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ABSTRACT

Deep neural networks (DNNs) have been recently proposed for quartet tree phylogeny
estimation. Here, we present a study evaluating recently trained DNNs in comparison to a
collection of standard phylogeny estimation methods on a heterogeneous collection of da-
tasets simulated under the same models that were used to train the DNNs, and also under
similar conditions but with higher rates of evolution. Our study shows that using DNNs with
quartet amalgamation is less accurate than several standard phylogeny estimation methods
we explore (e.g., maximum likelihood and maximum parsimony). We further find that
simple standard phylogeny estimation methods match or improve on DNNs for quartet
accuracy, especially, but not exclusively, when used in a global manner (i.e., the tree on the
full dataset is computed and then the induced quartet trees are extracted from the full tree).
Thus, our study provides evidence that a major challenge impacting the utility of current
DNNs for phylogeny estimation is their restriction to estimating quartet trees that must
subsequently be combined into a tree on the full dataset. In contrast, global methods (i.e.,
those that estimate trees from the full set of sequences) are able to benefit from taxon
sampling, and hence have higher accuracy on large datasets.

Keywords: deep neural networks, phylogeny estimation and heterotachy.

1. INTRODUCTION

O NE OF THE BASIC CHALLENGES in statistical phylogeny estimation occurs when sequences evolve under
processes that violate assumptions of the inferential statistical model. For example, most phylogeny
estimation methods are based on sequence evolution models, such as the Generalized Time Reversible (GTR)
(Tavaré, 1986) model for nucleotide evolution, that assume that all the sites within the sequences evolve i.i.d.
(identically and independently) down a model tree. In turn, the sequence evolution models make several
simplifying assumptions (such as stationarity, homogeneity, and time-reversibility, jointly referred to as
“SRH’’) about sequence evolution to ensure statistical identi ability (i.e., that the model tree is uniquely
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identi ed by the probability distribution it de nes on site patterns) and computational feasibility (i.e., so that
tree estimation can be performed by using acceptable efforts).

However, these are unrealistic assumptions, as compositional heterogeneity (indicative of changed
substitution rate matrices) across the tree has been observed in many biological datasets [e.g., see dis-
cussion in Jermiin et al. (2004)]. Indeed, recent years have shown an increasing awareness of the impact of
these violations of the model assumptions on phylogeny estimation (Jermiin et al., 2004; Kolaczkowski and
Thornton, 2008; Duchéne et al., 2017; Naser-Khdour et al., 2019; White and Braun, 2019; Crotty et al.,
2020), leading Naser-Khdour et al. (2019) to conclude:

the extent and effects of model violation in phylogenetics may be substantial [...] further
effort in developing models that do not require SRH assumptions could lead to large
improvements in the accuracy of phylogenomic inference.

To address the challenge of model misspeci cation, several investigators have developed parameter-rich
models (Steel, 1994; Crotty et al., 2020) and methods for estimating trees under these models; for example,
IQ-TREE 2 (Minh et al., 2020) enables estimation under the GHOST (Crotty et al., 2020) model, which
incorporates substantial heterogeneity across the tree and across sites. However, two challenges appear with
an increased number of parameters: The computational cost increases, and there is a danger of over tting
(and hence reduction of accuracy).

An alternative approach that has recently begun to be explored is the use of deep neural networks
(DNNs), which are machine-learning models that can be trained on datasets and then used to classify new
input datasets. The DNNs have been developed for computing phylogenies on datasets of four sequences
(i.e., quartet tree estimation), so that each DNN is trained on sets of four sequences with known true quartet
trees, and then used to estimate quartet trees from new sets of four sequences (Suvorov et al., 2020; Zou
et al., 2020).

This approach has the bene t of allowing the training to be done under very heterogeneous conditions,
including ones that signi cantly violate standard model assumptions. Further, although the training may be
computationally intensive, once the training is complete quartet tree estimation is very fast.

Other applications of DNNs to phylogeny estimation are less direct. For example, Bhattacharjee
and Bayzid (2020) used machine learning to develop techniques to impute the missing entries in a distance
matrix, and so enable the reconstruction of trees from partial distance matrices. Abadi et al. (2020)
suggested a machine-learning framework, ModelTeller, for phylogenetic model selection. Leuchtenberger
et al. (2020) designed and trained DNNs to distinguish quartet trees exhibiting the properties of the
Felsenstein Zone (Felsenstein, 1978) or the Farris Zone (Siddall, 1998), using both simulated and empir-
ical datasets.

This approach does not directly construct quartet trees but does provide guidance to the user in the
subsequent choice of method for the phylogeny estimation method for the dataset. Recently, Jiang et al.
(2021) developed DEPP, a deep learning-based approach for phylogenetic placement. Even more recently,
Azouri et al. (2021) explored the use of a deep-learning algorithm to narrow the tree search space to
achieve faster convergence of the maximum likelihood (ML) score.

In this study, we focus on the use of DNNs presented in Suvorov et al. (2020) and Zou et al. (2020),
which operate by estimating quartet trees (i.e., unrooted binary trees on just four leaves). To extend the use
of these DNNSs to estimate larger trees, the quartet trees computed by the DNN must be combined together
into a tree on the full dataset, a process referred to as ‘‘quartet amalgamation.”

However, optimization problems for quartet amalgamation, such as maximizing the number of satis-

ed quartet trees, are NP-hard (Jiang et al., 2001), which necessitates the use of heuristic approaches.
Nevertheless, many quartet amalgamation methods have been developed (Strimmer and Von Haeseler,
1996; Ranwez and Gascuel, 2001; Snir et al., 2008; Reaz et al., 2014), with Quartets Max Cut (QMC) now
the leading quartet amalgamation method.

We speci cally examine two questions: (1) How accurate are the quartet trees estimated by DNNs in
comparison to other standard methods and (2) how accurate are trees computed by DNNs on just slightly
larger trees with 20 sequences, in comparison to standard methods? We use the trained DNNs from Zou
et al. (2020) for the quartet tree estimators, and QMC for the quartet amalgamation method, thus producing
a two-phase approach that we refer to as DNN+QMC.

We simulate sequences using the simulator developed by Zou et al., using the same basic model
conditions as they used for training and then extending the set of model conditions to include a wider range
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of branch lengths. Signi cantly, we nd that DNNs are less accurate than standard methods for both
problems, even when considered on the same data on which they were trained. Indeed, in our study, the
commonly used ML methods under standard i.i.d. sequence evolution models are more accurate than these
DNN:ss for quartet tree estimation and more accurate than DNN+QMC methods at estimating 20-taxon trees,
even though the datasets we examine have evolved under substantial violations of the model assumptions.
Further, even neighbor joining (NJ) (Saitou and Nei, 1987) used with p-distances (i.e., normalized Ham-
ming distances) is more accurate than DNN+QMC methods.

Thus, these DNNs do not even match the accuracy of basic phylogeny estimation methods. We provide
some insights into why this is likely to be true, focusing on taxon sampling and its bene cial effects in
phylogeny estimation. Overall, this study provides a cautionary note about the use of DNNs for phylo-
genetic gene tree estimation, while indicating some possible directions for their use in phylogenomics.

2. MATERIALS AND METHODS
2.1. Overview

We explore the accuracy of the three DNNs used in Zou et al. (2020). Each of these was trained on a
different training set, and they are named after their training datasets; these are DNN1, DNN2, and DNN3.
We compare these DNNs with standard phylogeny estimation methods [ML, maximum parsimony (MP)
(Foulds and Graham, 1982), NJ, and unweighted pair group method with arithmetic mean (UPGMA)
(Sokal and Michener, 1958)] with respect to tree topology accuracy on a range of model conditions. We
performed two experiments to understand the performance of DNNs in comparison to standard phylogeny
estimation methods. Experiment 1 evaluates the topological accuracy of estimated 20-leaf trees and quartet
trees on simulated 200 aa sequence datasets. Experiment 2 performs the same evaluation but on longer
sequences (1000 aa). See Appendix Al for the detailed commands.

2.2. Datasets

We simulated datasets with 20 gap-free amino acid sequences using the evosimz simulator from Zou
et al. (2020). Three of the model conditions use the same parameter values as the training datasets used in
Zou et al. (2020) to train DNN1, DNN2, and DNN3, but we restricted the trees to 20 leaves [while Zou
et al. (2020) explored a larger range of tree sizes]. The basic model conditions are called Trainingl,
Training2, and Training3. For the main quartet tree estimation experiments reported in Zou et al. (2020)
(i.e., the “‘nolba’ conditions, which do not involve long-branch attraction), quartet tree error rates were
extremely low: never more than 7%, and most analyses were much better (e.g., MP never had more than
5% error).

This level of quartet tree accuracy is an indication that the tree estimation problem is unusually easy
under these test model conditions, and hence atypical of most phylogenetic problems. Therefore, in our
study, we modi ed the simulator parameter settings to produce more challenging conditions. We achieved
this in two ways. First, we modi ed the branch length distributions to increase the rate of evolution.
Second, we noted that the main experiments they report were based on sequence lengths drawn from a
uniform distribution [100, 3000), so that the median length is about 1550.

Since sequence length has a large impact on phylogeny estimation accuracy, we examined two sequence
lengths: 200 aa (a length that is close to typical lengths of single proteins) and 1000 aa [a length that would
be much less frequently observed, but still not as unrealistic as the lengths evaluated in Zou et al. (2020)].

We created 12 model conditions, with 4 conditions per basic model condition. Speci cally, for a given
basic model condition (Trainingl, Training2, Training3), we include the original model condition, and we
also include three other conditions de ned by modifying the branch length distribution to provide higher
upper bounds on the branch lengths, to make for more challenging datasets. For each of the 12 model
conditions, 20 trees were generated with 20 leaves each, and gap-free amino acid sequences evolved down
the tree under heterogeneous substitution processes that include heterotachy.

With the exception of branch lengths, we set all the numeric simulation parameters identically as for the
associated model conditions drawn from Zou et al. (2020). We extended the range of branch lengths as
follows: We set the upper bound of the branch length distribution to X times the original upper bound,
where X was set to 10, 100, or 1000, and we use the value for X to name the new model conditions [see Zou
et al. (2020) for the meaning of the numeric parameters, including the branch length].
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We also modi ed the lower bound on the branch length distributions for the Trainingl-based and
Training3-based model conditions. The model parameters for the different model conditions are provided
in Supplementary Table S1, and associated empirical statistics of these model conditions are provided in
Supplementary Table S3; see also Supplementary Table S2 for information on how to interpret branch
lengths.

In Experiment 1, we used all 12 model conditions, and we explored methods on sequences with 200 aa.
For Experiment 2, we used 9 of the 12 model conditions (omitting only the three hardest model conditions
with the highest rate of evolution) and examined performance on sequences with 1000 aa; thus, Experiment
2 re ects performance on very long protein sequence alignments, a condition that is likely to be much less
common than Experiment 1.

2.3. Phylogeny estimation methods

We use a collection of phylogeny estimation methods in this study, starting with the trained DNNs from
Zou et al. (2020) and including some standard phylogeny estimation methods.

The DNNs classifiers. We used DNN1 (Epoch 588), DNN2 (Epoch 1272), and DNN3 (Epoch 1098),
obtained from Zou et al. (2020), re ecting the nal training state achieved by the authors. DNN1 was
trained on quartet trees generated by the rst training set (a superset of Trainingl), DNN2 was trained on
quartet trees generated by the second training set (a superset of Training2), and DNN3 was trained on
quartet trees generated by the third training set (a superset of Training3). To compute trees on more than
four sequences using DNNs, we combine the quartet trees into a tree on the full dataset using QMC (Snir
and Rao, 2008), in default mode. We refer to this two-phase approach as DNN+QMC (i.e., DNN1+QMC,
DNN2+QMC, and DNN3+QMC).

Standard methods. For ML analyses, we use the Linux version of IQ-TREE v. 2.0.5 (Minh et al., 2020)
in three ways: under the WAG (Whelan and Goldman, 2001) model, under the GHOST (Crotty et al., 2020)
model, and using ModelFinder (Kalyaanamoorthy et al., 2017) to select the best tting model according to
a BIC criterion. For the MP, NJ, and UPGMA analyses, we use PAUP* v. 4.0a (Swofford, 2002), running these
methods in default mode; in particular, both NJ and UPGMA are run by using uncorrected distances (i.e.,
p-distances, which is the fraction of the sequence length where the two sequences have different amino acids).

Local and global methods for quartet tree estimation. The ‘‘local’” approach for quartet tree estimation is
used on four sequences at a time, and it estimates quartet trees by using only the local information and no
additional information. For example, the local version of NJ for quartet tree estimation takes four se-
quences, computes the 4 x4 matrix of pairwise distances between them, and then runs NJ on the distance
matrix to obtain the quartet tree.

In contrast, the “global” approach operates as follows. Given a set of n > 4 sequences, a tree is
computed on the entire set, and then the individual quartet trees are extracted (by restricting the tree to the
desired set of four sequences). Hence, the global version of NJ for quartet tree estimation on 20 sequences
would take the 20 sequences, compute the 20 x 20 matrix of pairwise distances between them, run NJ on the
distance matrix to get a tree on the full set of 20 sequences, and then extract the quartet trees from the larger
tree. Thus, global approaches have access to the full set of sequences, whereas local approaches do not.

Every phylogeny estimation method we explore, thus, can be used in either a local or global way to
estimate quartet trees. The description given earlier for the local and global variants of NJ makes it clear as
to how these terms are used for MP, UPGMA, and ML under three models. For the DNNSs, the local version
is the normal usage of the DNN (i.e., the input is a set of four aligned gap-free sequences, and the output is
the quartet tree it computes). The global version of the DNNs is obtained by running DNN+QMC followed
by extraction of the tree on the speci ed quartet.

2.4. Criteria

We evaluate methods with respect to tree topology error rates, computed in two different ways: quartet
tree error rates and bipartition error rates. For quartet tree error, we record the percentage of the quartet
trees computed that are incorrectly reconstructed. For bipartition error (applied for the 20-leaf datasets), we
report the Robinson and Foulds (1981) error rates, de ned as follows (see the Appendix Al for more
details). Every edge in a tree de nes a bipartition on the leaf set, so that the Robinson-Foulds (RF) distance
between two trees is the number of bipartitions that appear in one tree but not in the other. Finally, the RF
error rate for an estimated tree on n leaves is its RF distance to the true (model) tree divided by 2(n —3).
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3. RESULTS
3.1. Experiment 1: Accuracy on datasets with 200 aa

Here, we explore tree estimation accuracy on datasets with sequences having 200 aa. Experiment 1(a) ex-
amines the accuracy of the 20-leaf trees we compute, and Experiment 1(b) examines quartet tree accuracy.

3.1.1. Experiment I(a): Accuracy on 20-leaf trees. For each training set and method, the most
accurate results are obtained on the base model, and error rates then increase as the rate of evolution in-
creases (Table 1 and Fig. 1). These results are expected and re ect the impact of the rate of evolution
on phylogenetic estimation dif culty [e.g., see Liu et al. (2011)]. In addition, error rates are lowest on
the Trainingl-based model conditions and highest on Training3-based conditions, so the Training2-based
conditions are of intermediate dif culty.

Across all 12 model conditions, UPGMA has the worst accuracy, and the standard phylogeny estimation
methods (NJ, ML, and MP) have the best accuracy. Thus, the DNNs only improve on UPGMA. With
UPGMA set aside, the relative performance between methods depends on the speci ¢ model condition. The
accuracy of ML under IQ-TREE 2 depends on the choice of the model, with an advantage to trees estimated
under models selected by ModelFinder (see Supplementary Table S4). The difference between NJ, MP, and
the ML methods is generally small, but when there is a difference, it tends to favor the ML methods.
Interestingly, MP is the most accurate method of all on the Harder3_1000 condition.

The comparison between the DNNs depends on the model condition, but the differences tend to be small.
On the model conditions derived from Trainingl and Training2, the three DNNs (DNNI+QMC,
DNN2+QMC, DNN3+QMC) are all about the same in terms of accuracy (with perhaps a slight advantage
to DNN2+QMC). On the model conditions derived from Training3, DNN2+QMC is slightly better than
DNN1+QMC and DNN3+QMC. Thus, overall we see that DNN2+QMC seems to have a small advantage
over DNN1+QMC and DNN3+QMC.

It is also worth noting how often a given method comes in rst place (or ties for rst place) in this
experiment. ML using Model Finder comes in rst place 11 out of 12 times, followed by MP (7 times), ML
under the WAG model (6), ML under Ghost and NJ (both at 6 times), and then DNN2+QMC (1). The
remaining DNN+QMC methods never come in rst place in any model condition.

In sum, therefore, the DNN+QMC methods do not match the accuracy of ML under simple mod-
els. Further, very simple methods, such as NJ on p-distances and MP, are much more accurate than the
DNN+QMC methods.

TABLE 1. EXPERIMENT 1: TREE ERROR (MEDIAN ROBINSON-FOULDS RATES) OF 20-SEQUENCE DATASETS
WITH 200 aa ESTIMATED UNDER THE DIFFERENT MODEL CONDITIONS (20 REPLICATES)

DNNI + DNN2+ DNN3 +

Scenario ML WAG ML GHOST MLMF NJ MP UPGMA oMcC omc oMmc
Training]1 0.00 0.06 0.00 0.00 0.00 0.12 0.06 0.06 0.06
Harder1_10 0.00 0.06 0.00 0.06 0.06 0.24 0.06 0.09 0.06
Harder1_100 0.06 0.06 0.06 0.12  0.06 0.24 0.18 0.18 0.15
Harder1_1000 0.53 0.41 0.29 038 047 0.47 0.35 0.35 0.50
Training2 0.09 0.12 0.06 0.06 0.06 0.18 0.12 0.09 0.09
Harder2_10 0.06 0.09 0.06 0.12  0.06 0.29 0.15 0.12 0.12
Harder2_100 0.06 0.06 0.06 0.06 0.10 0.24 0.12 0.12 0.12
Harder2_1000 0.21 0.24 0.15 024 0.24 0.32 0.29 0.24 0.18
Training3 0.12 0.12 0.12 0.12 0.12 0.26 0.18 0.12 0.15
Harder3_10 0.12 0.12 0.09 0.12  0.12 0.26 0.12 0.12 0.12
Harder3_100 0.21 0.18 0.18 024 0.18 0.53 0.35 0.26 0.35
Harder3_1000 0.44 0.35 0.47 0.38 0.32 0.68 0.53 0.47 0.53
Times in top place 6 4 11 4 7 0 0 1 0

Boldface values indicate top place.

NJ and UPGMA are run by using uncorrected distances. The ML methods are performed by using IQ-TREE 2 in default mode,
under the indicated models.

MF, ModelFinder; MP, maximum parsimony; ML, maximum likelihood; NJ, neighbor joining; QMC, Quartets MaxCut; UPGMA,
unweighted pair group method with arithmetic mean.
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3.1.2. Experiment 1(b): Accuracy of quartet tree methods. Performance of local quartet tree
estimation methods. Table 2 shows quartet tree error rates for the local methods under the 12 model
conditions. As expected, the error rates increase for all methods as the rate of evolution increases; however,
many of the other trends are surprising. For example, one of the most striking findings in this study is that
NI is the best method, with the lowest median error for all model conditions. This is surprising, given that
NIJ is used with the simplest distance calculation, p-distances (percentage of aligned sites that are different).

Further, NJ has a consistent advantage over the DNNs, which can be substantial (e.g., Harder1_100,
Harder2_100, and Harder3_100). In contrast, UPGMA has the worst accuracy, indicating that the advan-
tage of NJ is not because distance-based methods are generally at an advantage.

Also intriguing is that ML under simpler models is more accurate than ML under more complex models,
despite the fact that the simulation protocol introduced very substantial heterogeneity. For example,
ML(WAG) generally has better accuracy than ML under GHOST (the most complex model) and under the
model selected by ModelFinder.

Another interesting finding is that MP has better accuracy than ML(GHOST) for every model condition,
and it is better than ML (MF) for 9 of the 12 model conditions. Indeed, only ML under the simplest model
condition, WAG, is more accurate than MP (and even for this, MP improves on ML(WAG) on four model
conditions, ties on one condition, and is never more than 2% worse).
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TABLE 2. EXPERIMENT 1(B): ERROR RATES (MEDIANS) OF QUARTET TREES ESTIMATED USING LOCAL QUARTET
METHODS ON DATASETS WITH 200 aa UNDER DIFFERENT MODEL CONDITIONS (20 REPLICATES)

Scenario ML WAG ML GHOST MLMF NJ MP UPGMA DNNI DNN2 DNN3
Training1 0.04 0.10 0.08 0.04 0.06 0.07 0.05 0.05 0.05
Harder1_10 0.06 0.11 0.08 0.06 0.07 0.12 0.07 0.08 0.07
Harder1_100 0.18 0.28 0.18 012 0.17 0.16 0.17 0.17 0.13
Harder1_1000 0.48 0.48 0.42 032 043 0.34 0.36 0.36 0.35
Training2 0.06 0.13 0.09 0.05 0.08 0.07 0.07 0.06 0.07
Harder2_10 0.10 0.14 0.10 0.07 0.11 0.12 0.09 0.10 0.09
Harder2_100 0.09 0.17 0.11 0.06 0.10 0.13 0.09 0.11 0.09
Harder2_1000 0.26 0.38 0.26 019 0.27 0.24 0.25 0.25 0.23
Training3 0.09 0.11 0.10 0.06 0.08 0.14 0.09 0.08 0.08
Harder3_10 0.07 0.13 0.09 0.06 0.08 0.12 0.08 0.09 0.09
Harder3_100 0.18 0.21 0.19 0.13 0.16 0.19 0.18 0.19 0.19
Harder3_1000 0.33 0.36 0.35 030 033 0.41 0.34 0.33 0.35
Times in top place 2 0 0 12 0 0 0 0 0

Boldface values indicate top place.
NJ and UPGMA are run by using uncorrected distances. ML methods are performed by using IQ-TREE 2 in default mode, under the
indicated models.

The three DNNs have similar accuracy across all the model conditions (and no single DNN outperforms
the others) and never tie for the rst place. In essence, therefore, the DNNs are not particularly good as
local quartet tree estimators, and very simple methods are strictly better.

Performance of global quartet tree estimation methods. In comparing methods as global quartet tree
estimation, we also see substantial differences. The key observation is that quartet trees computed using
DNN+QMC methods are not as accurate as quartet trees computed using most other global methods, with
the only exception being UPGMA, which has the worst accuracy (Table 3). Further, across the 12 model
conditions, ML(WAG) came in the rst place in eight conditions, NJ on p-distances and ML(MF) came in
the rst place in six conditions, MP came in the rst place in ve conditions, and the three DNN+QMC
methods came in the rst place in one to three model conditions. Thus, DNN+QMC methods are not
anywhere near the best performing global quartet tree methods.

Comparing local and global quartet tree methods. To better understand the limitations of DNNs as
quartet tree methods, we now examine the difference in accuracy between quartet trees computed using

TABLE 3. EXPERIMENT 1B: MEDIAN QUARTET ERROR ON THE 20 REPLICATES OF EACH MoDEL CONDITION
USING A GLOBAL QUARTET ESTIMATION APPROACH ON DATASETS WITH 200 aa.

Scenario ML WAG ML GHOST MLMF  NJ MP UPGMA DNNI DNN2 DNN3
Training1 0.00 0.01 0.00 0.00 0.00 0.05 0.00 0.01 0.01
Harder1_10 0.00 0.01 0.00 0.01 0.01 0.10 0.01 0.01 0.01
Harder1_100 0.02 0.04 0.04 0.04 0.05 0.10 0.07 0.06 0.05
Harder1_1000 0.32 0.21 0.18 0.16 0.32 0.26 0.16 0.15 0.27
Training2 0.01 0.01 0.01 0.01 0.01 0.05 0.03 0.01 0.03
Harder2_10 0.01 0.02 0.02 0.02 0.02 0.11 0.04 0.03 0.04
Harder2_100 0.01 0.01 0.01 001 0.04 0.09 0.04 0.05 0.03
Harder2_1000 0.07 0.10 0.08 0.09 0.13 0.18 0.09 0.10 0.08
Training3 0.03 0.03 0.03 0.03 0.03 0.09 0.04 0.04 0.04
Harder3_10 0.03 0.04 0.02 0.02 0.02 0.09 0.02 0.02 0.02
Harder3_100 0.11 0.09 0.09 0.13  0.07 0.17 0.11 0.11 0.12
Harder3_1000 0.22 0.19 0.23 019 022 0.46 0.29 0.20 0.24
Times in top place 8 4 6 6 5 0 2 3 1

Boldface values indicate top place.
NJ and UPGMA are run by using uncorrected distances. ML methods are performed by using IQ-TREE 2 in default mode, under the
indicated models.
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local methods and quartet trees computed using global methods. We compare the best local ML method
[i.e., ML(WAG)], the three DNNs, NJ, and MP; however, we omit UPGMA because of its generally poor
accuracy seen in the previous experiments.

For every model condition and for every method, it is always better to use the global version of the
method instead of the local version of the method (see Fig. 2 for one model condition and Supplementary
Figs. S1-83 for the other models). The difference between local and global quartet tree error rates depends
on the model condition (smaller differences between these error rates under the slower rate of evolution
than under higher rates of evolution) and method. Even under the lowest rate of evolution, the differences
are not small: The difference in accuracy ranges from 3% (for NJ) to about 12% (for ML under the GHOST
model). Under the highest rate of evolution, the difference for ML methods under all models ranges up to
27% and up to 21% for the DNN methods.

3.2. Experiment 2: Accuracy on long sequences

Here, we explore results on 1000 aa sequences. Examining RF error rates on the 20-leaf trees (Table 4),
we see that error rates for all methods are much lower than on shorter sequences (200 aa), and that the
differences between methods are reduced. Indeed, for three of the nine model conditions all methods
recover the true tree exactly, and there are only two model conditions where any method has worse than 6%
RF error. Thus, the model conditions we explore in Experiment 2 are much easier than the model con-
ditions explored in Experiment 1.

However, even under these easier conditions, there are still clear differences in RF error between
methods. For example, four methods (the three ML methods and MP) come in the first place in eight of the

TABLE 4. EXPERIMENT 2: TREE ERrROR (MEDIAN RoBINSON-FouLDs RATES) OF 20-LEAF TREES ESTIMATED
UNDER THE DIFFERENT MODEL CoNDITIONS (20 REPLICATES) ON LoNG SEQUENCES (1000 aa)

DNNI + DNN2 + DNN3 +

Scenario ML WAG ML GHOST MLMF NI  MP oMC omMcC omMcC
Training1 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00
Harder1_10 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00
Harder1_100 0.00 0.00 0.00 0.06  0.00 0.06 0.06 0.06
Training2 0.00 0.00 0.00 0.06  0.00 0.03 0.00 0.00
Harder2_10 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00
Harder2_100 0.00 0.00 0.00 0.06  0.00 0.00 0.03 0.00
Training3 0.00 0.00 0.00 0.00 001 0.06 0.00 0.00
Harder3_10 0.03 0.06 0.06 0.09  0.00 0.09 0.06 0.06
Harder3_100 0.06 0.06 0.06 0.12  0.06 0.15 0.15 0.18
Times in top place 8 8 8 4 8 4 5 6

Boldface values indicate top place.
NJ and UPGMA are run by using uncorrected distances. ML methods are performed by using IQ-TREE 2 in default mode, under the
indicated models.
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TABLE 5. EXPERIMENT 2: ERROR RATES (MEDIANS) OF QUARTET TREES ESTIMATED USING LOCAL QUARTET
METHODS UNDER THE DIFFERENT MODEL CONDITIONS (20 REPLICATES) ON LONG SEQUENCES (1000 aa)

Scenario ML WAG ~ ML GHOST ~ MLMF  NJ MP  DNNI  DNN2  DNN3
Training1 0.01 0.03 0.02 0.02 0.02 0.01 0.01 0.01
Harder1_10 0.02 0.05 0.03 0.06 0.03 0.02 0.02 0.02
Harder1_100 0.07 0.19 0.06 0.02 0.07 0.06 0.07 0.05
Training2 0.02 0.06 0.03 0.03 0.02 0.02 0.02 0.02
Harder2_10 0.01 0.05 0.02 0.04 0.02 0.01 0.02 0.01
Harder2_100 0.03 0.06 0.03 0.02 0.04 0.03 0.03 0.03
Training3 0.02 0.03 0.03 0.02 0.02 0.02 0.01 0.02
Harder3_10 0.04 0.06 0.05 0.07 0.05 0.04 0.04 0.04
Harder3_100 0.09 0.09 0.09 0.03 0.09 0.08 0.08 0.08
Times in top place 5 0 0 3 1 5 5 5

Boldface values indicate top place.
NJ is run by using uncorrected distances. ML methods are performed by using IQ-TREE 2 in default mode, under the indicated
models.

nine model conditions, and the remaining methods (NJ and the three DNN+QMC methods) come in the rst
place between four and six times. The three ML methods and MP also never have error rates above 6% for
any model condition, whereas NJ has error rates between 9% and 12% for two model conditions, and the
three DNN+QMC methods have error rates between 15% and 18% for the hardest model condition.

Thus, although these are easier model conditions and differences between the top methods are reduced,
the DNN+QMC methods are still not competitive for accuracy with the other methods.

Comparing these methods as local quartet tree methods (Table 5) is also relevant. Here, we see the DNNs
producing very good quartet trees, each coming in the rst place in ve of the eight model conditions; only
ML(WAG) has this same good performance (and the remaining methods come in the rst place at most
three times). Thus, as local quartet tree methods, when analyzing long sequences, the DNNs can provide
good value.

Interestingly, we see different relative performance when comparing methods for global quartet tree
accuracy (Table 6): The DNN+QMC methods come in the rst place in only four out of the nine conditions,
and each of the other methods comes in at least ve times. The best in terms of global quartet tree accuracy
is ML(WAG), which is best in eight of the nine conditions, followed by NJ, which is best in seven out of
nine conditions, and then by MP, which is best in six out of nine conditions. Thus, as global quartet tree
methods, the DNN+QMC approach clearly lags behind the other methods, even for these much easier
model conditions.

TABLE 6. EXPERIMENT 2: ERROR RATES (MEDIANS) OF QUARTET TREES ESTIMATED USING GLOBAL QUARTET
EsSTIMATION UNDER THE DIFFERENT MODEL CONDITIONS (20 REPLICATES) ON LONG SEQUENCES (1000 aa)

DNNI + DNN2 + DNN3 +

Scenario ML WAG ML GHOST ML MF NJ MP oMcC oMcC oMcC
Training1 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00
Harder1_10 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.01
Harder1_100 0.00 0.01 0.01 0.02  0.00 0.03 0.03 0.01
Training2 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01
Harder2_10 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00
Harder2_100 0.00 0.22 0.01 0.00  0.00 0.01 0.03 0.00
Training3 0.00 0.00 0.00 0.00 0.03 0.01 0.02 0.00
Harder3_10 0.00 0.03 0.01 0.03  0.00 0.01 0.01 0.01
Harder3_100 0.01 0.02 0.04 0.00 0.06 0.05 0.05 0.03
Times in top place 8 5 5 7 6 4 4 4

Boldface values indicate top place.
NJ is run is using uncorrected distances. ML methods are performed by using IQ-TREE 2 in default mode, under the indicated
models.
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4. DISCUSSION

We begin with a summary of the observations in this study. We examined methods for tree construction
on either four-leaf datasets or on 20-leaf datasets, and with two sequence lengths and different rates of
evolution. When constructing 20-leaf trees, we see very clear advantages to several standard tree estimation
methods (notably, ML and MP) compared with DNN+QMC methods. These differences were especially
pronounced for our rst experiment where we examined accuracy on datasets with 200 aa per sequence, but
also evident in our second experiment where we examined performance with longer sequences (1000 aa per
sequence).

When used to construct quartet trees, however, the relative accuracy depended on the sequence length.
For short sequences, the best method was NJ based on p-distances (i.e., uncorrected distances), an ex-
ceedingly simple method, and the DNNs were not particularly accurate. Interestingly, for long sequences
(1000 aa), the DNNs were tied with ML (WAG) as the best local quartet tree estimators. Clearly, therefore,
sequence length impacts the relative accuracy of DNNs and other methods, used as local quartet tree
methods.

However, the most accurate quartet trees were computed by constructing trees on the full set of 20
sequences using one of the standard approaches (i.e., NJ, MP, and ML) and then inducing the quartet trees;
further, the global version of quartet tree estimation was always more accurate than the local version. We
observed that DNN+QMC methods are also more accurate at estimating quartet trees than the DNNs
themselves, showing that the QMC amalgamation method is able, to some extent, to correct errors in the
estimating quartet trees through this amalgamation step. Even so, the nal quartet tree accuracy of
DNN+QMC methods does not match the quartet tree accuracy of the global methods.

Comparison to Zou et al. (2020). The trends reported in Zou et al. (2020) may at rst glance seem
inconsistent with what we have observed. Although we mainly focused on the accuracy of methods on large
(20-leaf) trees, there also seem to be differences between trends we observed for local quartet methods and
the trends they observed (i.e., they concluded that DNNs have the best accuracy on simulated datasets, and
are ‘‘overall comparable’ to the existing methods on biological datasets).

An important consideration to note is that the majority of simulation conditions Zou et al. (2020)
explored were all very easy due to long sequence lengths and reduced rates of evolution. However, even for
the model conditions we explored that had the same rates of evolution as their main model conditions (i.e.,
Trainingl, Training2, and Training3), our results did not show their DNNs having the best accuracy, even
as local quartet methods—instead we saw NJ having the best accuracy. How do we reconcile these
differences in observations?

A better understanding of their DNNs on their own test data can be seen by examining results shown in
their Figure 2b, which includes a wider range of sequence lengths. This gure demonstrates that sequence
length has a large impact on the accuracy of their DNNs (and on other methods), and it also reveals that
their DNNs were less accurate than NJ on the shortest sequences they examine (100-200 aa). Thus, the
relative performance between their DNNs and NJ seems to depend on the sequence length.

Further, our results on the model conditions with low rates of evolution (i.e., our Trainingl, Training2,
and Training3 model conditions) match their results for similar conditions. Thus, there are no difference in
trends observed on simulated data in Zou et al. (2020) and our study when restricting attention to model
conditions with the same properties.

It is also helpful to examine the local quartet error rates obtained by their DNNs and the other phylogeny
estimation methods on ve biological datasets, as reported in Table 2 of Zou et al. (2020) (summarized in
our Supplementary Table S5). Analyses of the Mammals (mitochondrial) dataset produced very high error
local quartet rates for all methods (ranging from 0.57 to 0.97 error), making comparisons based on this
dataset uninformative and potentially misleading. Therefore, we restrict our attention to the remaining four
datasets. On the red uorescent protein dataset, NJ and MP were the best approaches, followed by RAXML.

Then, for the Mammalian genes dataset, NJ performed the best by far, followed by the ML approaches
(RAXML and PhyML). On the Mammals (concatenated) dataset, MP and RAXML gave the best results,
followed closely by the other non-DNN approaches, and with all the DNNs performing worst. Similarly, for
the Plants (concatenated) dataset, NJ was the best approach, followed by all other methods, except for
DNN3, which performed the worst.

Overall, therefore, the results reported in Zou et al. (2020) reveal that the DNNs were clearly less reliable
than NJ and most other methods on the biological datasets as local quartet tree methods.
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These trends suggest that these DNNs can be accurate (and competitive with other methods) for
local quartet tree estimation given relatively long sequences that have evolved under suf ciently
low rates of evolution but have not been shown in our experiments to provide comparable accuracy to
the better standard methods for ‘‘large’ tree estimation (measured using RF error or global quartet
error).

It is possible that under other conditions, such as long branch attraction or high levels of heterotachy,
DNN methods might be as accurate, or perhaps even more accurate, than standard methods, but the inferior
performance of these DNN methods on biological datasets does suggest that these conditions are unlikely to
be very general.

Why are DNN+QMC methods not competitive for large-tree estimation? Our study showed that
DNN-+QMC methods were not as accurate as simple methods for estimating 20-sequence trees; here, we
examine the possible explanations for this trend.

The accuracy of these DNN+QMC methods depends on both the accuracy of the quartet trees computed
using the DNNs and also the ability of QMC, the quartet amalgamation method we selected, to combine
these quartet trees into an accurate tree on the full dataset. Our study clearly shows that the quartet trees,
estimated independently of each other (i.e., ‘‘local methods’’), are less accurate than quartet trees induced
from a tree estimated on the full dataset (i.e., ‘‘global methods”’).

This trend holds true for all the standard phylogeny estimation methods we explored, including
NJ, ML, and MP. We also noted that QMC, used in conjunction with the DNNs, was able to improve
the quartet score, but that this approach to quartet tree estimation was not as accurate as the truly
global approach to estimating quartet trees. This seems to be an inherent limitation of DNN+QMC
methods.

One might then ask whether QMC itself is a limiting factor, and that substantially better quartet
amalgamation methods might exist and yield improved accuracy compared with standard methods. Al-
though QMC is generally regarded as the best of the currently available quartet amalgamation methods, we
explored the use of Quartet Puzzling (Strimmer and Von Haeseler, 1996) [the same method used in Zou
et al. (2020)] to combine quartet trees computed using DNNs.

Our study found that Quartet Puzzling produced highly unresolved and much less accurate 20-leaf trees
than QMC (see Supplementary Table S6). Given QMCs superiority to Quartet Puzzling and the general
reception of QMC as a leading quartet amalgamation method, it seems unlikely that better amalgamation
methods are available at this time.

Thus, based on our study, we hypothesize that any method that is used to construct a tree in this
two-stage approach (i.e., by rst computing quartet trees independently and then merging them with
a quartet amalgamation method) is unlikely to be as accurate as a good global method. This hypothesis
is based on much prior literature, which has shown that big trees can, in many cases, be easier to
estimate with high accuracy than small trees [e.g., see the example in Hillis (1996) and subsequent
discussion in Hillis (1998); Pagel and Meade (2008); Zwickl and Hillis (2002); Nabhan and Sarkar
(2012)]. This, we posit, is likely to be the main limitation of using any two-stage technique that uses
DNNs to estimate small trees (here, four-leaf trees) and then amalgamation methods to combine the
smaller trees.

Impact of model complexity. A very interesting trend we observed is that ML under simple models often
produces more accurate trees than ML under complex models. For example, on the datasets with 200 aa,
ML(GHOST) was not as accurate as ML(WAG), despite GHOST being a more complex model (and most
likely a better t to the simulation model) and WAG being an extremely simple model. The advantage of
ML(WAG) over ML(GHOST) is also present on the longer sequences when they are used as local quartet
tree estimation methods but disappears when they are used as global methods. We conjecture that this may
be due to over tting, since the advantage to the simpler model is greatest when the total amount of data is
the smallest.

Related to this, we note again the very high accuracy of MP compared with the ML-based methods, when
used as a local quartet tree estimation on short sequences (200 aa): MP had better accuracy than
ML(GHOST) for every model condition, was better than ML(MF) for 9 of the 12 model conditions, and
was only less accurate than ML(WAG) (and even there it was very close in accuracy). These trends may be
related to the equivalence between MP and ML under the no-common mechanism model, as proven in
Tuf ey and Steel (1997), and the relative accuracy of ML and MP on datasets simulated under hetero-
geneous models, as provided in Kolaczkowski and Thornton (2004).
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S. CONCLUSIONS

The DNNs can be used as quartet tree estimators, and—when combined with quartet amalgamation
methods, such as QMC—they can be used to construct larger trees. However, in our study, they were not as
accurate at estimating 20-leaf trees as many standard phylogeny estimation methods, including MP, NJ, and
ML under simple models of evolution. The failure of DNNs to provide good accuracy that is competitive
with even simple methods is noteworthy and important to understand.

Our study shows that the advantage of standard methods (e.g., ML under simple models) over
DNN+QMC methods is due mainly to the bene ts inherent in being able to estimate the entire tree at
once rather than through a two-stage approach that rst estimates quartet trees (i.e., local quartet esti-
mation) and then combines the quartet trees into a tree on the full dataset. The limitations of these
two-stages approaches compared with global methods have been previously noted in other studies [e.g.,
St. John et al. (2003)], and these are closely related to the well-known bene ts produced by dense taxon
sampling.

One way to address this limitation is to design DNNs to estimate much larger trees (e.g., 10-leaf trees
rather than 4-leaf trees). However, such an approach would only have limited success, since the estimation
of much larger trees would still require amalgamation methods (called *‘supertree methods’” when the input
trees are not just quartet trees). Further, taxon sampling would still bene t global methods over local
methods, even if the local methods were computing 10-leaf trees. Finally, training a DNN requires a large
volume of representative datasets, a challenge that is clearly already a problem for training classi ers of
4-leaf trees.

Since the number of 10-leaf trees is already more than 1,000,000, training DNNs to classify 10-taxon
trees would likely be prohibitively dif cult. Thus, we predict that trying to address the limitations of this
two-stage approach by constructing trees on larger subsets is unlikely to be generally successful.

Given the observed dependency on sequence length, it is possible that the DNN+QMC approach might
be best suited to species tree estimation, which is based on multi-locus datasets and in some cases on large
portions of whole genomes. However, multi-locus datasets evolve under an array of processes, including
incomplete lineage sorting, gene duplication and loss, and gene ow, that results in different loci evolving
under different tree topologies (Maddison, 1997); Degnan and Rosenberg, 2009).

Thus, to enable DNNs to be useful on multi-locus datasets, they would need to be trained on data that
evolve under complex models that re ect these genome-scale processes, rather than under the models that
assume that all sites evolve down a single tree topology. Although this would increase the training
complexity, such an approach might well have better results, as a result of having longer sequences and also
potentially more biological training data (i.e., true gene trees are rarely known, but true species trees may
be reliably known for some sets of four species).

However, since standard methods can be statistically inconsistent in the presence of gene tree hetero-
geneity (Roch and Steel, 2015), the new DNNs would then need to be compared with phylogenomic
species tree estimation methods that explicitly address gene tree heterogeneity [e.g., Heled and Drummond
(2009); Mirarab et al. (2014); Richards and Kubatko (2020); Smith et al. (2020)], as these have been
shown to provide improved accuracy compared with standard methods and also have strong theoretical
guarantees.

However, although the use of DNNs for directly constructing phylogenies has not yet succeeded in
matching the accuracy of existing methods (and the challenges to doing this seem very formidable), as
discussed in Section 1, DNNs can be used in other ways to inform phylogeny estimation. Thus, although
our study suggests substantial limitations for this way of using DNNs in phylogeny estimation methods
(i.e., by constructing small trees using DNNs and then combining them into larger trees), there are
alternative uses for DNNs that could be highly informative and bene cial in the estimation of phylogenies
under realistically complex evolutionary scenarios.

DATA AND CODE AVAILABILITY

The python source code for these experiments is available at https://gitlab.engr.illinois.edu/gmartin6/
simulating_quartets. The datasets used in this study are available at https://doi.org/10.13012/B2IDB-
8921156_V1.
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Appendix

APPENDIX Al. ADDITIONAL DETAILS ABOUT PROGRAM COMMAND LINES
Phylogeny Estimation

The Linux version of IQ-TREE 2.0.5 was used for the maximum likelihood analyses. IQ-TREE was used
in three different con gurations: Using the WAG substitution model, using the built-in ModelFinder to
select a substitution model, and using the complex GHOST mixture model.

WAG ig-tree2 -s <path-to-AA-alignment> -m wag
ModelFinder  ig-tree2 -s <path-to-AA-alignment>
GHOST ig-tree2 -s <path-to-AA-alignment> -m wag+FO*H4

Maximum Parsimony

We used PAUP* v.4.0a, with the following command:
set criterion = parsimony; hsearch addseq=random nreps =1000;

By default, the branch-swapping algorithm is tree-bisection-reconnection (TBR)

Neighbor Joining

We used PAUP* v.4.0a, with the following command:
set criterion =distance; nj brlens =yes;

The distance metric used is the p-distance.

Unweighted Pair Group Method With Arithmetic Mean (UPGMA)

We used PAUP* v.4.0a, with the following command:
set criterion =distance; upgma brlens = yes;

The distance metric used is the p-distance.
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Phylogenetics by Deep Learning (PhyDL)

DNNI1: dnnl.py 588 QUARTET_FOLDER RESULT_FOLDER
DNN2: dnn2.py 1272 QUARTET_FOLDER RESULT_FOLDER
DNN3: dnn3.py 1098 QUARTET_FOLDER RESULT_FOLDER

Quartets Max Cut

nd-cut-Linux-64 qrtt=<path-to- le-with-quartets>
otre = <path-to-output le>

ROBINSON-FOULDS TREE ERROR

Tree estimation error was reported by using RF (Robinson and Foulds, 1981) error rates, using the ETE 3
toolkit from Huerta-Cepas et al. (2016). The:Tree: ‘‘compare’ function with the unrooted =True argument
is used to calculate the RF distance between the estimated tree and the reference.



