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Fig. 1. (Left) A body mesh is twisted by constraints at the arms and legs. Our method robustly and efficiently
resolves the collision driven deformation. (Right) Impulse iteration requirements with our hybrid approach
(red) are significantly reduced compared to geometric impulses alone (blue), decreasing the total simulation
run time by 25 percent.

We present a momentum conserving hybrid particle/grid iteration for resolving volumetric elastic collision.
Our hybrid method uses implicit time stepping with a Lagrangian finite element discretization of the volumetric
elastic material together with impulse-based collision-correcting momentum updates designed to exactly
conserve linear and angular momentum. We use a two-step process for collisions: first we use a novel grid-
based approach that leverages the favorable collision resolution properties of Particle-In-Cell (PIC) techniques,
then we finalize with a classical collision impulse strategy utilizing continuous collision detection. Our PIC
approach uses Affine-Particle-In-Cell momentum transfers as collision preventing impulses together with
novel perfectly momentum conserving boundary resampling and downsampling operators that prevent
artifacts in portions of the boundary where the grid resolution is of disparate resolution. We combine this
with a momentum conserving augury iteration to remove numerical cohesion and model sliding friction.
Our collision strategy has the same continuous collision detection as traditional approaches, however our
hybrid particle/grid iteration drastically reduces the number of iterations required. Lastly, we develop a novel
symmetric positive semi-definite Rayleigh damping model that increases the convexity of the nonlinear

Authors’ addresses: Alan Marquez Razon, University of California Los Angeles, USA, ae.alan.marquezu@gmail.com; Yizhou
Chen, University of California Los Angeles, USA, chenyizhou@ucla.edu; Yushan Han, University of California Los Angeles,
USA, yushanhl@math.ucla.edu; Steven Gagniere, University of California Los Angeles, USA, sgagniere@alumni.ucla.edu;
Michael Tupek, Sandia National Laboratories, USA, mrtupek@gmail.com; Joseph Teran, University of California Davis,
USA, jteran@math.ucdavis.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2577-6193/2023/8-ART44

https://doi.org/10.1145/3606924

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 3, Article 44. Publication date: August 2023.



HTTPS://ORCID.ORG/0009-0004-4489-2351
HTTPS://ORCID.ORG/0009-0000-2439-7880
HTTPS://ORCID.ORG/0009-0007-5531-329X
HTTPS://ORCID.ORG/0000-0002-9767-1059
HTTPS://ORCID.ORG/0000-0003-3568-410X
HTTPS://ORCID.ORG/0009-0007-5067-2269
https://orcid.org/0009-0004-4489-2351
https://orcid.org/0009-0000-2439-7880
https://orcid.org/0009-0000-2439-7880
https://orcid.org/0009-0007-5531-329X
https://orcid.org/0000-0002-9767-1059
https://orcid.org/0000-0003-3568-410X
https://orcid.org/0009-0007-5067-2269
https://doi.org/10.1145/3606924
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3606924&domain=pdf&date_stamp=2023-08-24

44:2 Alan Marquez Razon, Yizhou Chen, Yushan Han, Steven Gagniere, Michael Tupek, and Joseph Teran

systems associated with implicit time stepping. We demonstrate the robustness and efficiency of our approach
in a number of collision intensive examples.

CCS Concepts: « Computing methodologies — Computer graphics; - Mathematics of computing —
Discretization.
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1 INTRODUCTION

The deformation of volumetric elastic solids is a fundamental aspect of computer graphics and
related disciplines. Inertia-driven elastic deformation (particularly in response to collision and
contact) adds rich detail and realism to animations. This is particularly true for animating char-
acters with biomechanical soft tissues like muscle, fat, skin, etc. [Brunel et al. 2021; McAdams
et al. 2011; Milne et al. 2016; Smith et al. 2018]. Indeed, effectively conveying the transition from
squash to stretch is one of the key principles of animation [Thomas and Johnston 1995]. Since the
pioneering work of Terzopoulos et al. [1987], researchers have developed approaches to generate
elastic deformations with numerical simulation and the governing physics of elasticity. Graphics
researchers often borrow and adapt techniques from the computational mechanics literature in
this regard, however, despite many decades of research by both communities, the simulation of
large-strain elastic solids with contact and collision remains an active area of research.

The governing physics of large strain elastic solids are comprised primarily of two factors:
stress-based internal forces arising to resist deformation (often from distortion energies) [Gonzalez
and Stuart 2008] and contact forces at the interface between colliding bodies [Belytschko et al. 2013;
Kikuchi and Oden 1988]. In both the graphics and broader computational mechanics literature,
the numerical treatment of stress-based forces is relatively settled. The finite element method
(FEM) discretization of spatial stress gradients is used by the vast majority of researchers due to its
support of complex geometries and its generally favorable numerical properties (e.g. symmetric
discretization, spectral reproduction, etc.) [Belytschko et al. 2013; Hughes 2000]. In contrast, the
numerical treatment of contact and collision is far less settled. Contact forces happen at such fast
time scales that they are effectively discontinuous [Larionov et al. 2021; Li et al. 2020a] and as a
consequence, their numerical discretization is far more delicate.

There are many existing options for resolving these terms and each of them has its relative pros
and cons. Penalties, barriers, and repulsive forces effectively regularize the collision response, often
idealizing it in terms of potential energy increasing with material overlap [Baraff and Witkin 1998;
Barbi¢ and James 2007; Gast et al. 2015; Moore and Wilhelms 1988; Spillmann et al. 2007; Teng
et al. 2014; Teran et al. 2005]. Iterative discrete contact resolution between mesh facets like points,
triangles, and edges has a long history in computer graphics and can provide strong collision-free
assurances [Bridson et al. 2002; Cundall and Strack 1979; Harmon et al. 2009; Miiller et al. 2007;
Provot 1997; Volino et al. 1995; Wu et al. 2020]. Methods that formulate the problem in terms of
constrained optimization are also very powerful, often resulting in Linear Complementary Problems
(LCP) [Baraff and Witkin 1992; Larionov et al. 2021; Li et al. 2021; Otaduy et al. 2009; Wriggers and
Laursen 2006; Wriggers et al. 1990]. Hybrid Lagrangian/Eulerian methods that make use of the
natural collision resolution induced by numerical discretization in an Eulerian view are increasingly
popular [Fan et al. 2013; Han et al. 2019; Jiang et al. 2017a; Levin et al. 2011; McAdams et al. 2009;
Yue et al. 2018].
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We develop an approach that uses a hybrid Lagrangian/Eulerian method combined with an
iterative discrete contact model to attain the positive benefits of both approaches while minimizing
their respective drawbacks. Particle-In-Cell (PIC) is a hybrid Lagrangian/Eulerian (particle/grid)
technique originally developed for compressible flow applications [Harlow 1964]. Recently, gener-
alizations of PIC techniques have been used to resolve collisions with a diverse range of materials
in graphics applications. Particles in a discrete deformable object on a collision trajectory have
velocities that become discontinuous at the moment of collision, however, the grid transfers in PIC
techniques have a regularizing effect that prevents collision by preventing these discontinuities (see
[Marquez et al. 2023]). However, as noted by Han et al. [2019] and Fei et al. [2021], these techniques
suffer from numerical cohesion and friction by the same mechanism. We define a conservative
augury Affine-Particle-In-Cell (APIC) [Jiang et al. 2015; Tupek et al. 2021] technique that does not
suffer from numerical cohesion or friction and that unlike Han et al. [2019] is perfectly linear and
angular momentum conserving. We show that a notable benefit of this conservation is increased
stability with large-time steps in practical simulations. PIC techniques generally require particle
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Fig. 2. (Top) Grid transfers resolve impact velocities. (Bottom) Numerical cohesion: opposing velocities are
smoothed by the grid.

sampling to be comparable to grid resolution. Disregarding this constraint degrades the quality of
their ability to prevent collisions (see [Marquez et al. 2023]). When viewing these transfers as oper-
ators on the boundary of a deformable object mesh, as we do, this requirement can be unrealistic.
For example, when the unstructured mesh representing the deformable object has varying particle
density on its boundary, the coarsest portion will determine acceptable grid resolution. This is
undesirable since an overly coarse background grid leads to less effective collision resolution in
practice. We design novel conservative resampling and subsequent downsampling operators for
the boundary of the mesh to prevent these issues.

While our conservative hybrid approach is free from numerical cohesion and friction, maintaining
this assurance can degrade its ability to prevent all collisions in practice. To resolve this, we augment
our approach with the discrete contact model of Bridson et al. [2002]. We show that our combined
approach drastically reduces the number of iterations that would be required from their approach
alone; furthermore, we attain their strong collision-free assurances. We incorporate this hybrid
collision model into a novel predictor/corrector implicit time stepping scheme. Backward Euler time
integration is the primary building block of our approach and we add a novel Rayleigh damping
model to regulate its inherent numerical damping. Our Rayleigh damping model has a symmetric
positive semi-definite linearization which increases the convexity of the nonlinear backward Euler
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systems and prevents the need for definiteness fixes [Teran et al. 2005] of finite element Hessians
in practice. We summarize our technical contributions below:

e A resampling technique that conserves the mass, the center of mass, the linear momentum,
and the angular momentum of a collection of particles with APIC mass and momentum state.

e A downsampling technique with analogous conservation properties are used to gather grid
momenta associated with a resampled collection of particles into mass and momentum APIC
state for the unresampled, original particles.

e A momentum conserving augury iteration for removing numerical friction and cohesion
artifacts in APIC transfers.

e An implicit predictor/corrector time stepping scheme tailored to our collision response.

e A symmetric positive semi-definite Rayleigh damping model that increases the convexity of
the hyperelastic backward Euler minimization problem.

2 RELATED WORK

Simulating contact between solids remains one of the more challenging aspects of finite deformation
continuum mechanics simulations. We briefly discuss the most relevant works from the computer
graphics and computational mechanics literature. There are many decades of research on the
subject of contact and collision with deforming elastic objects. We refer the reader to reviews of the
state-of-the-art-in computer graphics [Ascher et al. 2021; Nealen et al. 2006] as well as the course
notes in [Andrews et al. 2022; Kim and Elberle 2022]. In the engineering literature, early important
contributions to Lagrangian finite element contact algorithms include [Belytschko and Neal 1991;
Campos et al. 1982; Martins and Oden 1983; Simo and Laursen 1992; Wriggers et al. 1990]. Mortar
contact methods are now often preferred for their accuracy and stability [Popp et al. 2010; Puso
and Laursen 2004], but can have high computational expense due to additional Lagrange multiplier
unknowns, typically do not exactly conserve angular momentum, and not all contact collisions are
guaranteed to be detected. Generally, techniques for resolving collisions with deformable bodies
fall into three categories: penalties/repulsive forces [Baraff and Witkin 1998; Barbi¢ and James 2007;
Gast et al. 2015; Moore and Wilhelms 1988; Spillmann et al. 2007; Teng et al. 2014; Teran et al. 2005],
iterative discrete contact [Bridson et al. 2002; Cundall and Strack 1979; Harmon et al. 2009; Miiller
et al. 2007; Provot 1997; Volino et al. 1995; Wu et al. 2020] and constrained optimization [Baraff and
Witkin 1992; Larionov et al. 2021; Li et al. 2021; Otaduy et al. 2009; Wriggers and Laursen 2006;
Wriggers et al. 1990]. However, hybrid approaches are also possible [Daviet 2020; Fan et al. 2013;
Han et al. 2019; Jiang et al. 2017a; Levin et al. 2011; McAdams et al. 2009; Yue et al. 2018]. Our
approach utilizes a combination of hybrid PIC [Harlow 1964; Jiang et al. 2015] and discrete contact
[Bridson et al. 2002] models. We discuss techniques most relevant to these. Our approach is inspired
by the Material Point Method (MPM), which is an extension of PIC. MPM was first proposed
in [Sulsky et al. 1994] and [Sulsky et al. 1995], with the first strategy for contact introduced shortly
thereafter in [Bardenhagen et al. 2000]. Various improvements to MPM contact can also be found
in [Homel and Herbold 2017; Huang et al. 2011; Nairn and Guo 2005; Xiao et al. 2021]. A strategy
for introducing discontinuities into the MPM was recently suggested in [Moutsanidis et al. 2019]
and shows advantages for sliding and separating contact. Hegemann et al. [2013] make use of PIC
techniques in graphics applications of ductile fracture. Here we utilize the affine particle-in-cell
(APIC) method from [Jiang et al. 2015, 2017b]. The APIC augury iterations utilized in this work
were first suggested in [Tupek et al. 2021], with limited examples. The initial version proved to
be unstable in some situations and was unable to accurately account for large size discrepancies
between foreground and background meshes. Our method successfully addresses these issues. Our
approach is directly related to a few recently proposed hybrid PIC/discrete geometric collision
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techniques. Han et al. [2019] develop a PIC-based contact algorithm for FEM meshes, including
augmentation with Bridson et al. [2002] for thin strands. McAdams et al. [2009] and Yue et al. [2018]
similarly use a hybrid PIC/MPM technique for hair and granular material simulations respectively.
McAdams et al. [2009] augment their approach with Bridson et al. [2002], and Yue et al. [2018]
combine a discrete element method (DEM) [Cundall and Strack 1979] with a continuum model
[Klar et al. 2016; Sulsky et al. 1994] for granular materials.

™

Fig. 3. As shown here, our method is robust to extreme deformation.

3 BACKGROUND AND NOTATION

We represent volumetric deformable objects as a collection of particles x € R*N and a simplex mesh
M e NN“X(@+1) connecting them together. Our approach is designed for volumetric simulation in
3D, however, we use 2D examples for illustration. We use d = 2,3 in our exposition to represent
the case of 2D or 3D simulations respectively. We denote the boundary mesh of the volumetric
object as M, € NN %4 Here N refers to the number of particles, N°¢ refers to the number of
elements in the volumetric mesh (tetrahedra for d = 3, triangles for d = 2) and N refers to the
number of elements in the boundary mesh (triangles for d = 3, segments for d = 2). We also store a
velocity v € RN for each particle in the volumetric mesh. Our approach requires an APIC state
over the particles in the boundary of the volumetric mesh. We use A € R4Nb to denote the vector
of affine velocities associated with particles on the boundary of the volumetric mesh. We use Ny, to
denote the number of particles on the boundary. Next, we describe details of our method related
to the spatially discretized governing physics of Lagrangian hyperelasticity and backward Euler
integration of their temporal dynamics. These aspects of our approach are standard in the graphics
and mechanics literature and we refer the reader to Bonet and Wood [2008] and Sifakis and Barbi¢
[2012] for more detail. The contents of the following subsections are primarily intended for a brief
review and establishing notation. We use Table 3 for a quick reference to the various symbols used
in the exposition.

3.1 Elasticity

We discretize and solve the partial differential equations (PDEs) of motion for volumetric hypere-
lastic materials [Gonzalez and Stuart 2008] with Rayleigh damping [Belytschko et al. 2013] and
frictional collision constraints [Bridson et al. 2002]. We use the finite element method (FEM) with
linear interpolation functions over simplex meshes to integrate the PDEs [Hughes 2000]. This
converts spatial terms in the PDE to discrete elastic forces ff : RN — RN These forces are the
gradient of the discrete potential energy of the system PE : x € R¥N — R. The potential energy
increases as the mesh is deformed from a reference configuration (defined in terms of reference
positions X € R¥N) to any other configuration x € RN It is defined in terms of a hyperelastic
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strain energy density function ¥ : R — R which increases with non-rigidity of the unique
affine transformation that relates the reference configuration of a mesh element to that defined by
x [Teran et al. 2003]. This is typically referred to as the deformation gradient in the element F*:

PE(x) = Z ¥ (F (x)) V0

eeM
T
OPE ONL(X®)
fE(x)=-ZZ(x)= ) P(Fe p VO 0<p<N.
P00 = =5 eeZM< () | ——| Ve 0sp<

Here V? is the measure of the element in the reference configuration, P(F) = ‘;—?(F) is the first
Piola-Kirchhoff stress [Bonet and Wood 2008], X€ is the centroid of mesh element e in the reference
configuration, x,, is the position of particle p (which make up x) and le are the piecewise linear
interpolation functions associated with the FEM space. Furthermore, ff (x) € R are the elastic

forces on volumetric particles p that comprise the vector ff(x). Lastly, we note that we use the
fixed-Corotated model of Stomakhin et al. [2012] for the energy density V.

3.2 Mass

We define mass for each volumetric element e € M from mass density p as m¢ = pV.. We define the
mass for each particle in the volumetric mesh by taking a portion of the mass from each element that
it belongs to my, = 3.c 7» d’"—;. Here 77 is the one ring of mesh elements e € M that contains the
particle p. We note that in a Lagrangian FEM discretization of the governing physics, conservation
of mass implies that element and particle masses m,, do not change with the configuration of the
mesh x. We use m € RV to denote the vector of particle masses in the volumetric mesh. To facilitate
our conservative boundary element resampling, we also need a notion of boundary element mass
mj . for each particle 0 < i® < d in boundary element e € M;. We define the m; ., to partition the
m,, such that

d-1
e S e
P bie> bi¢ |J-bp|

P i€=0
ecl,

(where 7, f is the one ring of elements in the boundary mesh that contain the particle p) and | 77| is
the number of elements in the set.

3.3 Backward Euler (BE)

Given volumetric mesh positions x” and velocities v at discrete time ", we approximate the
trajectories of the mesh vertices under the elastodynamics at the next time "' = t" + At with
implicit time integration. Here, At is the time step. We adopt the approach of Gast et al. [2015] and
characterize this via the minimization
x"!' = argmin E(y), (1)
yeR4N st By=c

E(y) = (y — x" — Atv") TM(y — X" — Atv™) + At?PE(y)+
Aty = x) K (x")(y - x") - A'y Mg

Here x™*! is the backward Euler solution at time t"*!. M € R4NxdN

matrix with entries equal to particle masses m,. KRP ¢ RAN*dN
which we discuss in more detail in Section 8. B € R¥Ne*4N and ¢ € R4Ne express linear constraints
over vertices in the volumetric mesh and N, is the number of constrained vertices. g € R is

is a lumped-mass diagonal
is the Rayleigh damping matrix
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gravity. The backward Euler velocity can be obtained after the minimization in Equation (1) from

n+l = X" —x" \We will henceforth use the notation

At
(X"+1, Vn+l) — BE(X", Vn’ At, m, M, B, C)

to denote the function that returns the backward Euler positions and velocities associated with the
solution of the minimization in Equation (1). Lastly, we note that we solve the minimization problem
in Equation (1) using Newton’s method. We refer the reader to [Sifakis and Barbic 2012; Stomakhin
et al. 2012; Teran et al. 2005] for more details. However, we use standard conjugate gradients to
solve the linear systems. As a consequence of the increased convexity from our Rayleigh damping
model, in practice we do not need to perform the definiteness fixes of the stress derivatives used
Teran et al. [Teran et al. 2005]. We discuss this in more detail in Section 8.

A\

4 METHOD OVERVIEW

n .n n ~n+1 n ~n+1 n+1l . n+1
Xp VP Xp VP Xp VP XT) Vp
n ,n n n ~n+1 n n .n+1 n+1 n+1l . n+1 n+1
Byx, v, Aj Byx, v, Ap Byx, Vi AJT Bex, Vi A

Fig. 4. Method overview: (1) collision-unaware backward Euler positions rewound to time t" (2) collision
processing for the boundary velocities (3) final backward Euler step with interior state reset to ¢ and the
boundary state at t"*! used as Dirichlet boundary conditions.

Our method is comprised of three main components: backward Euler steps (Section 3.3), au-
gury APIC hybrid particle/grid transfers (Section 5), and discrete geometric impulses (Section 7).
While our discrete geometric impulse operation is the standard approach of Bridson et al. [2002],
our augury APIC technique has many novel aspects. Of particular importance are our resam-
pling/downsampling operators (Section 6) and our iterative resolution of numerical cohesion and
friction (Section 5).

ALGORITHM 1: Method Overview: Time Stepping
1. (F™1 1) = BE(x", v™, At, m, M, B(t"*1), c(+™1));
2. (vi, A™1) = LA(B, V™, A", Bym, My);
Vit = £I(vi Bym, My);

B(tn+1) C(tn+1)
JA (n+1y — .
B = [ B, Byx" + Atvz+1 ’

3. (Xn+1,vn+1) — BE(Xn,Vn, At, m,M,BIA(l’n+l), CIA(tn+1));

, CIA(tn+1) —

We first take a backward Euler step to compute tentative time t"*! positions and velocities
(x™*1,¥"*1), This update is collision unaware so we rewind the positions to time " and process
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the tentative velocities v**! for collision. We do this in a two-step process. In the first step, we use
our resampled augury APIC impulse operator £4 : R4Ne x R¥No 5 RNo 5 NN;*d _ RN x R4"Ns
to efficiently apply conservative and grid-resolution-independent impulses that prevent collision
without numerical cohesion or friction (see Section 5). This defines a new boundary APIC state
(v‘;, A1), Note that after this process, the linear part of the APIC state (A"*!) is finalized for the
time step, while the constant part (V‘;) will be further processed in the second step.

In the second step, we apply the collision impulse model of Bridson et al. [2002] (see Section 7).
We denote this process with the operator £ : R¥No x RNe x NVo %4 — R4Nv This defines the final
collision processed boundary velocities vj*".

Lastly, once we have finalized the collision response on the boundary, we redo the backward Euler
time step from time ¢" to ¢"*! where the boundary is constrained to follow the linear trajectories
determined by the finalized velocities in the previous two steps. This propagates the collision
response to the interior, which allows for increased stability and larger time steps (see [Marquez
et al. 2023]). We note that our collision processing has the continuous collision detection (CCD)
assurances of Bridson et al. [2002] that linear trajectories of boundary points (based on their
collision-processed velocities) will guarantee a collision-free state on the boundary over the time
step.

We summarize this process in Fig 4 and Algorithm 1. Note that we make use of the matrix
B, € R¥NvXdN whose rows are associated with boundary particles and whose columns are associated
with volumetric particles. There is only one non-zero entry per row in the column associated with
the boundary particle’s location in the volumetric particle array. For convenience, we use the
notation B,m to denote the masses associated with boundary particles, although this is a slight
abuse of notation.

5 AUGURY ITERATION: £A

We leverage the natural collision prevention tendencies of PIC techniques to define our collision
operator £4 : R¥Nb x RENo 5 RNo 5 NNi*d 5 RANs 5 R4°Nb_ This operator maps the elastic object
boundary affine momentum state to itself to resolve portions of the mesh on collision trajectories. It
is composed of three components: APIC [Jiang et al. 2015] particle/grid mass/momentum transfers,
novel resampling/downsampling strategies, and an augury iteration designed to prevent numerical
cohesion and friction. We adopt the standard APIC transfers and refer the reader to Jiang et al. [2015]
for details. Our resampling and downsampling strategies are designed to prevent the degradation
of collision prevention abilities that arise with disparate boundary mesh and background grid
resolutions (see Section 6). Here we discuss our conservative approach to removing numerical
cohesion and friction inherent in the naive APIC transfers.

We first define the conservative operator L84 = £6% o £DS o £P26 6 £RS which maps the affine
velocity state of the boundary particles to itself via composition of the APIC particle-to-grid (P2G)
and (G2P) operators (L2C and £F?C respectively) together with the resampling and downsampling
operations (L® and £P%) outlined in Section 6. We summarize this process as

RS P2G DS G2P

(Vi A) S (5, 8) S (tng, Bg) <> (g, pg) > L8A((w, A)). @
Here we use (vp, A) to denote the APIC state of boundary (where v, € R¥Ne and A € R¥Ne are
vectors containing the constant and linear parts of the APIC velocity for particles in the boundary)
and (mg, py) to denote the grid mass and momentum state after an APIC particle-to-grid (P2G)
transfer (where m, € RNes and p; € R¥Nbs are vectors containing the mass and linear momentum
on grid nodes and N}, ; is the number of grid node x; whose interpolation functions Nj are non-zero
on some boundary particle). Here, Nj(x) are quadratic B-spline interpolating functions associated
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with grid node x; used to transfer particle quantities to grid quantities [Jiang et al. 2015; Stomakhin
et al. 201?]. Similarlyi we use (\712, A) and (Iﬁg: Py) to denote their resampled counterparts (where
Vp € R4Nb A e Rdsz, m, € RNeg py € RANbg Nb and Z\Afb,g have meanings analogous to their
down downsampled counterparts).

As shown in Figure 2, the APIC transfers naturally regularize particles on collision trajectories to
prevent impact. However, they also prevent separation and relative sliding by the same mechanism.
This was noted in Han et al. [2019] where cohesive and frictional responses were discarded in
a simple and non-conservative per-boundary-particle manner. We adopt the approach of Tupek
et al. [2021] to leverage the conservative-smoothing/low-pass-filter nature of the APIC operator
to conservatively damp out regions where it is cohesive and/or overly frictional. We do this by
iteratively applying the operator to the change it induced in the previous iteration, but only where it
is deemed overly frictional or cohesive with the aim of damping the unwanted cohesion and friction
to zero. By design, this process retains the momentum conservation properties of APIC techniques.
We refer the reader to Jiang et al. [2015] for discussion of the conservative-smoothing/low-pass-filter
properties of PIC.

We define the conservatively resampled augury APIC mapping £ by first initializing its output
to be equal to the resampled APIC operator £L*5, We then interpret its output as defining impulsive
changes in the boundary grid node momenta and check if these impulses are cohesive. If they are
not deemed cohesive, we accept the normal component of the impulse. Next, we increment the
APIC output by the difference between the conservatively resampled APIC operator L2 applied
to the cohesion processed impulse and itself. This increment does not change the momentum state
since both £R%* and the identity operator are linear and angular momentum conserving. We repeat
this process until we hit a maximum number of iterations or the impulses converge to a tolerance.

We reiterate that the low pass filter nature of £ and its repeated application to the normal
component of the impulse is designed to dampen any cohesion or friction to zero. Technically, for
a frictionless response, the tangential component of the impulse must be filtered along with the
cohesion. However, we found that while this effectively limited these effects it degraded collision
prevention. If we instead keep the tangential component whenever a change is deemed non-cohesive,
we observed stronger collision prevention abilities, albeit at the expense of some numerical friction.

We outline this process in Algorithm 2. Note that the normal n,, is used for determining numerical
cohesion for each particle on the boundary via area-weighted normalization. Further, note that
we denote the option of accepting some numerical friction for the benefit of improved collision
prevention as NF.

6 BOUNDARY ELEMENT RESAMPLING: £RS £DS

As shown in [Marquez et al. 2023], when the resolution of the boundary mesh is too coarse
relative to the background grid, the collision resolution abilities of PIC techniques degrade. In
extreme cases, collisions can be completely missed altogether. We design a novel resampling strategy
to remove this limitation as well as a novel downsampling strategy to return the boundary to its
original resolution.

Our resampling strategy is designed on a per-boundary element manner. For boundary element
e € My, with boundary positions x; ., masses m; ., velocities v . and affine velocities A} . where
0 < i° < d, we resample to create positions )}Zje, masses rhije, velocities ‘A’Zje and affine velocities
AZ}.e for 0 < j® < Nf. For each element local particle index i°, there is a corresponding global
boundary index p; the velocity v; . and affine velocity Aj . are then equal to v, and A, respectively,
where these are the vectors which constitute the input state (vj, A) to LS. Here we use N to

denote the number of resample points in boundary element e (see Figure 5). Care must be taken to
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ALGORITHM 2: Augury Iteration: (v, A)A = LA((¥, A))

(v, A2 = LBA((¥,A));
while it<max_it do
Sv=vA

for (p = 0;p < N’ p++) do

-V

if dvy, is not cohesive(dvy - ny <= 0) then
if NF then
‘ 5Vp = 0,
else
‘ 5Vp = 5Vp - (5Vp . np)np;
end
else
end

end
(v, A)A+ = LRSA((Sv, 5A)) = (6v,0);

end

| —\% | |
/ /- IN
s ] S SRNAY § ZBmag
':: A ¢ A
\ e \| [ [eo \| [ Telo®
\ \ i \[[*]s}
r Y Eked

e e e e e € € A ©
Mpje s Xpies Ve Apie Mpjer Xpje, Vije, Apje

Fig. 5. (Left) Boundary element e has particle quantities (blue) with implied background grid state (green).
(Middle) Resampling of the particle quantities into the resample points (red) conserves various element
properties. (Right) Resample points have an analogous grid representation that better represents the element
in finer grids.

conserve the total mass (m;),the center of mass (x;_ ). linear (p;), and angular momenta (17) of

the boundary element in the resampling process. While the element mass and center of mass are
defined in the standard way, i.e.

|
e _ e e —_ e e
my, = Z Mpje Kpcom = e Z MpjeXpies
i€ b ie=0
element momenta are defined with the APIC [Jiang et al. 2015] convention where boundary element
particles x; . contribute based on their associated grid momenta
ei® _ e e e e e
P = mpeNi(xge) (Vhe + Apie (xi = Xp,0))

at grid node x; defined from an APIC transfer to the grid. Summing over the element points

i¢ defines the boundary element grid momentum distribution p;{ = Z?;B pf’ie. The total linear
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(pz =24 pf) and angular (lz =>4 (xi - xl‘;com) X pf) momenta of the element (computed about
the element center of mass) are defined from the element grid momentum distribution.

The total momentum distribution of the boundary is defined from the sum of the element-wise
contributions p; = . p{. The total mass and center of mass are defined similarly:

1
mp = Z my, Xpeom = e Z Z my,e Ni(Xj ) Xi.

ee M, i eeM,

The total grid linear p; and angular 1, momenta (computed about the boundary center of mass) of
the boundary are related to the element-wise counterparts by the relations

Po= ), P b= D, L+ D (Xfeom — Xbcom) X P}, 3)

ee My ee My ee My

Equation (3) shows that the total linear momentum of the boundary is equal to the sum of the
element-wise linear momenta. As illustrated in Figure 6, the total angular momentum of the
boundary is equal to the sum of the angular momenta of each element (computed about its center
of mass) plus the sum of the angular momenta induced by the total linear momentum of the
element and the relation of its center of mass to the global center of mass. Thus, choosing a
resampling strategy that preserves m®, x; . p;,and Iy gives the appropriate notion of local and
global conservation.

bcom

( ) > Z (%5 = Xeom)XP]  + Z — Xjcom) XD

Xj Xbcom = ) |+ Z (X5 com — Xbcom) XDJ,

i + Z‘Xi Xpeom ) X + Z Xi 7xbc01n)><1)i, e
i i

V. | 1
a r | ) | {A;’t o
| e j?;II\ — ___i__ i 7 n | 7 X
I A e, L A\
[ a4 e Hy \ P
| VL:_“_\ 1»:5_57
- +
*beon i ®khoon
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Fig. 6. The global angular momenta between the mesh and grid representations are equivalent. The details of
the proof are in the supplemental technical document [Marquez et al. 2023], we illustrate the basis for the
proof in this diagram.

6.1 Mass and Position Resampling: Partition of Unity and Linear Reproduction
We choose the resampled positions xb . using random Poisson disc sampling within the element
together with the original x} .. We use the convention that the first d resampled points )sze coincide
with the original x} .. Poisson disc sampling for the remaining points is chosen to prevent particle

clumping while maintaining separation by no more than % on average (Ax is the grid spacing).

We require the resampled positions X ., to be inside the element and we require that the resampled
masses m . be positive and conserve the element mass 1y = Zfﬁ ;1 rﬁb] my.
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We also require conservation of the element center of mass x; . Furthermore, in order to allow
for momentum conservation in our downsampling strategy (see Section 6.2), we must ensure that
both the center of mass of the first d resample positions and the center of mass of the remaining
resample positions (d < j¢ < Nf) are equal to the element center of mass.

We preserve the center of mass of the first d resampling points by simply scaling their original
masses mb .= smb]e, se€(0,1],0 < j¢ <d

This associates a scaling of the total element mass sm; to these particles and the remaining
resampled masses mb o> d < j¢ < Nf must be chosen to partition the remaining element mass
(1 —s)m} in such a way that their center of mass is equal to that of the element. This can be
achieved by defining these masses in terms of interpolation functions Nfe, d < j® < N¢, defined

over the remaining resample points as

iy e = (1= $)mp NS (X5 o), (4)

where the functions Nji satisfy partition of unity (Zjir: ;1 N]ee (x) = 1) and linear reproduction
(27;:;1 ’A(Zje Nfe (x) = x) properties. We adopt the approach of Arroyo and Ortiz [2006] to create
interpolation functions that satisfy these requirements for unstructured particles. This choice
allows for total element mass conservation and the conservation of the center of mass from the
partition of unity and linear reproduction properties (respectively) of the interpolating functions

N;e [Marquez et al. 2023].

6.1.1  Affine Velocity Resampling. We choose the resampled APIC velocity state f/[e)je and AZje in
a manner that preserves the total linear (p;) and angular (I;) momenta of the boundary element
and that preserves the state of the first d resample points x;,, = xj ., 0 < k® < d (those that
coincide with the original boundary positions). Recall from Section 6 that the linear and angular
momenta of the original points in the element are defined from the grid momentum distributions
P = me  Ni(xg,0) (v

bie pie T A ( Xi ~ Xpe
et al. 2023], we can relate the total linear and angular momenta of this distribution to the APIC

Ax*me .,
; e d-1 bi€ e T _
velocity state as pj = E P 0 mp . V. and 1 = iy — e Ap L + (szf Xbcom) bieViies

where € is the permutation tensor and the notation € : A denotes the vector b with indices
by = €qpyApy [Jiang et al. 2015]. We resample linear velocities ¥ .. using linear interpolation:v} ., =

) As outlined in the supplementary material [Marquez

X mé

bje bje
Zle_o e je Vpje» Where A%, are the barycentric weights of the resampled positions x . relative to
X} e Thls preserves the linear velocities of the original element points vy . = kae, 0 <k®<d

and preserves the total linear momentum Here we use the linear reproduction property of the
resampling interpolation functions N, to equate the barycentric weights of the center of mass
with the interpolated barycentric weights of the resample points

NE-1
e,.com __ %
™ = 3 N () e )
je=d

Also, the center of mass velocity is defined from the total linear momentum as vy = = Lp¢=
com my Yb
pa ”:";’ = ydhageom v§ . since ratios of the element vertex masses mj . and the total

element mass m¢ are equal to the barycentric weights of the center of mass mLff = A50m,

We define resampled affine velocities Aeje using linear interpolation, but with a corrective
angular velocity Aw® for resample points d < j¢ < Nf chosen to allow for perfect conservation of
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angular momentum

Ale;ke = AZkE’O <k < d, (6)
d-1

Af = D Moo +e: Aot d < ° < Nf. (7)
i€=0

Here the notation € : Aw*® refers to the second order tensor B with indices B,5 = EapyWy. The
corrective angular velocity Aw® affects the total angular momentum of the resampled element as

Nf-1d-1
e _1e _ enxre (e e _ e e e
=l+-9) > > mNe(fm) (the xbcom) X Ajeie Ve
je=d i"=0
d-1 2
Ax
—(1=9) ) (X6 e = Koo X MEeVh e = (1= 9)m == A", ®)
je=0

Note that this shows that linearly interpolating the affine velocities A7 . perfectly conserves the
angular momentum in the element resulting from those terms, but that linearly interpolating the
linear velocities v . does generally change the angular momentum. We choose the corrective
angular velocity Aw® to account for this difference:

Aof = — 2 _AE, 9)
Ax?(1 - s)me b

Nf-1d-1

A= (15) D 3 MmN (6o (85 e~ Xfom) X Afere Ve
je=d i°=0
d-1

-(1-5%) Z (XZje - XZcom) X ijeVZje~ (10)

jé=0

The resampled velocities and affine velocities across all boundary elements together form the
output state (¥p, A) in an analogous manner to the input state (v, A).

6.2 Downsampling Affine Velocity: £P°

The output 1, and p, of the P2G operator LF?C are comprised of masses ri; and momenta p;,
respectively, over the grid nodes i. The grid node velocities are updated after the transfers as p;
divided by ;. Resampled particles of the element can be seen as having a grid mass distribution

m = Zji’:; Ni(xzje)rhzje. Multiplying the grid masses by their corresponding updated grid
velocities will provide the resampled element linear momentum distribution p{ = i (p;/ri;). This
has the effect of conservatively partitioning the grid momentum distribution into element-wise
counterparts.

We design a conservative procedure for condensing p{ back to affine velocity state vj ., A} .,
0 < i® < d defined over the original element. Note that the resampled grid momentum distribution
is defined over many grid nodes that do not (in general) affect the original unresampled element (see
Figure 7). That is, p{ is defined over grid nodes %; with Ni(f(;je) # 0 for some j¢ with 0 < j¢ < Nf.
To conservatively define the APIC state over the unresampled original element, we create a grid
momentum distribution p{ defined over grid nodes x; with Nj(xj..) # 0 for some i with 0 < i® < d
and then leverage the conservative nature of the APIC grid-to-particle (G2P) transfers from this
grid momentum distribution to the affine state v} ., A} .., 0 < i < d. We first compute the total
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Fig. 7. (Left) The downsampling operator starts with the updated grid momenta p{. (Middle) Linear and

angular momentum of the resample points’ grid distribution is merged to the element center of mass: f)[‘;, iz
(Right) Momenta is distributed to the original boundary element grid in a conservative manner: p;.

element linear and angular momenta from the grid distribution
Bp= > 5 Ip= D 06— Xfe) X B (1)
i i

We add a portion of linear momentum f’; to each grid node x; based on their associated interpolation

by computing
the angular velocity wj assomabted with grid nodes x{ assuming they have mass distribution
m{ = =i mp . Ni(X}, ) and associated inertia tensor I°. We then add momenta to the grid nodes
x{ associated W1th an angular momentum state w; about the element center of mass

The total mass of each distribution }; m$ = 3; Zle Zo My Ni(x},.) and 3 il = 355 Z e 01 e N (x .)
is equal to the element mass mj and their respective centers of mass are both equal to the element
center of mass x; . Furthermore, the total linear momentum of the downsampled grid distribution

p; is equal to p; and its total linear momentum is equal to Ie.

d-1 d-1
DI =0 D D (i = X)X B =1 (12)
i i€=0 i i°=0
The details of these calculations may be found in [Marquez et al. 2023]. The final output state
(my, py) thus consists of the grid masses m; = 3., m{ and momenta p; = 3, p;.

7 DISCRETE GEOMETRIC IMPULSES: £!

Although our augury operator £ prevents most collisions, in practice the iterative removal of
cohesive/overly-frictional terms can degrade some of its ability to prevent the collision. In Figure 8,
segment penetration can occur on forced collisions with large deformations that cause penetration
through the tangential component if the timesteps are large. We, therefore, augment it with an
iterative impulse-based post-process using conventional point/triangle and edge/edge pairs in
the boundary mesh. We adopt the approach of Bridson et al. [2002] and iteratively apply these
impulses based on proximity at the beginning of the time step and based on pairs determined to be
colliding during the time step using continuous collision detection (CCD). Furthermore, we adopt
their friction model since by design, our augury APIC operator £? is frictionless. Particles in the
point/triangle and edge/edge pairs are assumed to take linear trajectories determined from locations
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t=0 t=1 =2

Fig. 8. (Left) Resample augury iteration that constrains tangential sliding has segment-segment penetration.
(Middle) Resample augury that allows tangential sliding has penetration as the material slides tangentially
around the corners and edges. (Right) L85 resolves the frictionless collision with no penetration.

at the beginning of the time step and the linear part of their APIC velocity state. We use the approach
of Brochu et al. [2012] for the CCD determinations. We consider this to be a process that operates
on the linear part v € RIN" of the APIC velocity state. We use £1 : R¥Ne x RNo x NNz ¥4 5 RN
to denote this process. For a detailed explanation of how impulses are calculated, as well as proof
that they are linear and angular momentum conserving, we refer the readers to [Marquez et al.
2023].

8 RAYLEIGH DAMPING

Our Rayleigh damping model serves two purposes. First, it damps non-rigid modes so that backward
Euler does not suffer from purely numerical damping that reduces with smaller time steps. This adds
predictive control of the amount of damping in simulations, independent of time step size. Second,
it increases the convexity of the backward Euler system allowing for more rapid convergence.
Rayleigh damping for FEM discretization of hyperelasticity is analogous to adding damping to a
one-dimensional spring where the damping coefficient is proportional to the stiffness of the spring
[Belytschko et al. 2013]. However, in this case, the stiffness is given by the force Jacobian matrix

A% evaluated at the previous time step. As such our Rayleigh damping model is of the form

Ix
fRD(Xn Vn+1) — _KRD (Xn)vn+1

where KRP (x") is proportional to a modified stiffness matrix. The stiffness matrix, although
symmetric, will generally have negative, zero, and positive eigenvalues. In Teran et al. [2005], an
element-wise definiteness fix was used to compute an always symmetric semi-definite counterpart
to admit the use of conjugate gradients for the solution of the linear systems in quasistatic problems.
However, this requires the solution of a 3X3 eigensystem and three 2X2 eigensystems. Although
this cost is negligible since these can be computed rapidly and in parallel, a simpler and satisfactory
strategy for the Rayleigh damping model is to compute element strain energy Hessians at the polar
decomposition of the deformation gradient

-1d-1 L L (ye
KRD (Xn) _ RD Z Z Z aP‘XY (Re n)) a]\Ii (Xe) ajv] (X )VO
1] e
B 494 X, 0Xe
d-1d- L L (vye
_— Z ) F( n))aNi (X¢) N/ (X )VO
e
oy vir e aFﬁE X, X
fE
aRD 1y (Xn)
IXjy
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Here a®P > 0 is the damping coefficient where aRP < 1, a®P = 1 and a®P > 1 give behaviors

analogous to underdamped, critically damped, and overdamped springs respectively. Note that in
practice we found a®P = .1 to give a qualitatively appropriate amount of damping in our examples.
F¢ = R®S¢ is the polar decomposition of the deformation gradient. We use the approximation
‘;—g (F) ~ 3—? (R®) because the matrix ‘;—g R¢) is positive semi-definite yet still rotationally consistent.
The semi-definiteness of g—}F’(R"’) can be seen readily from the derivations in [Teran et al. 2005].
From Teran et al. [2005], we know that 6F : 2 (R¢) : 6F = (U¢'SFV¢) : 28 (1) : (U¢TSFVe)
since R¢ = U¢V¢T | 5o it suffices to show the positive semi-definiteness of g—g (I;) where I; € R9*4
is the identity matrix. Also from Teran et al. [2005], we know that for isotropic materials, the
matrix g—g(ld) is a block diagonal matrix with diagonal components A, Byz, B3, B2s such that

2+ A A A
A = A 2p+ A A |,By = [,u ,u] where A and p are Lame parameters. Since each
A A 2u+ A kH
matrix on the diagonal is positive semi-definite, the matrix g—i(Re) is positive semi-definite.

As shown in Equation (1), the At scaling before KXP is one order lower than that of the potential
energy PE. So in practice the mass matrix M and Rayleigh matrix KXP dominate the backward
Euler Hessian HE = M + AtKRP + A2§ relative to the stiffness matrix %f—f. We found that this
made the HB symmetric positive definite in practice, without performing the definiteness fix on

%. Note that without our symmetric semi-definite Rayleigh damping model, this is not the case,
e.g. as was shown in McAdams et al. [2011].

9 EXAMPLES
9.1 Augury lterations and Resampling

Fig. 9. (Left) Two circles collide using APIC transfers on a coarse grid where cohesion prevents separation.
(Right) Using five augury iterations [Tupek et al. 2021] the cohesion is removed.

Fig. 10. (Left) On a finer background grid the APIC transfers with augury iterations [Tupek et al. 2021] miss
the collision. (Right) The resampling method manages to capture the collision.

The collision of two circular meshes is simulated with only APIC collision responses (no .£!
impulses) to illustrate the grid-dependent collision resolution degradation and the numerical

cohesion that arises without the augury iteration method from Tupek et al. [2021]. A coarse
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ik

Fig. 11. Our method naturally resolves contact in flesh deformation simulations.

background grid will experience numerical cohesion from grid transfers as shown in the left
simulation in Figure 9 where the circles stick together. The cohesion is removed from the coarse
grid with only five augury iterations. This is shown in the right simulation in Figure 9 where
the circles separate after colliding. In Figure 10, we refine the background grid to highlight the
importance of the resampling/downsampling strategy. Note that in the left simulation, we do
not use the resampling/downsampling operators only the approach of [Tupek et al. 2021] to
highlight the degradation in the collision response that occurs. The degradation arises from the
coarsely spaced surface nodes relative to the background grid. In the bottom simulation, our
resampling/downsampling strategy increases the foreground particle density to be high-enough
relative to the background grid to capture the collision and prevent the spheres from overlapping.
Thus, the collision is resolved on finer grids than would otherwise be possible.

9.2 Two Blocks Collision
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Fig. 12. (Left) Collision of two rotating blocks. (Right) Linear and angular momentum plots for symplectic
and backward Euler timesteps.
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In Figure 12 two rotating elastic blocks collide to demonstrate the linear and angular momentum
conservation from the resample/downsampling operators. Linear momentum is conserved through
the collision for both timestep methods, however, angular momentum changes only when using
backward Euler due its lack of an angular momentum conservation property [Jiang et al. 2017b]. In
Figure 8, two elastic blocks are compressed by a moving boundary condition. The limitations of
the augury APIC method £# alone, without the geometric impulses £ are explored. The three
simulations use: (left) £* alone with NF = true, (middle) £* alone with NF = false, and (right)
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L4 with NF = true and £!. Without £! (left and middle), as compression increases, the corners
and edges of the block penetrate the other block from the tangential direction. This is because the
augury estimation of friction is less separated from the estimation of cohesion at regions of high
curvature. The right simulation resolves the issue with the addition of £'.

As shown in Figure 13, our approach has the additional benefit of improving the convergence
and overall run time of the impulse iterations £!. The initial frames of the collision only require
a few iterations to converge as the collision occurs primarily in the normal direction, thus £4
captured most of the collision. More £! impulse iterations are required when penetration in the
tangential direction is allowed by £4, but significantly less than a method based purely on £, The
overall run time, including the overhead of L4 is also reduced compared to L1 alone.

Impulse Iterations Convergence

Il Impulses
700 [{L—IResample Augury + Impul 1

800

600 [ 1
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# of iterations

ol sh_i |.....||..||u|.|||.|||.|||||IIII|II||||II|||||||||||||||‘|||||II|||||||||
60 80

100 120

Frame #
Fig. 13. (Left) Side view of two blocks being pushed into frictionless contact by elastic supports. (Right)

Augury iteration reduces Bridson et al. [2002] impulse iterations. This decreases the run time from 5319s to
4680s.

9.3 Comparison with other methods

Fig. 14. Three methods are compared for two colliding spheres with 5K elements (Left) [Hegemann et al.
2013], (Mid) IPC, and (Right) ours. Each method resolves collision succesfully.

We compare our approach with similar methods used in graphics applications. The incremental
potential contact (IPC) approach of Li et al. [2020b] uses a barrier potential to perfectly resolve
collisions and has been shown to handle many challenging contact problems with volumetric solids.
Hegemann et al. [2013] use a similar PIC-style approach to resolving contact. We compare the
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performance of our approach with both approaches using a colliding spheres example (see Figure 14)
over multiple spatial resolutions and with the same time step sizes (see Table 2). The PIC-style
approach of Hegemann et al. [2013] performs faster than our method as the PIC/FLIP transfers are
only done once as opposed to multiple times from our approach, however, this method does not
conserve linear or angular momentum once collisions occur (see Figure 15). IPC performs similarly
to ours, however, it is more costly at higher spatial resolution than our approach. Unlike Hegemann
etal. [2013], IPC and our approach both conserve linear momentum in all cases. However, backward
Euler time stepping does not conserve angular momentum (see e.g. [Jiang et al. 2017b]). When
explicit (symplectic) Euler is used with our approach, conservation of the angular momentum is
achieved.
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Fig. 15. We compare the linear and angular momentum conservation properties of our method using backward
Euler (BE) and symplectic Euler with Li et al. [2020b] (BE) and Hegemann et al. [2013] (BE).

9.4 Twisting Legs

In Figure 1, a body mesh is put through large deformation by imposing rotational motion constraints
on the leg and arms. The collision that the twisting motion generates has a significant tangential
sliding component that needs to be captured without penetration. The convergence when using
only £ impulse iterations compared to using our combined approach is shown in Figure 1. The
iterations required to converge are significantly reduced with our combined approach, as the overall
runtime is reduced from 21082s to 15510s.
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9.5 Moving Body

Our algorithm can be used to simulate collisions on animated mesh models. The motion of the
interior points in a body tetrahedral mesh is fully prescribed, forcing the surface mesh to collide
and respond. In Figure 11, the collisions on the surface that occur from the motion of the interior
points are captured accurately with our method.

9.6 Roller Examples

In Figure 3, an armadillo mesh experiences large deformations under compression by having gravity
and friction drive it through rotating cylinders. The rollers have constrained velocities and positions
for each time step, the roller masses are larger than the armadillo to drive the motion. Self-collision
in the armadillo and collisions between the roller and the armadillo are robustly captured.

10 PERFORMANCE

Table 3 shows average per-timestep runtime details for several of our examples. For this table,
all experiments were run on a desktop with an Intel Core i9-10920X 3.5 GHz LGA 2066 12-Core
processor equipped with 32GB RAM.

11 DISCUSSION AND FUTURE WORK

Our hybrid particle/grid iteration improves the state-of-the-art in simulation of volumetric elastic
contact. As shown in Section 9.3, our approach improves in conservation and speed over IPC
[2020b] and Hegemann et al. [2013]. Furthermore, our approach drastically decreases the impulse
iteration count required with the technique in Bridson et al. [2002] (see Figure 1). Note that our time
step limitations are similar to Bridson et al. [2002], however, our APIC grid transfers require that the
magnitude of position changes does not exceed one cell length of the background grid per time step.
The APIC grid transfers were leveraged for their conservation of angular momentum, but other
transfers with similar properties can be used with augury iterations. Note also that our conservative
resampling strategy addresses grid-resolution restrictions on the FEM that would be present in
Tupek et al. [2021] (see [Marquez et al. 2023]). In future works, the resampling and downsampling
strategies similar to the one presented can be expanded to volumetric elements instead of contact
surfaces. These techniques could be used in more general MPM and PIC techniques. Lastly, we
mention that our use of MPM/APIC transfers can allow for the natural coupling of unstructured
FEM techniques with general MPM simulations of various materials.
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Table 1. Summary of Notation.

Symbol Definition

¥ Hyperelastic energy density function

F¢ Element deformation gradient

f)f (LX) Elastic force on mesh node p

aN‘;;(X ) Linear interpolating functions of FEM mesh

my Mass of mesh node p

|Ilf’ | Number of elements in the one ring (in boundary mesh) of node p

x" Mesh node positions at time t"

v" Mesh node velocities at time "

M Lumped-mass diagonal matrix

KRD Rayleigh damping matrix

Bym Boundary mesh nodal masses

Byv Boundary mesh nodal velocities

A APIC linear velocity state

LA Augury APIC impulse operator

Lf Bridson et al. [2002] impulse operator

LRSA Resample augury APIC impulse operator

L6 APIC grid to particle operator

Lo Downsampling operator

L6 APIC particle to grid operator

L8 Resample operator

mp. Boundary element nodal mass of element node i°

X} e Boundary element nodal position of element node i°

Ve Boundary element nodal velocity of element node i¢

A} Boundary element nodal linear velocity of element node i

n%zje Resampled boundary element nodal mass of resampled element node j¢
f(l‘;je Resampled boundary element nodal position of resampled element node j*
\72}.6 Resampled boundary element nodal velocity of resampled element node j¢
AZJ.E Resampled boundary element nodal linear velocity of resampled element node j¢
m; Resampled background grid mass for grid node i

X; Resampled element background grid position for grid node i

Pi Resampled element background grid momentum for grid node i

X} om Boundary element center of mass

N; Background grid interpolating function

P, Boundary element linear momentum

1 Boundary element angular momentum

s Mass scaling coefficient

Nie Arroyo and Ortiz [2006] local maximum entropy interpolating functions
Alese Barycentric weights of the resampled positions j¢ with respect to original positions i
A" Barycentric weights of the boundary element center of mass

Aw*® Corrective angular velocity

I° Element inertia tensor

aRb Damping coeflicient

HBE Backward Euler Hessian
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Table 2. Performance measurements.

44:25

Example E, p,v #nodes At run time (s) avg ¢ per frame (s)
1K Sphere BE IPC 50K, 1000, 0.3 3.5k 0.005 125 2.0833
1K Sphere BE [Hegemann et al. 2013] 50K, 1000, 0.3 3.5k 0.005 180 3
1K Sphere BE Our Method 50K, 1000, 0.3 3.5k 0.005 240 4
5K Sphere BE IPC 50K, 1000, 0.3 14k 0.005 993 16.55
5K Sphere BE [Hegemann et al. 2013] 50K, 1000, 0.3 14k 0.005 720 12
5K Sphere BE Our Method 50K, 1000, 0.3 14k 0.005 960 16
19K Sphere BE IPC 50K, 1000, 0.3 57K 0.005 11,420 190.3333333
19K Sphere BE [Hegemann et al. 2013] 50K, 1000, 0.3 57k 0.005 7,620 127
19K Sphere BE Our Method 50K, 1000, 0.3 57K 0.005 8,400 140
Table 3. Performance measurements.
Example (Figure) E, p,v #nodes average At avgt substep (s)
Bunnies ([Marquez et al. 2023]) 750, 100, 0.3 210k 0.005 5.3
Blocks (13) 1000, 100, 0.3 209k 0.005 3.6
Twisting legs (1) 7000, 1000, 0.4 145k 0.002 6.36
Moving body (11) 5000, 25, 0.3 50k 0.003 6.45
Armadillo (3) 5000, 1000, 0.3 68k 0.002 4.5
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