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Abstract: This study examines the interactions between healthy target cells, infected target cells,
virus particles, and immune cells within an HIV model. The model exhibits two equilibrium
points: an infection-free equilibrium and an infection equilibrium. Stability analysis shows that
the infection-free equilibrium is locally asymptotically stable when R0 < 1. Further, it is unstable
when R0 > 1. The infection equilibrium is locally asymptotically stable when R0 > 1. The structural
and practical identifiabilities of the within-host model for HIV infection dynamics were investigated
using differential algebra techniques and Monte Carlo simulations. The HIV model was structurally
identifiable by observing the total uninfected and infected target cells, immune cells, and viral load.
Monte Carlo simulations assessed the practical identifiability of parameters. The production rate of
target cells (λ), the death rate of healthy target cells (d), the death rate of infected target cells (δ), and
the viral production rate by infected cells (π) were practically identifiable. The rate of infection of
target cells by the virus (β), the death rate of infected cells by immune cells (Ψ), and antigen-driven
proliferation rate of immune cells (b) were not practically identifiable. Practical identifiability was
constrained by the noise and sparsity of the data. Analysis shows that increasing the frequency of
data collection can significantly improve the identifiability of all parameters. This highlights the
importance of optimal data sampling in HIV clinical studies, as it determines the best time points,
frequency, and the number of sample points required to accurately capture the dynamics of the HIV
infection within a host.

Keywords: HIV; within-host model; structural identifiability; practical identifiability
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1. Introduction

According to the Joint United Nations Programme on HIV/AIDS (UNAIDS), global HIV
statistics indicate that approximately 39 million people were living with HIV worldwide in
2022 [1]. Among these individuals, approximately 37.5 million were adults, and 1.5 million
were children under the age of 15. Furthermore, the data reveal that 53% of these individuals
were women and girls. HIV still affects a significant amount of people across the world
and is a major health problem worldwide.

Because of its significance, the Human Immunodeficiency Virus (HIV) is one of the
most studied diseases. Extensive research has shown that HIV specifically targets CD4
cells, a crucial component of the immune system. Once the virus infiltrates the host cell,
viral RNA is converted into DNA, which then integrates into the host cell’s DNA. These
healthy target cells subsequently become infected cells. Following this, the infected cells
undergo cell death, releasing new virus particles, which proceed to infect other target cells.
As a result of the viral infection process, the host’s immune response is triggered. A major
component of the immune response to HIV are CD8 cells, which directly target and attack
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cells infected with the virus [2]. It is this understanding of the within-host processes that
serves as a foundation of within-host mathematical models of HIV.

In the recent 30 years, numerous mathematical models of HIV have been developed to
assess both the quantitative and qualitative aspects of HIV replication and treatment [3–6].
The model by Perelson et al. [4] is one of the most well-known mathematical models for HIV
dynamics within a host. This model depicts the rate of change of uninfected cells, infected cells,
and free virus particles by using a system of ordinary differential equations. Perelson et al.’s
paper presents a mathematical modeling of the dynamics of HIV infection and the impact of
antiretroviral therapy. This model demonstrates the rapid turnover of HIV in the body and the
effectiveness of combination therapy in reducing viral loads. Nowak and May, in [7], created
a mathematical model for HIV that investigates the interactions between healthy target cells,
infected target cells, and free virus particles. However, because immune cells are not included
in their model as a distinct variable, the immunological response is simplified. Conway and
Ribeiro, in [8], examined developments in immune response modeling to HIV infection, with
a specific emphasis on cell-mediated immunity. The application of viral dynamics models
to understand the role of the latent reservoir and the multi-phasic decline of the viral load
during antiretroviral therapy was examined by D’Orso and Forst in [9]. While these models
have provided valuable insights, many of them either oversimplify the immune response or
become highly complex with numerous variables and parameters. Additionally, some recent
models incorporate the effects of antiretroviral drugs, which adds another layer of complexity.
We develop the model introduced in this paper on the basis of many successful prior models,
aiming to strike a compromise between it being as simple as possible and still capturing the
function of the immune system.

The primary objective of this work is to identify parameter values of the model, thus
providing reliable parameter estimates for future studies. Parameter estimates are obtained
through fitting the model to data; however, this process is generally very ill-posed since
multiple parameter combinations can provide the same output. Therefore, it is critical to
examine the well-posedness of the fitting problem by studying the model’s identifiability [10].
Structural identifiability and practical identifiability are the two categories of identifiability that
examine whether a certain set of observations can be used to uniquely determine the values
of the model’s unknown parameters [11–14]. Structural identifiability analysis investigates
whether the unknown parameters of a model can be recovered from perfect, noise-free, and
unlimited data [15,16]. Structural identifiability evaluates if parameters can be derived from
the available data. Once structural identifiability is confirmed, it is necessary to establish
practical identifiability of the estimated parameters [11–14]. Practical identifiability analysis,
on the other hand, ensures that the estimated parameters are robust and precise, given
the often limited and noisy experimental data available [12,17–19]. While structural and
practical identifiabilities are rarely studied when models are fitted to data, they are necessary
to guarantee that the inverse problems being solved in recovering the parameters from the
given data are well-posed and that the results are reliable.

This work explores a within-host model of HIV with an immune response, studying its
equilibrium points and their stability, identifiability, and parameter estimation. We investigate
equilibrium points, calculate the reproduction number, and assess the equilibrium points’
stability in Section 2. Section 3 focuses on the identifiability of the parameters and presents
an estimation method using the data obtained from HIV-infected individuals. Finally,
Section 4 discusses this study’s general conclusions and outcomes.

2. Within-Host Model of HIV

HIV in a within-host model commonly considers three variables: uninfected CD4 cells,
T cells that are infected, and the presence of free virus particles [3,4,7]. The following model
describes the dynamics of how target cells, infected cells, viruses, and immune cells interact.
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dT
dt

= λ − βVT − dT,

dTi
dt

= βVT − δTi − ΨTiZ,

dZ
dt

= λz + bTiZ − dzZ,

dV
dt

= πTi − cV.

(1)

In this model, the variables T, Ti, Z, and V represent specific cell quantities: target cells
(specifically referring to CD4 cells), infected target cells, immune cells, and the viral load,
respectively. Target cells are generated at a rate λ and are removed from the system at a rate
d. Similarly, immune cells are made at a rate of λz and eliminated at a rate dz. Target cells
get infected at rate β, and this infection process is represented mathematically by the term
βVT, which states that the rate at which target cells become infected is directly proportional to
the product of the number of target cells and the number of free virus particles in the system.
Infected cells are eliminated at a rate δ. In the model, the term ΨTiZ represents the clearance
of infected cells by the immune system. It indicates that the rate at which infected cells are
cleared is directly proportional to the product of the number of infected cells and the number
of immune cells. Immune cells are activated in response to antigens at a rate denoted by b.
Infected cells produce virus particles at a rate π, representing the number of new viral particles
generated by each infected cell. Meanwhile, virus particles are removed or cleared from the
system at a rate c. This balance between viral production and clearance contributes to the
overall dynamics of the viral load in the model. Figure 1 presents a schematic representation of
the state variables and parameters. Table 1 presents the state variables of the HIV within-host
model along with their corresponding definitions and units. Table 2 outlines the definitions of
the parameters and units used in the HIV within-host model.

T(t) Ti(t)

Z(t)

V(t)

λ

production

d death

βTV

infection

δ death

ΨTi Z

immune clearance

vi
ru
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Figure 1. Flow chart of the HIV within-host model (1).

Table 1. State variables of the HIV within-host model (1) and their definitions and units. The units of
state variables are determined by the data used in this study [10]. Target cells are counted in 1 µL of
blood, while the viral RNA particles are measured in 1 mL of blood.

Variables Definition Units

T(t) Number of target cells (CD4) at time t cells
µL

Ti(t) Number of infected cells (CD8) at time t cells
µL

Z(t) Number of immune cells at time t cells
µL

V(t) Number of viral particles at time t RNA copies
mL
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Table 2. Definitions and units of the HIV within-host model (1) parameters. Units were determined

based on datasets, where target cells and infected target cells are measured in
cells
µL

and viral load is

measured in
RNA copies

mL
, from Figure 1(A) in [10].

Parameters Definition Unit

λ Production rate of target cells cells
µL × day

β Rate of infection of target cells by virus mL
RNA copies × day

d Death rate of target cells day−1

δ Death rate of infected cells day−1

Ψ Death rate of infected cells by immune cells µL
cells × day

λz Production rate of immune cells cells
µL × day

b Antigen-driven proliferation rate of immune cell µL
cells × day

dz Death rate of immune cells day−1

π Virus production rate by infected cells RNA copies
cells × day

c Death rate of the virus day−1

2.1. Equilibria and Stability

We analyze the equilibrium points for Model (1). At equilibrium points, Model (1)
satisfies the following set of equations.

0 = λ − βV∗T∗ − dT∗,

0 = βV∗T∗ − δT∗
i − ΨT∗

i Z∗,

0 = λz + bT∗
i Z∗ − dzZ∗,

0 = πT∗
i − cV∗,

(2)

where T∗, T∗
i , Z∗, and V∗ represent the equilibrium values for target cells, infected target

cells, immune cells, and viral load, respectively.

2.2. Stability Analysis of Infection-Free Equilibrium

The infection-free equilibrium, denoted as E0, is a specific state where there is no
infection. This occurs when both V and Ti are equal to zero. We determine the infection-free
equilibrium by solving for T∗ and Z∗ in Equation (2). Mathematically, the infection-free

equilibrium is defined as E0 =

(
λ

d
, 0,

λz

dz
, 0
)

.

Theorem 1. The infection-free equilibrium E0 is locally asymptotically stable if R0 < 1, and it is
unstable if R0 > 1. R0 is given by

R0 =
βλπdz

dc(dzδ + Ψλz)
.

Proof. The Jacobian matrix of the system (1) at the infection-free equilibrium E0 is

J(E0) =


−d 0 0 −βλ

d
0 −δ − Ψλz

dz
0 βλ

d
0 bλz

dz
−dz 0

0 π 0 −c


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Two of the four eigenvalues are −d and −dz, both of which are negative. The remaining
two are the eigenvalues of the following matrix J.

J =

[
−δ − Ψλz

dz

βλ
d

π −c

]

The trace and determinant of the characteristic equation of matrix J are represented by
the following equations:

Tr(J) = −δ − Ψλz

dz
− c

and
Det(J) = δc +

cΨλz

dz
− βλπ

d

For an equilibrium point in a system to be locally asymptotically stable, the real parts of
all the eigenvalues of the Jacobian matrix must be negative. This condition ensures that
small perturbations around the equilibrium will decay over time. In two-dimensional
systems, this stability criterion can be expressed more simply: the equilibrium is locally
asymptotically stable if two conditions are met. First, the trace of the Jacobian matrix (Tr(J))
must be negative. Second, the determinant of the Jacobian matrix (Det(J)) must be positive.
Together, these conditions imply that both eigenvalues have negative real parts, leading to
the local stability of the equilibrium. Applying these conditions for stability leads to an
expression for the reproduction number. It is clear that Tr(J) < 0. By setting Det(J) > 0,
this condition yields a reproduction number in the form

R0 =
βλπdz

dc(dzδ + Ψλz)
.

The basic reproduction number, R0, represents the average number of secondary infections
generated by a single infected cell when the virus is introduced into a population of
uninfected target cells. If R0 < 1, both Tr(J) < 0 and Det(J) > 0. This indicates that
the real parts of all eigenvalues are negative and that, consequently, the infection-free
equilibrium is locally asymptotically stable. However, if R0 > 1, Det(J) < 0, implying
that there is an eigenvalues with a positive real part, which results in the infection-free
equilibrium being unstable.

The expression of the basic reproduction number has a clear interpretation as the
number of secondary infections by a single infected cell during its life time when one viral
particle is introduced to the population of infection-free target cells. The life span of an

infected cell is
1

δ + ΨZ0
, where Z0 is the immune response in the absence of infection, that

is Z0 =
λz

dz
. One infected cell will produce

πdz

dzδ + Ψλz
viral particles during its lifetime.

Similarly, one viral particle introduced to the system will infect
βT0

c
cells during its lifetime,

where T0 =
λ

d
is the population of infection-free target cells. Therefore, one infected cell will

produce
πdz

dzδ + Ψλz

βλ

cd
new infected cells during its time in an infection-free population.

2.3. Existence and Local Stability of Infection Equilibrium

Theorem 2. A unique infection equilibrium E1 of the system (1) exists when R0 > 1 and

V∗ <
πdz

bc
.
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Proof. At the infection equilibrium E1 = (T∗, T∗
i , Z∗, V∗), all state variables have positive

values. To obtain this infection equilibrium E1, our initial step involves solving for Ti using
the fourth equation in (2), allowing us to obtain

T∗
i =

cV∗

π
. (3)

Then, we solve for Z∗ using the third equation of the system (2) and substitute T∗
i from

Equation (3). We obtain

Z∗ =
πλz

πdz − bcV∗ . (4)

We focus on the positive state variable Z∗ > 0. Therefore,

0 < V∗ <
πdz

bc
. (5)

To find T∗ in terms of V∗, we solve for T∗ using the first equation of (2) and obtain

T∗ =
λ

βV∗ + d
. (6)

Substituting Equations (4)–(6) into the second equation of the system (2) and simplifying
and rearranging terms, we obtain the following equation:

βλ

βV∗ + d
=

δc
π

+
Ψcλz

πdz − bcV∗ (7)

Let y1(V∗) =
βλ

βV∗ + d
and y2(V∗) =

δc
π

+
Ψcλz

πdz − bcV∗ . Since y′1 =
−β2λ

(βV∗ + d)2 < 0

and y′2 =
Ψc2λzb

(πdz − bcV∗)2 > 0, this implies that the function y1(V∗) is decreasing and

y2(V∗) is increasing for all V∗ > 0. This implies that if a solution exists, it is necessarily

unique. Next, we prove that the unique solution V∗ is in the interval (0,
πdz

bc
). In order to

do that, we must firstly assign the value of V∗ = 0 into y1(V∗) and y2(V∗). Hence,

y1(0) =
βλ

d
and y2(0) =

Ψcλz

πdz
+

δc
π

=
c(Ψλz + δdz)

πdz
.

Since R0 > 1,

R0 =
βλπdz

dc(Ψλz + δdz)
> 1 =⇒ βλ

d
>

c(Ψλz + δdz)

πdz
.

Therefore, y1(0) > y2(0). Similarly, by substituting V∗ =
πdz

bc
into y1(V∗) and y2(V∗), we

have y1

(
πdz

bc

)
=

βλbc
βπd + dbc

> 0—a positive value and y2(V∗) → ∞ as V∗ approaches
πdz

bc
.

Hence, y1

(
πdz

bc

)
< y2

(
πdz

bc

)
. Thus, this implies that y1(V∗) intersects y2(V∗) at a

point in
(

0,
πdz

bc

)
. This shows that the model has a positive, unique infection equilibrium

E1 = (T∗, T∗
i , Z∗, V∗) for V∗ <

πdz

bc
.

Theorem 3. Assume R0 > 1. Then, the infection equilibrium E1 = (T∗, T∗
i , Z∗, V∗), where

V∗ <
πdz

bc
, in (1) is locally asymptotically stable.
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Proof. The Jacobian matrix of the system (1) at E1 is

J(E1) =


−βV∗ − d 0 0 −βT∗

βV∗ −δ − ΨZ∗ −ΨT∗
i βT∗

0 bZ∗ bT∗
i − dz 0

0 π 0 −c

.

At point E1, the characteristic equation is derived by setting det|J − kI| = 0, where k
represents an eigenvalue.∣∣∣∣∣∣∣∣

−βV∗ − d − k 0 0 −βT∗

βV∗ −δ − ΨZ∗ − k −ΨT∗
i βT∗

0 bZ∗ bT∗
i − dz − k 0

0 π 0 −c − k

∣∣∣∣∣∣∣∣ = 0, (8)

In order to simplify the expression, we perform the operation of adding the first row to the
second row of Equation (8); thus, we have∣∣∣∣∣∣∣∣

−βV∗ − d − k 0 0 −βT∗

−d − k −δ − ΨZ∗ − k −ΨT∗
i 0

0 bZ∗ bT∗
i − dz − k 0

0 π 0 −c − k

∣∣∣∣∣∣∣∣ = 0. (9)

By expanding the determinant Equation (9), we obtain the following equation:

(−βV∗ − d − k)((−δ − ΨZ∗ − k)(bT∗
i − dz − k)(−c − k) + bΨT∗

i Z∗(−c − k))+

πβT∗((d + k)(bT∗
i − dz − k)) = 0,

We rearrange the terms in the above equation and solve for
βV∗ + d + k

d + k
; thus, we have

βV∗ + d + k
d + k

=
πβT∗(bT∗

i − dz − k)
(c + k)((δ + ΨZ∗ + k)(bT∗

i − dz − k)− ΨT∗
i bZ∗)

,

By dividing both the numerator and denominator on the right-hand side of the
equation by bT∗

i − dz − k, we obtain

βV∗ + d + k
d + k

=
πβT∗

(c + k)
(
(δ + ΨZ∗ + k)−

ΨT∗
i bZ∗

(bT∗
i − dz − k)

) .
(10)

To prove the stability of the infection equilibrium, we aim to show that all eigenvalues of
Equation (10) have negative real parts. We employ a method of contradiction by assuming
the existence of an eigenvalue k with a non-negative real part, that is, Re(k) ≥ 0. Since
Re(k) ≥ 0, then |βV∗ + d + k| > |d + k|. This implies that∣∣∣∣ βV∗ + d + k

d + k

∣∣∣∣ > 1.

This means that for k with Re(k) ≥ 0, the left-hand side of Equation (10) is always grater
than 1.

Let k = x + iy and consider the modulus of the denominator of the right-hand side of
Equation (10).

|c + k|
∣∣∣∣δ + ΨZ∗ + k −

ΨT∗
i bZ∗

bT∗
i − dz − k

∣∣∣∣ = |c + k|
∣∣∣∣δ + ΨZ∗ + x + iy −

ΨT∗
i bZ∗

bT∗
i − dz − x − iy

∣∣∣∣,
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To simplify the complex fraction, we multiply by the complex conjugate; thus we obtain

= |c + k|
∣∣∣∣δ + ΨZ∗ + x + iy +

ΨT∗
i bZ∗(dz − bT∗

i + x − iy)
(bT∗

i − dz − x)2 + y2

∣∣∣∣,
By separating the real and imaginary parts of the equation, we obtain

= |c + k|
∣∣∣∣δ + ΨZ∗ + x +

ΨT∗
i bZ∗(dz − bT∗

i + x)
(bT∗

i − dz − x)2 + y2 + i
(

y −
ΨT∗

i bZ∗y
(bT∗

i − dz − x)2 + y2

)∣∣∣∣,
Since V∗ <

πdz

bc
=⇒ cV∗

π
<

dz

b
=⇒ T∗

i <
dz

b
=⇒ dz − bT∗

i > 0,

≥ |c + k|
∣∣∣∣δ + ΨZ∗ + x +

ΨT∗
i bZ∗(dz − bT∗

i + x)
(bT∗

i − dz − x)2 + y2

∣∣∣∣ ≥ |c + k||δ + ΨZ∗| ≥ c(δ + ΨZ∗),

Thus, the modulus of the right-hand side of Equation (10) is∣∣∣∣∣∣∣∣∣
πβT∗

(c + k)
(
(δ + ΨZ∗ + k)−

ΨT∗
i bZ∗

(bT∗
i − dz − k)

)
∣∣∣∣∣∣∣∣∣ ≤

πβT∗

c(δ + ΨZ∗)
,

From the second and fourth equations of model (2),
πβT∗

c(δ + ΨZ∗)
= 1, which implies

that the modulus of the right-hand side of Equation (10) is less than 1, that is,∣∣∣∣∣∣∣∣∣
πβT∗

(c + k)
(
(δ + ΨZ∗ + k)−

ΨT∗
i bZ∗

(bT∗
i − dz − k)

)
∣∣∣∣∣∣∣∣∣ ≤

πβT∗

c(δ + ΨZ∗)
= 1.

This implies that for k with Re(k) ≥ 0, the left-hand side of Equation (10) is always
greater than the right-hand side. This leads to a contradiction. Therefore, the eigenvalues
have negative real parts. Thus, we have proven the theorem.

3. Structural and Practical Identifiability Analysis and Parameter Estimation

Structural and practical identifiability analyses are two crucial aspects of mathematical
modeling. Structural identifiability analysis investigates whether a model can uniquely
reveal its unknown parameters given perfect, noise-free, and unlimited data. This theoretical
analysis, performed prior to collecting any experimental data, involves methods such as
the differential algebra approach, generating series approach, Taylor series approach, and a
method based on the Implicit Function Theorem [15,20–23].

Practical identifiability analysis further ensures that the estimated parameters are
robust and precise given the available experimental data, which is often limited and
noisy. Similar to structural identifiability, it is important to see if the model’s structure
causes practical identifiability problems. Techniques such as Monte Carlo simulations,
sensitivity analysis, Bayesian methods, correlation matrix, and profile likelihoods method
are employed to assess the robustness and precision of parameter estimates [12,15,24–26].
We employ the differential algebra approach for structural identifiability analysis and
Monte Carlo simulations to evaluate practical identifiability [11,13,25].
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3.1. Structural Identifiability

Analyzing the structural identifiability of the within-host model, we rewrite the
model (1) in the following compact form.

x′(t) = f (x, p),

y(t) = g(x, p),

where t represents time, the vector x = (T, Ti, Z, V) represents the dependent variables,
p = (λ, β, d, δ, Ψ, λz, b, dz, π, c) denotes the model’s parameters, and y(t) is the model
output, corresponding to the observations. The observations of this study include the count
of the uninfected and infected target cells denoted as y1(t), the immune cells as y2(t), and
the viral load as y3(t). Therefore, the expressions of the observations are as follows.

y1(t) = T(t) + Ti(t), y2(t) = Z(t), and y3(t) = V(t).

The within-host model (1) is considered identifiable if the parameter vector p can be
uniquely determined from the system output y(t). Structural identifiability is defined
as follows.

Definition 1. Let p and p̂ be distinct model parameter vectors. The within-host model is structurally
identifiable if

g(x, p) = g(x, p̂) implies p = p̂.

The differential algebra approach requires the removal of state variables for which data
are not given, resulting in the model being expressed as a function of both the parameters of
the model and the state variables for which data are given, referred to as the input–output
equations. These input–output equations are expressed as algebraic polynomials involving
the outputs y1(t), y2(t), and y3(t), their derivatives, and their coefficients composed of
parameters of the model. We derive the input–output equations for the within-host model
(1) based on the observations y1(t), y2(t), and y3(t) using DAISY (Differential Algebra for
Identifiability of SYstem, https://daisy.org/ Mountain View, CA, USA) software [20].

0 = y′1y2 + y′2y2
Ψ
b
+ y′2

(δ − d)
b

+ y1y2d + y2
2

dzΨ
b

+ y2

(
−λ − ddz

b
+

δdz
b

− λz
Ψ
b

)
+ λz

(d − δ)

b
. (11)

0 = y′1 + y′3y2
Ψ
π

+ y′3
(δ − d)

π
+ y1d + y2y3

cΨ
π

+ y3
c(δ − d)

π
− λ. (12)

0 = y′1y2 + y1y3
β

Ψ
+ y′1

(c + δ)

Ψ
− y′′3 y2

1
π

+ y′′3
(d − δ)

πΨ
+ y1y2y3β + y1y2d + y1y3

βδ

Ψ

+ y1
d(c + δ)

Ψ
+ y2y3

c2

π
− y2λ − y3

(
βλ

Ψ
+

c2d
πΨ

− c2δ

πΨ

)
− λ

(c + δ)

πΨ
.

(13)

The definition of identifiability for a model based on the differential algebra approach is
provided below.

Definition 2. Let c(p) represent the coefficients of the input–output Equations (11)–(13). The
within-host model is structurally identifiable from observations y1(t), y2(t), and y3(t) if and only if

c(p) = c( p̂) implies p = p̂.

To illustrate, assume the existence of another parameter vector, denoted as
p̂ = (λ̂, β̂, d̂, δ̂, Ψ̂, λ̂z, b̂, d̂z, π̂, ĉ). Establishing a one-to-one mapping between the parameter
space and the coefficients of the input–output equations is essential. Therefore, we derive
the following set of equations:

https://daisy.org/
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d = d̂, λ = λ̂, π = π̂, β = β̂,
β

Ψ
=

β̂

Ψ̂
,

Ψ
b
=

Ψ̂
b̂

,
δ − d

b
=

δ̂ − d̂
b̂

dzΨ
b

=
d̂zΨ̂

b̂
,

d(c + δ)

Ψ
=

d̂(ĉ + δ̂)

Ψ̂
,

ddz

b
+

δdz

b
− λdzΨ

b
=

d̂d̂z

b̂
+

δ̂d̂z

b̂
− λ̂zΨ̂

b̂
.

After solving the nonlinear equation with Definition 2 described above, we find a collection
of positive solutions, as outlined below.

{λ = λ̂, β = β̂, d = d̂, δ = δ̂, Ψ = Ψ̂, λz = λ̂z, b = b̂, dz = d̂z, π = π̂, c = ĉ}

As a result, the within-host model (1) is structurally identifiable. The model reveals its
parameters λ, β, d, δ, Ψ, λz, b, dz, π, and c from the observations of the CD4/CD8 cell counts
and viral load. Structural identifiability analysis is summarized in the following proposition.

Proof. The within-host model (1) is structurally identifiable based on the given observations
of the CD4/CD8 cell counts and viral load.

Parameter Estimation

In this study, we gathered data from Figure 1(A) in [10]. Data points were extracted
from Figure 1(A) in [10] using the Grabit tool in MATLAB. Table 3 presents the logarithmic
values of the obtained data. We fit the model (1) to CD4/CD8 cell counts and viral load
data. We apply the least squares (LS) principle to estimate the parameters. This principle
involves minimizing the objective function defined by Equation (15). Each observable
value, denoted as y1(ti), y2(tj), and y3(tk), is obtained at discrete time points ti, tj, and
tk. The measurements include inherent measurement noise, represented by ϵi, ϵj, and
ϵk, respectively. The relationship between observations and measurements is defined
as follows:

Yi
1 = T(ti) + Ti(ti) + (T(ti) + Ti(ti))ϵi, i = 1, 2, . . . , n

Y j
2 = Z(tj) + Z(tj)ϵj, j = 1, 2, . . . , m

Yk
3 = V(tk) + V(tk)ϵk. k = 1, 2, . . . , l

(14)

The measurement errors are normally distributed with zero mean and variances, where

ϵi ∼ N (0, σ2
i ), ϵj ∼ N (0, σ2

j ), ϵk ∼ N (0, σ2
k )

In our statistical model, the expected values and variances for Yi
1, Y j

2, and Yk
3 are, respectively,

given by [27]

E(Yi
1) = T(ti) + Ti(ti) and Var(Yi

1) = (T(ti) + Ti(ti))
2σ2

i

E(Y j
2) = Z(tj) and Var(Y j

2) = Z2(tj)σ
2
j

E(Yk
3 ) = V(tk) and Var(Yk

3 ) = V2(tk)σ
2
k

To estimate the p̂ parameters, we minimize the following objective function [27].

p̂ =min
p

 1
n

√√√√ n

∑
i=1

(
log10(T(ti) + Ti(ti))− log10 Yi

1
log10(T(ti) + Ti(ti))

)2

+
1
m

√√√√√ m

∑
j=1

(
log10 Z(tj)− log10 Y j

2
log10 Z(tj)

)2

+
1
l

√√√√ l

∑
k=1

(
log10 V(tk)− log10 Yk

3
log10 V(tk)

)2
, δ − d ≥ 0

(15)
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where n, m, and l represent the number of data points for CD4/CD8 cells and viral load,
respectively. T(ti), Z(tj), and V(tk) are the solutions to the system (1). In our model, we
introduce a constraint δ − d ≥ 0 to balance between the death rate of uninfected target
cells d and the death rate of infected cells δ. This constraint ensures that the natural decay
rate of uninfected cells does not exceed that of infected cells. Additionally, we establish
lower and upper limits for each parameter in our model, which are listed in Table 4. We
estimate the parameters and initial conditions using the least squares fitting (fmincon) in
MATLAB to the data. The initial conditions for the dependent variables were fixed as
(T(0), Ti(0), Z(0), V(0)) = (918, 0, 583, 1003). The fitting iteration continues until the error
stabilizes, reaching the optimization tolerance. The best parameter fits are given in Table 4.
Figure 2 shows the graphs of the fitted curves for viral load, target cells, and immune cells.

Table 3. Logarithms of the viral loads (RNA copies/mL), CD4 cell counts (cells/µL), and CD8 cell
counts (cells/µL)) are presented.

Day 2 Day 6 Day 10 Day 14 Day 18 Day 21 Day 25 Day 28
Viral load
(RNA
copies/mL) 3.5521 5.0611 5.9734 6.3262 6.0449 5.5590 5.2032 4.8850

Day 32 Day 41 Day 49 Day 67 Day 96 Day 179 Day 259
Viral load
(RNA
copies/mL) 4.6970 4.6190 4.5042 4.4079 4.3850 4.1678 3.8765

Day 2 Day 18 Day 32 Day 49 Day 90 Day 257
CD4 count
(cells/µL) 2.957 2.7758 2.7944 2.8526 2.8401 2.7805

Day 2 Day 18 Day 32 Day 49 Day 90 Day 255
CD8 count
(cells/µL) 2.7507 3.0818 3.0541 3.0367 2.9906 2.9689

Table 4. Estimated parameter values of the model (1) derived by solving the least squares problem
given in (15).

Parameters Parameter Space Value

λ (0, 100) 96.7
β (0, 1) 2.3 × 10−7

d (0.01, 1) 0.13
δ (0.1, 1) 0.31
Ψ (0, 10) 0.002
λz (0, 100) 4.23
b (0, 1) 0.006
dz (0.01, 1) 0.027
π (0, 5 × 105) 12,725.36
c (0, 100) 0.68

Figure 2. Logarithms of viral load, CD4 cells, and immune cells (red dots) plotted along the solutions
of the model (blue curves) with the estimated parameter values in Table 4. The initial values are
(T(0), Ti(0), Z(0), V(0)) = (918, 0, 583, 1003).
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3.2. Practical Identifiability

We have shown that the within-host model of HIV (1) is structurally identifiable if
observations of the uninfected and infected target cell counts, immune cells, and viral
load are given. Structural identifiability refers to a characteristic of the model’s structure
concerning the specific output it produces, assuming the model does not have errors,
and the output is not affected by noise. Practical parameter identification is not solely
determined by the model’s structure but also by factors such as the quantity and quality
of the data, as well as the specific numerical optimization algorithm used for parameter
estimation (15). If the model lacks structural identifiability, it is not practically identifiable
either. However, even if a model is structurally identifiable, it might still be practically
non-identifiable [28]. Here, we explore the practical identifiability of the HIV within-host
model (1) to evaluate the reliability of estimated parameters. Multiple techniques, including
Monte Carlo simulations (MCS), are employed to evaluate the practical identifiability
of parameters in an ODE model [12,15,29,30]. We conduct Monte Carlo simulations by
generating the 1000 synthetic datasets with the estimated parameters viewed as “true”
parameter set p̂ and including noise at progressively growing levels 1%, 5%, 10%, and 20%.
We conduct Monte Carlo simulations according to the following steps.

1. We numerically solve the model using the true parameters p̂ and collect the output
vector g(x, p̂) at the specific discrete experimental time points.

2. We generate 1000 datasets from the statistical model (14) with a given measurement
error. These datasets are generated from a normal distribution with the mean
corresponding to the output vector obtained in step 1, represented as
E(Yi) = g(x(ti), p̂). The standard deviation is calculated as a σ0% of the mean
using the formula Var(Yi) = g(x(ti), p̂)2σ2. Figure 3 presents a series of 12 graphs
illustrating the impact of varying measurement errors on the distribution of the
generated datasets. Each graph corresponds the viral load, CD4 cell count, and CD8
cell count to a different value of σ.

3. We approximate the parameter set pq by fitting the within-host model (1) to all
simulated datasets.

pq = min
p

 1
n

√√√√ n

∑
i=1

(
log10(T(ti) + Ti(ti))− log10 Yi

1
log10(T(ti) + Ti(ti))

)2

+
1
m

√√√√√ m

∑
j=1

(
log10 Z(tj)− log10 Y j

2
log10 Z(tj)

)2

+
1
l

√√√√ l

∑
k=1

(
log10 V(tk)− log10 Yk

3
log10 V(tk)

)2
, q = 1, ..., 1000.

(16)

4. Next, we compute the average relative estimation error (ARE) for each parameter in
the model via

ARE(p(k)) = 100% × 1
M

M

∑
q=1

| p̂(k) − p(k)q |
| p̂(k)|

,

where p(k) represents the kth element of p, p̂(k) denotes the kth parameter in the true
parameter set p̂, and p̂(k)q indicates the kth parameter in the set pq.

5. We repeat steps 1 to 5, gradually increasing the level of noise by considering σ values
of 1%, 5%, 10%, and 20%.

The average relative estimation errors (AREs) obtained are valuable for understanding
the identifiability of the parameters of the within-host model. When the model is structurally
identifiable, meaning its parameters can be accurately determined from the data, we
expect AREs to approach zero when the measurement error σ is zero. In noise-free
data, AREs ideally should be minimal or close to zero. However, if a parameter is
not practically identifiable, its ARE will be significantly elevated even with reasonable
measurement error levels. Some parameters may be highly sensitive to data noise, resulting
in disproportionately high AREs. In such cases, increasing measurement errors will cause
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the AREs to rise significantly, indicating that the parameter is practically unidentifiable.
Practical identifiability is defined in the following way [31].

Definition 3. The practical identifiability of a parameter p is determined by comparing its average
relative estimation error ARE with the measurement error σ. If

0 ≤ ARE(p) ≤ σ,

then the parameter p is considered (strongly) practically identifiable. If

σ < ARE(p) ≤ 10σ,

then p is weakly practically identifiable. However, if ARE(p) exceeds 10σ, then p is practically
unidentifiable.

We apply the Monte Carlo simulation algorithm in MATLAB and calculate the AREs
of all parameters of the model (1). Table 5 presents the results of Monte Carlo simulations
(MCSs) conducted with actual data points presented in Table 3. According to the ARE
values presented in Table 5, it is observed that parameters λ, d, δ, and π are practically
identifiable. On the other hand, parameters λz, dz, and c exhibit weak identifiability.
Parameters β, Ψ, and b are not identifiable.

Table 5 that shows three parameters (β, Ψ, and b) are practically non-identifiable. With
measurement error levels of 1% and 5%, all parameters show average relative estimation
errors that meet the practical identifiability criteria. This suggests that the simulation
effectively estimates the parameters even with minimal noises, ensuring practical
identifiability. However, when the noise level increases to 10% and 20%, three parameters
(β, Ψ, and b) become highly sensitive to noise, and their ARE values increase rapidly.
Additionally, experimental data are frequently obtained at a low frequency, which leads
to few data points. This low frequency of data collection further complicates the practical
identifiability of parameters. To understand how data collection frequency impacts the
practical identifiability of a model’s parameters, we conducted Monte Carlo simulations
and increased the total number of data points. While high-frequency data collection may
not reflect real-world experimental conditions, evaluating the accuracy of our estimates is
essential. Initially, high-frequency data were simulated at specific time intervals over
a period ranging from t = 1 to t = 300 days, resulting in 3000 data points. These
data points were derived through curve fitting, providing estimated true parameter
values. Subsequently, we determined the ARE values for all 10 parameters across four
levels of measurement errors, as outlined in Table 6. The Monte Carlo simulation using
high-frequency data provided valuable insights into the identifiability of parameters. At a
measurement error level of σ = 1%, all parameters exhibited average relative estimation
errors AREs well within the bounds of practical identifiability. This indicates that even
with a low level of noise, the simulation accurately estimates the parameters, making
them practically identifiable. The results remain consistent when moving to a slightly
higher noise level of σ = 5%. Despite the increased noise, all parameters maintained
ARE values that fell within the acceptable range for identifiability. At a measurement
error level of σ = 10%, all parameters were identifiable. At a measurement error level of
σ = 20%, parameters such as λ, β, d, δ, Ψ, λz, b, dz, π, and c showed practical identifiability.
Parameters become identifiable at a high frequency, which suggests that the identifiability
of parameters may vary depending on the frequency of the data.
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Figure 3. Comparison of within-host model predictions (black curve) and data observations
(red dots) for viral load, CD4 cell count, and CD8 cell count at different noise levels (σ = 1%, 5%, 10%,
and 20%) at a logarithmic scale.
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Table 5. Monte Carlo simulation MCS results: Absolute relative error ARE for each parameter within
the within-host model (1) computed based on the actual data frequency.

Parameter λ β d δ Ψ λz b dz π c

ARE
σ = 1% 2 × 10−6 0.07 0.01 0.004 0.02 4 × 10−5 0.02 0.003 1 × 10−10 0.01

ARE
σ = 5% 4 × 10−5 0.7 0.3 0.07 0.3 6 × 10−4 0.28 0.095 2 × 10−9 0.2

ARE
σ = 10% 0.009 27 1.8 1.3 310.7 2 27.7 12 8 × 10−5 1.5

ARE
σ = 20% 0.54 1618 10.9 11.7 1957 34.8 537.7 199 0.002 54

Table 6. The Monte Carlo simulation uses high-frequency data, which means that data are
collected ten times per day. In total, 3000 data points gathered over 300 days are utilized for the
Monte Carlo simulation.

Parameter λ β d δ Ψ λz b dz π c

ARE
σ = 1% 2 × 10−8 0.007 1 × 10−4 4 × 10−5 2 × 10−4 4 × 10−7 5 × 10−5 8 × 10−6 2 × 10−12 1 × 10−4

ARE
σ = 5% 2 × 10−7 0.04 0.001 4 × 10−4 0.002 3 × 10−6 0.001 8 × 10−5 2 × 10−11 0.002

ARE
σ = 10% 7 × 10−7 0.098 0.005 0.001 0.01 1 × 10−5 0.007 3 × 10−4 8 × 10−11 0.006

ARE
σ = 20% 1.5 × 10−5 0.28 0.09 0.02 0.16 1 × 10−4 0.07 0.004 9 × 10−10 0.1

4. Discussion

In this study, we looked into how target cells T, infected target cells Ti, virus particles
V, and immune cells Z interact. We examined the equilibrium points and their stability for
our model (1). We found that our model only has an infection-free equilibrium if R0 < 1,
and the model has two equilibrium points when R0 > 1: the infection-free equilibrium
E0, where there are no infected cells or virus, and an infection equilibrium E1, where all
variables have positive values. Focusing on the equilibrium point E0, we analyzed its
stability for our model (1). The analysis revealed that E0 is locally asymptotically stable
when the basic reproduction number R0 < 1 and becomes unstable when R0 > 1. For
the infection equilibrium E1, we were able to show that it is unique. Further, the infection
equilibrium is locally asymptotically stable whenever it exists.

We also investigated the structural and practical identifiabilities of the within-host model
for HIV dynamics using the differential algebra method for structural identifiability and
Monte Carlo simulations to evaluate practical identifiability. The analysis revealed several
key findings regarding parameter identifiability and the implications for understanding HIV
infection dynamics. In this study, we employed the differential algebra method to analyze
the structural identifiability of the within-host HIV model. The results suggested that the
model is structurally identifiable, meaning the parameters can be uniquely determined
from the observations of the sum of uninfected and infected target cells, the immune cells,
and the viral load. We proceeded to estimate all parameters of (1) by using the least squares
approach applied to the logarithmic values of the average viral load RNA (copies/mL),
average CD4 cell counts (cells/µL), and average CD8 cell counts (cells/µL). Employing the
least squares principle, we addressed the parameter estimation problem by minimizing the
objective function defined by Equation (15), resulting in the parameter values presented in
Table 4. Practical identifiability, on the other hand, deals with the reality of limited and noisy
data. Even if a model is structurally identifiable, practical identifiability must be assessed
to ensure that the parameters can still be estimated accurately under realistic conditions.
Practical identifiability analysis involved generating synthetic datasets with varying levels
of measurement noise and assessing the robustness and precision of the parameter estimates.
For practical identifiability analysis, the MCS algorithm was employed to generate 1000 sets
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of data with varying levels of measurement noise for CD4 cell counts, CD8 cell counts, and
viral load. Each dataset at each noise level was fitted to recover 1000 sets of parameters.
The average relative error (ARE) for each parameter was then calculated. Monte Carlo
simulations were conducted to evaluate the practical identifiability of the model parameters
under different data collection frequencies and noise levels. Initial simulations with actual
data points revealed that parameters λ, d, δ, and π are identifiable, while parameters λz, dz,
and c are weakly identifiable, and parameters β, Ψ, and b are not identifiable. To investigate
further, we simulated high-frequency data collection over 300 days, resulting in 3000 data
points. At a low measurement error level σ = 1%, all parameters exhibited average relative
estimation errors AREs within the bounds of practical identifiability, indicating practical
identifiability. This trend continued with slightly higher noise levels σ = 5%, where all
parameters maintained acceptable ARE values. Even at a higher noise level σ = 10%, all
parameters were still practically identifiable. At the highest noise level tested σ = 20%, all
parameters remained practically identifiable, although with varying degrees of precision.
This high-frequency data simulation aimed to provide a more precise estimation of the
parameters and to highlight the importance of data collection frequency. The findings in
this study emphasize the importance of optimal data sampling in HIV clinical studies. By
analyzing different sampling frequencies and their impact, we provide insights into how
sampling strategies can enhance the applicability of mathematical models in infectious
disease modeling. Furthermore, the estimated parameters can be used as a baseline for HIV
treatment models, which then can be used to evaluate and compare different treatment
strategies. By simulating how different therapies impact viral dynamics, the HIV treatment
model can be used in optimizing treatment plans and assessing potential outcomes, such
as viral suppression.

Overall, our findings highlight the relationship between model structure, data quality,
and parameter identifiability in modeling HIV dynamics. By clarifying the identifiability of
model parameters, our study offers insights into model predictions and the limitations of
parameter estimation methods in HIV research.
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