie T,VE € E,Yh e Be (6d)
&h &h ﬁ &h ) — £
LY <Lgp <1 VieT,VE€E,Vhe Ee (6€)
Zh E h
Ct >t - ZhEEC Oy e T ve e 6
£ = ¢ ‘E§| € T, 5 S ( f)
L+ B8 her Len
Cl<2-— £ VteT,VE€= (6g)
¢ B E|

Ci{—Li, <Cfp, <C¢ VteT,VEeE,Vhe Ee (6h)

d
ZhGEg Léfh

=1 VéeE (61)
| Ee|
Pov, =, >, CiLyR VteT (6)
E€EhEEy,
(5a)—(5d)
m,C¢ CE, €{0,1} Ve T,VE€E,Vhe E..  (6k)

The main decision of interest in this program is when each
of the TAZs start charging. Once a TAZ ¢ € = starts charging,
all EVs h € E¢ in that TAZ will charge until they reach full
capacity. The charging progression of each EV is modeled by
equations (6d)—(6e), where each EV h € FE¢ has an initial
state of charge of LY, and a battery level L! , at time ¢t €
7. Additionally, 8 denotes the number of time steps it takes
to fully charge an EV from 0% at rate R, and each £ € =
is assigned a binary variable C{ € {0,1}, which takes the
value of 1 if TAZ ¢ is charging at time ¢, and O otherwise.
After all EVs in a TAZ are at full capacity, the entire TAZ
will stop charging. This behavior is modeled by constraints
(6f)—(6g), where the binary variables C’g n € {0,1} take the
value of 1 if vehicle h in TAZ ¢ is charging at time ¢, and
0 otherwise. Furthermore, constraint (6h) ensures that an EV
can only charge if its TAZ is instructed to charge.

Constraint (6i) ensures that each EV in a TAZ ¢ is fully
charged by its TAZ departure time d¢. Constraint (6j) links
the EV demand across time to their charging schedules. Con-
straints (5a)—(5d) represent the surrogate network model, and
its linearized network constraints described in Section III-A.
Since the surrogate network constraints (as well as all other
constraints related to the charging of EVs) are linear, we have
a mixed-integer linear program (MILP).

B. Solution algorithm

Applying the constraints (5a)—(5b) to the EEV-C problem
(6) provides the advantage of simplicity relative to the AC OPF
constraints. Nonetheless, the constraints can still render an
intractable model, particularly for large networks. Even when
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Fig. 3. Constraint generation flowchart for the EEV-C problem.

taking advantage of parallel computing, generating all of these
CLAs would require significant up front computational effort.
For these reasons, we propose solving (6) using the iterative
constraint generation scheme outlined in Fig. 3.

The algorithm begins by processing an initial matrix Pgy
and vectors v! for all (i,t) € N x T. First, the algorithm
solves the EEV-C problem (6) without voltage constraints
(5a)-(5b), generating a “naive” charging schedule that dis-
regards potential power system violations. Subsequent time-
series power flow analysis on this schedule identifies any
actual voltage violations. If these exceed the grid operator’s
allowable limit A .y, the algorithm iteratively adds constraints
until the violation limit is met or infeasibility is proven.

New constraints are formed by constructing CLAs through
constrained regression problems like (3). These constraints
are based on parameters that violated limits in the previous
iteration’s charging schedule, as assessed by a power flow
solver. With each iteration, measurements of these violated
parameters and the corresponding EV active power demands
pt, are added to the sets of measurements and samples.

Using conservative approximations significantly speeds up
the convergence of the iterative approach. Since the conser-
vative constraints are stronger than those created from simple
least-squares regression, they exert greater influence on forcing
new solutions to the EEV-C problem at each iteration. This, in
turn, accelerates the algorithm’s convergence, leading to fewer
iterations and reduced computation time.

V. NUMERICAL EXPERIMENTS AND DISCUSSION

We demonstrate the proposed methods on a synthetic model
of the distribution network of the city of Greensboro, NC. To
achieve this, we make use of the publicly available Greensboro
Electric Vehicle Testbed (GreenEVT)', which couples each
bus in the power network to its corresponding Transportation
Analysis Zone (TAZ) in the transportation system. This testbed
is built on top of NREL’s SMART-DS (Synthetic Models for
Advanced, Realistic Testing: Distribution systems and Scenar-
ios) dataset [16], which provides realistic-but-not-real distri-
bution network datasets for three regions (industrial, rural, and

!GreenEVT is available at https:/github.com/GreenEVT/GreenEVT.
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Fig. 4. Geographic map of the distribution network downstream of substation
19 in Greensboro’s urban-suburban network. TAZ1, TAZ2, and TAZ3, which
surround this network, are shown in blue, red, and yellow, respectively.

urban-suburban) of the city of Greensboro. SMART-DS also
provides EV locations for four EV penetration scenarios (low,
medium, high, and extreme) and time-series load data for the
entire time needed to charge all EVs before an evacuation.
For this paper’s test case, we will simulate the high EV
penetration scenario for substation 19 in the urban-suburban
region, which contains 3 feeders and a total of 4815 single
phase nodes. All optimization problems, including the EEV-C
problem and the constrained regression problems used to
compute CLAs, were solved using Gurobi v10.0.1. Addition-
ally, all the power flow solutions were computed using the
power flow simulator OpenDSS [17] and the Python interface
yadi [18]. The computations were carried out on Georgia
Tech’s PACE cluster using a computing node equipped with a
quad-core 2.7 GHz processor and 64 GB of RAM.

A. Total charging time vs. Allowable violations

Solving the EEV-C problem across multiple values for Apmax
reveals the trade-off between total charging time and network
violations, shown in the top of Fig. 5. As expected, an increase
in permissible violations corresponds with a reduction in the
time required to charge the EVs in all three TAZs in the studied
test case. Note that significant reductions in charging time
occur primarily at the lower and upper ends of this curve,
featuring a 9.09% decrease when increasing A,, from 0 to
0.4, and a substantial 45.76% decrease when increasing Aax
from 2.5 to 2.87. Note that raising Apax to 2.87 mirrors the
absence of constraints on the distribution network, resulting in
the “naive” charging schedule.

The bottom of Fig. 5 uses Gantt charts to visualize the
optimal charging schedules obtained under different values
of Amax. In these charts, each horizontal bar depicts the
time intervals for charging each TAZ whose vehicles are all
scheduled to depart at ¢ = 96. Interestingly, when Amax = 0,
a 2.75 hour gap appears between time steps 52 and 63,
during which no vehicles are actively charging. This behavior
suggests that background loads at these time steps are causing
considerable delays in the charging of TAZ1 and TAZ2. This
indicates that demand response strategies to prioritize critical
EV charging loads prior to evacuations may be advantageous.

B. Analysis of the iterative algorithm

Each data point in the upper graph of Fig. 5 is obtained
using the iterative algorithm detailed in Section IV-B. For
this specific test case, all data points converged within an
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Fig. 5. The top graph shows the optimal charging time at varying allowable
violation thresholds. The bottom four graphs show the charging schedules that
achieve the optimal charging times at specific points in the top graph.

average time of 4.01 hours, and in between 1 and 4 iterations
Additionally, these points converged with an average rela-
tive error of 0.68% between predicted and actual cumulative
violation magnitudes in the last iteration. This result points
to the strong predictive performance of the proposed CLA
distribution network model, particularly in the last iterations
of the algorithm, where a larger set of CLAs constraints are
used to describe the network.

The iterative process of obtaining the EEV-C solution when
Amax = 0, Apax = 1.5, and Ao = 2.5 is shown in the top
graph of Fig. 6. At each iteration, the algorithm first runs the
EEV-C optimization problem and then simulates the resulting
charging schedule in OpenDSS, so each run converges when
the sum of actual violations reaches the respective Amax
threshold. Since the algorithm always starts by solving the
problem without any grid constraints, all three curves share
a common starting point at the first iteration, where the
optimization problem contains 1016834 variables and 1149547
total constraints (including bounds and integrality constraints).
Subsequent iterations reveal how the algorithm’s approach
does not always result in an immediate reduction of actual
violations, but successfully converges after a few iterations.

The proposed solution algorithm and EEV-C formulation
produces monotonically decreasing charging times over A pax,
as anticipated. However, note that it does not produce a mono-
tonically increasing sum of violation magnitudes nor violation
counts, as one would expect. This behavior is prominently
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Fig. 6. The top graph shows the trajectory of the sum of actual violations
during the iterative algorithm for three different values of Amax. The bottom
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at Amax = 0.7 and Amax = 0.9 show the curves’ non-monotonic nature.

depicted in the bottom graph of Fig. 6, where an increase
in Apnax from 0.7 to 0.9 results in a decrease in both the
total violation count and the cumulative violation magnitudes.
This observation indicates that once the algorithm identifies an
optimal charging schedule for a particular A,x, it does not
continue to explore solutions that maintain the same charging
time while further reducing network violations.

VI. CONCLUSION

In this work, we proposed an emergency EV charging
scheduling formulation that leverages an embedded distribu-
tion network model featuring conservative power flow lin-
earizations. The formulation provides flexibility by enabling
the user to define an acceptable constraint violation threshold
to strike a balance between minimizing total EV charging time
and safeguarding the power system from potential hazards. To
tackle the computational complexity of the problem, we also
presented an algorithm that explicitly enforces only a subset of
the linearized power grid constraints at each iteration, thereby
contributing to a more manageable solution approach.

The proposed algorithm was tested on a small region of a
larger distribution network model of Greensboro, NC, under
a high EV penetration scenario. The results demonstrate the
effectiveness and accuracy of the linearized distribution model
used in the formulation, and provide an illustration of the
marginal utility of allowing different degrees of cumulative
voltage violations in order to reduce the EV charging timeline.

However, the experiments reveal that while the solution algo-
rithm successfully minimizes total EV charging time within
the defined violation threshold, it does not always minimize
violations while maintaining the optimal charging time. These
results motivate directions for future research:

1) Extending the proposed formulation to co-minimize
charging times and network violations.

2) Exploring decomposition and parallel computing tech-
niques to scale the formulation for the entire city of
Greensboro (including its 21 substations and over 60
TAZs) and other datasets.

3) Incorporating line and transformer current CLAs into the
distribution network model and assessing the tractability
of the resulting formulations.

4) Integrating this algorithm into a citywide evacuation plan
via a departure-scheduling-and-routing problem.

REFERENCES

[1] M. Abdelmalak and M. Benidris, “Enhancing power system operational
resilience against wildfires,” IEEE Transactions on Industry Applications,
vol. 58, no. 2, pp. 1611-1621, 2022.

[2] H. Nazaripouya, “Power grid resilience under wildfire: A review on chal-
lenges and solutions,” in IEEE Power & Energy Society General Meeting
(PESGM), 2020.

[3] K.Feng, N.Lin, S. Xian, and M. V. Chester, “Can we evacuate from hurri-
canes with electric vehicles?,” Transportation Research Part D: Transport
and Environment, vol. 86, p. 102458, 2020.

[4] M. Panteli and P. Mancarella, “Influence of extreme weather and climate
change on the resilience of power systems: Impacts and possible mitigation
strategies,” Electric Power Systems Research, vol. 127, pp. 259-270, Oct.
2015.

[5] D.L.Donaldson, M. S. Alvarez-Alvarado, and D. Jayaweera, “Integration
of electric vehicle evacuation in power system resilience assessment,”
IEEE Transactions on Power Systems, vol. 38, no. 4, pp. 3085-3096, 2023.

[6] D. L. Donaldson, M. S. Alvarez-Alvarado, and D. Jayaweera, “Power
system resiliency during wildfires under increasing penetration of electric
vehicles,” in International Conference on Probabilistic Methods Applied
to Power Systems (PMAPS), 2020.

[7]1 P. Buason, S. Misra, and D. K. Molzahn, “A sample-based approach
for computing conservative linear power flow approximations,” Electric
Power Systems Research, vol. 212, p. 108579, 2022. Presented at the 22nd
Power Systems Computation Conference (PSCC).

[8] D. K. Molzahn and I. A. Hiskens, “A survey of relaxations and approxi-
mations of the power flow equations,” Foundations and Trends in Electric
Energy Systems, vol. 4, pp. 1-221, February 2019.

[9] M. Jia and G. Hug, “Overview of data-driven power flow linearization,” in

IEEE Belgrade PowerTech, 2023.

D. L. Donaldson, M. S. Alvarez-Alvarado, and D. Jayaweera, “Integration

of electric vehicle evacuation in power system resilience assessment,”

IEEE Transactions on Power Systems, vol. 38, no. 4, pp. 3085-3096, 2023.

C. D. MacDonald, L. Kattan, and D. Layzell, “Modelling electric ve-

hicle charging network capacity and performance during short-notice

evacuations,” International Journal of Disaster Risk Reduction, vol. 56,

p. 102093, 2021.

M. Hafiz Hasan and P. Van Hentenryck, “Large-scale zone-based evacua-

tion planning—Part I: Models and algorithms,” Networks, vol. 77, no. 1,

pp. 127-145, 2021.

M. Hafiz Hasan and P. Van Hentenryck, “Large-scale zone-based evacu-

ation planning, Part II: Macroscopic and microscopic evaluations,” Net-

works, vol. 77, no. 2, pp. 341-358, 2021.

G. Nilsson, A. D. Owen Aquino, S. Coogan, and D. K. Molzahn,

“GreenEVT: Greensboro electric vehicle testbed,” arXiv:305.12722, 2023.

https://github.com/GreenEVT/GreenEVT.

[15] J. A. Huertas and P. Van Hentenryck, “Large-scale zone-based evacuation

planning: Generating convergent and non-preemptive evacuation plans

via column generation,” 55th Hawaii International Conference on System

Sciences (HICSS), January 2022.

B. Palmintier, T. Elgindy, C. Mateo, F. Postigo, T. Gémez, F. De Cuadra,

and P. D. Martinez, “Experiences developing large-scale synthetic U.S.-

style distribution test systems,” Electric Power Systems Research, vol. 190,

p. 106665, Jan. 2021. Presented at the 21st Power Systems Computation

Conference (PSCC).

R. C. Dugan and T. E. McDermott, “An open source platform for collabo-

rating on smart grid research,” in I[EEE Power and Energy Society General

Meeting, 2011.

S. Talkington, “Yet Another DSS Interface (yadi).” https://github.com/

samtalki/yadi, 2023.

[12]

[13]

[14]

[16]

[17]

[18]



