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Prediction of plant complex traits via
integration of multi-omics data

Peipei Wang1,2,3 , Melissa D. Lehti-Shiu 3, Serena Lotreck 3,4,
Kenia Segura Abá 1,5, Patrick J. Krysan6 & Shin-Han Shiu 1,3,4,5

The formation of complex traits is the consequence of genotype and activities
at multiple molecular levels. However, connecting genotypes and these
activities to complex traits remains challenging. Here, we investigate whether
integrating genomic, transcriptomic, and methylomic data can improve pre-
diction for six Arabidopsis traits. We find that transcriptome- and methylome-
based models have performances comparable to those of genome-based
models. However, models built for flowering time using different omics data
identify different benchmark genes. Nine additional genes identified as
important for flowering time from our models are experimentally validated as
regulating flowering. Gene contributions to flowering time prediction are
accession-dependent and distinct genes contribute to trait prediction in dif-
ferent genotypes. Models integrating multi-omics data perform best and
reveal known and additional gene interactions, extending knowledge about
existing regulatory networks underlying flowering time determination. These
results demonstrate the feasibility of revealing molecular mechanisms
underlying complex traits through multi-omics data integration.

Translating genotypes to phenotype is challenging because the
genetic mechanisms underlying trait variation are complex. Although
genetic variation information is commonly used topredict phenotypes
(i.e., genomic prediction)1,2, researchers have had success in using
other types of data. For example, transcriptomic data have been used
to predictflowering time and yield3 and pathogen resistance in plants4;
methylomic data have been used to predict flowering time and plant
height in a panel of epigenetic recombinant inbred lines of Arabidopsis
thaliana5,6; and metabolomic data have been used to predict biomass-
and bioenergy-related traits in maize7 and yield in rice8. Although
multi-omics datasets that align with trait variation information are
scarce in non-medical, multicellular model systems, the Arabidopsis
1001 Genome Project has generated phenotypic, genomic (G, i.e.,
biallelic single nucleotide polymorphisms [SNPs]), transcriptomic (T,
RNA sequencing), and methylomic (M, gene-body methylation [gbM],

or single site-basedmethylation [ssM]) data for hundreds of accessions
of the model plant A. thaliana9,10. The availability of these datasets
provides an opportunity to predict complex traits using machine
learning approaches by integrating different data types. Through
interpreting these machine learning models, gene features important
for prediction of complex traits can be identified to gain a deeper
insight into the mechanistic basis of complex traits beyond the few
significant quantitative trait loci (QTLs) that can be revealed through
genome-wide association studies (GWAS).

In this work, we assess how the G, T, and M data can be used in
predicting six Arabidopsis traits (Fig. 1a, a flow chart illustrating the
steps in this study is shown in Fig. 1). To obtain a rough estimate of how
well the trait variation can be reflected by omics data variation, we first
compare the omics similarity matrices among Arabidopsis accessions
with the trait similaritymatrices (Fig. 1b). Thenwe generatemodels for
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predicting six traits using G, T, and M data independently (Fig. 1c). To
better interpret the predictive models, we compare the genes impor-
tant for flowering time prediction with benchmark genes that are
known to regulate flowering. Finally, feature interactions are investi-
gatedby interpreting the integratedmodels built using all theG, T, and
M features for the benchmark genes (Fig. 1e).

Results
Prediction of complex traits using individual omics data
The six traits, namely flowering time (days until the first flower was
open), rosette leaf number (RLN), cauline leaf number (CLN), diameter
of the rosette (DoR), rosette branch number (RBN), and stem length
(SL), were collected for 383 Arabidopsis accessions from published
studies9–11 (Fig. 1a, SupplementaryData 1). Samples forG, T, andMwere
taken frommixed rosette leaves harvested just before bolting at 22 °C,
flowering time was measured at 10 °C, and the other five traits were
measured at 16 °C9–11. Before investigating the utility of different omics
data for plant complex trait prediction, we first examined the omics
data structure among accessions (Fig. 1b), with the assumption that
accessions with more similar trait values are expected to have more
similar genetic information (i.e., G, T, or gbM). However, G, T, or gbM
data alone explained only a small amount of variation, as there was no
obvious relationship between the trait and omics similarity matrices:
the Pearson’s r between phenotypic trait similarity among accessions
(pCor; e.g., pCorflowering time see Supplementary Fig. 1a) and the cor-
responding similarity of G (kinship, Supplementary Fig. 1b), T (eCor,
Supplementary Fig. 1c), and gbM (mCor, Supplementary Fig. 1d) only
ranged from −0.02 to 0.17 (Fig. 2a). This weak correlation is consistent
with the findings in our previous study of yield, height, and flowering
time in maize3, and is expected because only a subset of G/T/gbM
variants (e.g., a few SNPs) are expected to contribute to the variation in
a complex trait, and the linear correlation between the whole set of

variants (e.g., all SNPs) and complex trait values is low. In contrast,
kinship and mCor were correlated with each other at a higher level
(r =0.43, Fig. 2a), indicating that gbM is more heritable than pheno-
typic traits, or that the M data were confounded by G, which will be
discussed later on.

While the overall correlations are low, the likelihood that pre-
dictive information is encoded within the overall G/T/gbM data led us
to build machine learning models to take advantage of all features
from single omicsdata for trait prediction.Weestablished single omics
data-based trait prediction models using the algorithms ridge regres-
sion Best Linear Unbiased Prediction (rrBLUP)12 and Random Forest
(RF)13, and the model performance was assessed using a hold-out test
dataset and measured as the Pearson Correlation Coefficient (PCC)
between true and predicted trait values (see Methods and Fig. 1c). In a
previous study we found that, despite their simplicity, rrBLUP and RF
outperformed other commonly used algorithms for most species and
traits tested14; furthermore, RF has the advantage of allowing inter-
pretation of the resulting models, in particular allowing identification
of non-linear interactions between predictors. In addition to the whole
set of features for each omics data, the similarity matrices of omics
data (i.e., kinship, eCor, and mCor, which are derived from G, T, and
gbM, respectively) were also used to build models. As expected, the
higher the correlation between the omics data and trait values (Fig. 2a),
the higher the model performance was for most traits and omics data
types (Fig. 2b, Supplementary Fig. 2a–d). For each trait, model per-
formance was similar regardless of algorithm or whether omics data
values or value similarities among accessions were used as predictive
features (Fig. 2b, Supplementary Fig. 2a, e). Most importantly, G-, T-,
and gbM-based models had comparable performances (Fig. 2b, Sup-
plementary Fig. 2a). For example, G- and T-based rrBLUP models had
the highest performance for flowering time and CLN, respectively,
whereas gbM-based RF models had the highest performance for
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Fig. 1 | Flow chart of ourmethodology. a Three types of omics data (genome [G],
transcriptome [T], and methylome [M]) and phenotypic data for six traits were
used in this study. b Similarities of trait values and omics data between accessions
were calculated to produce the trait similaritymatrices (pCor) and omics similarity
matrices, respectively. Kinship, eCor (transcriptomic [expression] similarity), and
mCor (methylomic similarity) were derived from G, T, and gbM (gene-body
methylation) data, respectively, and were compared with pCor. c The original
omics data and omics similarity matrices were used as features to build machine
learning models for the prediction of six traits with two algorithms: ridge regres-
sion Best Linear Unbiased Prediction (rrBLUP) and Random Forest (RF). Each
dataset was split into training (80%) and test (20%) sets, and the training set was
used to train the models via a five-fold cross-validation scheme and

hyperparameter tuning. The final model with optimal hyperparameters was
applied to the test data, and the correlation (Pearson Correlation Coefficient
[PCC]) between true and predicted trait values for accessions in the test set was
measured to evaluate the model performance. d The final model was further
interpreted using the rrBLUP, RF, and SHapley Additive exPlanations (SHAP)
approaches to obtain the feature importance values. The features important for
flowering time, rosette leaf number, and cauline leaf number were compared with
benchmark flowering time genes. DOG1: DELAY OF GERMINATION 1; FLC: FLOW-
ERING LOCUS C; FT: FLOWERING LOCUS T. e G, T, and M features of benchmark
genes were integrated to build a new model using RF, and the new model was
interpreted using SHAP to obtain the interactions between features. Acc. acces-
sions; Feat. feature; Perf. performance.

Article https://doi.org/10.1038/s41467-024-50701-6

Nature Communications |         (2024) 15:6856 2



flowering time. This is consistent with the findings of our previous
maize study using both G and T data for trait prediction3.

Since CG, CHG, and CHH methylation have different regulatory
mechanisms and functions in plants15, we also established models
using the different gbM types as separate features. Models using
individual gbM data types tended to have similar or poorer perfor-
mances than models using combined gbM data, and models using
CHH methylation tended to have the worst performance (Fig. 2b,
Supplementary Fig. 2a). Because of the complexity of M data (e.g.,
heterogeneity in numbers of methylated cytosine sites within genic
regions), we also explored six additional derived M features (single
site-basedM, hereafter referred to as ssM, seeMethods) for predicting
flowering time as an example. rrBLUP models using ssM features had
higher prediction accuracies than those using gbM (Supplementary
Fig. 3a, b), but the prediction accuracies for RFmodels were not higher

for unknown reasons (Supplementary Fig. 3c, d). The improved pre-
diction of ssM-based rrBLUP models may be because the ssM features
captured the distribution of methylation across each gene, which
provided more detailed information about methylation patterns than
the gbM data. Taken together, these results indicate that, similar to G
andTdata3,16, Mdata are also useful for predicting plant traits, and that
M data need to be represented in different ways to maximize their
predictive power.

Distinct contributions of omics data to complex trait
predictions
To identify the informative variants embedded in the G/T/gbMdata, we
investigated the importance of features for trait prediction by inter-
preting the prediction models. Three measures were used to evaluate
feature importance: (1) coefficients of features in the rrBLUP models
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trait similaritymatrices in a) between true and predicted trait values on the test set
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provided as a Source Data file.
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(Supplementary Fig. 4a–c); (2) gini importances in the RF models
(Fig. 3a–c); and (3) the average absolute SHapley Additive exPlanations
(SHAP) values17 obtained from RF models (Supplementary Fig. 4d–f).
Here, we focus on features important for predicting flowering time (for
feature importances for the other five traits, see Supplementary
Data 2–7) because there is abundant knowledge about the genetic
control of this trait, which is crucial for interpreting the important
features. To allow for a comparison of importances with T and gbM
features, which are gene-based, G variants were mapped to genic
regions (seeMethods). Genes corresponding to or harboring important
G/T/gbM features (defined as those with >95th percentile importance
values) were considered important for flowering time prediction and
are hereafter referred to as important genes. We found weak or no
correlation between importance scores from models built using dif-
ferent types of omics data, regardless of the feature importance mea-
sure examined (Spearman’s ρ: −0.07–0.11), and there was little overlap
of important genes between models (Fig. 3, Supplementary Fig. 4a–f).

These results suggest that the similar trait prediction accuracy of
models built with different omics data is not due to shared features,
consistent with the findings of the maize study3. However, the corre-
lation between the importance of G and gbM variants (Fig. 3b, Sup-
plementary Fig. 4b, e) was higher than that for other comparisons,
consistent with the relatively higher correlation between G and gbM
similarities across accessions (i.e., kinship and mCor, Pearson’s
r =0.43, Fig. 2a) and suggesting potential confounding effects of G on
gbM data. To disentangle gbM from G data, we built trait prediction
models with the mCor residuals to exclude the kinship effects (Meth-
ods). Consistent with a confounding effect of G on gbM, these new
models had significantly lower performance compared with models
based on the mCor matrix for all traits (differences in PCC scores,
whichwereused asmeasures of prediction accuracy: 0.01–0.18,p from
two-sided Wilcoxon rank sum test <0.05) (Supplementary Fig. 4g).
However, mCor-based models with confounding effects of kinship
removed still performed better at predicting flowering time and RLN
than those using the first five principal components of G data to
approximate population structure (Supplementary Fig. 4g, the per-
formance of the population structure-based model is used as the
baseline for trait prediction). Thus, the components of gbM indepen-
dent from G are also important for trait prediction.

Benchmark flowering time genes identified as important
features in flowering time prediction models
In the previous section we showed that models built using different
omics data identified different important genes (Fig. 3, Supplementary

Fig. 4a–f). We next asked how many genes with known functions in
flowering time were identified as important genes. We downloaded
426 benchmark flowering time genes from FLOR-ID (http://www.
phytosystems.ulg.ac.be/florid/)18 and TAIR (https://www.arabidopsis.
org/) (Supplementary Data 8), and found that 169 were identified as
important according to at least one of the three importancemeasures
for at least one of the three individual omics datasets (Fig. 4, for full
gene list, see Supplementary Data 9). Only two genes, FLOWERING
LOCUS C (FLC) and its paralogMADS AFFECTING FLOWERING 2 (MAF2),
were identified as important by all three independent omics datasets
(orange font, Fig. 4). This is consistent with the roles of FLC10,19,20 and
MAF221,22 in flowering time regulation being established through stu-
dies of genetic variation, transcript levels, and methylation levels.
Another 27 genes (blue font, Fig. 4) were identified by two indepen-
dent omics datasets. For instance, FLOWERING CONTROL LOCUS A
(FCA), which increases H3K4 dimethylation in the central region of FLC
and regulates its expression23, was considered important in the G and
gbM models. The remaining 140 genes were dataset specific (black
font in Fig. 4, and Supplementary Data 9), such as SUPPRESSOR OF
OVEREXPRESSION OF CO 1 (SOC1), which was only identified as
important in T models. This is consistent with our observations that
there is little overlap between important genes identified by G, T, and
gbM models (Fig. 3, Supplementary Fig. 4a–f), and that gbM data,
although it is confoundedwith G information (Supplementary Fig. 4g),
can make unique contributions.

We next asked whether significantly more benchmark flowering
time genes than random chance were identified by our models. When
the 95th percentile was used as the threshold, only G and Tmodels with
RF gini importance scores identified significantly higher proportions
of benchmark genes (8.78% and 8.62%, respectively) than expected by
random chance (p = 1.22e-03 and 1.76e-03, respectively, Fisher’s exact
test, Supplementary Data 10). To understandwhy nomore benchmark
genes were identified than expected by random chance for most
models and importancemeasures, we explored the following potential
factors (for the rationale and analysis process, see Methods): cut-off
threshold (95th or 99th percentile), the number of accessions used for
training models, and difference in gene contributions to flowering in
short days (SDs) and/or long days (LDs). The former two factors had
little impact on the identification of benchmark genes (Supplementary
Data 10–12), except for SHAP valueswhen the 99th percentile was used,
where significantly more benchmark genes than expected by random
chance were identified for the G and T models (Supplementary
Data 11). In addition, genes that when mutated or overexpressed had
flowering time phenotypes in two conditions (SDs and LDs) weremore
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likely to be identified using our approaches than those that only had a
phenotype when mutated or overexpressed in a single condition (SDs
or LDs) (Supplementary Data 10, 11).

One thing worth noting is that gbM-based models identified no
more benchmark genes as important than expected by random
chance, regardless of the threshold used (Supplementary Data 10–12).
This may be because gbM does not adequately represent the methy-
lation profiles of a given gene. To assess this, we also interpreted ssM-
based models in which the methylation profile across a gene region

was represented (see Methods). An additional 144 benchmark flower-
ing time geneswere recovered as important by at least one ssM feature
type/feature importance measure combination (Supplementary
Data 9), andmore benchmark genes were identified as important for a
single ssM model (a maximum of 44 genes, Supplementary Data 13)
than a single gbM model (a maximum of 24 genes, Supplementary
Data 10). One example gene is CLEAVAGE STIMULATION FACTOR 77
(CSTF77), which is involved in the 3’ processing of antisense FLC
mRNA24. Accessions with CG-type methylation at two different sites in

≥99th

[95th, 99th)
<95th

Importance
percentile G T gbM

All CG CHG CHH
RFrrB

LU
P

SH
AP

G/T/gbM
G/T

G/gbM

T/gbM

G only

T only

gbM only

DET1
OTS2
XAL2

AtNDX
FIP1
DNF

MAC3A
CUL4
IDD8

NF−YB1
FKF1

PCFS4
SUC9
ICA2

PDP3
NF−YA1

VIM3
HDA9
LKP2

WRKY34
GRP7

NF−YB2
AGL16

BOA
GA20ox2

FRI
SPL15

BFT
AGL19

FUL
PIF3

SEP3
AGL24
SOC1

SVP
CAL

VIM1
EFS

UGT87A2
TPL

GASA5
MED12

PNY
MAF5

GA2ox3
UBP13

VIL2
PHYC
FES1

AGL17
METTL4

FWA
AGL6
FLM

AGL42
LDL3
ESD7

HULK1
FLR1
TGA4
DOG1
CKB3
HST1

FCA
HUA2
EFM
VIL3

AT1G11520
SPA1
VIN3

PRR3
COL5
LAC8

AGL15
TSF

FT
MAF2

FLC

Fig. 4 | Example benchmark flowering time genes identified using different
importance measures and datasets. The heatmap shows how often benchmark
flowering time geneswere identified as important using different datasets. For each
omics dataset, there are three feature importancemeasures: (1) RF - RandomForest
gini values; (2) rrBLUP - absolute value of ridge regression Best Linear Unbiased
Prediction coefficient; and (3) SHAP - average absolute SHapley Additive exPlana-
tions values. Color in the heatmap indicates importance value percentile: dark lawn

green, ≥99th percentile; light lawn green, ≥95th and <99th percentile; gray, <95th

percentile. Font color indicates the number of omics datasets that identified a
benchmark flowering time gene as important: orange, all three datasets; blue, two
datasets; black, a single dataset. G, T, and gbM: genomic, transcriptomic, and gene-
body methylomic data, respectively. All: all three types of gbM data, namely, CG-,
CHG-, and CHH-types. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-50701-6

Nature Communications |         (2024) 15:6856 5



CSTF77 had significantly longer flowering times than those without
(Supplementary Fig. 5a, b), but there were no significant differences in
flowering time between accessions with different SNP alleles (Sup-
plementary Fig. 5c, d). In addition, there was no correlation between
the expression levels or gbM levels of CSTF77 and flowering time
(Supplementary Fig. 5e–h). These results explain why CSTF77 was
uniquely identified by ssM-based models (Supplementary Data 9).

Another potential reason for the low degree of enrichment of
identified benchmark genes for mostmodels is the fact that the plants
scored for flowering time phenotypes were grown at 10 °C and those
used for theG, T, andMdatawere grown at 22 °C.We also builtmodels
using the same G/T/gbM data to predict flowering time phenotypes
recorded at 16 °C10, and found that the temperature atwhich flowering
time was scored affected gene importance for flowering time predic-
tion (Supplementary Data 14,15). For example, the expression of FRI-
GIDA (FRI), which, when functional, confers a vernalization
requirement25, had a SHAP value of zero for flowering time prediction
at 10 °C but a SHAP value of 0.075 (ranked 14th) at 16 °C (Supplemen-
tary Fig. 6a). This is consistent with the larger differences in flowering
timebetween accessionswith functional and non-functional FRI copies
at 16 °C than at 10 °C (a temperature at which the vernalization
requirement ismet for accessions with functional FRI); the larger SHAP
values for FRI in the 16 °C model indicate that it makes a higher con-
tribution to flowering time prediction when the plants are not verna-
lized (Supplementary Fig. 6b). Furthermore, the higher importance
rank of FRI features at 16 °C comparedwith 10 °Cwas also observed for
all G- and T-models regardless of the importance measure examined
(Supplementary Fig. 6c, d, and Supplementary Data 14, 15).

Since a number of benchmark flowering time genes were identi-
fied when RLN and CLN were used as proxies for flowering time in
some previous studies, we also asked howmany benchmark flowering
time genes could be identified by the RLN and CLNmodels. When only
G-, T-, and gbM-basedmodels were examined, 42 geneswere identified
as important by all flowering time, RLN, and CLN models (Supple-
mentary Data 16); these are generally hub genes in the flowering time
regulation network, such as FT, FLC, SOC1, FRI, BROTHER OF FT AND
TFL1 (BFT), and SHORT VEGETATIVE PHASE (SVP)26. Consistent with the
importance of FRI for predicting flowering at 16 °C, FRI was important
for predictingRLNandCLN inbothG- andT-models, probably because
the temperature (16 °C) was the same as that at which RLN and CLN
were measured. An additional 20 benchmark genes were identified as
important by both RLN and CLN models, and 37 and 49 were specifi-
cally identified by RLN and CLN models, respectively. For example,
TIMING OF CAB EXPRESSION 1 (TOC1) was previously shown to control
photoperiodic flowering response when RLN was used as a proxy for
flowering time27. Consistent with this, TOC1 only had importance ranks
above 95th percentile in G models for RLN. In our prediction models,
TERMINAL FLOWER 1 (TFL1) was only important for CLN prediction,
which is consistent with the previous finding that tfl1mutants showed
significantly decreased CLN, but not RLN or days to bolting (another
proxy for flowering time), compared with wild type (WT)28. Taken
together, these results indicate that different omics datasets, ways to
represent data, importance measures, environmental factors, and
ways to measure traits must be considered to better capture the
genetic basis of Arabidopsis flowering time and likely other complex
traits.

Identification of additional genes involved in regulating
flowering time
Todeterminewhether all the features relevant to benchmarkflowering
time genes are sufficient to predict flowering time, we built RF models
using G, T and gbM features for 426 benchmark genes separately or
combined (hereafter referred to as benchmark gene-based models).
Compared with the corresponding full models built using the features
for all genes, the benchmark gene-based models had significantly

lower performance for gbM-based and the combinedmodels (Fig. 5a),
suggesting that genes in addition to the 426 benchmark genes are
involved in regulating flowering time. To test this, we selected the 426
most important genes that were not benchmark genes (hereafter
referred to as “top non-benchmark” genes) from the full model, which
was built using G/T/gbM features combined for all genes (Supple-
mentary Data 17). We found that the top non-benchmark gene-based
gbMmodel (built using the gbM features of these top non-benchmark
genes) performed significantly better than the benchmark gene-based
gbM model, but not the corresponding G-, T-, and combined models
(Fig. 5a). This may be attributed to the fact that most benchmark
flowering time genes were identified using genetic approaches (e.g.,
via forward genetic screens or GWAS) and/or transcriptomic data (e.g.,
via gene differential expression analysis), rather thanmethylomicdata.

To validate the functions of important genes in flowering time, we
took advantage of an existing dataset in our lab to compare flowering
time in mutants of 21 non-benchmark genes that were identified as
important and the WT (Methods, Supplementary Data 18, 19). Six of
these 21 genes affected flowering time when mutated (Fig. 5b–f). For
example, a loss-of-function mutant of AT4G11070 (WRKY41), which
controls seed dormancy29, flowered significantly earlier than WT
(Fig. 5c). Consistent with this, WRKY41’s homolog Dlf1 regulates flow-
ering in rice30. Another three genes had loss-of-function effects on
flowering when mutated along with their paralogs (Fig. 5g, h). The
remaining 12 genes did not have a significant effect on flowering time
when mutated, alone or with their paralogs (Supplementary Data 18).
One potential explanation for why no flowering time phenotype was
observed for these 12 important genes is that our validation experi-
ments were conducted in the Col-0 genetic background, but the
important genes were identified in models built across multiple
accessions.

To check whether our models perform well in identifying genes
that function in flowering time, we alsomeasured the flowering time of
the loss-of-function mutants of 37 “non-important” (importance rank
≤95th percentile) genes and their paralogs. We found that 43.2%
(16 genes) had significantly altered flowering time when mutated
(SupplementaryData 18, 19). This percentage isonly slightly lower than
that of experimentally validated important genes (42.9%, 9 out of 21
genes). One potential explanation for the similar percentages of pre-
dicted important and “non-important” genes with experimentally
validated roles in flowering time is that, as discussed above, the
importanceof these genesmaybedependent on the accessions and/or
environmental conditions. In addition, there are far more features
(e.g., >20,000T features) than instances (only 383 accessions) in our
models. Therefore, we do not have enough power to detect variants
with significant but lower degrees of contribution to flowering time.
Our false negative rate when using importance rank as a criterion is
expected to be high.

Accession-dependent contributions of genes to flowering time
prediction
Thus far, we have evaluated the contribution of G, T, and gbM features
associated with genes to the prediction of flowering time across
accessions by dissecting the models through global interpretation31.
However, some genes may be important contributors to flowering
time only in specific accessions. To assess this, we determined the
contributions of important features to flowering time in each acces-
sion (local interpretation) by examining the SHAP value for each fea-
ture in each accession (individual SHAP values, as opposed to the
averaged value discussed earlier, see Methods). Here, a positive SHAP
value for a feature in anaccessionmeans that the valueof the feature in
that accession contributed to a higher predicted trait value, i.e., longer
flowering time. A negative SHAP indicates the opposite: the feature
value contributed to reduced flowering time in an accession. The
absolute SHAP value describes the degree of feature contribution to

Article https://doi.org/10.1038/s41467-024-50701-6

Nature Communications |         (2024) 15:6856 6



trait prediction. Here we first present the SHAP values of the top 20
important genes from the T model in detail as an example because
more benchmark genes were among the top 20 genes in this model
(Supplementary Fig. 7a) than in theG (Supplementary Fig. 7b) and gbM
models (Supplementary Fig. 7c). Organizing the accessions into clus-
ters based on SHAP values of the top 20T features allowed us to
examine the way that different features contribute to flowering time
prediction. The accessions we examined formed eight clusters
(Fig. 6a), and flowering time varied greatly across these clus-
ters (Fig. 6b).

In cluster 1 and 2 accessions (Fig. 6a, b, d, e), the SHAP values for
SOC1, FT, and FLC expression were all positive, indicating they

contribute to longer flowering time. Their positive contribution is
mainly due to lower SOC1 and FT expression and higher FLC
expression compared with other accessions (Fig. 6c). In cluster 8
accessions (Fig. 6a, b), all three genes have negative SHAPs, and the
shorter flowering time (Fig. 6e) is due to higher SOC1 and FT
expression but lower FLC expression (Fig. 6c). This is consistent with
earlier findings that SOC1 and FT promote flowering32, FLC represses
flowering33, and the expression levels of SOC1 and FT are negatively
correlated with FLC expression34. This coupling between SOC1, FT,
and FLC in terms of expression (Fig. 6c, Supplementary Fig. 8a, b, f,
g), SHAP values (Fig. 6d, Supplementary Fig. 8c), and flowering time
contribution (Fig. 6e, Supplementary Fig. 8e) is the predominant

Fig. 5 | Identification of additional genes involved inflowering time regulation.
a Performance of Random Forest (RF) flowering time prediction models using all
features (dark slategray), only features related to 426 benchmark flowering time
genes (dark sea green), or only features related to the top 426 non-benchmark
genes (light gray). PCCtest: Pearson correlation coefficient between true and pre-
dicted trait values for accessions in the test set. G, T, and gbM: genomic, tran-
scriptomic, and gene-body methylomic data, respectively. p-values are from two-
sided Wilcoxon rank sum tests. Bar and error bar: average PCCtest and standard
deviation of replicate runs (n = 10). b–h Statistical analysis of flowering time in
single-gene mutants of important genes (bold font) and their paralogs (regular

font), double mutant (DM) with loss of function of both paralogs, and wild-type
(WT) plants. Numbers of individuals for each genotype are shown in the parenth-
esis. Flowering time was normalized across flats within blocks (see Methods). p-
values are from two-sided Wilcoxon Rank Sum tests. Horizontal line in the box:
median value; box range: interquartile range (IQR), 25th (Q1) to 75th percentile (Q3);
whisker below box: Q1–1.5 IQR to Q1; whisker above box: Q3 to Q3+ 1.5 IQR; violin
plot: distribution of datapoint values; dot: datapoint froman individual plant. Color
of violin plot: light blue, single-gene mutant; light green, double mutant; light
orange, wild type. Source data are provided as a Source Data file.
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flowering time regulatory mechanism for most accessions. However,
the action of these components can be decoupled. For example, in
cluster 4, 5, and 6 accessions (dots in the second and fourth quad-
rants, Fig. 6d), the SHAP values of SOC1 and FT have opposite signs,
which is associated with moderate flowering time values (Fig. 6b, e).
Another example is cluster 7 (orange dots in the third quad-
rant, Fig. 6d) where, despite the positive contribution of FLC
(Fig. 6a, Supplementary Fig. 8c), both SOC1 and FT contribute
negatively to flowering time (Fig. 6d). This coupling and uncoupling
between SOC1, FT, and FLC expression across accessions indicates
that regulationofflowering timemaybemore complex thanwhat has
been reported. Accession-dependent contributions of other impor-
tant T features are also observed, although to a much lower extent.
An example is SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 15
(SPL15); clusters 2 and 4–8 can be divided into sub-clusters
depending on whether SPL15 expression contributes positively to
flowering time in an accession (Fig. 6a).

We also clustered accessions using SHAP values of the top 20
important features from G and gbM models, and obtained eight and
nine clusters, respectively (Supplementary Fig. 9a, c), which resembled
the distribution of Tmodel-based clusters in that the clusters could be
characterized by a few top features. For example, the second
(AT4G38550) and the third (AT1G35610) most important genes from
the gbM model can be coupled or uncoupled with FLC in a similar
fashion as SOC1 and FT (Supplementary Fig. 9c). The different omics
data types yielded clusters with different accessions (Supplementary
Fig. 10). These findings further demonstrate that different omics data
reveal different contributors to flowering time variation among
accessions, and that the different effects of genes on flowering time
among accessions can be disentangled through model interpretation.
In addition, knowledge about flowering regulation in some accessions
may not be generalizable to others, as demonstrated by the identifi-
cation of different benchmark genes when different sets of accessions

were used (Supplementary Data 10, 12). This may be explained by the
differences in genetic backgrounds among accessions25 and the high
complexity of genetic interaction networks regulating flowering35. The
accession-dependent effects of genes on flowering may also partially
explain the low degree of enrichment of benchmark genes among
important genes in our original G, T, and gbM models because these
benchmark genes were predominantly discovered in the Col-0
accession.

Genetic interactions revealed through integration of
multi-omics data
In the above sections we showed that different types of omics data
revealed overlapping but mostly distinct genes impacting flowering
time. Next, we asked whether combining different types of omics data
improves the prediction accuracy. We found that combining G and T
or all three datasets improved model performance for RF models, but
not for rrBLUP models (Fig. 7a). Because the RF algorithm considers
non-linear feature combinations while rrBLUP does not, the better RF
model performance suggests that the inclusion of interactions
between features fromdifferent omics datamayhave improvedmodel
performance. To evaluate this possibility, we established an additional
RFmodel,whichonly includedG+ T+gbM features relevant to the426
benchmark flowering time genes (see Methods) to facilitate model
interpretation. We used the SHAP approach36 to identify feature
interactions (seeMethods), where the contribution of featureX to trait
prediction is influenced by values of feature Y. The SHAP feature
interaction can help us identify potential genetic interactions between
genes or variants, such as epistasis37. We identified 7,186 feature
interactions, including all six possible combinations between omics
data types: G-G, T-T, gbM-gbM, G-T, G-gbM, and T-gbM (Supplemen-
tary Data 20). T-gbM, G-T, and T-T interactions were the most pre-
valent (Fig. 7b). The T-features of three most important genes in the T
model—SOC1, FT, and FLC (Fig. 6a)—had the highest numbers of
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feature interactions (707, 638, and 279, respectively), consistent with
their reported functions as floral integrators32, which receive floral
promotion or inhibitory signaling inputs from distinct pathways
(Fig. 7c, Supplementary Data 20).

Among the top 20 interactions with the highest interaction values,
five were T-T interactions of SOC1 with FT (ranked 1st), MIR172B (2nd),
SPL5 (13th), FLC (19th), and PHYTOCHROME INTERACTING FACTOR 3
(PIF3) (20th) (Fig. 7c, d, Supplementary Fig. 11a–e). SOC1 was previously
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shown to regulate MIR172B38 and SPL539 by directly binding to their
promoters. However, no direct biological interaction between SOC1
and PIF3 has been reported. Also among the top 20 interactions, two
were T-gbM and T-G interactions of SOC1 with ZEITLUPE (ZTL, ranked
5th, Fig. 7e) and Nuclear Pore Anchor (NUA, ranked 6th, Fig. 7f). ZTL and
its twohomologs, LOVKELCHPROTEIN2 (gbM-T interactionwith SOC1
ranked 121st, Supplementary Fig. 11f) and FLAVIN-BINDING, KELCH
REPEAT, F-BOX 1 (gbM-T interaction with SOC1 ranked 3333rd, Sup-
plementary Fig. 11g), function as E3 ubiquitin ligases and regulate
flowering time regulators, such as CONSTANS and FT 40. No direct
biological interaction has been reported between SOC1 and ZTL or its
two homologs, whereas the interaction between SOC1 and NUA was
reported before: expression of SOC1 was higher in nua-1/4 mutants
compared with WT41. In addition to these T-T, T-gbM, and T-G inter-
actions, we also observed G-G, G-gbM, and gbM-gbM interactions that
have not been reported before: a G-G interaction between AT1G11520
andHASTY 1 ranked 8th (Supplementary Fig. 11h), gbM-gbM interaction
between VIN3-LIKE 3 and INDUCER OF CBF EXPRESSION 1 ranked 25th

(Supplementary Fig. 11i), and G-gbM interaction between AT1G11520
and FY ranked 45th (Supplementary Fig. 11j). These interactions might
indicate potential biological interactions between genes.

Furthermore, by examining the feature interactions in detail, we
found some interesting patterns. For example, the T-gbM interaction
between SOC1 and ZTL illustrates how SOC1 and ZTL interact across
accessions (Fig. 7e): in accessions with higher SOC1 expression, con-
tributions of ZTL CG-type gbM were near-zero regardless of the
methylation levels of ZTL, whereas in accessions with lower SOC1
expression, the contributions were larger either positively or nega-
tively. A similar pattern was also observed for other interactions, such
as a T-T interaction between SOC1 and MIR172B (Supplementary
Fig. 11b). Taken together, these findings show that potential interac-
tions at different molecular levels can be identified on a large scale by
interpreting computational models integrating multiple omics data.

Discussion
We investigated the utility of G, T, and M data in predicting complex
traits in Arabidopsis, and found that models built using these data
types separately had comparable performances. The flowering time
prediction models built using different omics data identified different
benchmark flowering time genes and other genes not previously
reported to be involved in flowering. Evenmodels built using different
forms of a single type of omics data—M data—identified different sets
of flowering genes. These results highlight the necessity of exploring
different types of omics data when predicting complex traits. Even
though there was only one time point for transcriptome data (rosette
leaves right before bolting)9, key regulators of flowering time, such as
FLC, FT, SOC1, and SPL15, were still identified in T-based rrBLUP and RF
models. Considering that rrBLUP is an algorithm based on a linear
model, this finding indicates that simple, linear combinations of the
steady-state expression levels of these genes, which explain a sig-
nificant portion of the flowering time variation among accessions, can
be identified.

We identified important genes including the most well-known
flowering time genes; however, the false positive and false negative
rates based on the benchmarks were high. Model performance and
candidate gene identification can be further improved by incorporat-
ing substantially more accessions, using additional approaches to
select, combine, and represent features, and incorporating data from
more than one environment. In addition, the Arabidopsis T andMdata
used in this study were obtained from mixed rosette leaves harvested
just before bolting, which poses two potential problems for complex
trait prediction: (1) gene expression and methylation can be cell-type
specific, thus noise in T and M data is inevitable due to cell hetero-
geneity; (2) the complex traits to be predicted may be specific to
certain tissues, organs, or development stages; thus, T andM variation

from leaves may not reflect trait variation in other contexts. The
development of single-cell and spatial omics techniques, which allow
the cellular landscape of epigenomeswithin a tissue to bemeasured, is
expected to improve the prediction accuracy of complex traits. In
addition, omics data in addition to G, T, and M data can be used to
predict complex traits; these data include chromatin architecture,
chromatin accessibility, and histone modification, changes of which
have been shown to regulate flowering in Arabidopsis39,42–44.

The observation that the effects of genes or variants on flowering
differ among accessions is known in specific cases. For example, DNA
demethylation has different effects on flowering in C24 and Landsberg
erecta45; some accessions carry non-functional alleles of the FRI gene,
thus have no requirement for vernalization before flowering25. Here,
we show that accession-specific effects of different flowering time
genes can be revealed by interpreting machine learning models. The
outcome also revealed accession-dependent effects that were not
documented previously. Interpretation of a non-linear model (e.g., RF
model) allowed the identification of known interactions and additional
interactions that have not been reported previously among G, T, and
gbM features of benchmark genes. These additional interactions
represent hypotheses that require further experimental verification
and are expected to provide insights into how these additional com-
ponents and interactions contribute to the genetic basis of flowering
time and potentially other complex traits.

Methods
Data preprocessing
Six traits for each Arabidopsis accession (Supplementary Data 1) were
obtained from two publications: (1) flowering time at 10 °C or 16 °C,
whichwas scored as days until the firstflowerwas open, was from10; (2)
cauline leaf number (CLN), (3) rosette leaf number (RLN), (4) rosette
branch number (RBN), (5) diameter of rosette (end point after flow-
ering, DoR), and (6) stem length (length of main flowering stem, SL)
were from11. For each trait, the pairwise Euclidean distances of trait
values between accessions were calculated using the R package “rdist”
(version 0.0.5). The Euclideandistances werefirst normalized between
0 and 1, and then the correlation or similarity of phenotypic trait values
(pCor) among accessions was calculated as 1 - normalized Euclidean
distance.

The genomicmatrix (G) was downloaded from the 1001 Genomes
database10 (http://1001genomes.org/data/GMI-MPI/releases/v3.1/SNP_
matrix_imputed_hdf5/), which contains biallelic SNPs. SNPs withminor
allele frequency <0.05 were removed. For each SNP, the major allele
was encoded as 1, and the minor allele was encoded as −1. The kinship
matrix was generated from G using the KinshipPlugin with the cen-
tered Identity By Statemethod46 implemented in TASSEL version 5.047.
The kinship typically refers to the degree of genetic relatedness
between accessions, and was used here as the proxy for the similarity
of G among accessions. The first five principal components of G data
(used as a proxy for population structure) were generated using the
PrincipalComponentsPlugin implemented in TASSEL.

For the transcriptomic (T) data9, the normalized read counts were
downloaded fromNCBI, and were used to calculate the transcripts per
million (TPM) using the function “calculateTPM” from the R package
“scater” (version 4.4)48. The TPM values were then transformed to
ln(TPM+ 1). The transformed TPM values were used to calculate the
expression correlations (eCor) among accessions, and the resultant
PCC values were normalized between 0 and 1 to make them compar-
able with pCor, which ranges from 0 to 1.

For the methylomic (M) data9, the gene-body methylation values
(gbM, the number of reads with methylated cytosines in a gene body
divided by the total number of reads with both cytosines and thy-
mines) were downloaded from http://signal-genet.salk.edu/1001.php.
For accessions with multiple replicates, the median values were cal-
culated across replicates. The missing values were imputed using the
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k-Nearest Neighbors approach (“KNNImputer” function in
sklearn.impute)49 as follows: missing values in the training set (for the
data split into training and test sets, see the Methods section “Pre-
dictive modeling”) were first imputed, then the imputation was
transformed to the test set. To mitigate potential influences of the
selection of k on the imputed missing values, the imputation was
conducted five times with different k values (3, 4, 5, 6, and 7), and the
means of imputed values were used. The imputed gbM values were
used to calculate the gbM correlation (mCor) among accessions, and
the resultant PCC values were normalized between 0 and 1.

Additional formats of methylomic data
The frequency of cytosine sites can vary within a genic region, and the
methylation level at each cytosine site (i.e., proportion of mapped
reads with methylated cytosine) can also vary because of cell hetero-
geneity; therefore, the gbM obscures information such as hetero-
geneity in methylation levels over the length of a gene. To overcome
these shortcomings,weused sixmore types ofMdata (Supplementary
Fig. 3) to represent single site-based methylation (ssM) for predicting
flowering time: (1) methylation status of single cytosine sites (i.e., 1,
indicating methylated, or 0, indicating not methylated, hereafter
referred to aspresence/absence [P/A] ofmethylation) across thewhole
genome; (2) methylation proportion (i.e., proportion [Prop] of reads
that were methylated at that site) for single cytosine sites across the
whole genome; (3,4) methylation profiles along each gene, i.e., the
means of methylation status (3, mean_P/A) or the median methylation
proportion (4, med_Prop) across upstream, gene-body, and down-
stream regions divided into 30 bins; (5,6) clusters of genes with similar
methylation profiles when methylation status (5, P/A_clu) or propor-
tion (6, Prop_clu) was considered.

The methylation base calls for each reference site9 were down-
loaded fromNCBI (accession IDGSE43857).Missing values in the single
cytosine site methylation matrix were treated as follows: (1) if the
reference site was a cytosine and there was a SNP for this site in
accession X, or if the reference site was not a cytosine and this site was
not a SNP for X, themethylation call for this site in Xwas encoded as 0;
(2) if the site’s base in accession X was unknown, or the site in X was a
cytosine, but there were no reads mapped to this site, then the values
were marked asmissing to be imputed in the same way as for the gbM
matrices, except that for the P/A of methylation for a single site, the
final imputed valuewas rounded to either0or 1. After imputation, sites
with the same value (either 0 or 1) in > 95% accessions (similar to 5%
minor allele frequency) were removed. To balance the trade-off
between the number of methylation sites included in the analysis and
the number ofmissing data points, we first ordered the sites according
to the proportion of missing values across accessions. Three thresh-
olds were explored: 90th, 75th, and 50th percentile (the corresponding
datasets are referred to hereafter as 90per, 75per, and 50per, respec-
tively), sites above which had missing values in ≤ 2, 8, and 38 acces-
sions, respectively (Supplementary Fig. 12a). We found that the
dataset 50per tended to have the highest performance in rrBLUP
models while dataset 90per led to the highest performance in RF
models (Supplementary Fig. 12b, c). To includemore ssM information,
matrices using the 50th percentile as a threshold were used for sub-
sequent analysis.

To bin the methylation levels of single sites for gene-based
regions, the gene regions were split into 30 bins as shown in Supple-
mentary Fig. 12d. For each bin, a summary statistic representing the
methylation data was calculated: for the methylation P/A, this statistic
is themeannumber ofmethylated cytosines in thebin; formethylation
proportion, this statistic is the median of the methylation proportion
values (a number between 0 and 1) in a bin. To summarize the
methylation profiles of genes across accessions, the binned methyla-
tion data were formatted into vectors, with one vector of length

30 (the number of bins) for each gene in each accession. These
vectors were clustered using K-means clustering (“KMeans” from
sklearn.cluster) with 30 clusters. For each gene in each accession, 30
new features (i.e., whether the vector of the gene [methylation profile]
belongs to eachof the 30 clusters, 1 for the cluster the gene belongs to,
0 for all the other clusters) were produced. Finally, for each feature
matrix, columns containing only zeroswere removed. These processes
were performed on eachmethylation type separately (CG, CHG, CHH),
and matrices of three methylation types were combined together,
resulting in 16 final feature matrices (16 “binned” columns in Supple-
mentaryData 9). To simplify our story, these 16matricswereonly used
to establish predictive models for flowering time.

Predictive modeling
Twenty percent of the accessions were randomly held out as the test
set, which was used to evaluate the performance of final models and
was never used in themodel training. The remaining 80%of accessions
were used to train themodels. A five-fold cross-validation (CV) scheme
was conducted in the model training. First, the remaining 80% of
accessions were randomly split into five folds. Next, accessions in four
folds (referred to as the training subset) were used to build themodel,
and accessions in the fifth fold (validation subset) were used to eval-
uate the model performance. Finally, this training-validation step was
conducted five times to make sure each fold was used as a validation
set once. This five-fold CV schemewas repeated 10 times. The PCCwas
calculated between true trait values and the predicted values of these
remaining80%accessions, and the average PCCamong the 10 runswas
used to measure the model performance on the CV set.

The R package “rrBLUP” (ridge regression Best Linear Unbiased
Prediction, version 4.6.1, installed in R version 3.5.1)12 and the scikit-
learn (version 0.23.1, implemented in Python version 3.6.9) class
“RandomForestRegressor” 13,49 were used to build the predictive
models. rrBLUP is a commonly used genomic prediction approach
with mixed models, and the key function used in this study was
“mixed.solve”, with the equation:

y =μ+Xg+e ð1Þ

where y is the vector of trait values, μ is the overall mean of trait values
for the training set, X is the featurematrix, g is the feature effect vector
(or coefficient vector), and e is the vector of residual effects. The
coefficients of featureswere estimatedwithin each fold of CV andwere
used to predict trait values for accessions in the validation and test set.
After five folds of CV, the prediction accuracies on the test set were
averaged to evaluate the model performance, and the coefficients
were also averaged.

RandomForestRegressor is a meta estimator that builds
various regression decision trees using a number of sub-samples of
the dataset. The resulting trees are then aggregated through
averaging into a single ensemble model. GridSearch was used for
hyperparameter tuning using the “GridSearchCV” function from
sklearn.model_selection49, where spaces of the parameters -max_depth
and -max_features were [3, 5, 10] and [0.1, 0.25, 0.5, 0.75, “sqrt”, “log2”,
“None”], respectively. Considering the large numbers of features in the
G, T, and M data, we decided to use these small max_depth values to
avoid potential over-fitting issues. Theparameter -n_estimatorswas set
as 100 and not included in hyperparameter tuning due to high com-
puting resource requirements for large matrices, such as G and ssM-
based matrices. The best parameter combination—which was con-
sistent and reproducible—was selected according to the model per-
formances in CV. A final model was built using all the accessions
(including accessions in both the training and validation subsets) with
the best parameter combination, and was applied on the test set to
evaluate the model performance.
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To establish the baseline for the genomic prediction, we built
predictive models based simply on population structure (defined as
first five principal components from genetic markers, as mentioned
above, blue dotted line in Fig. 2b) using the training set. Models based
on individual omics data outperformed those based on population
structure for flowering time, RLN, and CLN, but not for DoR, RBN, and
SL. In addition, prediction performances for models based on indivi-
dual omics data and population structure on the CV and test sets for
DoR differed dramatically in both rrBLUP and RF models (Fig. 2b,
Supplementary Fig. 2), which is indicative of high heterogeneity inDoR
among accessions; the accessions in the training and test sets might
have different genetic features affecting DoR. The prediction perfor-
mances for RBN and SL were relatively low ( < 0.2 and ~0, respectively,
Fig. 2b, Supplementary Fig. 2a) no matter which omics data type was
used or whether population structure was used to build the models.
Therefore, variation in RBN and SL might be mainly explained by the
environment and/or genotype-by-environment interactions.

Since there were only 383 accessions that had all three omics data
(i.e., G, T andM) and all six types of trait information, we used the data
for these 383 accessions for the major analysis in this study. To check
whether the data we used were sufficient to produce reasonable
results, we also established additional rrBLUP G-based models for
flowering time by including data from different numbers of accessions
in the training set. There were 618 accessions that had all three omics
data and flowering time information; thus, the numbers of accessions
in the training set we tested ranged from 31 to 494 (80% of 618
accessions). We found that the prediction performance increased as
more accessions were included in the training set, and the perfor-
mance approached a plateau when n = 221 for both the test (Supple-
mentary Fig. 13a) and validation (Supplementary Fig. 13b) sets. This
result suggests that the data we used for our major analysis were
sufficient.

To remove the potential confounding effects of kinship onmCor,
we estimated linear regression models between mCor and kinship for
training accessions (i.e., matrices containing only mCor and kinship
values between all accessions [in both the training and test sets] with
accessions in the training set) using the “lm” function in R, and then
used the residuals of mCor to build a new Random Forest (RF) model.

Feature importance
Three measures were used to evaluate the importance or contribu-
tions of features to the prediction of complex traits: (1) RF “gini”
importance, which reflects the impurity decrease when a feature is fed
to the model50; (2) coefficients of features in a rrBLUP regression
model; and (3) SHapley Additive exPlanations (SHAP) values of fea-
tures in an RF model, which reflect the contribution of a feature to the
prediction of a complex trait17. The RF gini importance was obtained
from the attribute “feature_importances_” of the fitted RF model, and
the rrBLUP coefficient was obtained from the output ($u) of the
“mixed.solve” function. The SHAP value was calculated using the
function “Explainer” in the SHAP package (version 0.40.0, imple-
mented in Python version 3.6.9). The average absolute SHAP value of a
feature for all the instances (local feature importance) was used to
measure the global contribution of the feature to model prediction
(global feature importance). The former twomeasures interpret global
feature contributions to themodel predictions and tend to assign non-
zero importance values to all or most features (Fig. 3, Supplementary
Fig. 4a–c). In contrast, SHAP values provide local interpretations and
tend to assign zero for features that have no contribution to the pre-
dictionofflowering time for individual instances (i.e., accessions in this
study, Supplementary Fig. 4d–f). A positive SHAP value indicates an
instance is predicted to have a higher trait value with a given feature
thanwhen that feature is removed from themodel, and vice versa. The
higher the absolute SHAP value, themore a feature contributes to trait
prediction for the instance in question.

Benchmark flowering time genes
We downloaded 378 and 48 benchmark flowering time genes (Sup-
plementary Data 2) from the FLOR-ID database (http://www.
phytosystems.ulg.ac.be/florid/)18 and TAIR (https://www.arabidopsis.
org), respectively; these genes are known to be involved inflowering in
Arabidopsis. To compare the importance of flowering genes across
models built using different omics data, the highest importance (i.e.,
absolute coefficient in rrBLUP models, RF feature importance, and
absolute SHAP values) of all SNPs (or methylation sites) within a gene
was used as the gene-based importance. When all three types of gbM
data (i.e., CG, CGH, and CHH) were used together, the highest feature
importance of the three types was used as the gene-based importance.

To understandwhy nomorebenchmark genes at significant levels
were identified than random chance for most combinations of omics
datasets and importance measures, we explored the following three
potential reasons. First, we determined whether the threshold affects
the number of identified benchmark genes by increasing the threshold
of gene importance scores to the 99th percentile. The higher the
threshold, the fewer benchmark genes were identified, but also the
fewer genes were expected (1% for threshold at 99th percentile). We
found that there were significantly more benchmark genes identified
than random (1%) only when SHAP values from models built using G
and T data were used to identify important genes (Supplementary
Data 11), indicating that SHAP values are able to reveal the most
important genes (99th vs. 95th percentile) forflowering time prediction.
However, for all the other combinations of datasets and feature
importance measures, no significant differences were observed
between results when the 95th and 99th percentiles were used as
thresholds, indicating that the choice of threshold only had a minor
effect on the identification of benchmark genes.

Second, we asked whether the sample size of accessions (306
accessions in the training set, for which data for six traits and all the G,
T, and M data were available) was too small. To test this, we repeated
the analysis using all 618 accessions (494 accessions were used to train
the model, for which all the G, T, and M data and flowering time
information were available). Generally, no more benchmark genes
were identified than when 306 accessions were used to train the
models (Supplementary Data 12), suggesting that decreasing the
number of accessions included in themodel from494 to 306was not a
major factor affecting the identification of benchmark genes.

Third, since the functions of benchmark genes in flowering may
have been determined under different conditions (e.g., under a dif-
ferent temperature or photoperiod), we investigated whether the use
of flowering time data measured under only one condition (at 10 °C)10

explained the failure to identifymore benchmarkgenes than expected.
We reasoned that benchmark genes showing effects on flowering
under multiple conditions when mutated or overexpressed would be
more likely to contribute to flowering at 10 °C than genes showing
effects only under one condition. As expected, we found that genes
contributing to flowering under two different conditions (short days
[SDs] and long days [LDs], obtained from the FLOR-ID database;
unfortunately there were no data for different temperatures) were
more likely to be identified than those contributing to flowering only
under one condition (Supplementary Data 10,11, Supplementary
Fig. 14). In addition, when predicting flowering timemeasured at 10 °C
or 16 °C, genes had different contributions (Supplementary
Data 14,15). Thesefindings suggest that the conditions underwhich the
target traits were measured affect which genes are identified as
important genes, consistent with the different QTLs identified for
flowering time measured at different temperatures10.

In summary, the threshold used to call important genes and the
number of accessions used to train models only had minor, if any,
effects on the number of known flowering genes identified. Never-
theless, our feature importance-based approaches outperformed the
GWAS approach from a previous study10, where only five QTLs were
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identified. Thus, we continued with our original strategy, using the
important genes with feature importance scores above the 95th per-
centile from models built using 306 accessions, for subsequent
analysis.

Plant materials and assessment of flowering time
The potential function in flowering time of 21 genes with importance
values above the 95th percentile (for at least onemodel based ononeof
the three omics data combined with one of three importance mea-
sures) was validated experimentally. Stock numbers for single-gene T-
DNA insertion mutants of these 21 important genes and another 37
non-important genes in the Arabidopsis Col-0 background are listed in
Supplementary Data 18. These 58 genes were 29 pairs of paralogs, and
the double-mutants of two paralogous genes were produced by
crossing the corresponding single-gene mutant lines. The homo-
zygousmutant andWT sibling plants (one to nine plants per genotype,
each plant was referred to as a subline) were identified by PCR with
gene-specific primers. Five seeds from a single genotype were ran-
domly pipetted into a single cell within a block comprising four 200-
cell flats that were filled with Arabidopsis mix (1:1:1 SureMix, vermi-
culite, and perlite). For each genotype, ≥ 40 seeds (n = 5–20 per sub-
line) were planted. Cells in the outer two rows surrounding the four
flats within a block were randomized, and were excluded from the
analysis if edge effects were observed. The flats were first stratified for
5–7 days in the dark at 4 °C, and then were transferred to a
growth chamber with a 16-h light/8-h dark cycle and a light intensity of
110–130 μmoles m−2 s−1 at 21 °C. Seedlings were thinned to one per cell
after 1 week and plants were watered twice or thrice per week until
most plants were mature.

Days to flowering (number of days from placing flats containing
seeds in the growth chamber until the appearance of the first open
flower) were recorded for at least 17 plants (average = 37.3) per geno-
type except for AT1G48620/AT3G18035 double mutants, for which
flowering was recorded for only three plants (Supplementary Data 19).
Within each block, days to flowering observed for plants grown in
different flats was first normalized using the function “normalize” of
the R package “broman” (version 0.84). Average differences in flow-
ering time between mutants and WT were calculated, and the sig-
nificance of differences was assessed using the two-sided Wilcoxon
rank sum test (Supplementary Data 18).

Feature integration
To investigate interactions among G, T, and gbM features of bench-
mark flowering time genes, we first built a model using all the features
(G + T + gbM) related to the 426 benchmark genes. Then, to simplify
the analysis, only one feature each for G (i.e., the SNP having the
highest importance rank amongother SNPs in a gene), T, and gbM (i.e.,
CG-, CHG-, or CHH-type gbM, having the highest importance rank
among others in a gene) was kept for each gene. This resulted in 1227
features for the 426 genes. A new model was built using these top
features, and the interactions among these features were calculated
using the “TreeExplainer” and “shap_interaction_values” functions of
the SHAP package36. The SHAP interaction between feature i and fea-
ture j can be interpreted as the difference in SHAP values of feature i
betweenmodels with and without the feature j36. The higher the value,
the stronger the interaction.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The biallelic SNP matrix was download from 1001 Genomes Project
[https://1001genomes.org/data/GMI-MPI/releases/v3.1/SNP_matrix_
imputed_hdf5/1001_SNP_MATRIX.tar.gz] and processed using the

script “h5m2csv.py” provided in the same folder. The transcriptomic
data (read count files) were downloaded from NCBI with the GEO
accession GSE80744. The gene-body methylation data were down-
loaded from the 1001 Arabidopsis Genomes Project [http://neomorph.
salk.edu/downloads/1001/Araport11_GB.tar], and the Arabidopsis
accession ID and name information are also provided as “id_name.txt”
in the same folder; the single site-based methylation information for
individual accessions was downloaded from NCBI with the GEO
accession GSE43857. The phenotypes were downloaded from Ara-
Pheno, where flowering times measured at 10°C and 16°C were from
study:12 [https://arapheno.1001genomes.org/study/12/] and the other
five traits were from study:38 [https://arapheno.1001genomes.org/
study/38/]. The preprocessed omics data and some intermediate
results in this study have been deposited and are freely available at
Figshare [https://figshare.com/s/65e1eb61cadae8cbdd96]51. Source
data are provided with this paper.

Code availability
All the scripts used to process the original omics data, build prediction
models, and interpret the models in this study are available at Github
[https://github.com/ShiuLab/2024_Ath_GP]52.
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