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Abstract. The subject of this manuscript is the investigation of (possibly unbounded)
weighted composition operators arising from the formal expression E( ,')f =  · f � '
over Mittag-Leffler spaces of entire functions. In this context, the functions  and ' are
entire functions, and this manuscript presents basic operator theoretic properties such as
closability, invertibility, cyclicity, complex symmetry, boundedness, compactness, and the
essential norm.

Significantly, a characterization of  and ' are obtained for bounded weighted compo-
sition operators over the Mittag-Leffler space of entire functions for parameter 0 < ↵ < 2,
and many extant results in the Fock space are reproduced in the more general context of
Mittag-Leffler spaces.

1. Introduction

Let X be a Banach space of holomorphic functions on some domain G. Consider the
formal expression of the following form

E( ,')f =  · f � ',

where  ,' are holomorphic functions on G and ' : G ! G. The maximal weighted compo-

sition operator corresponding to  and ' over X is defined as follows

dom(W ,',max) = {f 2 X : E( ,')f 2 X}, and
W ,',maxf = E( ,')f, 8f 2 dom(W ,',max).

The domain, dom(W ,',max), is called maximal and the operator W ,',max is “maximal"
for the reason that it cannot be extended as an operator in X generated by the expression
E( ,'). The domain of an unbounded operator is integral to the definition of the operator,
where an expression studied on different domains may generate operators with different
properties [19]. This dependence on the domain motivates the consideration of the formal
expression E( ,') on subspaces of the maximal domain dom(W ,',max). The operator
W ,' is called an unbounded weighted composition operator if W ,' � W ,',max. In other
words, the domain dom(W ,') is a subspace of the maximal domain dom(W ,',max), and
the operator W ,' is the restriction of the maximal operator W ,',max on dom(W ,'). A
weighted composition operator can be regarded as a generalization of the multiplication

operator M f =  · f (cf. [28, 22, 21]) and the composition operator C'f = f � ' (cf.
[3, 14, 6]).

The principle avenue of the investigation of weighted composition operators is in the inter-
action of operator-theoretic properties, such as boundedness or invertibility, and function-
theoretic properties of the symbols,  and ', such as growth rates and zeros. Much of
the literature investigates weighted composition operators on Banach spaces of holomorphic
functions in the unit disc or the unit ball (cf. [13]). More recent studies have extended the
research to include such operators over Fock spaces of entire functions, which bears relevance
to the current study. Many operator-theoretic properties of W ,' have been characterized
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completely, such as: boundedness, isometry, compactness, selfadjointness, normality, co-
hyponormality, complex symmetry, etc (cf. [12, 11, 16]). The investigation of weighted
composition operators over the Mittag-Leffler spaces of entire functions has not been con-
sidered and is the subject of the current manuscript.

The Mittag-Leffler space of entire functions of order ↵ > 0, denoted as ML
2(C,↵) (cf.

[24]), is the reproducing kernel Hilbert space (RKHS) associated with the kernel functions
given as

(1.1) K↵,w(z) =
X

j�0

z
j
w̄

j

�(↵j + 1)
, w 2 C

where � is the Gamma function, �(↵) =
R1
0 ⌧

↵�1
e
�⌧

d⌧ . The Aronszajn theorem (cf. [1])
affords the following representation of the Mittag-Leffler space of entire functions of order
↵ > 0,

ML
2(C,↵) :=

8
<

:f(z) =
X

j�0

fjz
j
2 E(C) :

X

j�0

|fj |
2�(↵j + 1) < 1

9
=

; ,

where E(C) is the collection of holomorphic functions over C. The space ML
2(C,↵) inherits

its name from Gösta Magnus Mittag-Leffler who introduced his eponymous function,

(1.2) E↵(u) =
X

j�0

u
j

�(↵j + 1)
, u 2 C.

Basic properties of the space ML
2(C,↵) are investigated in a series of manuscripts [23, 24].

Consequently, the kernel function (1.1) may be rewritten as K↵,w(z) = E↵(zw). The Mittag-
Leffler function generalizes the exponential function through the replacement of the factorial
in the power series expansion of the exponential function by the Gamma function whereby
E1(u) = e

u.
The Mittag-Leffler function has been of growing interest for several decades due to its di-

rect involvement in the fractional calculus as well as problems of physics, biology, chemistry,
engineering and other applied sciences (cf. [5, 17, 10]). However, the study of Mittag-Leffler
RKHSs were initiated in [23] to facilitate numerical methods for the Caputo fractional de-
rivative by leveraging the eigenfunction relationship D

↵
⇤E↵(�t

↵) = �E↵(�t↵), where D
↵
⇤

is the Caputo fractional derivative (cf. [5]). In [23], it was shown that for RKHSs of
continuously differentiable functions that norm convergence implies convergence of Caputo
fractional derivatives, and a kernelized predictor-corrector method was introduced for initial
value problems of Caputo type.

It was proved in [24], that the norm for the space ML
2(C,↵) can be expressed as

kfk :=

0

@ 1

↵⇡

Z

C

|f(z)|2|z|
2
↵�2

e
�|z|

2
↵
dz

1

A
1/2

.

Mittag-Leffler spaces give a one parameter generalization of the Fock space [24]. More
precisely, Fock space can be obtained from Mittag-Leffler space by setting ↵ = 1. Moreover,
ML

2(C, 1) ✓ ML
2(C,↵), 8↵ 2 (0, 1], and the containment is proper for ↵ 6= 1 [24].

In this paper, we study the basic operator properties of weighted composition operators
on ML

2(C,↵). This investigation includes the closability, invertibility, cyclicity, complex
symmetry, boundedness, compactness, and the essential norm. In Proposition 4.1, we show
that every maximal weighted composition operator is closed on the Mittag-Leffler spaces.
We characterize those weighted composition operators on ML

2(C,↵) that are invertible in
the sense of unbounded operators (Theorems 5.1-5.2), bounded (Theorem 7.1), and compact
(Corollary 8.5 and Theorem 8.6). In addition to these studies, we characterize all functions
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which are non-vanishing in ML
2(C,↵) (Proposition 5.3). In Section 6, we establish some

conditions for a complex symmetric operator to be cyclic on Mittag-Leffler spaces.

Notations

Throughout the paper, we denote by Z, R, C by the sets of integers, real numbers, complex
numbers, respectively. For a set A ✓ R, the symbol A�� stands for the set {x 2 A : x � �}.
We denote by C[z] the polynomial ring. For a set G, Span(G) denotes the linear span of
all elements in G and Cl(G) denotes the closure of G. For two unbounded operators X,Y ,
the notation X � Y means that X is the restriction of Y on the domain dom(X); namely

dom(X) ✓ dom(Y ), Xz = Y z, 8z 2 dom(X).

The product XY is defined as

dom(XY ) = {z 2 dom(Y ) : Y z 2 dom(X)}, XY z = X(Y z), 8z 2 dom(XY ).

For an unbounded operator T , dom(T ) denotes the domain of T ,

dom(T1) =
\

n�0

dom(Tn)

and O(T, x) = {T
n
x : n 2 Z�0}, where x 2 dom(T1).

2. Preliminaries

Definition 2.1. A RKHS, H, over a set G is a Hilbert space of functions from G to C such
that for each x 2 G, the evaluation functional f 7! f(x) is bounded.

By the Riesz representation theorem, for every x 2 G there is a corresponding function
kx 2 H such that hf, kxi = f(x) for all f 2 H. The kernel function corresponding to H

over the set G is given by K(x, y) = hky, kxi.
This section presents some results established in [10] for Mittag-Leffler functions and

[24] for Mittag-Leffler spaces of entire functions, which are RKHSs over C. Lemma 2.2 and
Remark 2.3 are fundamental inequalities that characterize the growth of Mittag-Leffler func-
tions, and will be later utilized in characterizing bounded weighted composition operators
over Mittag-Leffler spaces.

Lemma 2.2 ([10, Corollary 3.8]). Let 0 < ↵ < 2. Then the following limit holds:

lim
t!1,t2R

e
�t1/↵

|E↵(t)| =
1

↵
.

Remark 2.3. By Lemma 2.2, there exist positive constants C1, C2 such that

C1e
t1/↵

 |E↵(t)|  C2e
t1/↵

, 8t � 0.

For ↵ > 0 and z 2 C, we define the normalized kernel function as

(2.1) k↵,z =
K↵,z

kK↵,zk
,

where

kK↵,zk
2 = hK↵,z,K↵,zi = K↵,z(z) = E↵(|z|

2) =
X

j�0

|z|
2j

�(↵j + 1)
.

As the norm of the Mittag-Leffler spaces of entire functions can be expressed as an integral
over C with a radially symmetric weight, the monomials can be demonstrated to be mutually
orthogonal with respect to the Mittag-Leffler space’s inner product. Therefore the following
proposition holds.

Proposition 2.4 ([24]). Let ↵ > 0. The following properties hold.
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(1) The set {ej}j�0, where

ej(z) =
z
j

p
�(↵j + 1)

,

is an orthonormal basis for ML
2(C,↵).

(2) |f(z)|2  E↵(|z|2)kfk2 for every f 2 ML
2(C,↵).

Finally, the follow proposition specializes [4, Proposition 2.1] to the Mittag-Leffler space
of entire functions.

Proposition 2.5 ([4, Proposition 2.1]). Let ↵ > 0. For each f 2 ML
2(C,↵), we have

lim
|z|!1

hf, k↵,zi = 0.

3. Some initial properties

This section demonstrates several technical details concerning weighted composition op-
erators over Mittag-Leffler spaces of entire functions.

3.1. Kernel ker(W ,'). We are first interested in the kernel and image of an unbounded
weighted composition operator acting on Mittag-Leffler spaces. Proposition 3.1 applies
to RKHS of entire functions that have strictly positive definite kernels [20], of which the
Mittag-Leffler space is a special case.

Proposition 3.1. Let H be a RKHS of entire functions with a strictly positive definite

kernel function K(z, w), and let W ,' be a densely defined weighted composition operator

over H induced by two entire functions  and '. If  6⌘ 0, then either ' is nonconstant

and

ker(W ,') = {0} and Cl[Im (W ⇤
 ,')] = H,

or ' ⌘ �0 2 C and

ker(W ,') = {K(·,�0)}
?

and Cl[Im (W ⇤
 ,')] = K(·,�0)C.

Proof. Suppose that f 2 ker(W ,'), then for all z 2 C,  (z)f('(z)) = 0. Let ! 2 C be a
nonvanishing point for  and let {!m} 2 C be a sequence of points converging to ! such
that  (!m) 6= 0 for all m. Hence, f('(!m)) = 0 for each m. Since !m has a cluster point,
f � ' ⌘ 0.

Either, ' is nonconstant and f ⌘ 0 or ' ⌘ �0 2 C. In the first case, this means that
ker(W ,') = {0}. Hence,

H = Cl[Im (W ⇤
 ,')]� ker(W ,') = Cl[Im (W ⇤

 ,')].

In the second case  2 H, since if g 2 dom(W ,') is such that g('(z)) ⌘ g(�0) 2 C \ {0}
(the density of the domain guarantees such a g), then W ,'g = g(�0) ·  2 H. Therefore,
W ,' maps to the one dimensional subspace spanned by  . The kernel is given as

ker(W ,') = {g 2 H : g(�0) = 0} = {K(·,�0)}
?
.

⇤

3.2. Reproducing kernel algebra. The lemma below shows kernel functions always be-
long to the domain dom[(W ⇤

 ,')
n]. Moreover, the action (W ⇤

 ,')
n
K↵,z can be written explic-

itly.

Lemma 3.2. For every ↵ > 0, n 2 Z�1 and z 2 C, K↵,z 2 dom[(W ⇤
 ,')

n], and

(W ⇤
 ,')

n
K↵,z =  (z) ('(z)) · · · ('n�1(z))K↵,'n(z),

where '` = ' � · · · � ' denotes the `-th iteration of the function '.
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Proof. Let z 2 C and ↵ > 0. For every f 2 dom(W ,'), we have

hW ,'f,K↵,zi = W ,'f(z) =  (z)hf,K↵,'(z)i = hf, (z)K↵,'(z)i,

which provides the conclusion for n = 1. Now suppose that the conclusion holds for n = .
By induction, we have K↵,z 2 dom[(W ⇤

 ,')
] and

(W ⇤
 ,')


K↵,z =  (z) ('(z)) · · · ('�1(z))K↵,'(z).

It follows from K↵,'(z) 2 dom(W ⇤
 ,'), that

(W ⇤
 ,')

+1
K↵,z = W

⇤
 ,'

⇣
 (z) ('(z)) · · · ('�1(z))K↵,'(z)

⌘

=  (z) ('(z)) · · · ('�1(z))W
⇤
 ,'

�
K↵,'(z)

�

=  (z) ('(z)) · · · ('(z))K↵,'+1(z).

⇤
The following quantities play an important role in the present manuscript:

M↵,z( ,') = | (z)|2e|'(z)|
2/↵�|z|2/↵

, M↵( ,') = sup
z2C

M↵,z( ,').

The following lemma will be used in characterizing the boundedness of a weighted compo-
sition operator acting on Mittag-Leffler spaces in Theorem 7.1.
Lemma 3.3. Let 2 > ↵ > 0. If k↵,'(z) 2 dom(W ,') for some z 2 C, then

��W ,'k↵,'(z)

�� � C
1/2
1 C

�1/2
2 M↵,z( ,')

1/2
,

where C1, C2 are the positive constants mentioned in Remark 2.3.

Proof. By Proposition 2.4(2),
��W ,'k↵,'(z)

��2 �
��W ,'k↵,'(z)(z)

��2E↵(|z|2)�1

= | (z)|2E↵(|'(z)|
2)E↵(|z|

2)�1

� C1C
�1
2 M↵,z( ,').

⇤
The following result is similar to the idea of [16, Proposition 2.1], but for a completeness

of exposition we give a proof.
Proposition 3.4. Let 0 < ↵ < 2. Let  and ' be entire functions on C such that  6⌘ 0.

If there exists a positive constant C such that

(3.1) M↵,z( ,')  C, 8z 2 C,
then the function ' takes the form '(z) = Az + B, where A and B are complex constants,

with |A|  1.

Proof. Since  6⌘ 0, there is an integer  2 Z�0 and an entire function ⇣ with ⇣(0) 6= 0 such
that  (z) = z


⇣(z). Taking logarithms on both sides of (3.1), we obtain

|'(z)|2/↵ � |z|
2/↵ + 2 log |z|+ 2 log |⇣(z)|  logC, 8z 2 C,

the convention that log 0 = �1 is employed. Through the change of variables z = re
i✓ and

then integrating with respect to ✓ on [�⇡,⇡] the following is obtained

logC �

⇡Z

�⇡

|'(rei✓)|2/↵
d✓

2⇡
� r

2/↵ + 2 log r + 2

⇡Z

�⇡

log
���⇣(rei✓)

���
d✓

2⇡

�

⇡Z

�⇡

|'(rei✓)|2/↵
d✓

2⇡
� r

2/↵ + 2 log r + 2 log |⇣(0)| ,(3.2)
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where the last inequality uses Jensen’s inequality for harmonic functions.
If 0 < ↵  1, then by Jensen’s inequality (see [18, Theorem 1.7.3]), we can further

estimate

(3.3) logC �

0

@
⇡Z

�⇡

|'(rei✓)|2
d✓

2⇡

1

A
1/↵

� r
2/↵ + 2 log r + 2 log |⇣(0)| .

Now consider the power expansion

'(z) =
X

j�0

'jz
j
, z 2 C,

where '0,'1, · · · are complex constants. Then

⇡Z

�⇡

|'(rei✓)|2
d✓

2⇡
=

X

j�0

|'j |
2
r
2j
,

and hence the inequality (3.3) is rewritten as

logC �

0

@
X

j�0

|'j |
2
r
2j

1

A
1/↵

� r
2/↵ + 2 log r + 2 log |⇣(0)| .

Since this inequality holds for all r > 0, we must have |'1|  1, and 'j = 0 for all j � 2.
This implies that '(z) = Az +B, where |A|  1.

If 1 < ↵ < 2, then 1 <
2
↵ < 2, and a lower bound on (3.2) can be realized via the

Hausdorff-Young inequality (cf. [15, Theorem IV.2.1]) as

log(C) �

0

@
X

j�0

|'j |
q
r
qj

1

A

1
q ·

2
↵

� r
2/↵ + 2 log r + 2 log |⇣(0)| ,

where q = 2
2�↵ . Since this inequality holds for all r > 0, the conclusion follows as with the

case of 0 < ↵  1. ⇤

3.3. The operator ⌦m. For f(z) =
P
k�0

fkz
k, we define ⌦mf(z) =

P
k�m

fkz
k acting on

ML
2(C,↵). This operator enjoys the following properties.

Proposition 3.5. Let ↵ > 0, then k⌦mk = 1 for all m 2 Z�0, and

|⌦mf(z)|  kfk

vuut
1X

n=m

|z|2

�(↵n+ 1)

for all m 2 Z�0, z 2 C, and f 2 ML
2(C,↵).

Proof. Since ej(z) = zjp
�(↵j+1)

is an orthonormal basis for ML
2(C,↵), it follows immedi-

ately that ⌦m is the projection onto {e0, e1, e2, . . . , em�1}
?. Thus, k⌦mk = 1, and ⌦m is
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selfadjoint and idempotent. Moreover, let f 2 ML
2(C,↵), then

|⌦mf(z)| = |h⌦mf,K↵,zi|

= |hf,⌦mK↵,zi|

 kfkk⌦mK↵,zk

= kfk

q
h⌦mK↵,z,⌦mK↵,zi

= kfk

q
h⌦mK↵,z,K↵,zi

= kfk

q
⌦mK↵,z(z)

= kfk

vuut
1X

n=m

|z|2n

�(↵n+ 1)
.

The last equality follows as

⌦mK↵,w(z) = ⌦m

1X

n=0

w̄
n
z
n

�(↵n+ 1)
=

1X

n=m

w̄
n
z
n

�(↵n+ 1)

for w 2 C. ⇤

4. Dense Domain & Closed Graph

The following result may be well-known, but a proof is included here for the completeness
of our exposition.

Proposition 4.1. Let  : G ! C and ' : G ! G, and suppose that H is a RKHS. Given

the domain

(4.1) dom(W ,',max) := {f 2 H :  (·) · f('(·)) 2 H},

the maximal weighted composition operator, W ,',max : dom(W ,',max) ! H, given as

W ,',maxf :=  (·) · f('(·)) is closed.

Proof. Suppose that {fn}
1
n=1 2 dom(W ,',max) such that fn ! f 2 H and W ,'fn !

g 2 H. The goal of this proof is to establish that f 2 dom(W ,',max) and W ,',maxf =
g. Since, norm convergence implies pointwise convergence in a RKHS, it can be seen
that  (x)fn('(x)) = W ,',maxfn(x) ! g(x) for all x 2 G, but also for each x 2 G,
 (x)fn('(x)) !  (x)f('(x)). Hence, g(x) =  (x)f('(x)) for all x. Since g 2 H, it follows
that f 2 dom(W ,',max) by the definition given in (4.1). ⇤

We say that a linear operator T is bounded on a Banach space W if the domain dom(T ) =
W and there exists a constant C for which kTxk  Ckxk for all x 2 W . Proposition 4.1
contains the following corollary.

Corollary 4.2. A maximal weighted composition operator is bounded on ML
2(C,↵) if and

only if its domain is the whole space.

The result below offers an alternate description of the maximal weighted composition
operators.

Proposition 4.3. Let L be the linear operator given by

dom(L) = Span({K↵,z : z 2 C}), LK↵,z =  (z)K↵,'(z).

Then W ,',max = L
⇤
. Moreover, the operator W ,',max is densely defined if and only if the

operator L is closable.
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Proof. Let f =
Pn

j=1 �jK↵,zj 2 dom(L). For every g 2 ML
2(C,↵), we have

hLf, gi =
nX

j=1

�j (zj)g('(zj)) =
nX

j=1

�jE( ,')g(zj).

By the Riesz lemma, g 2 dom(L⇤) if and only if there exists � > 0 such that
|hLf, gi|  �kfk, 8f 2 dom(L),

or equivalently,

|

nX

j=1

E( ,')g(zj)�j |
2
 �2

nX

j,`=1

�j�`K↵,zj (z`).

In view of [27], the latter is equivalent to the fact that E( ,')g 2 ML
2(C,↵). This gives

dom(L⇤) = dom(W ,',max). Moreover,
hLf, gi = hf,E( ,')gi = hf,W ,',maxgi, 8f 2 dom(L), 8g 2 dom(W ,',max),

which implies W ,',max = L
⇤. The conclusion follows from [25, Proposition 1.8(i)]. ⇤

4.1. Product of two operators. The following proposition is a necessary condition for
an unbounded weighted composition operator to be invertible.

Proposition 4.4. Let ↵ > 0, and let W ,' be a densely defined, unbounded weighted com-

position operator, induced by the symbols  and '. If there exists a bounded, linear operator

S on ML
2(C,↵) such that

(4.2) W ,'S = I,

then the following holds:

(1) The function  is non-vanishing.

(2) The function ' takes the form '(z) = Az +B with A 6= 0.
(3) The operator W⇣,�,max is bounded on ML

2(C,↵), where

(4.3) ⇣(z) =
1

 ((z �B)A�1)
, �(z) = (z �B)A�1

.

(4) The identity S = W⇣,�,max holds.

Proof. (1) By (4.2) and [25, Propositions 1.6(iv)-1.7], we have
S
⇤
W

⇤
 ,' � (W ,'S)

⇤ = I,

and by Lemma 3.2, it follows that

 (z)S⇤
K↵,'(z) = S

⇤
W

⇤
 ,'K↵,z = K↵,z, 8z 2 C.

Hence, conclusion (1) is established. Moreover,

(4.4) S
⇤
K↵,'(z) = ( (z))�1

K↵,z, 8z 2 C.
(2) By [26, Exercise 14, Chapter 3], it is enough to show that the function ' is injective.

Indeed, if there exist z1, z2 such that '(z1) = '(z2), then S
⇤
K↵,'(z1) = S

⇤
K↵,'(z2), and so,

by (4.4),
( (z1))

�1
K↵,z1(u) = ( (z2))

�1
K↵,z2(u), 8u 2 C.

In particular, with u = 0, we get  (z1) =  (z2) 6= 0. Substitute back into the above identity
to get K↵,z1 = K↵,z2 or equivalently

X

j�0

u
j
z1

j

�(↵j + 1)
=

X

j�0

u
j
z2

j

�(↵j + 1)
, 8u 2 C.

Differentiating the above equality with respect to the variable u and evaluating it at the
point u = 0, we obtain z1 = z2 as desired.
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(3) The identity in (4.4) may be expressed as

S
⇤
K↵,u = ⇣(u)K↵,�(u), 8u 2 C.

By Proposition 4.3, we have W⇣,�,max = S
⇤⇤ = S, where the last equality uses the fact that

the operator S is bounded. ⇤
The following is an observation related to the product of two unbounded weighted com-

position operators and its proof is left to the reader.

Lemma 4.5. For entire functions  1, 2,'1,'2, the product W 1,'1W 2,'2 is the weighted

composition operator given by

W 1,'1W 2,'2f = E(⇠, ⌘)f, 8f 2 dom(W 1,'1W 2,'2),

where ⇠ =  1 · ( 2 � '1), ⌘ = '2 � '1, and the domain is given as

dom(W 1,'1W 2,'2) = {f 2 dom(W 2,'2) : W 2,'2f 2 dom(W 1,'1)}.

5. Invertibility

Recall that an unbounded linear operator T is called invertible if there exists a bounded
linear operator S such that TS = I and ST � I. In this section, we characterize unbounded

weighted composition operators which are invertible. It turns out that the hypothesis of
Proposition 4.4 provides a sufficient condition for a maximal weighted composition operator
to be invertible.

The first result is devoted to characterizing maximal weighted composition operators
which are invertible on ML

2(C,↵).

Theorem 5.1. Let ↵ > 0, and let W ,',max be a densely defined maximal weighted compo-

sition operator induced by the symbols  and ' with  6⌘ 0. The following assertions are

equivalent.

(1) The operator W ,',max is invertible.

(2) There exists a bounded, linear operator S such that identity (4.2) holds, that is

W ,',maxS = I.

(3) The symbols satisfy the following conditions:

(a) The function  is non-vanishing.

(b) The function ' takes the form '(z) = Az +B with A 6= 0.
(c) The operator W⇣,�,max is bounded on ML

2(C,↵), where the symbols ⇣ and �

are expressed as in (4.3).
Furthermore, in this case, W

�1
 ,',max = W⇣,�,max.

Proof. It is clear that (1)=)(2), while the implication (2)=)(3) holds by Proposition 4.4.
Hence, the implication (3)=)(1) remains to be verified. Since the operator W⇣,�,max is

bounded, by Lemma 4.5, it can be seen that
W ,',maxW⇣,�,max = I, W⇣,�,maxW ,',max � I,

which yields (1). ⇤
The next result shows that an invertible weighted composition operator must be maximal.

Theorem 5.2. Let ↵ > 0, and let W ,' be a densely defined unbounded weighted composition

operator induced by the symbols  and ' with  6⌘ 0. The following assertions are equivalent.

(1) The operator W ,' is invertible.

(2) The identity W ,',max = W ,' holds, and

(a) The function  is non-vanishing.

(b) The function ' takes the form '(z) = Az +B with A 6= 0.
(c) The operator W⇣,�,max is bounded on ML

2(C,↵), where the symbols ⇣,� are of

forms (4.3).
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Proof. It is clear that (2)=)(1). We prove (1)=)(2) as follows. Suppose that the operator
W ,' is invertible. Hence by Proposition 4.4, the conclusions 2(a)-2(c) hold, and

W ,'W⇣,�,max = I, W⇣,�,maxW ,' � I.

By Theorem 5.1, it follows that

W ,',maxW⇣,�,max = I, W⇣,�,maxW ,',max � I.

Thus,
W ,',max = W ,'W⇣,�,maxW ,',max � W ,',

which gives W ,',max = W ,'. ⇤
An invertible weighted composition operator W ,' gives rise to a symbol  which is non-

vanishing over C in ML
2(C,↵). Thus, it is necessary to discover the structure of  in our

framework.

Proposition 5.3. Let 0 < ↵ < 2 and let h 2 E(C). The following assertions are equivalent.

(1) e
h
2 ML

2(C,↵).
(2) The function h must be a polynomial with degree at most [2/↵], and the leading

coefficient of h has modulus less than 1/2 if 2/↵ 2 Z.

In this case, the inclusion e
hC[z] ⇢ ML

2(C,↵) holds.

Proof. The implication (2)=)(1) was proved in [24, Proposition 4.4]. The rest task is to
show that (1)=)(2). Recall that C1 and C2 denote positive constants mentioned in Remark
2.3. By Proposition 2.5, it follows that

0 = lim
|z|!1

D
e
h
, k↵,z

E
= lim

|z|!1

e
h(z)

kK↵,zk
= lim

|z|!1

e
h(z)

E↵(|z|2)1/2
.

By the definition of a limit, for z with sufficiently large modulus we have

e
Reh(z)

 C
�1/2
2 E↵(|z|

2)1/2  e
1
2 |z|

2/↵
.

Then the order ⇢ of eh is

⇢ = lim sup
�!1

log[max|z|=� Reh(z)]

log �

 lim sup
�!1

log[2�1
�
2/↵]

log �


2

↵
.

By [2, Corollary 4.5.11], the function h must be a polynomial with degree at most [2/↵].
Consider the case when 2/↵ 2 Z. In this case, we will demonstrate, via a proof by

contradiction, that the leading coefficient of h has modulus less than 1/2. Indeed, assume
that

h(z) =
X

j=0

hjz
j
, z 2 C,

where  = 2/↵ and h0, · · · , h are complex constants with |h| � 1/2. Since h =
|h|e

iarg(h), without loss of generality, we may assume that h 2 R with h � 1/2. For
t 2 R, we have

D
e
h
, k↵,t

E
= kK↵,tk

�1
D
e
h
,K↵,t

E
= kK↵,tk

�1
e
h(t) = E↵(t

2)�1/2
e

P
j=0 hjtj .

Hence,
���
D
e
h
, k↵,t

E��� � C
�1/2
2 e

P�1
j=0 tjRehj+(h� 1

2 )t

.
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Since h � 1/2, the right-hand side cannot tend to 0 as t ! ±1, but this is impossible by
Proposition 2.5.

Here the inclusion e
hC[z] ⇢ ML

2(C,↵) will be demonstrated for the case when 2/↵ 2 Z,
and the remaining case is left to the reader. As proved above, the function h takes the
following form h(z) =

P
j=0

hjz
j , where  = 2/↵, and |h| < 1/2. Let g 2 C[z] and " be a

positive number such that

0 < " <
1

2

✓
1

2
� |h|

◆
.

There exists R > 0 such that for every |z| � R we have

|g(z)|  e
"|z|

,

������

�1X

j=0

hjz
j

������
 "|z|


,

and then ���g(z)eh(z)
��� = |g(z)| eReh(z)

 |g(z)| e|h(z)|  e
(|h|+2")|z|

, 8|z| � R.

Thus,
Z

C

���g(z)eh(z)
���
2
|z|

�2
e
�|z|

dz



0

B@
Z

|z|R

+

Z

|z|>R

1

CA
���g(z)eh(z)

���
2
|z|

�2
e
�|z|

dz



Z

|z|R

���g(z)eh(z)
���
2
|z|

�2
e
�|z|

dz +

Z

|z|>R

|z|
�2

e
�[1�2(|h|+2")]·|z|

dz

< 1.

⇤

6. Cyclicity & Complex Symmetry

A closed densely defined linear operator T is called (i) cyclic if there exists an element
x 2 dom(T1) such that SpanO(T, x) is dense; (ii) C-self adjoint (or simply: complex

symmetric) if there exists a conjugation C (i.e. an anti-linear isometric involution) such
that T = CT

⇤
C. The theory of complex symmetric operators has developed over the last

decade since being initiated by Garcia and Putinar in [8, 9]. Due to potential applications,
complex symmetric operators are of great importance in quantum mechanics (cf. [7]). In
this section, we establish some conditions for a complex symmetric operator to be cyclic on
Mittag-Leffler spaces.

Theorem 6.1. Let ↵ > 0, and let W ,' be a densely defined unbounded weighted composition

operator induced by two entire functions  6⌘ 0 and ' 6⌘ const. Suppose that there exists

an involutive mapping S : ML
2(C,↵) ! ML

2(C,↵), such that

(6.1) dom(W ⇤
 ,'

�
✓ dom(W ,'S)

and

(6.2) kW ,'Sfk  kW
⇤
 ,'fk, 8f 2 dom(W ⇤

 ,').

The following conclusions hold.

(1) The function  is non-vanishing.

(2) The function ' takes the form '(z) = Az+B, where A and B are complex constants,

with A 6= 0.
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(3) If |A| < 1, then W
⇤
 ,' is cyclic.

Proof. (1) Assume to the contrary that  (z0) = 0 for some z0 2 C. Then there is a
neighbourhood V of z0 such that  (z) 6= 0 for every z 2 V \ {z0}. Lemma 3.2 shows that
K↵,z0 2 dom(W ⇤

 ,') and W
⇤
 ,'K↵,z0 =  (z0)K↵,'(z0) = 0.

By assumptions (6.1)-(6.2), we have SK↵,z0 2 dom(W ,') and W ,'SK↵,z0 = 0. Conse-
quently, taking into account the structure of the operator W ,', it follows that

 (z)SK↵,z0('(z)) = W ,'SK↵,z0(z) = 0, 8z 2 C,
which implies that SK↵,z0�' ⌘ 0 on V \{z0}. Since ' is a non-constant function, SK↵,z0 ⌘ 0,
K↵,z0 ⌘ 0 (because S is involutive). This is a contradiction.

(2) By [26, Exercise 14, Chapter 3], it is enough to show that the function ' is injective.
Suppose that '(z1) = '(z2), for some z1, z2 2 C. Since K↵,z1 and K↵,z2 both belong to

the domain dom(W ⇤
 ,'), so do their linear combinations. Lemma 3.2(1) gives

W
⇤
 ,'

�
 (z2)K↵,z1 �  (z1)K↵,z2

�
=  (z1) (z2)K↵,'(z1) �  (z1) (z2)K↵,'(z2) = 0.

This implies, again by assumption (6.2), that W ,'S( (z2)K↵,z1 � (z1)K↵,z2) = 0. Which
means that S( (z2)K↵,z1 � (z1)K↵,z2) 2 ker(W ,'). Hence, by Proposition 3.1, it must be
a zero function. Since the operator S is involutive, we get

( (z2)K↵,z1 �  (z1)K↵,z2)(u) = 0, 8u 2 C,
which gives z1 = z2.

(3) Let d 6= B(1�A)�1 and

S := Cl
⇥
Span{(W ⇤

 ,')
n
K↵,d : n 2 Z�0}

⇤
.

Assume to the contrary that there exists an element g?S. Hence, Lemma 3.2 gives

0 =
⌦
g, (W ⇤

 ,')
n
K↵,d

↵
=  (d) ('(d)) · · · ('n�1(d))

⌦
g,K↵,'n(d)

↵

=  (d) ('(d)) · · · ('n�1(d))g('n(d)),

which implies, by the first part, that g('n(d)) = 0 for all n 2 Z�0. Inductive arguments show
that 'n(d) = A

n
d + (1 � A

n)B(1 � A)�1, which implies, as |A| < 1, that lim
n!1

g('n(d)) =

B(1�A)�1. Thus, g ⌘ 0 by the identity theorem, and so we have S = ML
2(C,↵). ⇤

Remark 6.2. Note that the class of operators satisfying the conditions (6.1)-(6.2) is quite
diverse. In particular, it contains many well-known operators, such as selfadjoint operators,
normal operators, C-self adjoint operators, and cohyponormal operators, etc.

Corollary 6.3. Let ↵ > 0, and let W ,' be a cohyponormal weighted composition operator

induced by two entire functions  6⌘ 0 and ' 6⌘ const. If |'
0(0)| < 1, then W ,', W

⇤
 ,' are

cyclic operators on ML
2(C,↵).

Corollary 6.4. Let ↵ > 0, and let W ,' be a C-self adjoint weighted composition operator,

induced by two entire functions  6⌘ 0 and ' 6⌘ const. Then the following conclusions hold:

(1) The function  is non-vanishing.

(2) The function ' takes the form '(z) = Az + B, where A,B are complex constants,

with A 6= 0.
(3) If |A| < 1, then W ,', W

⇤
 ,' are cyclic operators on ML

2(C,↵).

Proof. By the definition of a complex symmetric operator, there exists a conjugation C such
that

dom(W ⇤
 ,'

�
= dom(W ,'C), W ,'Cf = CW

⇤
 ,'f, 8f 2 dom(W ⇤

 ,'),

which implies, as C is isometric, that

dom(W ⇤
 ,'

�
= dom(W ,'C), kW ,'Cfk =

��W ⇤
 ,'f

�� , 8f 2 dom(W ⇤
 ,').
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Hence, we can use Theorem 6.1 to demonstrate that the operator W
⇤
 ,' is cyclic, where

'(z) = Az +B with |A| < 1, and the linear span of the following elements
(W ⇤

 ,')
n
K↵,d, 8n 2 Z�0

is dense in ML
2(C,↵). Here, d 6= B(1 � A)�1. We prove by induction on n 2 Z�0, that

CK↵,d 2 dom[(W ,')n] and
(W ,')

n
CK↵,d = C(W ⇤

 ,')
n
K↵,d.

The proofs for n = 0 and n = 1 are left to the reader. Now we suppose that the conclusion
holds for n = , and we will demonstrate it for n =  + 1. By Lemma 3.2, we have
K↵,d 2 dom[(W ⇤

 ,')
],

(W ⇤
 ,')


K↵,d =  (d) ('(d)) · · · ('�1(d))K↵,'(d),

and hence
C(W ⇤

 ,')

K↵,d =  (d) ('(d)) · · · ('�1(d))CK↵,'(d).

By the inductive assumption with n = , we get CK↵,d 2 dom[(W ,')] and
(W ,')


CK↵,d = C(W ⇤

 ,')

K↵,d =  (d) ('(d)) · · · ('�1(d))CK↵,'(d).

Again by Lemma 3.2, K↵,'(d) 2 dom(W ⇤
 ,'), which implies, due to the complex symmetry

of W ,', that CK↵,'(d) 2 dom(W ,') and

W ,'CK↵,'(d) = CW
⇤
 ,'K↵,'(d).

Thus, we conclude that CK↵,d 2 dom[(W ,')+1] and

(W ,')
+1

CK↵,d = W ,'C(W
⇤
 ,')


K↵,d

=  (d) ('(d)) · · · ('�1(d))W ,'CK↵,'(d)

=  (d) ('(d)) · · · ('�1(d))CW
⇤
 ,'K↵,'(d)

=  (d) ('(d)) · · · ('�1(d)) ('(d))CK↵,'+1(d)

= C(W ⇤
 ,')

+1
K↵,d,

where the fourth and fifth equalities use Lemma 3.2. These show that the set
Cl [Span{(W ,')

n
CK↵,d : 8n 2 Z�0}]

is dense in ML
2(C,↵). In other words, the operator W ,' is cyclic. ⇤

7. Boundedness

In this section, we give characterizations for the boundedness of W ,' : ML
2(C,↵) !

ML
2(C,↵), where 0 < ↵ < 2. Our results involve the estimate for the operator norm

kW ,'k.

Theorem 7.1. Let 0 < ↵ < 2, and let ' : C ! C and  : C ! C be two functions such that

' is nonconstant and  is not identically zero. Then the following assertions are equivalent.

(1) The maximal weighted composition operator W ,',max is bounded on ML
2(C,↵).

(2) The domain dom(W ,',max) = ML
2(C,↵).

(3) The symbols are entire and satisfy M↵( ,') < 1.

In this case, the function ' takes the form '(z) = Az+B, where A,B are complex constants

with 0 < |A|  1, and the operator norm satisfies

kW ,'fk  M↵( ,')
1/2

|A|
�1/↵21/↵�1(C2|B|

2/↵
↵
�1 + 1)1/2 · kfk, 8f 2 ML

2(C,↵),
when 0 < ↵  1, and

kW ,'fk  M↵( ,')
1
2 |A|

�1/↵

✓
C2⇡↵(3|B|)

2
↵ +

↵

2
2
↵�2

◆ 1
2

· kfk,
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when 1 < ↵ < 2.

Proof. The equivalence (1)()(2) was discussed in Corollary 4.2. Recall that C1 and C2

denote positive constants mentioned in Remark 2.3.
To prove that (1)=)(3), suppose that the weighted composition operator W ,',max :

ML
2(C,↵) ! ML

2(C,↵) is bounded.
Polynomials are contained in ML

2(C;↵), and since e
z has order 1, it is contained in

ML
2(C;↵) for 0 < ↵ < 2. It can then be seen that W ,'1 =  (z), and  (z) 2 ML

2(C;↵).
Also, W ,'z =  (z)'(z) 2 ML

2(C;↵), so ' is analytic everywhere except possibly where  
is zero. Moreover, '(z) has at worst poles of finite multiplicity. However, e'(z) has essential
singularities everywhere that ' has a pole. Since W ,'e

z =  (z)e'(z) 2 ML
2(C;↵) and

 has zeros of finite multiplicity wherever e
'(z) has an essential singularity, the function

z 7!  (z)e'(z) would not be entire if ' had a singularity. Thus, ' is analytic throughout C
and is entire.

Let � := kW ,',maxk. By Lemma 3.3, we have

M↵,z( ,')  �2
C2C

�1
1 , 8z 2 C.

Taking the supremum with respect to z 2 C yields M↵( ,') < 1. Hence, by Proposition
3.4 the function ' takes the form '(z) = Az + B, where A and B are complex constants,
with |A|  1. Thus, we have (1)=)(3).

Conversely, to prove (3)=)(2), suppose that M↵( ,') < 1. Let f 2 ML
2(C,↵), then

by Proposition 2.4 and Remark 2.3

(7.1) |f(z)|2  E↵(|z|
2)kfk2  C2e

|z|2/↵
kfk

2
, 8z 2 C.

We have Z

C

| (z)f('(z))|2|z|
2
↵�2

e
�|z|

2
↵ dz

↵⇡

 M↵( ,')

Z

C

|f('(z))|2|z|
2
↵�2

e
�|'(z)|

2
↵ dz

↵⇡

= |A|
�2/↵

M↵( ,')

Z

C

|f(u)|2|u�B|
2
↵�2

e
�|u|

2
↵ du

↵⇡
,(7.2)

where in the last equality was obtained via a change of variables u = '(z) = Az +B.
For 0 < ↵  1, the integral on the right-hand side is written as

0

B@
Z

|u||B|

+

Z

|u|�|B|

1

CA |f(u)|2|u�B|
2
↵�2

e
�|u|

2
↵
du

 (2|B|)
2
↵�2

Z

|u||B|

|f(u)|2e�|u|
2
↵
du+

Z

|u|�|B|

|f(u)|2(2|u|)
2
↵�2

e
�|u|

2
↵
du

 ⇡C22
2
↵�2

|B|
2/↵

kfk
2 +

Z

|u|�|B|

|f(u)|2(2|u|)
2
↵�2

e
�|u|

2
↵
du

 ⇡2
2
↵�2(C2|B|

2/↵ + ↵) · kfk2,

where the second inequality uses (7.1). We conclude that
Z

C

| (z)f('(z))|2|z|
2
↵�2

e
�|z|

2
↵ dz

↵⇡

 M↵( ,')|A|
�2/↵22/↵�2

↵
�1(C2|B|

2/↵ + ↵) · kfk2,
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which means that dom(W ,',max) = ML
2(C,↵).

If 1 < ↵ < 2, note that |u|
2 < |u � B| < 2|u| for |u| > 2|B|. Hence, for 1 < ↵ < 2,

|u�B|
2
↵�2

<
1

2
2
↵�2

|u|
2
↵�2. Thus, the integral in (7.2) may be bounded as

Z

C

|f(u)|2|u�B|
2
↵�2

e
�|u|

2
↵
du =

0

B@
Z

|u|2B

+

Z

|u|>2B

1

CA |f(u)|2|u�B|
2
↵�2

e
�|u|

2
↵
du

 sup
|u|2B

✓
|f(u)|e�|u|

2
↵

◆ Z

|u|2B

|u�B|
2
↵�2

du+
1

2
2
↵�2

Z

|u|>2B

|f(u)|2|u|
2
↵�2

e
�|u|

2
↵
du

 kfk
2
ML2(C,↵)

0

B@C2

Z

|u|2B

|u�B|
2
↵�2

du+
↵

2
2
↵�2

1

CA

 kfk
2
ML2(C,↵)

✓
C2⇡↵(3|B|)

2
↵ +

↵

2
2
↵�2

◆
,

where C2 is given in Remark 2.3. Therefore,
Z

C

| (z)f('(z))|2|z|
2
↵�2

e
�|z|

2
↵ dz

↵⇡

 M↵( ,')|A|
�2/↵

✓
C2⇡↵(3|B|)

2
↵ +

↵

2
2
↵�2

◆
· kfk

2

for the case 1 < ↵ < 2.
Thus, we have (3)=)(2). ⇤

Theorem 7.2. Let 0 < ↵ < 2, and let ' ⌘ B be a constant function, and let  6⌘ 0 be an

entire function. Then the following assertions are equivalent:

(1) The maximal weighted composition operator W ,',max is bounded on ML
2(C,↵).

(2) The domain dom(W ,',max) = ML
2(C,↵).

(3) The function  satisfies  2 ML
2(C,↵).

In this case, the operator norm satisfies

kW ,'fk  k kE↵(|B|
2)1/2kfk, 8f 2 ML

2(C,↵).

Proof. The equivalence (1)()(2) was discussed in Corollary 4.2. Let ' ⌘ B, where B is a
complex constant.

For (1)()(3), suppose that W ,' is bounded. Then  = W ,'(1) 2 ML
2(C,↵).

Conversely, for (3)()(1), suppose  2 ML
2(C,↵). For every f 2 ML

2(C,↵), we have
E( ,')f =  · f(B), and hence

kE( ,')fk = |f(B)| · k k  k kE↵(|B|
2)1/2kfk < 1.

The proof is complete. ⇤

8. Compactness & Essential norm

Upon the resolution of the characterization of bounded weighted composition operators
over the Mittag-Leffler space, a remaining challenge is the study of the compactness and
essential norm of weighted composition operators.

In a general setting, for two Banach spaces X and V we denote by C(X,V) the set of
all compact operators from X into V. The essential norm of a bounded, linear operator
A : X ! V, denoted as kAke, is defined as

kAke := inf{kA� Tk : T 2 C(X,V)}.
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It is easy to check that A is compact if and only if kAke = 0.
As introduced in Preliminaries, ML

2(C,↵) is a Hilbert space. So, we can make use of
the following criterion for compactness (cf. [19]).

Proposition 8.1. Let 0 < ↵ < 2. A bounded, linear operator V is compact on ML
2(C,↵)

if and only if lim
m!1

kV gm � V gk ! 0 whenever gm ! g weakly.

The following result is a criterion for the weak convergence on the Mittag-Leffler space,
ML

2(C,↵), with ↵ > 0.

Proposition 8.2. Let 0 < ↵ < 2. A sequence (gm) converges weakly to 0 in ML
2(C,↵) if

and only if it is

(1) bounded in the norm of ML
2(C,↵);

(2) uniformly convergent to 0 on compact subsets of C.

An immediate consequence of Proposition 8.2 is the following.

Corollary 8.3. Let 0 < ↵ < 2, A 2 C \ {0}, B 2 C and (wm) be a sequence in C with

lim
m!1

|wm| = 1. Then the sequence (gm), where gm = k↵,Awm+B, 8m � 1, converges weakly

in ML
2(C,↵) to 0.

We are now in a position to estimate kW ,'ke.

Theorem 8.4. Let 0 < ↵ < 2, and W ,' be a bounded weighted composition operator on

ML
2(C,↵) induced by two entire functions ' 6⌘ const and  6⌘ 0 (that is '(z) = Az + B

with 0 < |A|  1). Then the essential norm satisfies the following estimate

C
1/2
1 C

�1/2
2 lim sup

|z|!1
M↵,z( ,')

1/2
 kW ,'ke  |A|

�1/↵21/↵�1 lim sup
|z|!1

M↵,z( ,')
1/2

,

where C1 and C2 are the positive constants mentioned in Remark 2.3.

Proof. First, we establish an estimate on the lower bound. Let (zn) be a sequence such that
|zn| ! 1, and F be a compact operator on ML

2(C,↵). By Corollary 8.3, the sequence
(k↵,'(zn)) converges weakly to 0 as n ! 1 and hence, kFk↵,'(zn)k ! 0 as n ! 1. Therefore,

kW ,' � Fk � lim sup
n!1

k(W ,' � F )k↵,'(zn)k

� lim sup
n!1

(kW ,'k↵,'(zn)k � kFk↵,'(zn)k)

� lim sup
n!1

kW ,'k↵,'(zn)k

� C
1/2
1 C

�1/2
2 lim sup

n!1
M↵,zn( ,')

1/2
,

where the last inequality uses Lemma 3.3.
In order to estimate the upper bound, we need the following estimate

(8.1) kW ,'ke  lim inf
m!1

kW ,'⌦mk,

where ⌦m is the operator defined in Section 3.3. Note that since I � ⌦m is compact on
ML

2(C,↵), so is W ,'(I � ⌦m), and kW ,'(I � ⌦m)ke = 0. For any compact operator A

on ML
2(C,↵), we have

kW ,' �Ak  kW ,'⌦mk+ kW ,'(I � ⌦m)�Ak .

Taking the infimum over compact operators A and letting m ! 1 in the above inequality,
we obtain (8.1).

Setting
F (u) := M↵,(u�B)A�1( ,'), u 2 C.
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Then F ('(z)) = M↵,z( ,'), and F (u)  M↵( ,'). Fix R > 0 and take f 2 ML
2(C,↵).

By setting u = Az +B,

kW ,'⌦mfk
2 =

|A|
�2/↵

↵⇡

Z

C

F (u)|⌦mf(u)|2|u�B|
2/↵�2

e
�|u|2/↵

du

=
|A|

�2/↵

↵⇡

0

B@
Z

|u|R

+

Z

|u|>R

1

CAF (u)|⌦mf(u)|2|u�B|
2/↵�2

e
�|u|2/↵

du

= I1 + I2,

where R > |B|. Note that by Proposition 3.5,

|⌦mf(z)|  S(z) := kfk

X

k�m

|z|
k�(↵k + 1)�1/2

.

Hence,

I1 
1

↵⇡
|A|

�2/↵
M↵( ,')S(R)2

Z

|u|R

|u�B|
2/↵�2

e
�|u|2/↵

du,

which implies that lim
m!1

I1 = 0. Meanwhile,

I2 
1

↵⇡
|A|

�2/↵ sup
|u|>R

|F (u)|

Z

|u|>R

|⌦mf(u)|2|u�B|
2/↵�2

e
�|u|2/↵

du.

Since |u|/2  |u�B|  2|u| for R sufficiently large, we have

|u�B|
2/↵�2



(
22/↵�2

|u|
2/↵�2 if 0 < ↵  1,

2�2/↵+2
|u|

2/↵�2 if 0 < ↵  1,

and so there is a constant C with the property that

I2  C sup
|u|>R

|F (u)|

Z

|u|>R

|⌦mf(u)|2|u|2/↵�2
e
�|u|2/↵

du

 C sup
|u|>R

|F (u)| · k⌦mfk
2

 Ckfk
2 sup
|u|>R

|F (u)|.

By (8.1), we have, for every R > 0,
kW ,'ke  lim inf

m!1
kW ,'⌦mfk

 C
1/2

kfk ·

"
sup
|u|>R

|F (u)|

#1/2

= C
1/2

kfk sup
|u|>R

|F (u)|1/2.

Letting R ! 1 in the above inequality, we get the desired conclusion. ⇤
Corollary 8.5. Let 0 < ↵ < 2, and W ,' be a bounded weighted composition operator on

ML
2(C,↵) induced by two entire functions ' 6⌘ const and  6⌘ 0, where '(z) = Az +

B with 0 < |A|  1. Then the weighted composition operator is compact if and only if

lim
|z|!1

M↵,z( ,') = 0.

When ' is a constant function, a bounded weighted composition operator W ,' must
necessarily be compact.
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Theorem 8.6. Let 0 < ↵ < 2, and W ,' a bounded weighted composition induced by an

entire function  6⌘ 0 and a constant function '.

(1) The operator W ,' : ML
2(C,↵) ! ML

2(C,↵) is compact,

(2) the operator W ,' : ML
2(C,↵) ! ML

2(C,↵) is bounded, and

(3) the function  satisfies  2 ML
2(C,↵).

In this case, kW ,'ke = 0.

Proof. Let ' ⌘ B, where B is a complex constant. Clearly, (1) =) (2) by definition, while
(2) () (3) by Theorem 7.2. To prove that (3) =) (1), we suppose that (3) holds. Let
(gm) ⇢ ML

2(C,↵) be a sequence converging weakly to 0 in ML
2(C,↵). By Proposition

8.2, it converges to 0 pointwise. Since  2 ML
2(C,↵), we have

kW ,'gmk = |gm(B)| · k k,

which tends to 0 as m ! 1. The proof is complete. ⇤

9. Data Availability

Complex Analysis and Operator Theory requires a data availability statement in their
manuscripts. Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.
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