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We present a deep learning-based method for estimating the neutrino energy of charged-current neutrino-
argon interactions.We employ a recurrent neural network (RNN) architecture for neutrino energy estimation
in the MicroBooNE experiment, utilizing liquid argon time projection chamber (LArTPC) detector
technology. Traditional energy estimation approaches in LArTPCs, which largely rely on reconstructing
and summing visible energies, often experience sizable biases and resolution smearing because of the
complex nature of neutrino interactions and the detector response. The estimation of neutrino energy can be
improved after considering the kinematics information of reconstructed final-state particles. Utilizing
kinematic information of reconstructed particles, the deep learning-based approach shows improved
resolution and reduced bias for themuon neutrinoMonteCarlo simulation sample compared to the traditional
approach. In order to address the common concern about the effectiveness of this method on experimental
data, the RNN-based energy estimator is further examined and validated with dedicated data-simulation
consistency tests usingMicroBooNE data. We also assess its potential impact on a neutrino oscillation study
after accounting for all statistical and systematic uncertainties and show that it enhances physics sensitivity.
This method has good potential to improve the performance of other physics analyses.

DOI: 10.1103/PhysRevD.110.092010

I. INTRODUCTION

Neutrino oscillations, which refer to transitions between
different neutrino flavor states along their propagation
length, are of strong scientific interest as they unequivocally
prove the existence of neutrino mass, which was not
predicted by the original Standard Model (SM). The precise
nature of these oscillations is not yet known and is a focus of
many experiments [1]. Some key unanswered questions
include the order of neutrino masses, the octant of the
mixing angle θ23, and the presence of leptonicCP violations.
The latter question is especially relevant to early Universe
phenomena such as leptogenesis which has been proposed to

explain the observed baryon asymmetry of our Universe [2].
In addition, neutrino oscillations serve as a probe for physics
beyond the SMsuch as the hypothetical sterile neutrino states
within well-motivated extensions of the SM [3].
The estimation of neutrino energy Eν is of crucial

importance to experiments studying the phenomenon of
neutrino oscillation, since the transition probabilities
depend on neutrino energy, in particular on L=Eν, where
L is the distance the neutrino has traveled. These experi-
ments typically involve the scattering of neutrinos with a
broad distribution of energy (i.e., they are not monochro-
matic) on a fixed nuclear target, which also serves as a
detector. Examples in accelerator experiments can be found
in Refs. [4–7] among others. As a result, the neutrino
energy is not known a priori on a per-interaction basis and
must be reconstructed from the interaction itself.
This work focuses on the energy estimation of charged-

current (CC) neutrino events since these events are of most
interest for oscillation analyses. The ν-Ar CC neutrino
interactions are associated with the weak CC neutrino
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interaction vertex νl → l− þWþ (and ν̄l → lþ þW−) and
are characterized by the presence of the primary outgoing
lepton l�. The energy of the incoming neutrino is trans-
ferred to the primary lepton l� and the argon nucleus
(through W� bosons). The latter part of the energy can, in
turn, create a number of secondary hadronic particles. By
measuring the energy of the primary lepton and the
energies of the resulting hadronic particles one can make
inferences about the energy of the incoming neutrino.
For simple CC interactions where the scattering is elastic

and on quasifree nucleons within the nucleus (“charged-
current quasi-elastic” or CCQE), the neutrino energy can be
reconstructed from the kinematics of the outgoing charged
lepton that is associated with the neutrino, i.e., μ (e) for νμ
(νe) [8]. For the CCQE interaction νμ þ n → μ− þ p,
assuming two-body scattering under the energy and
momentum conservation laws, we have

EQE
ν ¼ m2

p − ðmn − EbÞ2 −m2
μ þ 2ðmp − EbÞEμ

2ðmn − Eb − Eμ þ pμ cos θμÞ
; ð1Þ

where mp, mn, and mμ refer to the mass of the proton,
neutron, and outgoing muon, respectively. Eμ is the muon
energy. pμ and θμ are the muon momentum and angle with
respect to the incoming neutrino momentum direction, and
Eb is the binding energy of the proton within the nucleus,
typically ∼Oð10Þ MeV for various nuclear targets [9].
However, a significant fraction of neutrino interactions

are not quasielastic. The nucleons within the nucleus are
generally not quasifree, and the interaction can, therefore,
exhibit a strong dependence on the initial nuclear state [10].
In addition, the incoming neutrino can excite baryon
resonances leading to a variety of hadronic final states,
typically pions and nucleons [11].Moreover, themechanism
of intranuclear transport of these final-state hadrons is a
research topic itself [12] and introduces an additional layer
of uncertainty to the presence as well as the kinematics of
final-state hadronic particles. These complications sub-
sequently introduce limitations to the use of Eq. (1).
A separate strategy to reconstructEν based on calorimetry

is commonly adopted for tracking calorimeters, such as that
used in theMicroBooNE experiment [13]. TheMicroBooNE
detector is a liquid argon timeprojection chamber (LArTPC),
which provides mm-scale position resolution, ns-scale tim-
ing resolution [14], and sub-MeVenergy threshold to resolve
neutrino interactions in fine detail. With the reconstructed
information of particles (e.g., type and four momentum) in
the final state including both the primary and secondary
interactions, the energy of the neutrino is estimated by
summing up the estimated leptonic, hadronic, and nucleon
binding energies [15] based on energy conservation only.
This strategy does not limit itself to the CCQE interactions
and is more general. However, simple summation methods
cannot account for energy lost to undetected particles (e.g.,
particles below threshold, outgoing neutrinos, or neutrons),

which leads to missing energy. Additionally, binding energy
corrections can only be performed on average. Finally, the
kinematics of individual particles may be misestimated for a
variety of reasons, including biases in the reconstruction
algorithms, exiting particles, and reinteractions of charged
hadrons. To better estimate neutrino energies, an algorithm
needs to be capable of inferring missing energy from the
kinematics and topology of the reconstructed particles of
individual events.
In this paper, we present a deep learning (DL) approach

to estimate neutrino energy by utilizing both energy and
momentum information for general neutrino-nucleus inter-
actions at the GeV energy scale. In addition to estimating
neutrino energy, we also estimate the lepton energy, a
crucial parameter for accurately describing neutrino-
nucleus interactions and conducting model validation tests.
Deep learning refers to a class of modern machine learning
(ML) techniques that perform deep inference by automati-
cally deriving important representations of the input fea-
ture set in a high-dimensional space for various tasks
such as classification and regression [16]. This is in contrast
to more traditional ML-based approaches that rely on
significant human inputs for the feature set. Deep learning
techniques have been shown to improve performance on
a wide array of targeted metrics within high-energy
physics [17], including neutrino physics which is often
an early adopter on this front [18]. Within neutrino experi-
ments, they have contributed to detector simulation and
signal processing [19], particle identification [20,21], esti-
mation of the interaction vertex [22], and reconstruction of
energies [23] and directions [24], among other tasks.
The DL approach is especially well suited to energy

estimation because of the many multidimensional inputs,
which include the various outgoing particles in the inter-
action and their particle-flow information, as well as the
ability to model nonlinear relationships among those inputs
in the high-dimensional space. Through training on the
simulated event samples, the DL-based approach learns to
estimate the neutrino energy considering correlations of the
kinematics of the final-state particles embedded in event
generators, which are constrained by both the energy and
momentum conservation laws. In this work, we employ
recurrent neural networks (RNNs), which have found use in
various contexts such as natural language processing [25],
and are especially suitable for a varying sequence of inputs
like the particle flow of a neutrino interaction.
The DL-based neutrino energy estimator is aiming at a

better neutrino energy estimation which can benefit future
physics analyses. One example is neutrino oscillation
measurement [6]. The sensitivity of the neutrino oscillation
analysis depends on the quality of reconstructed neutrino
energy spectra and on the ability to resolve various features
of these spectra. To evaluate the performance of the
DL-based neutrino energy estimator, we consider two
key metrics related to the quality of the reconstructed
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energy spectra. These are the bias and resolution, which
refer to the mean and root-mean-square (RMS) of the ratio
ðEreco−EtrueÞ

Etrue respectively. A large energy resolution (RMS)
leads to a smearing of features in the oscillated neutrino
energy spectrum, reducing sensitivity in measuring neu-
trino oscillations. Similarly, a large bias in the energy
estimation can skew the oscillation measurement, resulting
in a faulty estimate of the oscillation parameters if the bias
is not modeled correctly by the simulation. This can be
checked by the model validation procedure shown in
Sec. V B. Even when the bias in the energy estimation
is properly modeled, it can again lead to a reduction of
features in the oscillated neutrino energy spectrum, thus
decreasing sensitivity.
While the DL-based energy estimator can be shown to

outperform traditional energy estimators evaluated with
simulation samples, there can be a significant model
dependence in mapping from true to reconstructed neutrino
energies, given the simulation’s task of modeling the
complex nuclear physics (i.e., kinematics correlations
among final-state particles). While such model dependence
may not be apparent in evaluations using simulations, it
becomes crucial when applying the DL-based energy
estimator to experimental data. In order to mitigate this
concern, we perform dedicated model validations with the
experimental data from the MicroBooNE experiment to
demonstrate that the bias and resolution in the DL-based
energy estimator are compatible within the quoted uncer-
tainties of the overall model. These validations rely on the
goodness-of-fitmetric [15],which is further enhanced by the
conditional constraint methodology [26]. These dedicated
model validations build confidence not only in our overall
simulation but also in the DL model, which often suffers
from a lack of interpretability because of its black-box
nature and sometimes nonintuitive associations among its
inputs.
This paper is organized as follows. In Sec. II, we review

various techniques used for neutrino energy estimation
and outline the advantages of using the DL-based
approach. In Sec. III, we introduce the RNN-based DL
energy estimator (DL-EE), the preparation of input par-
ticle flow information, and the DL model architecture. In
Sec. IV, we outline the training of the DL-EE on
MicroBooNE simulation, including methods to control
the resulting output bias of the energy estimator. In Sec. V,
we evaluate the performance of the DL-EE using simu-
lation and show that this technique is able to improve both
the resolution and bias of the neutrino energy estimation.
In addition, we perform validation of the DL-based energy
estimator using experimental data. Furthermore, we study
the impact of incorporating the DL estimator on the
sensitivity of searching for a sterile neutrino in the νμ
disappearance mode using the MicroBooNE detector [6]
before concluding in Sec. VI.

II. REVIEW OF VARIOUS NEUTRINO
ENERGY ESTIMATORS

A. The MicroBooNE experiment

TheMicroBooNEdetector [13] is aLArTPCconsisting of
85 tonnes of liquid argon in the active volume, which is a
rectangular volume measuring 10.36 m in length, 2.32 m in
height, and 2.56 m in width. The time projection chamber
(TPC) is placed inside a larger cylindrical cryostat which has
a total capacity of 170 tonnes of liquid argon. The
MicroBooNE detector sees the on-axis neutrinos produced
from the Booster Neutrino Beam (BNB) at Fermilab
National Accelerator Laboratory (FNAL) [27]. The distance
between the MicroBooNE detector and the BNB target is
about 468 m. The neutrinos from the BNB are predomi-
nantly (∼93.6%) νμ with a mean energy of 0.8 GeV.
Ionization electrons are produced by the charged par-

ticles from the neutrino interaction traveling through LAr.
Under an external electric field of 273 V=cm, these
ionization electrons drift horizontally at a constant speed
of around 1.1 mm=μs toward the anode plane. The anode
plane consists of three planes of wires. The passage of
ionization electrons induces bipolar readout signals on two
of these planes (“induction planes”) oriented at �60° with
respect to the vertical. The ionized electrons are then
collected and induce unipolar signals at the third plane
(“collection plane”) oriented vertically. The wire pitch is
3 mm. In addition, a set of 32 photomultiplier tubes (PMTs)
is placed behind the wire planes to detect scintillation light
from the interaction. The light signal provides a prompt
timing signal for when the interaction occurred.
Three 2D views of the detector activity can be obtained

from the projective LArTPC wire channel readouts and drift
time. Using tomographic reconstruction algorithms [28], the
three 2D views can be combined to create a complete 3D
image of the detector activity.

B. Energy estimators in MicroBooNE

In this section, we describe the traditional energy
estimation algorithm in MicroBooNE, which serves as a
baseline for the performance comparisons. In searching for
a νe low-energy excess [29], MicroBooNE performed three
different analyses, each of which relied on completely
different reconstruction paradigms, namely, Wire-Cell [15],
Pandora [30], and deep learning [31]. Nevertheless, these
analyses are based on the same calorimetry neutrino energy
estimation strategy [21,28,32]. In the following, we briefly
review the neutrino energy reconstruction within the Wire-
Cell reconstruction paradigm, upon which the work of this
paper is based.
Wire-Cell is a tomography-inspired algorithm that pro-

vides a 3D representation of the interaction based on the
three 2D projection measurements from the anode
planes [28,33]. The particles in the final state and their
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4-momenta, including those from secondary interactions,
are then reconstructed by various downstream algorithms
that perform TPC-charge/PMT-light matching [33], trajec-
tory fitting and particle identification, and neutrino vertex
identification, so that the best description of the interaction
(“particle-flow”) is produced [22].
The traditional Wire-Cell energy estimator used in

MicroBooNE is based on the reconstructed particle flow
tree information and employs a straightforward logic [22].
One of three methods is used to reconstruct the deposited
energy for each particle: (i) range based method for
tracklike particles stopping inside the detector with suffi-
cient length (> 4 cm), (ii) summation of dE=dx for other
tracklike particles, and (iii) scaling of the summed charge
for showerlike particles. The primary final-state charged
lepton in CC neutrino interactions is selected based on
reconstructed energy and particle identification informa-
tion. The visible neutrino energy is reconstructed by adding
up the single-particle kinematic energies, particle masses,
and an averaged nucleon binding energy, 8.6 MeV, for each
identified proton. More details can be found in Ref. [22].
As discussed in Sec. I, this particle flow summation method
is general and robust against neutrino-argon interaction
models, yet it suffers from bias induced by missing energy.
This motivates our search for alternative algorithms.

C. Energy estimation with convolutional
neural networks

The NOvA experiment introduced a DL energy estima-
tor based on a convolutional neural network (CNN)
architecture [23]. This energy estimation method utilizes
images of neutrino events and tries to predict the energy of
the neutrino from the features present in the image. The
CNN-based approach was shown to give superior energy
reconstruction compared to the traditional energy estima-
tion methods. However, the use of CNN-based networks is
computationally expensive because of large computational
costs associated with the convolutional operations. In
addition, the CNN-based neutrino energy estimator is
expected to demand an accurate detector simulation, as
even tiny pixel-size systematic inaccuracies in the simu-
lation could potentially be captured by the convolutional
network, leading to the domain shift problem [34]. This
problem arises when discrepancies between the training
(simulation) data and the deployment data cause a model to
perform poorly on new, unseen data when it is deployed.
Recently, a CNN-based approach was applied to LArTPC
detectors, for the task of shower energy estimation [35]. As
a CNN algorithm, it shares similar trade-offs as the NOvA
method.

D. Previous works on energy estimation
with recurrent neural networks

Large computational costs of DL algorithms are asso-
ciated in part with a large dimensionality (e.g., a large

number of pixels) of inputs. To reduce such computational
costs, one approach is to use alternative inputs that have
fewer dimensions. For instance, high-energy physics (HEP)
experiments usually run multiple simple and traditional
reconstruction algorithms over the events (e.g., event type
prediction, particle localization, etc.). The outputs of these
algorithms are relatively low dimensional and less affected
by the potential systematic differences between the simu-
lation and the real experimental data. Therefore, one can
build a robust and less computationally expensive DL
energy estimator on top of these outputs.
The application of RNN to the task of neutrino energy

estimationwas pioneered by theNOvAexperiment [36]. The
RNN-based energy estimator consumes information from
the reconstructed particles in each neutrino event and predicts
the neutrino energy. Similar to the CNN-based energy
estimation method, the RNN-based method is able to out-
perform the traditional energy reconstruction methods [37],
but without incurring large computational costs.
In this work, we utilize the particle flow output from the

state-of-the-artWire-Cell event reconstruction paradigm [22]
to estimate neutrino energy with the RNN. The use of the
reconstructed particle flow information allows us to suppress
the potential difference between the detector response
simulation and experimental data [38,39].

III. METHOD DESCRIPTION

A. Energy estimation with recurrent
neural networks

In this section, we describe how the recurrent neural
network energy estimator operates. The existing Wire-Cell
algorithms reconstruct individual particles in the LArTPC
volume [22]. These reconstructed particles are hierarchi-
cally grouped into a structure called a particle flow (PF).
For each particle in the PF, we know its starting and ending
coordinates, the best estimate of the particle type, and
rough estimates of the particle’s energy and momentum.
For each neutrino interaction event, the RNN energy

estimator aggregates information from all particles present
in the PF structure in order to make inferences about the
neutrino energy and the energy of the primary outgoing
lepton. The use of the PF information creates unique
challenges and opportunities. First, the number of particles
in each event varies, depending on the type of the neutrino
interaction. Some neutrino interactions can produce just a
few particles, while others create many of them. Therefore,
in order to operate on the PF information, the DL model
needs to be able to handle inputs of varying lengths.
Second, each particle in the PF information has the same
semantic meaning and the same format of input variables.
This structure of inputs can be exploited to create a sample-
efficient deep learning algorithm. In particular, the structure
of inputs can be encoded as an inductive bias of the DL
algorithm [40]. Adding such an inductive bias can lead to a
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model with a smaller number of parameters, faster train-
ing times, and better performance with a limited amount
of data.
An RNN is a natural deep learning model candidate to

handle the PF information. An RNN model operates on a
sequence of tokens of arbitrary lengths. It treats each token
in the same way, thus ensuring the proper inductive bias.
The RNN reads tokens sequentially and maintains a fixed-
size memory state of the past tokens. Once all of the tokens
have been consumed, one can use the resulting memory
state to make inferences about the data. For the energy
estimation problem, we consider each particle of the PF to
be a separate token, use an RNN to aggregate all particles,
and then use another DL model to predict the energy of the
neutrino from the RNN’s memory. The detailed architec-
ture of this energy estimator is described in Sec. III B.
There is another, more recent, candidate DL model that

can be used to work with the PF data—the transformer
model [41]. In many domains, transformer-based models
achieve state-of-the-art performance [42]. However, in
order to achieve outstanding performance they require
large amounts of training data, which are not available
at MicroBooNE. Therefore, we have chosen to use the
RNN-based model in this work, with plans to explore other
network architectures in future studies.

B. Model architecture

The RNN energy estimator is designed to predict both
the energy of the neutrino and the energy of the primary
final-state lepton in a neutrino interaction event. To make
such predictions, it relies on reconstructed particle infor-
mation available for each neutrino event (PF information).
As inputs, the RNN estimator extracts the following

quantities from each particle: (i) particle track starting
and ending coordinates, (ii) estimated particle momentum
and energy, and (iii) estimated particle type. These quan-
tities are reconstructed by the upstream Wire-Cell 3D
pattern recognition algorithms [22]. Besides the particle-
level information, the RNN energy estimator incorporates
the information about the entire event such as (i) a flag
indicating whether the event is fully (FC) or partially
contained (PC) in the detector [15] volume and (ii) a
prediction on whether the event is a νμ CC or a νe CC event.
The FC events are defined as those that have the recon-
structed TPC activity fully contained within the fiducial
volume (3 cm inside the effective TPC boundary [43]).
The architecture of theRNN is shown in Fig. 1.We chose a

long short-termmemory (LSTM) [44] neural network cell as
a recurrent neural network model since it is rather stable to
train. Before feeding the information from each particle into
the LSTM cell, we perform a feature extraction step with the
help of a fully connected network [45] (depicted as the
Preproc branch in Fig. 1). ThePreproc is constructed as
a stack of three blocks with a similar structure followed by a
batch normalization layer [46]. Each block of the Preproc
is made out of a batch normalization layer, followed by a
linear layer, followed by a ReLU activation function.
Empirically,we found that the use of thePreproc improves
the performance over the use of a plain LSTM cell. This is
likely because the Preproc module can transform the raw
particle information into a representation more useful for the
LSTM gating mechanism. Additionally, we found that the
three-block structure gives the best performance.
After the LSTM cell has finished processing particles in

an event, the memory state of the LSTM (vector of 32
features) is concatenated with the event-level information.

FIG. 1. The schematic representation of the energy estimator architecture. The yellow circle labeled Event denotes the event-level
inputs. The circles labeled P1…PN represent input variables coming from the reconstructed particles (1…N) in the event. RNN is a
recurrent neural network cell. Preproc is a particlewise feed-forward neural network used to perform the feature extraction from the
particle-level variables. Predictor is another feed-forward neural network that predicts neutrino and lepton energies.
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The combined information is fed through another fully
connected network (depicted as Predictor). The
Predictor is responsible for extracting features useful
for energy reconstruction from the combined event-level
and particle-level information. The Predictor module
has the same structure as the Preproc, which was found to
give the best performance. The final energy reconstruction
is done using linear layers, which take outputs of the
Predictor and estimate the energy of the neutrino and
the energy of the primary lepton in the event. In principle,
more quantities can be estimated in this way. However, the
neutrino energy and the primary lepton energy are of the
greatest interest in this paper.

IV. DL MODEL TRAINING

The RNN energy estimator is trained on a simulated
dataset made of true-νe and true-νμ CC events. Both FC and
PC events are included in the training sample. In this
section, we show the performance on νμCC events, where a
large number of data events are available to perform
dedicated model validations, as described in Sec. V.

A. Training dataset

In the MicroBooNE experiment, the simulated BNB
neutrino flux [27] is provided to the event generator
Genie [47,48] to generate neutrino-argon interactions.
Genie v3.0.6, G18_10a_02_11a, was used, which includes
improvements on the use of the Valencia model [49–51] for
the local Fermi gas nucleon momentum distributions,
improvements in the CCQE and CC two-particles-two-
holes (CC2p2h) interactions, and improvements in the
treatments of final state interaction and pion production
with respect to earlier versions. In addition to the default
configuration, the parameters governing the CCQE and
CC2p2h models are adjusted according to the T2K CC0π
cross section results [52] to form the “MicroBooNE Tune”
model [53]. The resulting final-state particles of each
Monte Carlo (MC) simulated event are processed using
the LArSoft [54] software framework, which is a toolkit to
perform simulation, reconstruction, and analysis of
LArTPC data. The final state particles are propagated
through the detector using the Geant4 toolkit [55]
v4_10_3_03c. The resulting energy depositions are further
processed by dedicated detector simulation programs tak-
ing into account detector effects to simulate the ionization
charge and scintillation light signals after considering the
space charge effect [56,57].

The position and number of ionization electrons modi-
fied by space charge and recombination effects are ported
to the TPC detector simulation [38,39], which takes into
account the charge transportation and diffusion [58]. The
induced currents on the wires are simulated by convolving
the ionization charge distribution at the wire plane with the
position-dependent (at 1=10th of the wire pitch resolution)

field response function as well as the electronics response
function. The optical detector simulation models the light
emitted by charged particles interacting with the detector
and produces signals in photomultiplier tubes.
The simulated neutrino interactions are further merged

with a dedicated data stream which is collected in a period
when there is no neutrino beam, ensuring faithful modeling
of cosmic-ray backgrounds and detector noise. At the same
time, this choice limits the number of available simulation
events due to a finite number of cosmic-only data events.
We split the simulated neutrino dataset into training/test
partitions following a previously used MicroBooNE
procedure [59]. Table I summarizes the final sample sizes
used in the training and testing.

B. Initial training

Initially, we trained the RNN energy estimator (Fig. 1)
on a dataset described in Table I including all four samples
ðfνμ; νeg × fFC; PCgÞ. The model was trained to predict
both the energy of the neutrino and the energy of the
primary lepton in the event. As a loss function for each
target (neutrino and primary lepton), we used a mean
absolute percentage error:

Lν;lep ¼ 100 ·

����Ereco − Etrue

Etrue

����; ð2Þ

where Etrue is the true energy of the particle, and Ereco is its
predicted energy. The total loss function is a sum of losses
for each target, i.e.,L ¼ Lν þ Llep. We have found this loss
function to perform much better than the traditional
regression losses (mean squared error and mean absolute
error [45]). The training was performed for 200 epochs
(complete passes through the training dataset) with a
ReduceLROnPlateau learning rate scheduler [60]
allowing the energy estimator to converge. The complete
training details can be found in Appendix A.
The sequential nature of the RNN network may make the

energy estimator dependent on the particular ordering of
the particles used in the training. To ensure that the energy
estimator performance does not depend on the particle
ordering, we have implemented particle order randomiza-
tion as a data augmentation strategy.
To assess the performance of the energy estimator, one

can consider its energy resolution defined as a ratio of

TABLE I. Number of neutrino CC events in the training and
test datasets obtained from the MicroBooNE simulation.

Train Test

νμ FC 80,256 134,707
νμ PC 156,628 303,422
νe FC 93,289 112,822
νe PC 66,792 68,061
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ðEreco − EtrueÞ=Etrue. Figure 2 shows distributions of the νμ
CC energy resolutions of the FC events. The distribution of
the RNN energy resolution (shown in red) has a smaller
width compared to the traditional energy estimator (shown
in black). This indicates that the RNN energy estimator is
able to better predict the true neutrino energy Etrue.
For a more quantitative assessment of the performance,

one can consider two characteristics of the energy reso-
lution—its mean and RMS values:

Mean ≔ E

�
Ereco − Etrue

Etrue

�
ð3Þ

RMS ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

��
Ereco − Etrue

Etrue

�
2
�
;

s
ð4Þ

where E is an expectation over the test sample. Generally,
smaller RMS values correspond to better energy estimators.
The mean value indicates the overall bias of the energy
estimator. According to Fig. 2, the RNN energy estimator
(RMS ∼ 0.19) achieves about 26% improvement compared
to the traditional MicroBooNE energy reconstruction
method (RMS ∼ 0.26) in the test sample.
Another metric that is commonly considered in HEP

experiments is the bias of the energy estimator. To
determine a bias of the energy estimator, a binned statistics
plot is made, where the x axis represents the true energy and
the y axis shows a mean of the energy resolution histogram
constructed for each bin. Figure 3 shows the bias plot for
the RNN energy estimator (red) and the traditional
MicroBooNE energy estimator (black). Any deviation from
zero represents the bias of the energy estimator in a
particular true energy bin.

According to Fig. 3, the RNN energy estimator has a
smaller bias compared to the traditionalMicroBooNEenergy
estimator for energies above ∼0.6 GeV. However, at lower
energies the RNN energy estimator quickly acquires a rather
significant bias. Such a large bias is not ideal, since it may
lead to a reduction in physics sensitivities.

C. Reducing bias

In this section, we develop a mitigation strategy for the
large bias of the RNN energy estimator. Before developing
such a strategy, it is instructive to consider the reasons for
the appearance of the bias. We believe there are two main
sources of bias; one is related to physics, and the other is
related to ML.
From the physics point of view, as the energy of the

neutrino gets higher, a larger fraction of this energy
becomes invisible in neutrino-argon interactions. This
happens due to the increased production of various mes-
ons at higher energies. Meson decays have a common
byproduct—neutrinos, which easily escape the detector
carrying some fraction of the energy of the original
interaction away. Therefore, one may expect to see an
increasingly negative (missing energy) bias at high energies
for all estimators. Figure 3 shows that both energy
estimators acquire large negative biases at high energies.
From the ML side, the peaked nature of the energy

distribution in the training sample (Fig. 4) can also
contribute to the bias. Since the target energy distribution
has high population around the 1 GeV peak, energy
estimators will prioritize correctly reconstructing the
energy of neutrinos around the peak. Moreover, on average,
an energy estimator can increase the overall accuracy of
predicted energies by slightly pushing all the energies
toward the peak. That is, the energy of neutrinos to the left
of the peak will be pushed up (positive bias), and the energy

FIG. 2. νμ energy resolution histograms for the traditional
MicroBooNE energy estimator (black) and the initial training
of the RNN energy estimator (red) in the FC CC sample.

FIG. 3. νμ energy bias for the traditional MicroBooNE energy
estimator (black) and the initial training of the RNN energy
estimator (red) in the FC CC sample.
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of neutrinos to the right of the peak will be pushed down
(negative bias). This prediction is consistent with the
observed behavior of the bias in Fig. 3.
The proper way to improve the bias, stemming from the

peaked nature of the distribution, is to resimulate the
training sample with a flat true neutrino energy distribution.
Since we are limited by the total number of simulation
events available, we decided instead to use the standard ML
approaches to deal with imbalanced data. In particular, we
applied event reweighting to flatten the true neutrino energy
distribution. The new event weights were constructed using
the following procedure.
A histogram of the true neutrino energyNi was made in a

range of 5 GeV with 50 bins. A weight histogram Wi was
constructed, so that each bin’s height is proportional to the
inverse of the true neutrino energy bin height, i.e.,
Wi ∝ 1=Ni. In training the RNN energy estimator, the
weight for each event was determined from the correspond-
ing bin of the weight histogramWi. To preserve the scale of
the loss function, the weights were normalized to add up
to unity.
The weight construction procedure described above

guarantees that the true neutrino energy distribution is
approximately flat. However, the tails of the distribution
in Fig. 4 will have to acquire quite large weights, since
there are too few events in those tails. Giving large
weights to a few events will result in severe overfitting
in the model training. In order to reduce the magnitude
of overfitting, we clipped the maximum weight value,
ensuring the ratio of the maximum weight to the mini-
mum weight does not exceed 50. Figure 5 shows the true
neutrino energy spectrum of the training sample after the
reweighting.
Figure 6 shows the νμ neutrino energy bias after

retraining with the flat weights. It demonstrates that the
use of the reweighted training sample improves the bias of
the energy estimator.

V. DL MODEL EVALUATION

A. Performance metrics in testing simulation sample

In the previous section, we showed the basic νμ energy
reconstruction performance plots for the RNN energy
estimator in the test sample. We now perform a more
detailed evaluation of the RNN energy estimator. Figure 7
demonstrates the νμ neutrino energy resolution after
retraining with the flat weights. The use of the reweighted
training sample produces a small degradation of the RNN
energy resolution (RMS increases from ∼19% to ∼20%).

We believe that the reduction of the bias of the energy
estimator, brought by the reweighting, outweighs the
associated small degradation of the RMS value. This is
partly because the reduction of the bias makes the energy

FIG. 4. True neutrino energy distribution in the training sample. FIG. 5. Reweighted true neutrino energy distribution in the
training sample.

FIG. 6. νμ energy resolution bias for the traditional Micro-
BooNE energy estimator (black) and the reweighted training of
the RNN energy estimator (red) in the FC CC sample.
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estimator more agnostic to the choice of the neutrino
energy spectrum. For instance, the original behavior of
the bias stems from the BNB energy spectrum having a
peak around 0.8 GeV. However, MicroBooNE can also
study the NuMI neutrino beam [61] with higher average
energies. Having an unbiased energy estimator would allow
us to expect better transferability of its performance
between different neutrino beams.
Since the reweighted training results in a better energy

estimator overall, we will use the reweighted version in the
subsequent analysis. Likewise, each time we refer to the
RNN energy estimator below, we will imply its reweighted
version.
Apart from predicting the νμ energy, the RNN energy

estimator is also capable of predicting the energy of the
primary lepton. Figure 8 shows energy resolution histo-
grams for the energy reconstruction of the primary out-
going μ in the νμ CC events. The traditional energy
estimator exhibits two peaks in the shape of the muon
energy resolution. We discuss the nature of the peaks later
in this section. The RNN energy estimator has a well-
behaved energy resolution histogram with a single peak.
Overall, the RNN energy estimator displays better energy
resolution in terms of RMS (15% vs 22%).
The unusual shape of the energy resolution of the

traditional estimator is traced back to reconstruction errors.
The central (main) peak has a small bias and corresponds to
correctly identified muons. The energies of these muons are
mostly reconstructed from range information. The reso-
lution of these events is, therefore, good. The second peak
with a negative bias is traced back to muons for which the
energy was reconstructed by integrating the energy loss per
unit length dE=dx. Biases in the detector modeling,

including the inaccuracies in charge recombination, con-
tribute to this offset. This is evident as a second peak in
Fig. 8 and an enhanced left “shoulder” in Fig. 7. The same
recombination model was used for reconstructing the
simulation, and dedicated validation tests have demon-
strated its consistency with the data [15,26].
As shown in Fig. 8, the peak of the RNN’s muon energy

resolution is shorter and wider than the first (main) peak of
the traditional energy estimator. The degradation of the
energy resolution in the main peak is likely a result of the
inability of the RNN energy estimator to differentiate
between various types of the imperfect event reconstruction.
Because the RNN energy estimator uses reconstructed
particle flow information, it inherits all the shortcomings
of the particle flow reconstruction. In addition, unlike the
traditional energy estimator, we do not provide any explicit
indicators of the reconstruction quality to the RNN model.
Therefore, even for the properly reconstructed muons, we
may anticipate a degradation of the performance of the RNN
method compared to the traditional method.
In principle, in the absence of explicit indicators of the

reconstruction failures, a DL model could try to infer them
from some other features (e.g., incorrect event topology).
However, it is unclear what fraction of information about
the reconstruction quality can be inferred from the existing
features. Moreover, very large datasets are required for DL
models to make such complex inferences. Therefore, the
relatively small size of our training dataset may contribute
to the degradation of the quality of the main muon peak.
While the RNN energy estimator does not directly

predict the hadronic part of the neutrino energy, it can
be trivially inferred by subtracting the energy of the
primary muon from the total neutrino energy. Figure 9
shows the hadronic energy resolution histograms for the
reweighted RNN and the traditional MicroBooNE energy

FIG. 7. νμ energy resolution histograms for the traditional
MicroBooNE energy estimator (black) and the reweighted train-
ing of the RNN energy estimator (red) on the FC CC sample. The
“shoulder” at the lower reconstructed energy comes from a
combined effect of missing hadronic energy and the biased
recombination model.

FIG. 8. Primary μ energy resolution histograms for the tradi-
tional MicroBooNE energy estimator (black) and the reweighted
training of the RNN energy estimator (red) on the FC CC sample.
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estimators. The RNN hadronic energy resolution exhibits
more Gaussian-like behavior and has a much better RMS
(∼38% vs ∼50%).
In this section, we have examined the performance of the

RNN energy estimator on a sample of fully contained νμ
CC events. The RNN estimator is also capable of predicting
the energy of partially contained νμ CC events and νe CC
events. The corresponding performance evaluations are
provided in the Appendixes, where the results are con-
sistent with those presented in the main text. Specifically,
the performance of the RNN energy estimator for νe events
is discussed in Appendix B. Similarly, Appendix C dem-
onstrates the performance of the RNN energy estimator on
partially contained events. Finally, Appendix D explores
the behavior of the RNN energy resolution across various
ranges of true neutrino energy.

B. Model validation with experimental data

When developing new ML algorithms for HEP experi-
ments, it should always be kept inmind that the algorithms are
trained on a simulated sample, but eventually are applied to
experimental data. The simulation data in HEP experiments
commonly possess systematic differences from the real
experimental data. For example, as briefly reviewed in
Sec. I, the response of argon nuclei to a neutrino probe
depends on the complex nuclear structure and quantum
chromodynamics in the nonperturbative region, which is at
the frontiers of nuclear physics research. In addition, under-
standingLArTPCs’ response and calibrationhas considerable
room for improvement. Because of these differences between
data and simulation, it is possible that ML algorithms have
systematically different performance when applied to real
experimental data than those evaluated through simulations.
HEP communities have developed a strict scheme of

estimating systematic uncertainties to evaluate and quantify

the differences between data and simulation. Different
sources of systematic uncertainties serve as effective
degrees of freedom in describing the differences between
prediction (e.g., simulation) and data. Instead of requiring
that the simulation faithfully reproduce every feature in the
data, the HEP community requires that the differences
between the data and simulation are within the quoted
systematic uncertainties. In other words, the simulation is
required to be compatible with data within its quoted
uncertainties.
Since the RNN energy estimator combines the calorim-

etry information, which is sensitive to detector response
modeling, and the kinematics information, which is sensi-
tive to the complex neutrino-argon interaction, we expect
differences in performance between data and simulation.
We utilize a MicroBooNE dataset to demonstrate the
compatibility between simulation that is enhanced with
the RNN energy estimator and data. This dataset was
collected from February 2016 to July 2018 corresponding
to an exposure of 6.369 × 1020 protons on target from the
BNB at FNAL that was used to search for a low-energy νe
excess [15]. As elaborated in Ref. [15], the sources of
systematic uncertainties associated with the simulation
include (i) neutrino flux, (ii) neutrino-argon interaction
cross sections, (iii) detector effects, and (iv) statistical
uncertainties due to a finite number of simulation events
with unequal weights.
Following previous work [15,26], the primary tools to

test the compatibility between data and simulation (i.e.,
model validation) are based on goodness-of-fit (GoF) tests,
which allow one to quantify the comparison of data and
predictions into a single number for evaluation. As detailed
in Sec. V of [15], the term “simulation” within the context
of MicroBooNE refers to the overall simulation model.
This model consists of various components, including the
neutrino beam flux model, the neutrino-argon interaction
model, the detector model, and the reconstruction algo-
rithms, among others. Therefore, changes in the energy
estimator impact the consistency between data and
simulation.
While the total GoF test is essential, it may hide some

problems of the model when some model uncertainties are
overestimated. Additionally, since the missing hadronic
energyEmiss cannot be directly measured, an event generator
(or a neutrino-nucleus interaction model) is often required to
describeEmiss accurately in order to ensure a correctmapping
from Ereco

ν to Etrue
ν . This mapping is crucial as neutrino

oscillation measurements rely on estimations of Etrue
ν .

However, modeling Emiss remains a challenging theoretical
problem, particularly for heavy nuclei such as argon where
final state interactions can produce a variety of complex final
states that contain significantly different amounts of missing
energy, even for a simple quasielastic interaction. In order to
mitigate these shortcomings, we implement a conditional
constraining procedure. In Refs. [15,26], this procedure was

FIG. 9. Hadronic energy resolution histograms for the tradi-
tional MicroBooNE energy estimator (black) and the reweighted
training of the RNN energy estimator (red) on the FC CC sample.
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used to validate themodeling ofmissing hadronic energy and
its associated uncertainties. The validationwas performed by
comparing the reconstructed hadronic energy distribution
between data and an MC prediction after constraining the
reconstructed muon kinematic distributions (i.e., energy and
polar angle) to those of data. The validation of the mapping
between the true and the reconstructed neutrino energy
enables the measurement of neutrino-energy dependent total
and differential cross sections [26,62] as well as searches for
sterile-neutrino-induced oscillations [6].
In the following, we briefly review the model validation

procedure, which is based on a covariance matrix formal-
ism in constructing the χ2 test statistic:

χ2 ¼ ðM − PÞT × Cov−1fullðM;PÞ × ðM − PÞ; ð5Þ

whereM and P are vectors of measurement and prediction,
respectively. The CovðM;PÞ is the full covariance matrix:

Covfull ¼ Covstatstat þ CovsysMC stat þ Covsysxs þ Covsysflux

þ Covsysdet þ Covsysadd: ð6Þ

The Covstatstat, Cov
sys
MC stat, Cov

sys
xs , Cov

sys
flux, Cov

sys
det , and Cov

sys
add

terms represent the statistical uncertainties of the data
sample, the statistical uncertainties corresponding to finite
statistics in simulation, systematic uncertainties in cross
section modeling, systematic uncertainties from the mod-
eling of the neutrino flux, systematic uncertainties from
detector response modeling, and additional systematic
uncertainties associated with estimating background events
from outside the cryostat, respectively.
The GoF evaluation is performed to test the compati-

bility between the data and the overall simulation model
using Eq. (6). The χ2 value can be used to perform a GoF
test and to deduce a p value by comparing to the χ2

distribution with the associated number of degrees of
freedom (ndf), which is the total number of bins used
in the measurement. For example, Fig. 10 demonstrates a
data-MC comparison of the selected FC νμ CC events as a
function of reconstructed neutrino energy. The p value is
above 0.05, which is a predefined threshold for each GoF
test. We should note that the MicroBooNE overall simu-
lation model contains many conservative systematic uncer-
tainties (e.g., cross section uncertainties). Therefore, the
reduced χ2 values, which are the ratios between χ2 and the
number of degrees of freedom, are generally low sug-
gesting that the overall simulation model describes the data
well within its uncertainties.
The conservative estimation of systematic uncertainties

aims to determine uncertainties that are large enough to
cover all reasonable systematic differences between simu-
lated and real data. However, the resulting uncertainties
may be overestimated, potentially obscuring deficiencies in
the overall simulation model. To address this shortcoming,
the global goodness-of-fit test can be enhanced to study

different parts of the overall simulation model using the
conditional covariance matrix formalism [63].
For example, consider two quantities (channels) X and Y

with the goal of assessing data-simulation differences
between their simulated predictions ðXMC; YMCÞ and the
actual measurements ðXData; YDataÞ. These quantities could
correspond to any measurements, such as the reconstructed
neutrino energy, muon energy, muon angle, etc. One can
perform a direct GoF test by comparing XMC to XData (and
similarly for Y), but such a test may suffer from the
overestimation of systematic uncertainties. Additionally,
if one can simulate conditional probabilities of the form
PðXjYÞ, then the difference between YMC and YData can be
used to refine XMC and constrain the magnitudes of its
systematic uncertainties. This allows us to create a more
stringent GoF test. The procedure of refining XMC from Y is
referred to as constraining X on Y using the conditional
constraining method.
Figure 10 illustrates data-simulation comparisons of the

RNN neutrino energy for νμ CC FC events. The red curve
shows the direct prediction of the neutrino energy with the
RNN energy estimator. The blue curve is a prediction of the
neutrino energy after constraining on muon kinematics

FIG. 10. Top: distribution of the selected FC νμCC events as a
function of the reconstructed neutrino energy. The MC prediction
after applying constraints on muon kinematics (Ereco

μ and cosrecoθ )
and hadronic energy (Ereco

had ) is shown in blue, and before applying
in red. The last bin represents all events with Ereco

ν > 2.6 GeV.
Bottom: the blue (red) points represent the ratio between data and
the MC prediction with (without) constraint, and the similarly
colored bands (light blue for blue and pink for red) depict the�1σ
of the total uncertainty (statistical and systematic) of the MC
central prediction.
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(reconstructed muon energy and angle) and hadronic
energy simultaneously. The constraining procedure signifi-
cantly reduces the magnitudes of the systematic uncertain-
ties (shaded areas in the ratio plot) and provides a more
precise GoF test. The χ2=ndf results are favorable both
before and after applying the constraints, indicating that the
data-simulation differences are well within the model
uncertainties.
Following this methodology, we have run a comprehen-

sive and systematic set of MicroBooNE validation tests on
the overall simulation model that has been enhanced by the
RNN energy estimator using CC νμ interactions. We should
note that the CC νe interactions are limited by the data
statistics at O(100), which is not sufficient to perform
precision tests on the models. Table II summarizes the
results of these model validation tests, with the p values
above 0.05 indicating a successful test. The RNN energy
estimator passes all the tests successfully. The large p
values suggest that the differences between data and
simulation are well within the quoted uncertainties.

C. Sensitivity studies of searching for a sterile neutrino
in νμ disappearance

In this section, we show the impact of the RNN energy
estimator on the sensitivity of determining neutrino oscil-
lation parameters using the example of a νμ disappearance
search. Assuming νμ disappearance only, the oscillation
probability formula is

Pνμ→νμ ¼ 1 − sin22θμμsin2ðΔm2
41L=EνÞ; ð7Þ

where L=Eν is the ratio of the neutrino traveling distance
and its energy, θμμ is the mixing angle that determines the
oscillation magnitude, andΔm2

41 is a mass-squared splitting
that modulates the oscillation frequency. The better energy
resolution of the RNN energy estimator induces less
smearing of the oscillating features, which leads to a better
sensitivity in determining neutrino oscillation parameters.
The CC νμ-argon interaction event selection and corre-

sponding statistical and systematic uncertainties are taken
from Ref. [15]. Figure 11 shows the reconstructed energy
spectra of the selected νμ CC FC events with no oscil-
lations. Compared to the traditional energy estimator, the
RNN energy estimator reconstructs a neutrino energy
spectrum that is much closer to the truth value.
Figure 12 shows the sensitivity contours at the 95% CL
in the plane of Δm2

41 and sin
2 2θμμ for the traditional energy

reconstruction and the RNN energy estimator, respectively.
As expected, the sensitivity is improved especially in the
intermediate Δm2

41 region where the oscillation pattern

TABLE II. Data vs MC validation results of the reweighted
RNN energy estimator. The first column of the table shows the
label of the statistical test that was performed. The second and
third columns indicate p values returned by the test for the
traditional and RNN energy estimators respectively. A p value
above 0.05 indicates that the respective test was passed.

p value

Test Traditional RNN

PðEμÞ 0.89 0.92
PðEhadÞ 1.00 0.99
PðEνÞ 1.00 0.97
PðEPC

μ jEFC
μ Þ 0.95 0.70

PðEPC
hadjEFC

hadÞ 1.00 0.96
PðEPC

ν jEFC
ν Þ 1.00 0.84

PðEμj cos θμÞ 0.45 0.50
PðEhadj cos θμÞ 1.00 0.99
PðEνj cos θμÞ 1.00 0.97
PðEhadjEμÞ 1.00 0.97
PðEνjEμÞ 1.00 0.99
PðEhadjEμ; cos θμÞ 1.00 0.99
PðEνjEμ; cos θμÞ 1.00 1.00
PðEνjEμ; cos θμ; EhadÞ 1.00 0.97

FIG. 11. Reconstructed energy spectra of the selected νμCC FC
events assuming no neutrino oscillation in simulation, normalized
to 6.369 × 1020 POT.

FIG. 12. MicroBooNE Gaussian CLs [6] sensitivity contours at
the 95% CL in the plane of Δm2

41 and sin
2θμμ from the traditional

(black) and the RNN (red) methods.
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changes considerably over different neutrino energies. To
avoid biases, the study depicted in Fig. 12 does not utilize
any training samples from the RNN model.

VI. CONCLUSIONS

We developed a deep-learning energy estimation method
for charged current neutrino interactions in LArTPC
detectors. This method is based on an RNN architecture.
As inputs it uses reconstructed calorimetry and final-state
particle kinematics obtained from the particle flow infor-
mation. As outputs, it provides inferences about the energy
of the neutrino and the energy of the primary outgoing
lepton. Evaluating this method with simulations, we have
shown that the RNN energy estimator’s performance is
superior to the Wire-Cell traditional energy estimator in
terms of bias and resolution.
In order to make this method more resilient to incon-

sistencies between simulated and real data, we apply the
RNN to the reconstructed particle flow information. This is
at the cost of inheriting some inefficiencies from the event
reconstruction algorithm. In principle, the RNN is capable
of correcting for both misestimated particle energies and
energy from particles that were not reconstructed (either
due to inefficiencies or because they do not produce
observable signatures). By training an RNN on only the
Wire-Cell traditional neutrino energy estimate, we can
determine to what extent the RNN leverages individual
particle information to determine the missing energy
contribution. In this case, the performance is better than
the traditional calculation, but falls short compared to the
full RNN, indicating that the RNN can indeed learn
correlations between the reconstructed particles and the
missing energy.
Besides performance evaluations with simulations, a set

of dedicated model validation tests was performed to
demonstrate that the overall simulation model enhanced
by the RNN energy estimator is compatible with
MicroBooNE experimental data within the model uncer-
tainties. Using a simple example of searching for a sterile
neutrino with νμ disappearance oscillations, we show the
impact of this RNN energy estimator on the physics
sensitivity. Besides the impact on neutrino oscillations,
we expect that this technique can be extended to cross-
section measurements in both inclusive and exclusive
interaction channels. Adaptation of this method for other
LArTPC experiments, such as DUNE [64] and SBND [65],
is underway. Additionally, we plan to explore other net-
work architectures in future work to further enhance the
robustness and applicability of our approach.
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APPENDIX A: TRAINING DETAILS

The RNN energy estimator is trained with the help of the
VLNE [66] package, which is built on top of the TensorFlow/

Keras (v2.9) frameworks. The training is performed for up to
200 epochs using the RMSprop optimizer, and an initial
learning rate of 0.001. The learning rate is progressively
annealed by the ReduceLROnPlateau scheduler
(patience = 5, factor = 0.5).

The RNN training is terminated if the validation loss has
not improved over the last 40 epochs, or if the total number
of training epochs has reached 200. To reduce overfitting,
an L2 regularization is applied with a strength of 0.008. As
an additional regularization technique we have randomly
shuffled the order of particles in each event.
For the training we have used a batch size of 1024. When

using the flat weights, we applied them only to the neutrino
part Lν of the loss function. We did not reweight the
primary lepton part Llep of the loss. The training is run on a
single NVIDIA GeForce RTX 3090 GPU. Because of the
reliance on high-level input variables, it takes less than
20 minutes to train a single RNN energy estimator.
To determine the final network configuration we have

performed several hyperparameter sweeps. We have
explored a grid of the following parameters: learning rate,
number of training epochs, number of features in the LSTM
cell and fully connected layers, depth of the fully connected
layers, regularization type (L1 vs L2), and the strength of
the regularization.
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APPENDIX B: RNN FOR νeCC ENERGY
ESTIMATION

In this appendix we explore the basic performance of the
RNN energy estimator on the νe events. The training
sample of the RNN energy estimator contains charged-
current electron neutrino interaction (νe CC) events.
Therefore, the RNN is capable of predicting energies of
such events as well. Because of the small statistics of the νe
CC sample we are unable to perform a similar data/MC
validation as that with the νμ CC sample. This situation is
expected to be improved with future experiments.
Figure 13 shows the νe CC energy resolution histogram

of the RNN compared to the traditional energy estimator. In
terms of the RMS, the RNN slightly outperforms the
traditional energy estimator (18% vs 21%). Figure 14

illustrates biases of the RNN and traditional energy
estimators. For the majority of true energy bins, the
RNN displays a much smaller bias compared to the
traditional energy estimator. Only at the lowest energy
bin does the RNN acquire a large bias. While the νe bias
curve exhibits a smaller bias compared to the traditional
energy estimator, it presents an unusual feature: a distinct
hump around 1.5 GeV that is absent in the νμ counterpart.
This hump in the νe energy bias stems from the reweighting
procedure, which aims to flatten the total energy distribu-
tion of νe and νμ events by increasing the weights of the
low-energy and high-energy tails. However, since the νe

FIG. 13. νe energy resolution histograms for the traditional
MicroBooNE energy estimator (black) and the reweighted train-
ing of the RNN energy estimator (red) in the FC CC sample.

FIG. 15. Primary electron energy resolution histograms for the
traditional MicroBooNE energy estimator (black) and the re-
weighted training of the RNN energy estimator (red) in the FC
CC sample.

FIG. 14. νe energy resolution bias for the traditional Micro-
BooNE energy estimator (black) and the reweighted training of
the RNN energy estimator (red) in the FC CC sample.

FIG. 16. νeCC hadronic energy resolution histograms for the
traditional MicroBooNE energy estimator (black) and the re-
weighted training of the RNN energy estimator (red) in the FC
CC sample.
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energy distribution is nearly flat to begin with, this
reweighting disproportionately amplifies the importance
of its tails, resulting in a U-shaped bias curve. Using
separate weights for νe and νμ datasets could improve
performance by reducing interference.
Figures 15 and 16 show the energy resolution histograms

of the primary lepton and hadronic energies, respectively.
There is little difference in the resolution of the energy of
the primary lepton. However, the RNN achieves superior
hadronic energy reconstruction, with improvement in RMS
from 49% to 40%.

APPENDIX C: ENERGY ESTIMATION OF THE
PARTIALLY CONTAINED EVENTS

In this appendix, we review the performance of the RNN
energy estimator on the PC events and compare it to the
performance of the traditional MicroBooNE energy esti-
mator. Figure 17 compares neutrino energy resolution for
the νμ CC and νe CC events. For the PC events, the RNN
energy estimator demonstrates improvement in the energy
resolution from 43% to 28% for νμ CC, and improvement
from 31% to 24% for νe CC, compared to the traditional
MicroBooNE energy estimator.

FIG. 17. νμ and νe energy resolution histograms for the traditional MicroBooNE energy estimator (black) and the reweighted
training of the RNN energy estimator (red), evaluated on the samples of PC CC events. (a) νμ CC energy resolution. (b) νe CC energy
resolution.

FIG. 18. Primary muon and electron energy resolution histograms for the traditional MicroBooNE energy estimator (black) and the
reweighted training of the RNN energy estimator (red), evaluated on the samples of PC CC events. (a) Primary μ energy resolution.
(b) Primary e energy resolution.
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Likewise, Fig. 18 compares energy resolutions of the
primary leptons in the νμ and νe CC events. It shows a large
improvement in reconstructing the energy of the primary
muons with the RMS improving from 50% for the tradi-
tional MicroBooNE energy estimator down to 29% for the
RNN energy estimator.
The improvement for the energy reconstruction of the

primary electron energy is much smaller, with the RMS
improving from 29% down to 23%. Moreover, the majority
of this improvement comes from the tail of the distribution,
indicating that the traditional electron energy reconstruction
approach is close to the optimal.
Finally, Fig. 19 shows the bias of the neutrino energy

estimators as a function of the true neutrino energy. The νμ
CC energy bias of the RNN energy estimator is smaller than
the bias of the traditional MicroBooNE energy estimator
for the majority of neutrino energies. It is, however, larger
at small true Eν (Eν < 0.5 GeV). This behavior is similar to
the energy bias behavior for the FC events, observed in
Sec. IV B. The energy reweighting reduces the low energy

bias for the FC events, but evidently, it is not sufficient to
remove the bias for the PC events. For the νe energy
estimation, Fig. 19 shows a different behavior. The RNN
energy estimator has a smaller bias for virtually the entire
energy range, compared to the traditional MicroBooNE
energy estimator. However, it also exhibits large oscilla-
tions in the low energy region.

APPENDIX D: RESOLUTION
DEPENDENCE ON ENERGY

In this appendix, we review the binned statistics plots,
depicting energy resolution versus true neutrino energy
bins. Figure 20 illustrates the behavior of the RMS of the
energy resolution as a function of the true neutrino energy.
For the FC events, the RNN energy estimator has better
neutrino energy resolution compared to the traditional
MicroBooNE energy estimator across the entire energy
range. For the PC events, however, the RNN loses its
performance in the low-energy region.

FIG. 19. νμ and νe energy resolution bias plot for the traditional MicroBooNE energy estimator (black) and the reweighted training of
the RNN energy estimator (red), evaluated on the samples of PC CC events. (a) νμ energy resolution bias. (b) νe energy resolution bias.

IMPROVING NEUTRINO ENERGY ESTIMATION OF CHARGED- … PHYS. REV. D 110, 092010 (2024)

092010-17



[1] P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Miravé,
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