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ABSTRACT

Deep neural networks (DNNs) have been recently proposed for quartet tree phylogeny
estimation. Here, we present a study evaluating recently trained DNNs in comparison to a
collection of standard phylogeny estimation methods on a heterogeneous collection of da-
tasets simulated under the same models that were used to train the DNNs, and also under
similar conditions but with higher rates of evolution. Our study shows that using DNNs with
quartet amalgamation is less accurate than several standard phylogeny estimation methods
we explore (e.g., maximum likelihood and maximum parsimony). We further find that
simple standard phylogeny estimation methods match or improve on DNNs for quartet
accuracy, especially, but not exclusively, when used in a global manner (i.e., the tree on the
full dataset is computed and then the induced quartet trees are extracted from the full tree).
Thus, our study provides evidence that a major challenge impacting the utility of current
DNNs for phylogeny estimation is their restriction to estimating quartet trees that must
subsequently be combined into a tree on the full dataset. In contrast, global methods (i.e.,
those that estimate trees from the full set of sequences) are able to benefit from taxon
sampling, and hence have higher accuracy on large datasets.

Keywords: deep neural networks, phylogeny estimation and heterotachy.

1. INTRODUCTION

One of the basic challenges in statistical phylogeny estimation occurs when sequences evolve under

processes that violate assumptions of the inferential statistical model. For example, most phylogeny

estimation methods are based on sequence evolution models, such as the Generalized Time Reversible (GTR)

(Tavaré, 1986) model for nucleotide evolution, that assume that all the sites within the sequences evolve i.i.d.

(identically and independently) down a model tree. In turn, the sequence evolution models make several

simplifying assumptions (such as stationarity, homogeneity, and time-reversibility, jointly referred to as

‘‘SRH’’) about sequence evolution to ensure statistical identi ability (i.e., that the model tree is uniquely
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identi ed by the probability distribution it de nes on site patterns) and computational feasibility (i.e., so that

tree estimation can be performed by using acceptable efforts).

However, these are unrealistic assumptions, as compositional heterogeneity (indicative of changed

substitution rate matrices) across the tree has been observed in many biological datasets [e.g., see dis-

cussion in Jermiin et al. (2004)]. Indeed, recent years have shown an increasing awareness of the impact of

these violations of the model assumptions on phylogeny estimation ( Jermiin et al., 2004; Kolaczkowski and

Thornton, 2008; Duchêne et al., 2017; Naser-Khdour et al., 2019; White and Braun, 2019; Crotty et al.,

2020), leading Naser-Khdour et al. (2019) to conclude:

the extent and effects of model violation in phylogenetics may be substantial [.] further

effort in developing models that do not require SRH assumptions could lead to large

improvements in the accuracy of phylogenomic inference.

To address the challenge of model misspeci cation, several investigators have developed parameter-rich

models (Steel, 1994; Crotty et al., 2020) and methods for estimating trees under these models; for example,

IQ-TREE 2 (Minh et al., 2020) enables estimation under the GHOST (Crotty et al., 2020) model, which

incorporates substantial heterogeneity across the tree and across sites. However, two challenges appear with

an increased number of parameters: The computational cost increases, and there is a danger of over tting

(and hence reduction of accuracy).

An alternative approach that has recently begun to be explored is the use of deep neural networks

(DNNs), which are machine-learning models that can be trained on datasets and then used to classify new

input datasets. The DNNs have been developed for computing phylogenies on datasets of four sequences

(i.e., quartet tree estimation), so that each DNN is trained on sets of four sequences with known true quartet

trees, and then used to estimate quartet trees from new sets of four sequences (Suvorov et al., 2020; Zou

et al., 2020).

This approach has the bene t of allowing the training to be done under very heterogeneous conditions,

including ones that signi cantly violate standard model assumptions. Further, although the training may be

computationally intensive, once the training is complete quartet tree estimation is very fast.

Other applications of DNNs to phylogeny estimation are less direct. For example, Bhattacharjee

and Bayzid (2020) used machine learning to develop techniques to impute the missing entries in a distance

matrix, and so enable the reconstruction of trees from partial distance matrices. Abadi et al. (2020)

suggested a machine-learning framework, ModelTeller, for phylogenetic model selection. Leuchtenberger

et al. (2020) designed and trained DNNs to distinguish quartet trees exhibiting the properties of the

Felsenstein Zone (Felsenstein, 1978) or the Farris Zone (Siddall, 1998), using both simulated and empir-

ical datasets.

This approach does not directly construct quartet trees but does provide guidance to the user in the

subsequent choice of method for the phylogeny estimation method for the dataset. Recently, Jiang et al.

(2021) developed DEPP, a deep learning-based approach for phylogenetic placement. Even more recently,

Azouri et al. (2021) explored the use of a deep-learning algorithm to narrow the tree search space to

achieve faster convergence of the maximum likelihood (ML) score.

In this study, we focus on the use of DNNs presented in Suvorov et al. (2020) and Zou et al. (2020),

which operate by estimating quartet trees (i.e., unrooted binary trees on just four leaves). To extend the use

of these DNNs to estimate larger trees, the quartet trees computed by the DNN must be combined together

into a tree on the full dataset, a process referred to as ‘‘quartet amalgamation.’’

However, optimization problems for quartet amalgamation, such as maximizing the number of satis-

ed quartet trees, are NP-hard ( Jiang et al., 2001), which necessitates the use of heuristic approaches.

Nevertheless, many quartet amalgamation methods have been developed (Strimmer and Von Haeseler,

1996; Ranwez and Gascuel, 2001; Snir et al., 2008; Reaz et al., 2014), with Quartets Max Cut (QMC) now

the leading quartet amalgamation method.

We speci cally examine two questions: (1) How accurate are the quartet trees estimated by DNNs in

comparison to other standard methods and (2) how accurate are trees computed by DNNs on just slightly

larger trees with 20 sequences, in comparison to standard methods? We use the trained DNNs from Zou

et al. (2020) for the quartet tree estimators, and QMC for the quartet amalgamation method, thus producing

a two-phase approach that we refer to as DNN+QMC.

We simulate sequences using the simulator developed by Zou et al., using the same basic model

conditions as they used for training and then extending the set of model conditions to include a wider range
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of branch lengths. Signi cantly, we nd that DNNs are less accurate than standard methods for both

problems, even when considered on the same data on which they were trained. Indeed, in our study, the

commonly used ML methods under standard i.i.d. sequence evolution models are more accurate than these

DNNs for quartet tree estimation and more accurate than DNN+QMC methods at estimating 20-taxon trees,

even though the datasets we examine have evolved under substantial violations of the model assumptions.

Further, even neighbor joining (NJ) (Saitou and Nei, 1987) used with p-distances (i.e., normalized Ham-

ming distances) is more accurate than DNN+QMC methods.

Thus, these DNNs do not even match the accuracy of basic phylogeny estimation methods. We provide

some insights into why this is likely to be true, focusing on taxon sampling and its bene cial effects in

phylogeny estimation. Overall, this study provides a cautionary note about the use of DNNs for phylo-

genetic gene tree estimation, while indicating some possible directions for their use in phylogenomics.

2. MATERIALS AND METHODS

2.1. Overview

We explore the accuracy of the three DNNs used in Zou et al. (2020). Each of these was trained on a

different training set, and they are named after their training datasets; these are DNN1, DNN2, and DNN3.

We compare these DNNs with standard phylogeny estimation methods [ML, maximum parsimony (MP)

(Foulds and Graham, 1982), NJ, and unweighted pair group method with arithmetic mean (UPGMA)

(Sokal and Michener, 1958)] with respect to tree topology accuracy on a range of model conditions. We

performed two experiments to understand the performance of DNNs in comparison to standard phylogeny

estimation methods. Experiment 1 evaluates the topological accuracy of estimated 20-leaf trees and quartet

trees on simulated 200 aa sequence datasets. Experiment 2 performs the same evaluation but on longer

sequences (1000 aa). See Appendix A1 for the detailed commands.

2.2. Datasets

We simulated datasets with 20 gap-free amino acid sequences using the evosimz simulator from Zou

et al. (2020). Three of the model conditions use the same parameter values as the training datasets used in

Zou et al. (2020) to train DNN1, DNN2, and DNN3, but we restricted the trees to 20 leaves [while Zou

et al. (2020) explored a larger range of tree sizes]. The basic model conditions are called Training1,

Training2, and Training3. For the main quartet tree estimation experiments reported in Zou et al. (2020)

(i.e., the ‘‘nolba’’ conditions, which do not involve long-branch attraction), quartet tree error rates were

extremely low: never more than 7%, and most analyses were much better (e.g., MP never had more than

5% error).

This level of quartet tree accuracy is an indication that the tree estimation problem is unusually easy

under these test model conditions, and hence atypical of most phylogenetic problems. Therefore, in our

study, we modi ed the simulator parameter settings to produce more challenging conditions. We achieved

this in two ways. First, we modi ed the branch length distributions to increase the rate of evolution.

Second, we noted that the main experiments they report were based on sequence lengths drawn from a

uniform distribution [100, 3000), so that the median length is about 1550.

Since sequence length has a large impact on phylogeny estimation accuracy, we examined two sequence

lengths: 200 aa (a length that is close to typical lengths of single proteins) and 1000 aa [a length that would

be much less frequently observed, but still not as unrealistic as the lengths evaluated in Zou et al. (2020)].

We created 12 model conditions, with 4 conditions per basic model condition. Speci cally, for a given

basic model condition (Training1, Training2, Training3), we include the original model condition, and we

also include three other conditions de ned by modifying the branch length distribution to provide higher

upper bounds on the branch lengths, to make for more challenging datasets. For each of the 12 model

conditions, 20 trees were generated with 20 leaves each, and gap-free amino acid sequences evolved down

the tree under heterogeneous substitution processes that include heterotachy.

With the exception of branch lengths, we set all the numeric simulation parameters identically as for the

associated model conditions drawn from Zou et al. (2020). We extended the range of branch lengths as

follows: We set the upper bound of the branch length distribution to X times the original upper bound,

where X was set to 10‚ 100, or 1000, and we use the value for X to name the new model conditions [see Zou

et al. (2020) for the meaning of the numeric parameters, including the branch length].
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We also modi ed the lower bound on the branch length distributions for the Training1-based and

Training3-based model conditions. The model parameters for the different model conditions are provided

in Supplementary Table S1, and associated empirical statistics of these model conditions are provided in

Supplementary Table S3; see also Supplementary Table S2 for information on how to interpret branch

lengths.

In Experiment 1, we used all 12 model conditions, and we explored methods on sequences with 200 aa.

For Experiment 2, we used 9 of the 12 model conditions (omitting only the three hardest model conditions

with the highest rate of evolution) and examined performance on sequences with 1000 aa; thus, Experiment

2 re ects performance on very long protein sequence alignments, a condition that is likely to be much less

common than Experiment 1.

2.3. Phylogeny estimation methods

We use a collection of phylogeny estimation methods in this study, starting with the trained DNNs from

Zou et al. (2020) and including some standard phylogeny estimation methods.

The DNNs classifiers. We used DNN1 (Epoch 588), DNN2 (Epoch 1272), and DNN3 (Epoch 1098),

obtained from Zou et al. (2020), re ecting the nal training state achieved by the authors. DNN1 was

trained on quartet trees generated by the rst training set (a superset of Training1), DNN2 was trained on

quartet trees generated by the second training set (a superset of Training2), and DNN3 was trained on

quartet trees generated by the third training set (a superset of Training3). To compute trees on more than

four sequences using DNNs, we combine the quartet trees into a tree on the full dataset using QMC (Snir

and Rao, 2008), in default mode. We refer to this two-phase approach as DNN+QMC (i.e., DNN1+QMC,

DNN2+QMC, and DNN3+QMC).

Standard methods. For ML analyses, we use the Linux version of IQ-TREE v. 2.0.5 (Minh et al., 2020)

in three ways: under the WAG (Whelan and Goldman, 2001) model, under the GHOST (Crotty et al., 2020)

model, and using ModelFinder (Kalyaanamoorthy et al., 2017) to select the best tting model according to

a BIC criterion. For the MP, NJ, and UPGMA analyses, we use PAUP* v. 4.0a (Swofford, 2002), running these

methods in default mode; in particular, both NJ and UPGMA are run by using uncorrected distances (i.e.,

p-distances, which is the fraction of the sequence length where the two sequences have different amino acids).

Local and global methods for quartet tree estimation. The ‘‘local’’ approach for quartet tree estimation is

used on four sequences at a time, and it estimates quartet trees by using only the local information and no

additional information. For example, the local version of NJ for quartet tree estimation takes four se-

quences, computes the 4 · 4 matrix of pairwise distances between them, and then runs NJ on the distance

matrix to obtain the quartet tree.

In contrast, the ‘‘global’’ approach operates as follows. Given a set of n > 4 sequences, a tree is

computed on the entire set, and then the individual quartet trees are extracted (by restricting the tree to the

desired set of four sequences). Hence, the global version of NJ for quartet tree estimation on 20 sequences

would take the 20 sequences, compute the 20 · 20 matrix of pairwise distances between them, run NJ on the

distance matrix to get a tree on the full set of 20 sequences, and then extract the quartet trees from the larger

tree. Thus, global approaches have access to the full set of sequences, whereas local approaches do not.

Every phylogeny estimation method we explore, thus, can be used in either a local or global way to

estimate quartet trees. The description given earlier for the local and global variants of NJ makes it clear as

to how these terms are used for MP, UPGMA, and ML under three models. For the DNNs, the local version

is the normal usage of the DNN (i.e., the input is a set of four aligned gap-free sequences, and the output is

the quartet tree it computes). The global version of the DNNs is obtained by running DNN+QMC followed

by extraction of the tree on the speci ed quartet.

2.4. Criteria

We evaluate methods with respect to tree topology error rates, computed in two different ways: quartet

tree error rates and bipartition error rates. For quartet tree error, we record the percentage of the quartet

trees computed that are incorrectly reconstructed. For bipartition error (applied for the 20-leaf datasets), we

report the Robinson and Foulds (1981) error rates, de ned as follows (see the Appendix A1 for more

details). Every edge in a tree de nes a bipartition on the leaf set, so that the Robinson-Foulds (RF) distance

between two trees is the number of bipartitions that appear in one tree but not in the other. Finally, the RF

error rate for an estimated tree on n leaves is its RF distance to the true (model) tree divided by 2(n - 3).
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3. RESULTS

3.1. Experiment 1: Accuracy on datasets with 200 aa

Here, we explore tree estimation accuracy on datasets with sequences having 200 aa. Experiment 1(a) ex-

amines the accuracy of the 20-leaf trees we compute, and Experiment 1(b) examines quartet tree accuracy.

3.1.1. Experiment 1(a): Accuracy on 20-leaf trees. For each training set and method, the most

accurate results are obtained on the base model, and error rates then increase as the rate of evolution in-

creases (Table 1 and Fig. 1). These results are expected and re ect the impact of the rate of evolution

on phylogenetic estimation dif culty [e.g., see Liu et al. (2011)]. In addition, error rates are lowest on

the Training1-based model conditions and highest on Training3-based conditions, so the Training2-based

conditions are of intermediate dif culty.

Across all 12 model conditions, UPGMA has the worst accuracy, and the standard phylogeny estimation

methods (NJ, ML, and MP) have the best accuracy. Thus, the DNNs only improve on UPGMA. With

UPGMA set aside, the relative performance between methods depends on the speci c model condition. The

accuracy of ML under IQ-TREE 2 depends on the choice of the model, with an advantage to trees estimated

under models selected by ModelFinder (see Supplementary Table S4). The difference between NJ, MP, and

the ML methods is generally small, but when there is a difference, it tends to favor the ML methods.

Interestingly, MP is the most accurate method of all on the Harder3_1000 condition.

The comparison between the DNNs depends on the model condition, but the differences tend to be small.

On the model conditions derived from Training1 and Training2, the three DNNs (DNN1+QMC,

DNN2+QMC, DNN3+QMC) are all about the same in terms of accuracy (with perhaps a slight advantage

to DNN2+QMC). On the model conditions derived from Training3, DNN2+QMC is slightly better than

DNN1+QMC and DNN3+QMC. Thus, overall we see that DNN2+QMC seems to have a small advantage

over DNN1+QMC and DNN3+QMC.

It is also worth noting how often a given method comes in rst place (or ties for rst place) in this

experiment. ML using Model Finder comes in rst place 11 out of 12 times, followed by MP (7 times), ML

under the WAG model (6), ML under Ghost and NJ (both at 6 times), and then DNN2+QMC (1). The

remaining DNN+QMC methods never come in rst place in any model condition.

In sum, therefore, the DNN+QMC methods do not match the accuracy of ML under simple mod-

els. Further, very simple methods, such as NJ on p-distances and MP, are much more accurate than the

DNN+QMC methods.

Table 1. Experiment 1: Tree Error (Median Robinson-Foulds Rates) of 20-Sequence Datasets

with 200 aa Estimated Under the Different Model Conditions (20 Replicates)

Scenario ML WAG ML GHOST ML MF NJ MP UPGMA

DNN1 +
QMC

DNN2 +
QMC

DNN3 +
QMC

Training1 0.00 0.06 0.00 0.00 0.00 0.12 0.06 0.06 0.06

Harder1_10 0.00 0.06 0.00 0.06 0.06 0.24 0.06 0.09 0.06

Harder1_100 0.06 0.06 0.06 0.12 0.06 0.24 0.18 0.18 0.15

Harder1_1000 0.53 0.41 0.29 0.38 0.47 0.47 0.35 0.35 0.50

Training2 0.09 0.12 0.06 0.06 0.06 0.18 0.12 0.09 0.09

Harder2_10 0.06 0.09 0.06 0.12 0.06 0.29 0.15 0.12 0.12

Harder2_100 0.06 0.06 0.06 0.06 0.10 0.24 0.12 0.12 0.12

Harder2_1000 0.21 0.24 0.15 0.24 0.24 0.32 0.29 0.24 0.18

Training3 0.12 0.12 0.12 0.12 0.12 0.26 0.18 0.12 0.15

Harder3_10 0.12 0.12 0.09 0.12 0.12 0.26 0.12 0.12 0.12

Harder3_100 0.21 0.18 0.18 0.24 0.18 0.53 0.35 0.26 0.35

Harder3_1000 0.44 0.35 0.47 0.38 0.32 0.68 0.53 0.47 0.53

Times in top place 6 4 11 4 7 0 0 1 0

Boldface values indicate top place.

NJ and UPGMA are run by using uncorrected distances. The ML methods are performed by using IQ-TREE 2 in default mode,

under the indicated models.

MF, ModelFinder; MP, maximum parsimony; ML, maximum likelihood; NJ, neighbor joining; QMC, Quartets MaxCut; UPGMA,

unweighted pair group method with arithmetic mean.
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3. 1. 2.  E x p eri m e nt 1( b):  A c c ur a c y of q u art et tr e e  m et h o ds. P erf or m a n c e of l o c al q u art et tr e e
esti m ati o n  m et h o ds. T a bl e 2 s h o ws q u art et tr e e err or r at es f or t h e l o c al  m et h o ds u n d er t h e 1 2  m o d el
c o n diti o ns.  As e x p e ct e d, t h e err or r at es i n cr e as e f or all  m et h o ds as t h e r at e of e v ol uti o n i n cr e as es; h o w e v er,
m a n y of t h e ot h er tr e n ds ar e s ur prisi n g. F or e x a m pl e, o n e of t h e  m ost stri ki n g fi n di n gs i n t his st u d y is t h at
NJ is t h e b est  m et h o d,  wit h t h e l o w est  m e di a n err or f or all  m o d el c o n diti o n s.  T his is s ur prisi n g, gi v e n t h at
NJ is us e d  wit h t h e si m pl est dist a n c e c al c ul ati o n, p- dist a n c es ( p er c e nt a g e of ali g n e d sit es t h at ar e diff er e nt).

F urt h er,  NJ h as a c o nsist e nt a d v a nt a g e o v er t h e  D N Ns,  w hi c h c a n b e s u bst a nti al ( e. g.,  H ar d er 1 _ 1 0 0,
H ar d er 2 _ 1 0 0, a n d  H ar d er 3 _ 1 0 0). I n c o ntr ast,  U P G M A h as t h e  w orst a c c ur a c y, i n di c ati n g t h at t h e a d v a n-
t a g e of  NJ is n ot b e c a u s e dist a n c e- b as e d  m et h o ds ar e g e n er all y at a n a d v a nt a g e.

Als o i ntri g ui n g is t h at  M L u n d er si m pl er  m o d els is  m or e a c c ur at e t h a n  M L u n d er  m or e c o m pl e x  m o d els,
d es pit e t h e f a ct t h at t h e si m ul ati o n pr ot o c ol i ntr o d u c e d v er y s u bst a nti al h et er o g e n eit y. F or e x a m pl e,
M L( W A G) g e n er all y h as b ett er a c c ur a c y t h a n  M L u n d er  G H O S T (t h e  m ost c o m pl e x  m o d el) a n d u n d er t h e
m o d el s el e ct e d b y  M o d el Fi n d er.

A n ot h er i nt er esti n g fi n di n g is t h at  M P h as b ett er a c c ur a c y t h a n  M L( G H O S T) f or e v er y  m o d el c o n diti o n,
a n d it is b ett er t h a n  M L ( M F) f or 9 of t h e 1 2  m o d el c o n diti o ns. I n d e e d, o nl y  M L u n d er t h e si m pl est  m o d el
c o n diti o n,  W A G, is  m or e a c c ur at e t h a n  M P ( a n d e v e n f or t his,  M P i m pr o v es o n  M L( W A G) o n f o ur  m o d el
c o n diti o ns, ti es o n o n e c o n diti o n, a n d is n e v er  m or e t h a n 2 %  w ors e).

FI G. 1. E x p eri m e nt 1:  Gl o b al tr e e err or o n 2 0-l e af d at as ets
wit h 2 0 0 a a.
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The three DNNs have similar accuracy across all the model conditions (and no single DNN outperforms

the others) and never tie for the rst place. In essence, therefore, the DNNs are not particularly good as

local quartet tree estimators, and very simple methods are strictly better.

Performance of global quartet tree estimation methods. In comparing methods as global quartet tree

estimation, we also see substantial differences. The key observation is that quartet trees computed using

DNN+QMC methods are not as accurate as quartet trees computed using most other global methods, with

the only exception being UPGMA, which has the worst accuracy (Table 3). Further, across the 12 model

conditions, ML(WAG) came in the rst place in eight conditions, NJ on p-distances and ML(MF) came in

the rst place in six conditions, MP came in the rst place in ve conditions, and the three DNN+QMC

methods came in the rst place in one to three model conditions. Thus, DNN+QMC methods are not

anywhere near the best performing global quartet tree methods.

Comparing local and global quartet tree methods. To better understand the limitations of DNNs as

quartet tree methods, we now examine the difference in accuracy between quartet trees computed using

Table 2. Experiment 1(B): Error Rates (Medians) of Quartet Trees Estimated Using Local Quartet

Methods on Datasets with 200 aa Under Different Model Conditions (20 Replicates)

Scenario ML WAG ML GHOST ML MF NJ MP UPGMA DNN1 DNN2 DNN3

Training1 0.04 0.10 0.08 0.04 0.06 0.07 0.05 0.05 0.05

Harder1_10 0.06 0.11 0.08 0.06 0.07 0.12 0.07 0.08 0.07

Harder1_100 0.18 0.28 0.18 0.12 0.17 0.16 0.17 0.17 0.13

Harder1_1000 0.48 0.48 0.42 0.32 0.43 0.34 0.36 0.36 0.35

Training2 0.06 0.13 0.09 0.05 0.08 0.07 0.07 0.06 0.07

Harder2_10 0.10 0.14 0.10 0.07 0.11 0.12 0.09 0.10 0.09

Harder2_100 0.09 0.17 0.11 0.06 0.10 0.13 0.09 0.11 0.09

Harder2_1000 0.26 0.38 0.26 0.19 0.27 0.24 0.25 0.25 0.23

Training3 0.09 0.11 0.10 0.06 0.08 0.14 0.09 0.08 0.08

Harder3_10 0.07 0.13 0.09 0.06 0.08 0.12 0.08 0.09 0.09

Harder3_100 0.18 0.21 0.19 0.13 0.16 0.19 0.18 0.19 0.19

Harder3_1000 0.33 0.36 0.35 0.30 0.33 0.41 0.34 0.33 0.35

Times in top place 2 0 0 12 0 0 0 0 0

Boldface values indicate top place.

NJ and UPGMA are run by using uncorrected distances. ML methods are performed by using IQ-TREE 2 in default mode, under the

indicated models.

Table 3. Experiment 1B: Median Quartet Error on the 20 Replicates of Each Model Condition

Using a Global Quartet Estimation Approach on Datasets with 200 aa.

Scenario ML WAG ML GHOST ML MF NJ MP UPGMA DNN1 DNN2 DNN3

Training1 0.00 0.01 0.00 0.00 0.00 0.05 0.00 0.01 0.01

Harder1_10 0.00 0.01 0.00 0.01 0.01 0.10 0.01 0.01 0.01

Harder1_100 0.02 0.04 0.04 0.04 0.05 0.10 0.07 0.06 0.05

Harder1_1000 0.32 0.21 0.18 0.16 0.32 0.26 0.16 0.15 0.27

Training2 0.01 0.01 0.01 0.01 0.01 0.05 0.03 0.01 0.03

Harder2_10 0.01 0.02 0.02 0.02 0.02 0.11 0.04 0.03 0.04

Harder2_100 0.01 0.01 0.01 0.01 0.04 0.09 0.04 0.05 0.03

Harder2_1000 0.07 0.10 0.08 0.09 0.13 0.18 0.09 0.10 0.08

Training3 0.03 0.03 0.03 0.03 0.03 0.09 0.04 0.04 0.04

Harder3_10 0.03 0.04 0.02 0.02 0.02 0.09 0.02 0.02 0.02

Harder3_100 0.11 0.09 0.09 0.13 0.07 0.17 0.11 0.11 0.12

Harder3_1000 0.22 0.19 0.23 0.19 0.22 0.46 0.29 0.20 0.24

Times in top place 8 4 6 6 5 0 2 3 1

Boldface values indicate top place.

NJ and UPGMA are run by using uncorrected distances. ML methods are performed by using IQ-TREE 2 in default mode, under the

indicated models.
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l o c al  m et h o d s a n d q u art et tr e es c o m p ut e d usi n g gl o b al  m et h o ds.  W e c o m p ar e t h e b est l o c al  M L  m et h o d
[i. e.,  M L( W A G)], t h e t hr e e  D N N s,  NJ, a n d  M P; h o w e v er,  w e o mit  U P G M A b e c a us e of its g e n er all y p o or
a c c ur a c y s e e n i n t h e pr e vi o us e x p eri m e nts.

F or e v er y  m o d el c o n diti o n a n d f or e v er y  m et h o d, it is al w a ys b ett er t o us e t h e gl o b al v ersi o n of t h e
m et h o d i nst e a d of t h e l o c al v ersi o n of t h e  m et h o d (s e e Fi g. 2 f or o n e  m o d el c o n diti o n a n d S u p pl e m e nt ar y
Fi gs. S 1 – S 3 f or t h e ot h er  m o d els).  T h e diff er e n c e b et w e e n l o c al a n d gl o b al q u art et tr e e err or r at es d e p e n d s
o n t h e  m o d el c o n diti o n (s m all er diff er e n c e s b et w e e n t h es e err or r at es u n d er t h e sl o w er r at e of e v ol uti o n
t h a n u n d er hi g h er r at es of e v ol uti o n) a n d  m et h o d.  E v e n u n d er t h e l o w est r at e of e v ol uti o n, t h e diff er e n c e s
ar e n ot s m all:  T h e diff er e n c e i n a c c ur a c y r a n g e s fr o m 3 % (f or  NJ) t o a b o ut 1 2 % (f or  M L u n d er t h e  G H O S T
m o d el).  U n d er t h e hi g h est r at e of e v ol uti o n, t h e diff er e n c e f or  M L  m et h o ds u n d er all  m o d els r a n g es u p t o
2 7 % a n d u p t o 2 1 % f or t h e  D N N  m et h o ds.

3. 2.  E x p eri m e nt 2:  A c c ur a c y o n l o n g s e q u e n c es

H er e,  w e e x pl or e r es ults o n 1 0 0 0 a a s e q u e n c es.  E x a mi ni n g  R F err or r at es o n t h e 2 0-l e af tr e es ( T a bl e 4),
w e s e e t h at err or r at es f or all  m et h o ds ar e  m u c h l o w er t h a n o n s h ort er s e q u e n c es ( 2 0 0 a a), a n d t h at t h e
diff er e n c e s b et w e e n  m et h o ds ar e r e d u c e d. I n d e e d, f or t hr e e of t h e ni n e  m o d el c o n diti o ns all  m et h o d s
r e c o v er t h e tr u e tr e e e x a ctl y, a n d t h er e ar e o nl y t w o  m o d el c o n diti o ns  w h er e a n y  m et h o d h as  w ors e t h a n 6 %
R F err or.  T h us, t h e  m o d el c o n diti o ns  w e e x pl or e i n  E x p eri m e nt 2 ar e  m u c h e asi er t h a n t h e  m o d el c o n-
diti o n s e x pl or e d i n  E x p eri m e nt 1.

H o w e v er, e v e n u n d er t h es e e asi er c o n diti o ns, t h er e ar e still cl e ar diff er e n c e s i n  R F err or b et w e e n
m et h o ds. F or e x a m pl e, f o ur  m et h o ds (t h e t hr e e  M L  m et h o ds a n d  M P) c o m e i n t h e first pl a c e i n ei g ht of t h e

FI G. 2. E x p eri m e nt 1:  C o m p aris o n of
q u art et tr e e err or of l o c al a n d gl o b al v ersi o ns
of e a c h tr e e esti m ati o n  m et h o d o n  Tr ai ni n g 2
d at as ets  wit h 2 0 0 a a.  T h e l o c al a p pr o a c h
esti m at es q u art et tr e es dir e ctl y o n 4-s e q u e n c e
ali g n m e nts,  w h er e as t h e gl o b al a p pr o a c h es-
ti m at es q u art ets b y first c o m p uti n g t h e 2 0-l e af
tr e e a n d t h e n e a c h i n di vi d u al q u art et is e x-
tr a ct e d.

T a b l e 4. E x p e ri m e n t 2 :  T r e e  E r r o r ( M e di a n  R o bi ns o n- F o u l ds  R a t es) o f 2 0 - L e a f  T r e es  Es ti m a t e d
U n d e r t h e  Di f f e r e n t  M o d e l  C o n di ti o ns ( 2 0 R e p li c a t es) o n  L o n g S e q u e n c es ( 1 0 0 0 a a )

S c e n ari o M L  W A G  M L  G H O S T  M L  M F  N J  M P
D N N 1 +

Q M C
D N N 2 +

Q M C
D N N 3 +

Q M C

Tr ai ni n g 1 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0
H ar d er 1 _ 1 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0
H ar d er 1 _ 1 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 6 0. 0 0 0. 0 6 0. 0 6 0. 0 6

Tr ai ni n g 2 0. 0 0 0. 0 0 0. 0 0 0. 0 6 0. 0 0 0. 0 3 0. 0 0 0. 0 0
H ar d er 2 _ 1 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0
H ar d er 2 _ 1 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 6 0. 0 0 0. 0 0 0. 0 3 0. 0 0

Tr ai ni n g 3 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 1 0. 0 6 0. 0 0 0. 0 0
H ar d er 3 _ 1 0 0. 0 3 0. 0 6 0. 0 6 0. 0 9 0. 0 0 0. 0 9 0. 0 6 0. 0 6
H ar d er 3 _ 1 0 0 0. 0 6 0. 0 6 0. 0 6 0. 1 2 0. 0 6 0. 1 5 0. 1 5 0. 1 8

Ti m es i n t o p pl a c e 8 8 8 4 8 4 5 6

B ol df a c e v al u es i n di c at e t o p pl a c e.

NJ a n d  U P G M A ar e r u n b y usi n g u n c orr e ct e d dist a n c es.  M L  m et h o ds ar e p erf or m e d b y usi n g I Q- T R E E 2 i n d ef a ult  m o d e, u n d er t h e
i n di c at e d  m o d els.

R E- E V A L U A T I N G  D N N S F O R  P H Y L O G E N Y  E S TI M A TI O N 8 1
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nine model conditions, and the remaining methods (NJ and the three DNN+QMC methods) come in the rst

place between four and six times. The three ML methods and MP also never have error rates above 6% for

any model condition, whereas NJ has error rates between 9% and 12% for two model conditions, and the

three DNN+QMC methods have error rates between 15% and 18% for the hardest model condition.

Thus, although these are easier model conditions and differences between the top methods are reduced,

the DNN+QMC methods are still not competitive for accuracy with the other methods.

Comparing these methods as local quartet tree methods (Table 5) is also relevant. Here, we see the DNNs

producing very good quartet trees, each coming in the rst place in ve of the eight model conditions; only

ML(WAG) has this same good performance (and the remaining methods come in the rst place at most

three times). Thus, as local quartet tree methods, when analyzing long sequences, the DNNs can provide

good value.

Interestingly, we see different relative performance when comparing methods for global quartet tree

accuracy (Table 6): The DNN+QMC methods come in the rst place in only four out of the nine conditions,

and each of the other methods comes in at least ve times. The best in terms of global quartet tree accuracy

is ML(WAG), which is best in eight of the nine conditions, followed by NJ, which is best in seven out of

nine conditions, and then by MP, which is best in six out of nine conditions. Thus, as global quartet tree

methods, the DNN+QMC approach clearly lags behind the other methods, even for these much easier

model conditions.

Table 5. Experiment 2: Error Rates (Medians) of Quartet Trees Estimated Using Local Quartet

Methods Under the Different Model Conditions (20 Replicates) on Long Sequences (1000 aa)

Scenario ML WAG ML GHOST ML MF NJ MP DNN1 DNN2 DNN3

Training1 0.01 0.03 0.02 0.02 0.02 0.01 0.01 0.01

Harder1_10 0.02 0.05 0.03 0.06 0.03 0.02 0.02 0.02

Harder1_100 0.07 0.19 0.06 0.02 0.07 0.06 0.07 0.05

Training2 0.02 0.06 0.03 0.03 0.02 0.02 0.02 0.02

Harder2_10 0.01 0.05 0.02 0.04 0.02 0.01 0.02 0.01

Harder2_100 0.03 0.06 0.03 0.02 0.04 0.03 0.03 0.03

Training3 0.02 0.03 0.03 0.02 0.02 0.02 0.01 0.02

Harder3_10 0.04 0.06 0.05 0.07 0.05 0.04 0.04 0.04

Harder3_100 0.09 0.09 0.09 0.03 0.09 0.08 0.08 0.08

Times in top place 5 0 0 3 1 5 5 5

Boldface values indicate top place.

NJ is run by using uncorrected distances. ML methods are performed by using IQ-TREE 2 in default mode, under the indicated

models.

Table 6. Experiment 2: Error Rates (Medians) of Quartet Trees Estimated Using Global Quartet

Estimation Under the Different Model Conditions (20 Replicates) on Long Sequences (1000 aa)

Scenario ML WAG ML GHOST ML MF NJ MP

DNN1 +
QMC

DNN2 +
QMC

DNN3 +
QMC

Training1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Harder1_10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Harder1_100 0.00 0.01 0.01 0.02 0.00 0.03 0.03 0.01

Training2 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01

Harder2_10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Harder2_100 0.00 0.22 0.01 0.00 0.00 0.01 0.03 0.00

Training3 0.00 0.00 0.00 0.00 0.03 0.01 0.02 0.00

Harder3_10 0.00 0.03 0.01 0.03 0.00 0.01 0.01 0.01

Harder3_100 0.01 0.02 0.04 0.00 0.06 0.05 0.05 0.03

Times in top place 8 5 5 7 6 4 4 4

Boldface values indicate top place.

NJ is run is using uncorrected distances. ML methods are performed by using IQ-TREE 2 in default mode, under the indicated

models.

82 ZAHARIAS ET AL.

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 O
f I

lli
no

is
 A

t U
rb

an
a-

ch
am

pa
ig

n 
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

24
/2

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



4. DISCUSSION

We begin with a summary of the observations in this study. We examined methods for tree construction

on either four-leaf datasets or on 20-leaf datasets, and with two sequence lengths and different rates of

evolution. When constructing 20-leaf trees, we see very clear advantages to several standard tree estimation

methods (notably, ML and MP) compared with DNN+QMC methods. These differences were especially

pronounced for our rst experiment where we examined accuracy on datasets with 200 aa per sequence, but

also evident in our second experiment where we examined performance with longer sequences (1000 aa per

sequence).

When used to construct quartet trees, however, the relative accuracy depended on the sequence length.

For short sequences, the best method was NJ based on p-distances (i.e., uncorrected distances), an ex-

ceedingly simple method, and the DNNs were not particularly accurate. Interestingly, for long sequences

(1000 aa), the DNNs were tied with ML (WAG) as the best local quartet tree estimators. Clearly, therefore,

sequence length impacts the relative accuracy of DNNs and other methods, used as local quartet tree

methods.

However, the most accurate quartet trees were computed by constructing trees on the full set of 20

sequences using one of the standard approaches (i.e., NJ, MP, and ML) and then inducing the quartet trees;

further, the global version of quartet tree estimation was always more accurate than the local version. We

observed that DNN+QMC methods are also more accurate at estimating quartet trees than the DNNs

themselves, showing that the QMC amalgamation method is able, to some extent, to correct errors in the

estimating quartet trees through this amalgamation step. Even so, the nal quartet tree accuracy of

DNN+QMC methods does not match the quartet tree accuracy of the global methods.

Comparison to Zou et al. (2020). The trends reported in Zou et al. (2020) may at rst glance seem

inconsistent with what we have observed. Although we mainly focused on the accuracy of methods on large

(20-leaf) trees, there also seem to be differences between trends we observed for local quartet methods and

the trends they observed (i.e., they concluded that DNNs have the best accuracy on simulated datasets, and

are ‘‘overall comparable’’ to the existing methods on biological datasets).

An important consideration to note is that the majority of simulation conditions Zou et al. (2020)

explored were all very easy due to long sequence lengths and reduced rates of evolution. However, even for

the model conditions we explored that had the same rates of evolution as their main model conditions (i.e.,

Training1, Training2, and Training3), our results did not show their DNNs having the best accuracy, even

as local quartet methods—instead we saw NJ having the best accuracy. How do we reconcile these

differences in observations?

A better understanding of their DNNs on their own test data can be seen by examining results shown in

their Figure 2b, which includes a wider range of sequence lengths. This gure demonstrates that sequence

length has a large impact on the accuracy of their DNNs (and on other methods), and it also reveals that

their DNNs were less accurate than NJ on the shortest sequences they examine (100–200 aa). Thus, the

relative performance between their DNNs and NJ seems to depend on the sequence length.

Further, our results on the model conditions with low rates of evolution (i.e., our Training1, Training2,

and Training3 model conditions) match their results for similar conditions. Thus, there are no difference in

trends observed on simulated data in Zou et al. (2020) and our study when restricting attention to model

conditions with the same properties.

It is also helpful to examine the local quartet error rates obtained by their DNNs and the other phylogeny

estimation methods on ve biological datasets, as reported in Table 2 of Zou et al. (2020) (summarized in

our Supplementary Table S5). Analyses of the Mammals (mitochondrial) dataset produced very high error

local quartet rates for all methods (ranging from 0.57 to 0.97 error), making comparisons based on this

dataset uninformative and potentially misleading. Therefore, we restrict our attention to the remaining four

datasets. On the red uorescent protein dataset, NJ and MP were the best approaches, followed by RAxML.

Then, for the Mammalian genes dataset, NJ performed the best by far, followed by the ML approaches

(RAxML and PhyML). On the Mammals (concatenated) dataset, MP and RAxML gave the best results,

followed closely by the other non-DNN approaches, and with all the DNNs performing worst. Similarly, for

the Plants (concatenated) dataset, NJ was the best approach, followed by all other methods, except for

DNN3, which performed the worst.

Overall, therefore, the results reported in Zou et al. (2020) reveal that the DNNs were clearly less reliable

than NJ and most other methods on the biological datasets as local quartet tree methods.
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These trends suggest that these DNNs can be accurate (and competitive with other methods) for

local quartet tree estimation given relatively long sequences that have evolved under suf ciently

low rates of evolution but have not been shown in our experiments to provide comparable accuracy to

the better standard methods for ‘‘large’’ tree estimation (measured using RF error or global quartet

error).

It is possible that under other conditions, such as long branch attraction or high levels of heterotachy,

DNN methods might be as accurate, or perhaps even more accurate, than standard methods, but the inferior

performance of these DNN methods on biological datasets does suggest that these conditions are unlikely to

be very general.

Why are DNN+QMC methods not competitive for large-tree estimation? Our study showed that

DNN+QMC methods were not as accurate as simple methods for estimating 20-sequence trees; here, we

examine the possible explanations for this trend.

The accuracy of these DNN+QMC methods depends on both the accuracy of the quartet trees computed

using the DNNs and also the ability of QMC, the quartet amalgamation method we selected, to combine

these quartet trees into an accurate tree on the full dataset. Our study clearly shows that the quartet trees,

estimated independently of each other (i.e., ‘‘local methods’’), are less accurate than quartet trees induced

from a tree estimated on the full dataset (i.e., ‘‘global methods’’).

This trend holds true for all the standard phylogeny estimation methods we explored, including

NJ, ML, and MP. We also noted that QMC, used in conjunction with the DNNs, was able to improve

the quartet score, but that this approach to quartet tree estimation was not as accurate as the truly

global approach to estimating quartet trees. This seems to be an inherent limitation of DNN+QMC

methods.

One might then ask whether QMC itself is a limiting factor, and that substantially better quartet

amalgamation methods might exist and yield improved accuracy compared with standard methods. Al-

though QMC is generally regarded as the best of the currently available quartet amalgamation methods, we

explored the use of Quartet Puzzling (Strimmer and Von Haeseler, 1996) [the same method used in Zou

et al. (2020)] to combine quartet trees computed using DNNs.

Our study found that Quartet Puzzling produced highly unresolved and much less accurate 20-leaf trees

than QMC (see Supplementary Table S6). Given QMCs superiority to Quartet Puzzling and the general

reception of QMC as a leading quartet amalgamation method, it seems unlikely that better amalgamation

methods are available at this time.

Thus, based on our study, we hypothesize that any method that is used to construct a tree in this

two-stage approach (i.e., by rst computing quartet trees independently and then merging them with

a quartet amalgamation method) is unlikely to be as accurate as a good global method. This hypothesis

is based on much prior literature, which has shown that big trees can, in many cases, be easier to

estimate with high accuracy than small trees [e.g., see the example in Hillis (1996) and subsequent

discussion in Hillis (1998); Pagel and Meade (2008); Zwickl and Hillis (2002); Nabhan and Sarkar

(2012)]. This, we posit, is likely to be the main limitation of using any two-stage technique that uses

DNNs to estimate small trees (here, four-leaf trees) and then amalgamation methods to combine the

smaller trees.

Impact of model complexity. A very interesting trend we observed is that ML under simple models often

produces more accurate trees than ML under complex models. For example, on the datasets with 200 aa,

ML(GHOST) was not as accurate as ML(WAG), despite GHOST being a more complex model (and most

likely a better t to the simulation model) and WAG being an extremely simple model. The advantage of

ML(WAG) over ML(GHOST) is also present on the longer sequences when they are used as local quartet

tree estimation methods but disappears when they are used as global methods. We conjecture that this may

be due to over tting, since the advantage to the simpler model is greatest when the total amount of data is

the smallest.

Related to this, we note again the very high accuracy of MP compared with the ML-based methods, when

used as a local quartet tree estimation on short sequences (200 aa): MP had better accuracy than

ML(GHOST) for every model condition, was better than ML(MF) for 9 of the 12 model conditions, and

was only less accurate than ML(WAG) (and even there it was very close in accuracy). These trends may be

related to the equivalence between MP and ML under the no-common mechanism model, as proven in

Tuf ey and Steel (1997), and the relative accuracy of ML and MP on datasets simulated under hetero-

geneous models, as provided in Kolaczkowski and Thornton (2004).
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5. CONCLUSIONS

The DNNs can be used as quartet tree estimators, and—when combined with quartet amalgamation

methods, such as QMC—they can be used to construct larger trees. However, in our study, they were not as

accurate at estimating 20-leaf trees as many standard phylogeny estimation methods, including MP, NJ, and

ML under simple models of evolution. The failure of DNNs to provide good accuracy that is competitive

with even simple methods is noteworthy and important to understand.

Our study shows that the advantage of standard methods (e.g., ML under simple models) over

DNN+QMC methods is due mainly to the bene ts inherent in being able to estimate the entire tree at

once rather than through a two-stage approach that rst estimates quartet trees (i.e., local quartet esti-

mation) and then combines the quartet trees into a tree on the full dataset. The limitations of these

two-stages approaches compared with global methods have been previously noted in other studies [e.g.,

St. John et al. (2003)], and these are closely related to the well-known bene ts produced by dense taxon

sampling.

One way to address this limitation is to design DNNs to estimate much larger trees (e.g., 10-leaf trees

rather than 4-leaf trees). However, such an approach would only have limited success, since the estimation

of much larger trees would still require amalgamation methods (called ‘‘supertree methods’’ when the input

trees are not just quartet trees). Further, taxon sampling would still bene t global methods over local

methods, even if the local methods were computing 10-leaf trees. Finally, training a DNN requires a large

volume of representative datasets, a challenge that is clearly already a problem for training classi ers of

4-leaf trees.

Since the number of 10-leaf trees is already more than 1,000,000, training DNNs to classify 10-taxon

trees would likely be prohibitively dif cult. Thus, we predict that trying to address the limitations of this

two-stage approach by constructing trees on larger subsets is unlikely to be generally successful.

Given the observed dependency on sequence length, it is possible that the DNN+QMC approach might

be best suited to species tree estimation, which is based on multi-locus datasets and in some cases on large

portions of whole genomes. However, multi-locus datasets evolve under an array of processes, including

incomplete lineage sorting, gene duplication and loss, and gene ow, that results in different loci evolving

under different tree topologies (Maddison, 1997); Degnan and Rosenberg, 2009).

Thus, to enable DNNs to be useful on multi-locus datasets, they would need to be trained on data that

evolve under complex models that re ect these genome-scale processes, rather than under the models that

assume that all sites evolve down a single tree topology. Although this would increase the training

complexity, such an approach might well have better results, as a result of having longer sequences and also

potentially more biological training data (i.e., true gene trees are rarely known, but true species trees may

be reliably known for some sets of four species).

However, since standard methods can be statistically inconsistent in the presence of gene tree hetero-

geneity (Roch and Steel, 2015), the new DNNs would then need to be compared with phylogenomic

species tree estimation methods that explicitly address gene tree heterogeneity [e.g., Heled and Drummond

(2009); Mirarab et al. (2014); Richards and Kubatko (2020); Smith et al. (2020)], as these have been

shown to provide improved accuracy compared with standard methods and also have strong theoretical

guarantees.

However, although the use of DNNs for directly constructing phylogenies has not yet succeeded in

matching the accuracy of existing methods (and the challenges to doing this seem very formidable), as

discussed in Section 1, DNNs can be used in other ways to inform phylogeny estimation. Thus, although

our study suggests substantial limitations for this way of using DNNs in phylogeny estimation methods

(i.e., by constructing small trees using DNNs and then combining them into larger trees), there are

alternative uses for DNNs that could be highly informative and bene cial in the estimation of phylogenies

under realistically complex evolutionary scenarios.

DATA AND CODE AVAILABILITY

The python source code for these experiments is available at https://gitlab.engr.illinois.edu/gmartin6/

simulating_quartets. The datasets used in this study are available at https://doi.org/10.13012/B2IDB-

8921156_V1.
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Appendix

APPENDIX A1. ADDITIONAL DETAILS ABOUT PROGRAM COMMAND LINES

Phylogeny Estimation

The Linux version of IQ-TREE 2.0.5 was used for the maximum likelihood analyses. IQ-TREE was used

in three different con gurations: Using the WAG substitution model, using the built-in ModelFinder to

select a substitution model, and using the complex GHOST mixture model.

WAG iq-tree2 -s <path-to-AA-alignment> -m wag

ModelFinder iq-tree2 -s <path-to-AA-alignment>
GHOST iq-tree2 -s <path-to-AA-alignment> -m wag+FO*H4

Maximum Parsimony

We used PAUP* v.4.0a, with the following command:

set criterion = parsimony; hsearch addseq = random nreps = 1000;

By default, the branch-swapping algorithm is tree-bisection-reconnection (TBR)

Neighbor Joining

We used PAUP* v.4.0a, with the following command:

set criterion = distance; nj brlens = yes;

The distance metric used is the p-distance.

Unweighted Pair Group Method With Arithmetic Mean (UPGMA)

We used PAUP* v.4.0a, with the following command:

set criterion = distance; upgma brlens = yes;

The distance metric used is the p-distance.
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Phylogenetics by Deep Learning (PhyDL)

DNN1: dnn1.py 588 QUARTET_FOLDER RESULT_FOLDER

DNN2: dnn2.py 1272 QUARTET_FOLDER RESULT_FOLDER

DNN3: dnn3.py 1098 QUARTET_FOLDER RESULT_FOLDER

Quartets Max Cut

nd-cut-Linux-64 qrtt = <path-to- le-with-quartets>
otre = <path-to-output le>

ROBINSON-FOULDS TREE ERROR

Tree estimation error was reported by using RF (Robinson and Foulds, 1981) error rates, using the ETE 3

toolkit from Huerta-Cepas et al. (2016). The:Tree: ‘‘compare’’ function with the unrooted =True argument

is used to calculate the RF distance between the estimated tree and the reference.
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