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Abstract— While fractional order systems have been em-

ployed broadly throughout science and engineering, system

identification aimed at nonlinear fractional order dynamical

systems remain in their infancy. One reason for this is that

local estimates cannot be used to obtain a sample of fractional

order dynamics in the same way that is done for integer

order systems. This manuscript leverages occupation kernels

to poise a trajectory as the fundamental unit of data from

a fractional order dynamical system. When combined with a

regularized regression problem, an approximation of fractional

order dynamics is obtained as a linear combination of occupa-

tion kernels. A battery of numerical experiments are executed

to validate the developed method, and it is demonstrated over

two dynamical systems that accurate estimates of fractional

order dynamics can be obtained both along trajectories and

also nearby regions.

I. INTRODUCTION

Despite a preponderance of interest in fractional order
dynamical systems that has blossomed over the past several
decades (cf. [1]–[4]), there remains a gap in the identification
of nonlinear fractional order systems. In the case of linear
systems, much of classical parameter and system identi-
fication routines naturally translate to the fractional order
case (cf. [5]–[7]), and this is largely due to the availability
of cogent Laplace transformation for linear fractional order
systems of Caputo and Riemann-Liouville type. To wit, as-
suming zero initial conditions, the Laplace transform of each
of these operators (of the order q) results in multiplication
by sq in the Laplace domain [5].

However, the Laplace transform is a tool designed for
the analysis of linear systems, and as such, the developed
tools do not translate to nonlinear fractional order dynamical
systems. Some recent work has begun to explore the identi-
fication and approximation of nonlinear systems, such as in
[3]. In [3], a nonlocal dynamical system was approximated
using a deep neural network through fPINNs.

The present manuscript aims to exploit the “fundamental
theorem of fractional calculus,” and occupation kernels to re-
solve an approximation for the dynamics of a fractional order
dynamical system from observed trajectories. Reproducing
kernel Hilbert spaces (RKHSs) have demonstrated a long
history of successful implementation in nonlinear estimation
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problems (cf. [8]–[10]). In a RKHS over a set X , the repro-
ducing kernel centered at a point x 2 X reproduces local
point evaluation through the inner product of the Hilbert
space. Occupation kernels reside in the same RKHSs, but
instead of reproducing function evaluation, they reproduce
the functional of evaluation against a given trajectory in the
Hilbert space. Hence, occupation kernels may be viewed as
nonlocal functionals within a Hilbert space.

This manuscript, leverages a combination of ridge re-
gression and occupation kernels to provide an estimation
of the dynamics for a nonlinear and nonlocal fractional
order system. The treatment in the sequel focuses on the
Caputo fractional derivative, but is applicable to any nonlocal
dynamical system that is solvable through a Volterra integral.

In contrast to traditional kernel functions (cf. [11]–[14]),
the regression problems contained in this manuscript center
the trajectory as the fundamental unit of data (following
[15]–[18]) rather than states at individual time points. This
perspective has been demonstrated to be less sensitive to
noise in the integer order setting, and in the present context,
it allows for the fractional order dynamics to be sampled
through integrals along trajectories within a domain of inter-
est.

The manuscript is organized as follows. Section III reviews
details concerning RKHSs that are relevant for the rest of
the paper, Section IV gives a generalization of occupation
kernels to the fractional order setting. In particular, the
occupation kernels given in the present manuscript corre-
spond to the Riemann-Liouville fractional integral rather than
simply integration in [15], [16]. After a description of the
problem statement in Section V, Section VI outlines the
approach to the estimation problem using ridge regression
and a representer theorem. Section VII then demonstrates
the effectiveness of this approach, where the dynamics are
compared to the approximation along both the sampled
trajectories and the domain of interest.

II. FRACTIONAL ORDER DYNAMICAL SYSTEMS

In the context of this manuscript, a fractional order dynam-
ical systems utilize fractional order differential operators to
define initial value problems. For 0 < q and m 2 N such
that m� 1 < q < m, two principle operators are the Caputo
fractional derivative and the Riemann-Liouville fractional
derivative, given as Dq

⇤ = Jm�q d
m

dtm
and Dq = d

m

dtm
Jm�q

respectively, where Jqx(T ) = 1
�(q)

R
T

0 (T � t)q�1x(t)dt is
the Riemann-Liouville fractional integral [2]. Initial value
problems using the Caputo fractional derivative may be
defined using solely integer order derivatives, representing
position, velocity, acceleration, etc. However, initial value



problems using the Riemann-Liouville derivative require
fractional order initial conditions, which makes the Caputo
derivative the modal choice for many engineering applica-
tions.

Let f : Rn ! Rn be a Lipschitz continuous function. In
this setting, the initial value problem Dq

⇤x(t) = f(x(t)) with
d
i

dti
x(0) = x0,i 2 Rn has a unique solution [2]. This initial

value problem may also be expressed in Volterra form as

x(t) =
m�1X

k=0

tk

k!

dk

dtk
x(0)+

1

�(q)

Z
t

0
(t�⌧)q�1f(x(t))dt. (1)

The approach taken in this manuscript is to extract samples
from observed trajectories, �(t), satisfying the initial value
problem. In the simple case of 0 < q < 1 this is expressed
as �(t) � �(0) = 1

�(q)

R
t

0 (t � ⌧)q�1f(�(t))dt. By taking
f to be in a RKHS and considering the fractional integral
after composition with �(t) as a functional on that RKHS, a
linear combination of occupation kernels can be leveraged
to resolve a regularized regression problem, (4), and an
approximation of f may be achieved.

III. REPRODUCING KERNEL HILBERT SPACES

A reproducing kernel Hilbert space (RKHS) over a set X
is a Hilbert space consisting of functions from X to R such
that for each x 2 X the evaluation functional Exf := f(x)
is bounded. Hence, by the Riesz representation theorem, for
each x 2 X , there exists a function kx 2 H such that
hf, kxiH = f(x) for all f 2 H . The function kx is called
the kernel function “centered” at x, and the function of two
variables, K : X ⇥X ! R, given as K(x, y) = hky, kxiH
is called the kernel function corresponding to H .

Each kernel function is expressible as an inner prod-
uct of feature maps,  : X ! `2(N), as K(x, y) =
h (y), (x)i`2 =

P1
m=1 m(x) m(y). Moreover, any

function K̃ that may be represented through features in this
way is a kernel function for a RKHS. It should be noted that
multiple feature maps can result in the same kernel function.

Two frequently employed kernel functions over Rn are
tied to the exponential function. The exponential dot product
kernel, given as K(x, y) = exp

⇣
1
µ
xT y

⌘
, is the real valued

counterpart to the Bargmann-Fock space kernel, and the
Gaussian radial basis function (RBF) is given as K(x, y) =

exp
⇣
� 1

µ
kx� yk22

⌘
. The Gaussian RBF is used extensively

in scattered data interpolation and support vector machine
classification [8], [9], [19]. The exponential dot product
kernel on the other hand, is important for its close ties to
quantum mechanics and operator theory [20]–[22].

Both kernels given above are universal, which means that
given a compact set Y ⇢ X , ✏ > 0, and a continuous
function on Y , f̂ , there is a function f 2 H such that
sup

x2Y
|f(x)�f̂(x)| < ✏ (cf. [19]). That is, the restriction of

the functions in H are dense in the collection of continuous
functions over Y with respect to the uniform norm.

IV. FRACTIONAL ORDER OCCUPATION KERNELS

In [15], occupation kernels were introduced to facilitate
the integration of trajectory information into a single function
within a RKHS. The resultant collection of functions were
then turned to provide parameter estimates in a system identi-
fication routine. One of the benefits of this perspective is that
it not only provided a signal noise robust representation of
the data, but also cast trajectory information into an infinite
dimensional feature space, which allowed for more informa-
tion to be extracted from a single trajectory than otherwise
available. The present method utilized (and generalizes) the
occupation kernel method of [15] in a different way, where
the occupation kernels are being utilized as basis functions
for function approximation directly rather than just for data
interpretation as was done in [15]. Though some of the
definitions and evaluations of the fractional order occupation
kernels (introduced below) overlap with occupation kernels
in [15], their implementation here is distinct and largely self-
contained.

Given a continuous signal ✓ : [0, T ] ! Rn, q > 0, and a
RKHS, H , over Rn consisting of continuously differentiable
functions, the functional1

f 7! Cq

Z
T

0
(T � t)q�1f(✓(t))dt (2)

is bounded. By the Riesz representation theorem, there exists
a �✓,q 2 H that implements (2) via the Hilbert space inner
product as hf,�✓,qiH = Cq

R
T

0 (T � t)1�qf(✓(t))dt.
Let (·)j denote the jth coordinate of a vector in Rn. If � :

[0, T ] ! Rn is a trajectory satisfying the dynamical system
Dq

⇤(�(t))j = fj(�(t)) for fj 2 H for each j = 1, . . . , n,
then

hfj ,��,qiH = Cq

Z
T

0
(T � t)q�1fj(�(t))dt

= (�(T ))j � (�(0))j . (3)

This relation follows from (1), and is similar to that found in
[15], but in this case the dynamics are assumed to lie within
a RKHS and not a symbol for a densely defined operator.
This relation will be exploited in the development of a loss
function in the sequel.

Occupation kernels have a particular advantage of being
robust to sensor noise, as was demonstrated for the first
order occupation kernels introduced in [15]. This property
carries over to fractional order occupation kernels due to the
integrability of the integration kernel (T � t)q�1. Theorem
1 demonstrates that the impact of signal noise on the data
embedding within the RKHS is relatively small. This stands
in contrast to integer order methods for system and parameter
identification that rely on numerical derivatives, which tend
to be highly sensitive to noise and require considerable
filtering (cf. [23]).

1Here the notation Cq is used to denote the quantity 1/�(q), where �
is the classical Gamma function. This avoids confusion with the occupation
kernels in this manuscript.



Theorem 1. Let � : [0, T ] ! Rn be a continuous signal and
let ✏ : [0, T ] ! Rn be measurable white noise with standard
deviation �(µ) according to the uniform metric on [0, T ].
Let H be a RKHS of continuous functions over Rn with
a continuously differentiable kernel function with bounded
derivative. The pointwise impact of noise on the occupation
kernel, which manifests as |��(x) � ��+✏(x)| is O(�(✏))
when q > 1/2. More generally, this quantity is O(Jq|✏|) for
q > 0.

Proof. Let M = sup
y2Rn |r2K(x, y)| be the bound on the

derivative of K with respect to the second variable. Consider
|��,q(x) � ��+✏,q(x)|  Cq

R
T

0 (T � t)q�1|K(x, �(t)) �
K(x, �(t) + ✏(t))|dt  Cq · M

R
T

0 (T � t)q�1|✏(t)|dt 
Cq ·M· T

2q� 1
2

2q�1 ·
q

1
T

R
T

0 |✏(t)|2dt when q > 1/2. For q > 0,
the inequality is obtained in a similar manner. Hence, the
theorem follows.

V. PROBLEM STATEMENT

Given a collection of observed continuously differentiable
trajectories {�i : [0, Ti] ! Rn}M

i=1 that satisfy Dq

⇤�i(t) =
f(�i(t)), the objective of this manuscript is to provided a
means of determining an approximation of f .

To facilitate the analysis, each component of the function
f = (f1, . . . , fn) is assumed to reside in a RKHS, which
allows for the framing of regression problems related to the
dynamics as

min
fj2H

MX

i=1

 
Cq

Z
Ti

0
(Ti � ⌧)q�1fj(�i(⌧))d⌧

�(�i(Ti)� �i(0))j

!2

+ �kfjk2H , (4)

for each j = 1, . . . , n with � > 0.

VI. OCCUPATION KERNELS AND REGRESSION
PROBLEMS

For regularized regression problems of the form (4),
Representer Theorems are commonly developed to give a
closed form expression for a minimizer of (4). Typically,
these representer theorems are used to directly show that
a minimizer, fj , is a sum of kernel functions. In the case
where the functional involved in the regression problem is
not function evaluation, f is represented as a sum of related
functions from the Hilbert space. The Representer Theorem
given below follows directly from standard proofs for Rep-
resenter Theorems involving kernels, and it is presented here
for completeness of exposition.

Proposition 1 (A Representer Theorem). The solution to (4)
is of the form fj(x) =

P
M

i=1 wi,j��i,q(x).

Proof. Let fj 2 H and consider W =
span{��1,q, . . . ,��M ,q}. Since W is a finite dimensional
subspace of H , it is closed, and f is expressible as
fj = fW + fP where fW 2 W and fP 2 W?. Note that,
for each i, Cq

R
Ti

0 (Ti � t)q�1f(�i(t))dt = hfj ,��i,qiH =

hfW ,��i,qiH . Hence, the replacement of fj with fW has no
impact on the loss function. Moreover, by the Pythagorean
theorem, kfW k2

H
 kfjk2H with equality only when fP = 0.

Hence, the replacement of fj with fW decreases (4).
Therefore, a minimizer of (4) must reside in W .

By virtue of Proposition 1, (4) may be adjusted to

min
wj2RM

MX

i=1

 
MX

s=1

ws,jh��s,q,��i,qiH�

(�i(T )� �i(0))j

◆2

+ �wT

j
Gwj ,

where G = (h��s,q,��i,qiH)M
i,s=1 is the Gram matrix corre-

sponding to the collection of occupation kernels. This Gram
matrix may be computed by expressing the inner product
h��s,q,��i,qiH as

(Cq)
2

Z
Ts

0

Z
Ti

0
((Ts � ⌧)(Ti � t))q�1 K(�s(⌧), �i(t))dtd⌧.

Writing Vi := (h��1,q,��i,qiH , . . . , h��M ,q,��i,qiH)T 2
RM , and cj := ((�i(T )� �i(0))j)Mi=1, w may be computed
as

wj =

 
MX

i=1

ViV
T

i
+ �G

!�1

Gcj ,

which may be obtained by taking a gradient to the loss
function with respect to wj .

VII. NUMERICAL EXPERIMENTS

Two systems were examined to validate the method of
Section VI. For each system, the trajectories were generated
through a kernel driven numerical method over the space
H1 = W 1,2 which is the Sobolev space of functions that
have derivatives in L2. This numerical method transforms
the system into an equivalent integral system as found in
[24]. Subsequently, a piece-wise iterative reproducing kernel
method was employed to solve the transformed integral
system [25].

The occupation kernels and their associated Gram matrix,
G, were computed using Gaussian numerical integration. For
each system several experiments were performed to evaluate
the effect of various parameters, such as the number of
trajectories, the value of � and µ, and the selection of kernel
function for approximation.

The systems examined below were selected based on
characteristics of the dynamics themselves. To align with
the hypothesis of Theorem 1, System 1 was selected to
have a bounded first derivative. System 2 is composed of
transcendental functions that commonly appear in function
theory.

System 1: Consider the following two dimensional
fractional order dynamics,

D
4
5x = f(x) =

✓
f1(x)
f2(x)

◆
=

 
1

1+x
2
2

1
1+x

2
1

!
,

where x = (x1, x2)>.



The following experiments leverage 10 trajectories from
this system, {�i : [0, 1] ! R2}10

i=1. The initial points were
utilized in the generation of the trajectories, {�i(0)}10i=1 =
{(0, 0)>, (0, 0.3)>, (0, 0.6)>, (0, 0.9)>, (0.3, 0.3)>, (0.3, 0.6)>,
(0.3, 0.9)>, (0.6, 0.6)>, (0.6, 0.9)>, (0.9, 0.9)>}.

Experiment 1 This experiment examines the error be-
tween f and its approximation f̄ along some of the given
trajectories and in the region of System 1. By using the
Gaussian RBF, K(x, y) = e�

1
µkx�yk2

2 , with kernel width
µ = 2 and parameter � selected as 10�6, the absolute
errors between fi(x) and obtained approximations f

i
(x)

along several trajectories are shown in Figure 1 and Figure
2. The absolute errors between fi(x) and the obtained
approximations f

i
(x) on region [0, 1] ⇥ [0, 1] are shown in

Figure 3.
Experiment 2 The second experiment explores the effect

of the parameters � and µ on the approximations. The effect
of the kernel width µ for a fixed selection of � = 10�6 on
the numerical results is shown in Table I. The impact of �
with fixed µ = 2.5 is shown in Table II.

Experiment 3 The third experiment explores the impact
of the number of occupation kernels utilized on the absolute
error committed by the approximation. In this case, each
trajectory �i, i = 1, 2, . . . , 10, is divided into two trajectories,
one for t 2 [0, 1/2] and the other for t 2 [0, 1]. Consequently,
twenty occupation kernels are obtained:

��i,[0,1/2],q
(x) = Cq

Z 1/2

0
(1/2� s)q�1K(x, �i(s))ds, and

��i,[0,1],q
(x) = Cq

Z 1

0
(1� s)q�1K(x, �i(s))ds.

Using the Gaussian RBF K(x, y) = e�
1
µkx�yk2

2 with kernel
width µ = 2 and selecting � = 10�6, the obtained absolute
errors between fi(x) and the approximations f

i
(x) for i =

1, 2 over region [0, 1]⇥ [0, 1] are presented in Figure 4. For
the purpose of comparison, Figure 3 presents the results of
using ten occupation kernels.

Experiment 4 This experiment shortens the time horizon
to T = 0.2, and examines the approximation power of this
method in the smaller region of [0, 1/2]⇥ [0, 1/2] using the
same parameters with experiment 3.

The trajectories leveraged in this experiment correspond
to the initial points {(0, 0), (0, 0.2), (0.2, 0), (0.2, 0.2} and
the time horizons [0, 0.1] and [0, 0.2], resulting in eight
trajectories and occupation kernels. The absolute errors be-
tween fi(x) and obtained approximations f

i
(x) on region

[0, 0.5]⇥ [0, 0.5] is shown in Figure 5.
Experiment 5 This experiment introduces zero mean

normally distributed white noise with standard deviation of
� to System 1 using the same parameters as in Experiment
3. The system identification method was implemented on
the noise corrupted trajectories. The absolute errors between
fi(x) and the obtained approximations f

i
(x) on region

[0, 0.5]⇥ [0, 0.5] are shown in Table III.
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Fig. 1. Left: Absolute errors for the first dimension of f(x) on trajectory
�5 for System 1. Right: Absolute errors for the second dimension of f(x)
on trajectory �5 for System 1 .
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Fig. 2. Left: Absolute errors for the first dimension of f(x) on trajectory
�9 for System 1. Right: Absolute errors for the second dimension of f(x)
on trajectory �9 for System 1 .

Fig. 3. Absolute errors between fi(x) and obtained approximations on
[0, 1] ⇥ [0, 1] using 10 occupation kernels for System 1 (left: |f1 � f1|,
right: |f2 � f2|).

Fig. 4. Absolute errors between fi(x) and obtained approximations on
[0, 1] ⇥ [0, 1] using 20 occupation kernels for System 1 (left: |f1 � f1|,
right: |f2 � f2|).

Fig. 5. Absolute errors between fi(x) and obtained approximations on
[0, 0.5]⇥ [0, 0.5] using 8 occupation kernels for System 1 (left: |f1 � f1|,
right: |f2 � f2|).



TABLE I
THE OBTAINED ERROR FOR DIFFERENT VALUES OF µ WITH � = 0.000001 ON �5 FOR SYSTEM 1

µ = 1 µ = 2 µ = 3 µ = 4 µ = 5 µ = 6 µ = 7 µ = 8 µ = 9
max
t2[0,1]

|f1(�5(t))� f1(�5(t))| 0.021 0.0021 0.0039 0.0054 0.0065 0.0070 0.0072 0.0074 0.0076

max
t2[0,1]

|f2(�5(t))� f2(�5(t))| 0.022 0.0020 0.0042 0.0060 0.0068 0.0075 0.0080 0.0081 0.0083

TABLE II
THE OBTAINED ERROR FOR DIFFERENT VALUES OF � WITH µ = 2 ON �5 FOR SYSTEM 1

� = 0.1 � = 0.01 � = 0.001 � = 0.00001 � = 0.000001 � = 0.0000001
max
t2[0,1]

|f1(�5(t))� f1(�5(t))| 0.21 0.080 0.020 0.0052 0.0021 0.0021

max
t2[0,1]

|f2(�5(t))� f2(�5(t))| 0.18 0.074 0.020 0.0064 0.0020 0.0019

TABLE III
THE OBTAINED ERROR FOR DIFFERENT VALUES OF � FOR SYSTEM 1

No noise � = 0.001 � = 0.002 � = 0.004 � = 0.006 � = 0.008 � = 0.01
max
t2[0,1]

|f1 � f1| 0.00438 0.00553 0.00503 0.00735 0.00684 0.00798 0.00903

max
t2[0,1]

|f2 � f2| 0.00508 0.00504 0.00673 0.00638 0.00828 0.01003 0.01522

System 2: The second system, which will be used in
the subsequent experiments, is given as

D
4
5x = f(x) =

✓
f1(x)
f2(x)

◆
=

✓
sinx2 + cosx1

0.6 sinx1 + 0.6

◆
.

Experiment 6 This experiment explores the error between f
and the approximation, f over the region [0, 1]⇥ [0, 1], and
shows the effect of different parameters µ on System 2.

This experiment employed 16 trajectories,
�i, i = 1, 2, . . . , 16, generated for this system
over the time interval [0, 1] with the initial points
{(0, 0), (0, 0.3), (0, 0.6), (0, 0.9), (0.3, 0.3), (0.3, 0.6),
(0.3, 0.9), (0.6, 0.6), (0.6, 0.9), (0.9, 0.9), (0.3, 0), (0.6, 0),
(0.6, 0.3), (0.9, 0), (0.9, 0.3), (0.9, 0.6)}, the Gaussian RBF
K(x, y) = e�

1
µkx�yk2

2 with kernel width µ = 5 and
parameter � = 10�3, the absolute errors between fi(x)
and obtained approximations f

i
(x) on region [0, 1] ⇥ [0, 1]

are shown in Figure 6. Table IV shows the impact of the
addition of signal noise on the same experiment.

Experiment 7 This experiment explores the effect of
selecting different kernel function for the approximation
of System 2. Here the inverse multiquadrics (IMQ) RKF
K(x, y) = 1p

kx�yk2
2+µ2

is employed with µ = 0.6. The
obtained numerical results are given in Table V.

VIII. DISCUSSION

The purpose of this approach is to provide a method for
system identification for fractional order dynamical systems.
These systems do not admit estimations using local methods
(such as those found in [23]), and thus, some form of
non-local data interpretation must be utilized to estimate
the dynamics. In a scenario where the fractional order of
a system is unknown, the q parameter becomes a tuning
parameter that can used to better capture the dynamics of

Fig. 6. Absolute errors between fi(x) and obtained approximations on
[0, 1]⇥ [0, 1] using sixteen trajectories for System 2 (left: |f1 � f1|, right:
|f2 � f2|).

a system. It should be noted that even for the integer order
case, with q = 1, this approach to system identification is still
novel, and the inclusion of fractional order considerations
broadens the scope of this method.

The experiments given in Section VII demonstrate the ef-
fectiveness of the method at obtaining an approximation of a
fractional order dynamical system from observed trajectories.
While approaches to system identification for integer order
system frequently employ numerical differentiation locally to
get samples of the dynamics (cf. [23]), local samples cannot
be obtained for fractional order system in this manner. The
approach taken in the present manuscript leverages integrals
along trajectories as the fundamental unit of data, which
follows the approach taken in [15]–[17].

In Section VII it was observed that using several small
trajectories or segmented longer trajectories can be leveraged
to improve the estimation of the dynamics for both System
1 and System 2. While occupation kernels are nonlocal,
using short trajectories with initial points spread through-
out a region can produce “local” estimate of fractional
order dynamics. For longer trajectories, greater resolution
may be obtained by segmenting a longer trajectory as
[0, 1/M ], . . . , [0,M/M ].



TABLE IV
THE OBTAINED ERROR FOR DIFFERENT VALUES OF � FOR SYSTEM 2

No noise � = 0.001 � = 0.002 � = 0.004 � = 0.006 � = 0.008 � = 0.01
max
t2[0,1]

|f1 � f1| 0.02913 0.03590 0.04043 0.04427 0.05176 0.05250 0.06709

max
t2[0,1]

|f2 � f2| 0.01973 0.01919 0.02232 0.02198 0.02681 0.02582 0.02654

TABLE V
THE OBTAINED ERROR ALONG SEVERAL TRAJECTORIES USING IMQ RKF WITH µ = 2 AND � = 0.00001 FOR SYSTEM 2

�2(t) �4(t) �6(t) �8(t) �10(t)
max
t2[0,1]

|f1(�i(t))� f1(�i(t))| 0.036 0.0252 0.030 0.032 0.020

max
t2[0,1]

|f2(�i(t))� f2(�i(t))| 0.032 0.0150 0.010 0.0086 0.0048

The effects of µ and � are given in Tables I, II. The error
between the function and its approximation deteriorates as �
gets larger. This dependence on � is to be expected, as the
regularization allows larger deviation of the approximation
from the original function with larger �. The value of µ that
worked best in the experiments was µ = 2, and this is similar
to what is observed with standard reproducing kernels, where
the best selection of µ is usually somewhere between the
distances between sampled points and the diameter of the
work space.

IX. CONCLUSION

The presented method for the estimation of nonlocal and
nonlinear dynamics is a viable approach for nonlinear system
identification of a nonlocal dynamical system. The particu-
lar systems explored in this manuscript are Caputo based
dynamical systems, but the method can be easily adapted
for a large number of other nonlocal operators. The use of
occupation kernels allows for an individual trajectory to be
treated as a single unit of data, and in this case, they provide
nonlocal samples of fractional order dynamics. Leveraging
the representer theorem, the regression problem 4 may be
resolved through a linear combination of occupation kernels
“centered” at the trajectories sampled from the system. This
approach aligns with estimation methods using reproducing
kernels (cf. [19]), and the effectiveness of the approach was
demonstrated through a battery of numerical experiments
presented in Section VII.
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