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Numerical simulations have been an increasingly important tool in
space physics. Here, we introduce an open-source three-dimensional
compressible Hall-Magnetohydrodynamic (MHD) simulation code LAPS

(UCLA-Pseudo-Spectral, https://github.com/chenshihelio/LAPS). The code
adopts a pseudo-spectral method based on Fourier Transform to evaluate
spatial derivatives, and third-order explicit Runge-Kutta method for time
advancement. It is parallelized using Message-Passing-Interface (MPI) with a
“pencil” parallelization strategy and has very high scalability. The Expanding-Box-
Model is implemented to incorporate spherical expansion effects of the solar
wind. We carry out test simulations based on four classic (Hall)-MHD processes,
namely, 1) incompressible Hall-MHD waves, 2) incompressible tearing mode
instability, 3) Orszag-Tang vortex, and 4) parametric decay instability. The test
results agree perfectly with theory predictions and results of previous studies.
Given all its features, LAPS is a powerful tool for large-scale simulations
of solar wind turbulence as well as other MHD and Hall-MHD processes
happening in space.

KEYWORDS

solar wind, magnetohydrodynamics, plasma turbulence, numerical simulation, high
performance computing

1 Introduction

Plasma physics, including space plasmas, encompasses complex nonlinear and multi-
scale phenomena that often require the use of direct numerical simulations. Such is
the case of turbulence, reconnection and nonlinear wave-particle interactions, to give a
few examples. Thanks to the ever increasing numerical capabilities of high-performance
computing, direct numerical simulations have proved an indispensable tool to further
understanding of many plasma phenomena occurring in space, by providing much
needed support to the interpretation of spacecraft observations (e.g., Jia et al., 2012;
Shi et al., 2022; Dorfman et al., 2023).

Space and astrophysical plasmas mainly consist of highly-ionized plasmas, thus,
different numerical models are employed depending on the specific phenomenon or
temporal, as well as spatial, scale of the system that is being studied. These numerical
models include Vlasov (see Palmroth et al., 2018, and references therein), Particle-in-
Cell (PIC) (e.g., Markidis and Lapenta, 2010), hybrid PIC (e.g., Lin et al., 2014), and
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magnetohydrodynamic (MHD) (e.g., Tóth et al., 2012) models. In
particular, the MHD model has proved successful to describe
a variety of solar and heliophysics phenomena, and there has
been a significant effort in the heliophysics community to develop
efficient and scalable MHD codes (e.g., Mignone et al., 2007;
van der Holst et al., 2014; Shoda et al., 2019; Réville et al., 2020).
Although the most frequently used spatial-discretization method
in MHD simulations is the finite-volume method with selected
Riemann solvers (e.g., Eymard et al., 2000; Miyoshi and Kusano,
2005) because of its ability to deal with unstructured mesh and to
capture shocks, the pseudo-spectral method based on the Fourier
transform is very useful for problems that can be described in a
domain with periodic boundary conditions. The pseudo-spectral
method has the advantage of very high efficiency and can accurately
calculate the spatial derivatives up to grid scale.Hence, it is especially
suitable for simulating systems that require accurate resolution of
small scale dynamics, such as turbulence.

Here, we present an open-source three-dimensional (3D)
pseudo-spectral MHD code LAPS (UCLA-Pseudo-Spectral) based
on Fast-Fourier-transform (FFT). The code is written in FORTRAN.
It utilizes the external package FFTW (Frigo and Johnson, 2005) for
FFT, and is parallelized using Message-Passing-Interface (MPI). We
adopt a “pencil” parallelization strategy so that the code can achieve
very high scalability. The code is equipped with an Hall-MHD
module and an incompressible version has also been developed
to investigate the effects of ion kinetic physics and compressibility
on various MHD processes. In addition, the expanding-box-model
(EBM) (Grappin and Velli, 1996; Tenerani and Velli, 2017) has been
implemented to simulate the dynamic processes happening in the
expanding solar wind, such as solar wind turbulence.

The paper is organized as follows. In Section 2, we describe
in detail the numerical methods of the code, including the model
equations, time advancement method, and numerical filters, etc. In
Section 3, we discuss our parallelization strategy and present the
scalability tests of the code. In Section 4, we show four test cases,
including 1) incompressible Hall-MHD waves, 2) incompressible
tearing mode instability, 3) the Orszag-Tang vortex test, and 4)
parametric decay instability. In Section 5, we summarize this paper.

2 Code description

2.1 Compressible Hall-MHD equation set

The base version of the code integrates the compressible Hall-
MHD equation set written in the following normalized form:

∂ρ
∂t
= −∇ ⋅ (ρU) (1a)

∂ (ρU)
∂t
= −∇ ⋅ [ρUU +(P+ 1

2
B2) I −BB] + ν∇2 (ρU) (1b)

∂B
∂t
= −∇×E + η∇2B (1c)

∂e
∂t
= −∇ ⋅ [(e+ P+ 1

2
B2)U − (U ⋅B)B] (1d)

where ρ, U , P, and B are density, velocity, thermal pressure, and
magnetic field respectively,

e = P
γ− 1
+ 1
2
ρU2 + 1

2
B2

is the total energy density with γ being the adiabatic index typically
set as γ = 5/3,

E = −U ×B+
di
ρ
J ×B

is the electric field with J = ∇×B being the electric current density
and di being the normalized ion inertial length. ν and η are explicit
viscosity and resistivity. In Eq. 1, all quantities are normalized. One
can freely select units for length L, density ̄ρ, and magnetic field
strength B̄. From these units, one can further derive unit of speed
Ū = B̄/√μ0 ̄ρ, unit of time τ = L/Ū, and unit of pressure P̄ = B̄2/μ0. In
addition, the viscosity ν and resistivity η are essentially the inverses
of the dimensionless Reynolds number Re = LŪ/ ̃ν and Lundquist
number S = LŪ/ ̃η where ̃ν and ̃η are viscosity and resistivity in
physical units.

We note that the viscous term in Eq. 1b is different from the
commonly-used form νρ∇2U . In this way, we are able to calculate
the viscous term in Fourier space directly because ρU , instead
of U , is the quantity being evolved. The exact form of this term
is not important because typically the viscosity is used only for
the purpose of numerical stability. Compared with viscosity, the
resistivity not only serves as a numerical stabilizer, but also is crucial
in the triggering of magnetic reconnection (e.g., the test case of
tearing instability shown in Section 4.2). The values of ν and η
depend on the specific problems being studied. Simulations without
strong nonlinear processes are typically stable even without ν and
η. In simulations with strong nonlinearity, such as simulations of
turbulence, the diffusion should be strong enough to dissipate the
cascaded turbulence energy. In this case, the values of ν and η should
be larger than N−4/3 with N being the number of grid points.

We would like to emphasize that, given the form of Eq. 1d and
the total energy contained in the simulation domain E = ∫Ve is
exactly conserved, just like the total mass M = ∫Vρ, i.e., dE/dt =
dM/dt = 0. Even if the viscosity and resistivity are finite, the loss of
kinetic and magnetic energies due to diffusion automatically add to
the internal energy of the plasma, conserving the total energy. This
will be verified in the Orszag-Tang vortex test (Section 4.3).

2.2 Time advancement

We use the explicit Van der Houwen’s/Wray third-order
Runge-Kutta method (Van der Houwen, 1972; Wray, 1990) to
integrate Eq. 1. The coefficients of this method are summarized in
the following table

This method has the advantage of low-storage request. For an
equation (set) of the form

d f
dt
= F ( f) ,
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each time step (from n to n+ 1) consists of three sub-steps.

f n+
1
3 = f n + F ( f n) × 8

15
Δt (3a)

f n+
2
3 = f n+

1
3 − F ( f n) × 17

60
Δt+ F( f n+

1
3 ) × 5

12
Δt (3b)

f n+1 = f n+
2
3 − F( f n+

1
3 ) × 5

12
Δt+ F( f n+

2
3 ) × 3

4
Δt (3c)

where Δt is the size of the time step. Eq. 3 shows that
only one additional copy of F( f) from the previous sub-step
is needed. This feature can be very helpful in the case that
the available memory is limited. We note that, a third-order
Runge-Kutta method in general introduces stronger numerical
dissipation than higher-order methods such as the fourth-
order Dormand–Prince method (Dormand and Prince, 1980).
Nonetheless, it reduces the computational time significantly. We
will implement more time-integral methods in the future.

The size of the time step Δt is determined by the
Courant–Friedrichs–Lewy (CFL) condition (De Moura and
Kubrusly, 2013)

Δt ≤ Ct ×
Δx

max(Uw)
(4)

whereCt is a constant typically between 0.1 and 0.5 and is adjustable
in the code, Δx is the grid spacing, e.g., along x direction, and
Uw refers to the speed of the fastest-propagating wave mode along
that direction. As a hyperbolic system, the ideal MHD equation
set allows seven wave modes, namely, the entropy mode, two Alfvén
modes, two slow magnetosonic modes, and two slow magnetosonic
modes. The propagation speeds of the seven modes along a given
direction, e.g., x, are

Ux,Ux ±UA,x,Ux ±Us,x,Ux ±U f ,x (5)

respectively. Here, Ux is the flow speed projected along x-direction,
UA,x = Bx/√ρ is the projected Alfvén speed,U(s,f ),x are the projected
slow and fast magnetosonic speeds

U(s, f),x =
1
√2
[U2

m ∓U
2
n,x]

1
2

where

U2
m = U

2
s +U

2
A,U

2
n,x = [U

4
m − 4U

2
sU

2
A,x]

1
2 ,

Us = √γP/ρ is the sound speed, andUA = |B| /√ρ is the amplitude of
Alfvén speed. For the Hall-MHD system, the speed of the dispersive
whistler wave, which is typically the fastest-propagating wave mode,
needs to be included, and we use UHall ∼

diB
ρΔx

to approximate
this speed.

In the code, we first calculate Δtx, Δty, Δtz , i.e., time step
sizes determined along different directions, at each grid point, and
adopt the smallest one among the three values. Then we scan all
the grid points to determine the smallest Δt in the system. For
the incompressible version of the code which will be discussed
in Section 2.3, only the speeds of Alfvén and whistler waves need
to be considered in the estimate of Δt due to the absence of
compressive fluctuations. In expanding-box simulations which will
be discussed in Section 2.5, the transverse grid scales increase with

time and become much larger than the radial grid scale, which
remains constant. In this case, the radial grid scale is the most
important in the estimate of Δt. We note that, with finite ν or η, one
needs to take the diffusion rate into account in the estimate of Δt.
Nonetheless, as the diffusion time scale, τd ∼ Δx

2/ν or τd ∼ Δx
2/η

is typically much larger than the wave propagation time scale, we
neglect the diffusion effect in the calculation of Δt. Last, we note
that Δt is adaptively determined during the simulation, i.e., the
code re-evaluates Δt after each time step. This is necessary in long-
duration simulations where the fields change significantly from the
initial status.

Figure 1 shows the flow chart of one sub time step for the
compressible code. In this chart, boxes filled with blue color
correspond to operations in Fourier space, and boxes without
filling correspond to operations in configuration space. We call the
variables (ρ,ρU ,B,e) “fields”, which are evolved in time. At each sub
time step, we first calculate the “fluxes”

ρU ,ρUU +(P+ 1
2
B2) I −BB,E,(e+ P+ 1

2
B2)U − (U ⋅B)B

in configuration space and transform these fluxes to Fourier space.
Note that, for the induction equation, we are using the electric field
E instead of a flux. However, for convenience, we still call it a “flux”.
Then, we integrate the equation set in Fourier space after calculating
the r.h.s of Eq. 1, which involves inner product and cross product
between the wave vector k and the fluxes as well as multiplication of
−k2 and the fields. In particular, the magnetic field is advanced by

∂Bk

∂t
= −ik ×Ek − ηk

2Bk, (6)

which automatically preserves ∇ ⋅B = 0 to round-off error if the
initial magnetic field has zero divergence. Therefore, in LAPS,
no ∇ ⋅B cleaning is required. After the time integral, we apply
a numerical filter to all the fields, which will be described
in detail in Section 2.4. Lastly, we apply the inverse Fourier
transform to ρk, (ρU)k, Bk, ek, and Jk = ik ×Bk to derive these
quantities in configuration space.

2.3 Incompressible version

As the level of compressible fluctuations in the solar wind
is typically small (Shi et al., 2021), incompressibility is often
assumed to simplify the theoretical models or reduce the cost
of simulations in the study of solar wind turbulence (e.g., Perez
and Chandran, 2013). However, recent numerical investigations
suggest that compressive processes may play a significant role in
the dynamics of solar wind, such as the development of turbulence
(Shoda et al., 2019; Tenerani et al., 2020). To explore how the
assumption of incompressibility affects different processes, such
as the turbulence evolution, we have developed an incompressible
version of the code.

In the incompressible code, we impose a uniform density ρ and
use the thermal pressure P to enforce the ∇ ⋅U = 0 condition. Thus,
only U and B are evolved in time.The thermal pressure must satisfy

∇2P = ∇ ⋅ [−ρU ⋅∇U + J ×B] (7)

so that ∂t (∇ ⋅U) ≡ 0. The flow chart of the incompressible code is
shown in Figure 2. At each sub time step, we first calculate Jk and
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FIGURE 1
Flow chart of each sub time step for the compressible version of the code. Boxes filled with blue color correspond to operations in Fourier space, and
boxes without filling correspond to operations in configuration space.

FIGURE 2
Flow chart of each sub time step for the incompressible version of the code. Boxes filled with blue color correspond to operations in Fourier space, and
boxes without filling correspond to operations in configuration space.

ikUk in Fourier space and inverse transform them to get J and ∇U
in configuration space. Next, we calculate the “flux” for pressure, i.e.,
the term in the bracket on the r.h.s of Eq. 7, and Fourier transform
this term. This leads to the solution of pressure in Fourier space:
−k2Pk = ik ⋅ FP,k where FP,k is the Fourier mode of −ρU ⋅∇U + J ×B.
Note that for thermal pressure, the k = 0 mode is negligible. In
practice, it is unnecessary to solve Pk because we are only interested
in ∂t(ρU)k, which is

∂(ρU)k
∂t
= FP,k − k

k ⋅ FP,k

k2
− k2ν(ρU)k (8)

For the magnetic field, we simply calculate electric field in the
configuration space, Fourier transform it, and get the r.h.s of Eq. 6.
Finally, we evolve Uk and Bk, filter the evolved fields, and inverse
transform the fields.

2.4 Filtering and de-aliasing

Because the evolved equation set contains nonlinear terms,
numerical filtering or de-aliasing is necessary to remove the

high-wavenumber fluctuations. In LAPS, a zero-padding de-
aliasing is implemented, which removes all the fluctuations on
wave modes M ≥ 1/3 after each sub time step. Here M is the
normalized wave mode

M = √(
mx

Nx
)
2
+(

my

Ny
)
2
+(

mz

Nz
)
2

where (Nx,Ny,Nz) are number of grid points along each direction,
−Nx

2
≤mx ≤

Nx
2
is the wave mode in x and similarly formy andmz .

In practice, we find that a numerical filter, which is a smooth
function of k, is very efficient in removing the high wavenumber
fluctuations while maintaining stability of the simulation without
too strong dissipation of the fields. The function form of the filter
is inspired by the filter frequently implemented in compact finite
difference schemes (Lele, 1992):

T (k) =
a+ b cos (w) + c cos (2w)

1+ 2λ cos (w)
(9)

where w = 2πkΔ is the normalized wave number along a specific
direction and takes values between −π and π. Δ is the grid spacing.
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a = (5+ 6α)/8, b = (1+ 2α)/2, c = −(1− 2α)/8 are three parameters
dependent on the free parameter α, usually between 0.45 and 0.5.
The smaller α is, the stronger the filter is. Especially, when α = 0.5,
there is no filtering. For multi-dimensional case, the filter is defined
asT(k) = T(kx) ×T(ky) ×T(kz). After each sub time step or time step,
we apply the filter by multiplying the evolved fields by T(k). We note
that, applying the filter does not break the ∇ ⋅B = 0 condition. The
reason is that all of the three components of Bk are multiplied by the
same function T(k). Therefore, the filtered magnetic field is simply
B̃k = T(k)Bk, i.e., k ⋅ B̃k = T(k) × (k ⋅Bk) = 0.

2.5 Expanding-box-model

In simulations of dynamic processes happening in the solar
wind, the large-scale spherical expansion of solar wind is non-
negligible because it leads to inhomogeneity of the backgroundfields
and anisotropic evolution of different components of velocity and
magnetic field. To incorporate the expansion effect into simulations
of local processes, expanding-box-model (EBM) has been developed
and implemented in MHD (Grappin and Velli, 1996), hybrid
(Liewer et al., 2001; Hellinger et al., 2003), and PIC (Innocenti et al.,
2019) simulations. In the classic EBM, a plasma parcel that moves
along the radial direction with a constant speed U0 is simulated.
EBM for MHD with a time-dependent U0, i.e., “accelerating” EBM,
was developed by Tenerani and Velli (2017), but so far LAPS only
allows a constantU0 andwill be equippedwith the accelerating EBM
in the future. The plasma parcel expands in the transverse direction
with an expansion time scale τ = R(t)/U0 where R(t) = R0 +U0t is
the radial distance to the origin, e.g., the center of the Sun, and R0
is the initial radial location of the plasma parcel. A more detailed
explanation of the EBM can be found in (Grappin and Velli, 1996;
Tenerani and Velli, 2017; Shi et al., 2020b) and will not be repeated
here. Assuming that x is aligned with the radial direction, a pseudo-
Galilean transform with respect to the average radial speed U0 ̂er
leads to additional “expansion” terms

Sρ = −
2
τ
ρ,SU = −

1
τ
(

2 0 0

0 3 0

0 0 3

)ρU ,SB = −
1
τ
(

2 0 0

0 1 0

0 0 1

)B,

Se = −
1
τ
[

2γ
γ− 1

P+ ρ(U2
x + 2U

2
y + 2U

2
z) + (2B

2
x +B

2
y +B

2
z)] ,

(10)

that need to be added to the r.h.s of Eq. 1. Here, Sρ, SU , and
SB can be calculated directly in Fourier space while Se must
be calculated in the configuration space first and then Fourier
transformed. We note that, with EBM, the grid spacing along the
transverse directions (y and z) increases with time. Consequently,
the transverse wavenumbers must be updated after every time step:

ky = ky,0 ×
R0

R (t)
, kz = kz,0 ×

R0

R (t)
.

A “corotation” module that allows a non-radial x-axis is
implemented so that the code is able to simulate the corotating-
interaction-regions. The technical details of this module are
documented in (Shi et al., 2020b).

One important question is whether the expansion term SB
preserves the ∇ ⋅B = 0 condition. To answer this question, let us
write the normalized EBM coordinates (here we neglect z-direction
which is exactly the same with y-direction) as ( ̃x, ̃y) such that

̃x = x−R (t) , ̃y =
R0

R (t)
y. (11)

where (x,y) are coordinates of the Sun-centered stationary frame.
This coordinate transform leads to: ∂x = ∂ ̃x, ∂y = R0/R× ∂ ̃y. Then,
we can calculate the time-derivative of ∇ ⋅B introduced by the
expansion term:

∂
∂t
(∇ ⋅B)exp =

∂
∂t
(
∂Bx

∂ ̃x
+
R0

R
∂By

∂ ̃y
)

= ∂
∂ ̃x
(
∂Bx

∂t
)+

R0

R
∂
∂ ̃y
(
∂By

∂t
)−

UR0

R2

∂By

∂ ̃y

= ∂
∂ ̃x
(−

2Bx

τ
)+

R0

R
∂
∂ ̃y
(−

By

τ
)−

R0

R
1
τ
∂By

∂ ̃y

= −2
τ
(
∂Bx

∂ ̃x
+
R0

R
∂By

∂ ̃y
)

= −2
τ
(∇ ⋅B)

Thus, the expansion term tends to decrease∇ ⋅B. If∇ ⋅B = 0 initially,
the expansion term will not generate any net ∇ ⋅B.

As a final remark, so far the EBM is only implemented to the
compressible version of the code, because it is a nontrivial task to
make the EBM compatible with the assumption of incompressibility.
One can show that the expansion tends to break the ∇ ⋅ (ρU) = 0
condition because it leads to a faster decay of ∂y (ρUy) and ∂z (ρUz)
than ∂x (ρUx) (Dong et al., 2014). Therefore, more works need to be
done to properly implement EBM to the incompressible code.

3 Parallelization

Parallelization of pseudo-spectral codes, especially in 3D, is
complex, because a large amount of communication between
different processes is needed due to the non-locality of the pseudo-
spectral method (Reuter et al., 2008).

To complete a 3D Fourier transform, an array needs to be
transposed once or twice, depending on the parallelization strategy
adopted. During one transpose operation, each process needs
to send (nearly) the whole chunk of data it possesses to other
processes and receive data of the similar volume. One choice of
parallelization is to decompose the domain into “slabs”, i.e., to
parallelize along one dimension such that each process handles a
sub-layer of the domain (e.g., GHOST Mininni et al., 2011). This
method has the advantage of less data transfer between processes
because only one transpose operation is needed for 3D Fourier
transform, but the computational workload of each process is heavy.
In LAPS, we adopt another parallelization strategy and divide the
simulation domain into “pencils” instead of slabs, i.e., we parallelize
the domain along two dimensions, as illustrated by Figure 3. An
array defined in the configuration space is parallelized along y
and z directions. To transform the array to Fourier space, we
apply Fourier transform along x direction first. Then the array
is transposed in x-y plane so that y becomes the undivided
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FIGURE 3
Layout of the data parallelized using “pencils”. A 3D array in configuration space is parallelized along y and z (left). During 3D Fourier transform, the array
is first transposed in x− y plane (middle) and then transposed in y− z plane (right). Hence, the array in wave-vector space is parallelized along x and y.

TABLE 1 Result of the two strong scaling tests of LAPS conducted on UCAR/DERECHO. Different columns correspond to different numbers of
processors. For each test, we list the simulation speed quantified by iterations per second on the top and the speedup with respect to the run with the
least number of processors on the bottom.

# of proc 128 256 512 1,024 2,048 4,096

5123 iter/sec 0.1083 0.1916 0.3290 0.6667 1.4842 2.6056

5123 speedup 1.00 1.77 3.04 6.15 13.70 24.05

1,0243 iter/sec - - 0.0372 0.0694 0.1368 0.2790

1,0243 speedup - - 1.00 1.87 3.68 7.51

dimension and Fourier transformed is applied along y direction.
Last, we transpose the array in y-z plane and apply Fourier
transform in z direction. Consequently, the array in Fourier space
is parallelized in x (kx) and y (ky) directions. The inverse Fourier
transform is conducted in the inverse order, i.e., starting from
z-axis, then y-axis, and finally x-axis. This pencil-parallelization
strategy requires more data transfer between different processes, but
the computational workload of each process is lighter than slab-
parallelization. Similar parallelization strategy is implemented in
the external package P3DFFT for FFT of 3D arrays (Pekurovsky,
2012; Kawazura, 2022) as well as high-order finite-difference MHD
code The Pencil Code (Brandenburg et al., 2021). We note
that, the pencil-parallelization strategy is more suitable for clusters
with large numbers of CPU cores, because much more sub-tasks
are created comparedwith the slab-parallelization strategy.The slab-
parallelization strategy, on the contrary, is expected to be very useful
in a system with limited cores, e.g., multiple GPUs. Therefore, a
promising future direction is to develop a GPU-accelerated version
of the code with slab-parallelization strategy.

To test the scalability of the code,we conducted two sets of strong
scaling tests, i.e., the problem size is constant while the number
of processors varies in each test, on UCAR/DERECHO cluster2.
The DERECHO cluster2 contains 2488 CPU computation nodes,
with 128 cores and 256 GB memory per node. The inter-node data
transfer rate is approximately 200 GB/sec.The test results are shown
in Table 1 and Figure 4. In Table 1, the top and bottom two rows are
test runs with 5123 grid and 1,0243 grid respectively, and different

2 https://doi.org/10.5065/qx9a-pg09

columns are different numbers of processors used. We quantify the
speed of the simulations by iterations per second. In addition, we
quantify the speedup by normalizing the simulation speeds with
different numbers of processors to the speed of the run with the
least number of processors. Note that, for the test with a 1,0243

grid, we do not conduct runs with 128 and 256 processors due
to the limit of memory of the cluster. Results listed in Table 1 are
plotted in Figure 4, whose left panel shows the simulation speed
as a function of number of processors and right panel shows the
speedup as a function of the number of processors normalized to
the least number of processors used in each test. The orange curves
represent runs with 5123 grid, and the blue curves represent runs
with 1,0243 grid. The blue curve in the left panel is multiplied by 8
for better visualization. As a reference, the black dashed lines show
y∝ x (left) and y = x (right), i.e., the ideal case when the speed is a
linear function of the number of processors.The Pearson correlation
coefficients for the orange and blue curves are 0.9975 and 0.9998
respectively (note that curves of the same color in the two panels
have exactly the same shape and hence the same Pearson correlation
coefficient).Thus, the speed of simulation is almost a linear function
of the number of processors in both the two tests, indicating a very
high scalability of the code.

4 Test cases

To verify that LAPSworks properly, we conducted four (sets of)
test runs based on four benchmark physics problems.The results are
presented below.
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FIGURE 4
Visualization of the strong scaling test results displayed in Table 1. Left panel shows the simulation speed (iterations per second) as a function of
number of processors. Right panel shows the speedup as a function of the number of processors normalized to the least number of processors used in
each test. Blue curves are test runs with 1,0243 grid (Pearson correlation coefficient 0.9998) and orange curves are test runs with 5123 grid (Pearson
correlation coefficient 0.9975). For better visualization, we have multiplied the speed of the 1,0243 runs by a factor of 8 in the left panel. The black
dashed lines show the ideal case where the simulation speed is a linear function of the number of processors.

FIGURE 5
Dispersion relation ω(k) in a 1D incompressible Hall-MHD simulation with di =0.1. The plot is colorcoded with |Bz (k,ω)|2. The two white dashed lines are
the two analytic solutions (Eq. 12).

4.1 Incompressible Hall-MHD waves

The incompressible Hall-MHD system with a uniform
background magnetic field has two eigen-modes whose dispersion
relation is written as

ω =
√(kdi)

2 + 4± kdi
2

(k ⋅VA) . (12)

Here ω is frequency, k is wave-vector, di is the ion inertial length,
andVA = B0/√4πρ is the backgroundmagnetic field inAlfvén speed
unit and ρ is the plasma density. “+” corresponds to the right-hand
polarized whistler mode wave and “−” corresponds to the left-hand
polarized ion cyclotron wave.

To verify the Hall-MHD module, we carry out a 1D simulation
using the incompressible Hall-MHD code. De-aliasing instead
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FIGURE 6
Evolution of By at t = 0 (top), t = 400 (middle), and t = 1,100 (bottom) in the 2D incompressible simulation of a resistive current sheet.

of numerical filtering is activated. No viscosity or resistivity is
implemented. The domain size is Lx = 8 and the number of grid
is Nx = 1,024. The ion inertial length is di = 0.1. We initialize the
simulation with a uniform density ρ = 1 and a uniform background
field B = 1 ̂ex. The time step size is evaluated with Ct = 0.2 and the
resultant Δt is roughly 1.2× 10−4. Random fluctuations in Bz are
added on wavenumbers k ∈ (0,8]. We apply Fourier transform in
x and in time during t ∈ [0.5,2.5] to acquire the power spectrum
density |Bz (k,ω)|

2, which is shown in Figure 5.The twodashedwhite
lines are the analytic dispersion relation given by Eq. 12. We can see
that the simulation result is exactly consistent with the linear theory.

4.2 Incompressible tearing mode instability

It is well known that a resistive current sheet is susceptible to
the tearingmode instability (Furth et al., 1963), the growth of which
can break an elongated current sheet into a chain of plasmoids
rapidly.The theory of tearing instability in incompressibleMHDwas
well established, and its growth rate can be calculated in a semi-
analytic way (Pucci and Velli, 2013; Shi et al., 2020a; Shi, 2022).

Thus, incompressible tearing instability is a very good benchmark
for resistive-MHD code.

We conduct a 2D incompressible simulation, initialized with a
Harris-type current sheet:

B (x,y) = B0 tanh(
y− y0
a
) ̂ex. (13)

The density is uniform: ρ = 1, and the thermal pressure is used to
maintain a uniform total pressure

P (x,y) + 1
2
B2 (x,y) = PT = 2. (14)

Note that because periodic boundary condition is enforced in the
spectral code, we actually set up a double Harris current sheet,
while the analysis only focuses on the lower current sheet. The
size of the simulation domain is Lx = 128a and Ly = 60a with a = 1,
and the number of grid is Nx = 256 and Ny = 1,024. De-aliasing is
turned on without numerical filtering. The resistivity is η = 10–3,
corresponding to a Lundquist number S = 103, and no viscosity
is added. We select Ct = 0.5 and consequently the size of time
step is Δt ≈ 0.25. We add fluctuations in magnetic field at the
center of the current sheets, as shown in the top panel of Figure 6,
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FIGURE 7
(A) Time evolution of the amplitudes of Fourier modes B̂y(kx,y = y0) calculated at the center of the current sheet. From purple to yellow lines are
wavelengths λ ∈ [128a,8a]. The yellow shade marks the time interval for calculation of growth rates. (B) Blue dots are the calculated growth rate as a
function of the wavenumber from the simulation. Orange dashed line is the exact solution of the eigenvalue problem of incompressible tearing mode
instability.

which is color-coded with By. The middle and bottom panels show
snapshots at t = 400 and t = 1,100 respectively. We can see the
formation and nonlinear evolution of plasmoids due to the tearing
instability.

To quantify the linear growth rate of tearing instability, we
apply Fourier transform to By along the central line of the current
sheet y = y0. Panel a) of Figure 7 shows the time evolution of the
amplitudes of different Fourier modes. From purple to yellow,
different lines correspond to wavelengths λ ∈ [128a,8a]. Clearly
there is a linear-growing phase in all the modes. We apply a linear
fit between t = 200 and t = 400 (marked by the yellow shade) and
acquire the growth rates for different modes. On Panel b), we
show the fitted growth rate as a function of wavenumber in blue
dots. The orange curve is the exact solution of the dispersion
relation solved from the eigenvalue problem of incompressible
tearing instability. More specifically, we solve the following
boundary-value-problem.

γ(u′′y − k
2uy) = ik[Bx (b

′′
y − k

2by) −B
′′
x by] (15a)

γby = ikBxuy + η(b
′′
y − k

2by) (15b)

where γ is the growth rate, k is the wavenumber along x, Bx
is the x-component of the background magnetic field, uy and by
are y-components of the perturbations in velocity and magnetic
field, η is the resistivity. Prime represents derivative in y. The
boundary conditions are that uy and by decay exponentially toward
zero as |y| increases. Derivation of Eq. 15 can be found in many
previous studies (e.g., Shi et al., 2020a; Shi, 2022). Here, we use the
boundary-value-problem solver implemented in the package SciPy
(Virtanen et al., 2020) to solve Eq. 15. From Figure 7, we can see that
the simulation result perfectly alignswith the theoretical calculation.

4.3 Orszag-Tang vortex test

A standard test of compressible MHD codes is the Orszag-Tang
vortex test (Orszag and Tang, 1979). We conduct this test with the
same initial condition used by Londrillo and Del Zanna (2000),
which consists of a uniform density ρ = 25

36π
, a uniform thermal

pressure P = 5
12π

, and

U = − sin (2πy) ̂ex + sin (2πx) ̂ey, B = 1
√4π
[− sin (2πy) ̂ex + sin (4πx) ̂ey] .

(16)

The domain size is Lx = Ly = 1.0, and the number of grid points is
Nx = Ny = 256.The size of time step is roughly 8× 10−4withCt = 0.5.
Since this test involves nonlinear compressible processes, including
formation of shocks, numerical filtering is necessary to maintain the
stability of the simulations. As described in Section 2.4, we use Eq. 9
for the filtering and control the strength of filtering by adjusting the
free parameterα.Three runswith different values ofα are conducted,
without explicit viscosity and resistivity. In Figure 8, we show the
evolution of thermal pressure P in the runwith α = 0.49. One can see
that the result agreeswell with previousworks using other codes, e.g.,
Figure 10 of (Londrillo and Del Zanna, 2000). In Figure 9, we show
1D cut of P along x at t = 0.5. Top and bottom panels are y = 0.43
and y = 0.31 respectively. Different curves correspond to different
values of α. The profiles shown in Figure 9 are very similar with that
shown in Figure 11 of Londrillo and Del Zanna (2000). Near the
shocks, e.g., x = 0.7 and y = 0.31, artificial oscillations induced by the
Gibbs phenomenon are observed. This is a natural phenomenon in
simulations using Fourier transform based spectral codes. Figure 9
shows that applying a stronger numerical filter reduces this artificial
oscillations.

As discussed in Section 2.1, the integrated total energy should
be conserved in the compressible simulations. To verify this, we
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FIGURE 8
Snapshots of the simulation domain color-coded with thermal pressure P in the Orszag-Tang vortex test. From top left to bottom right are
t = 0.1,0.5,0.8, and 1.0 respectively. This test has parameter α = 0.49 for the numerical filter.

calculate the integrated kinetic energy ( 1
2
ρU2), magnetic energy

( 1
2
B2), internal energy (P/(γ− 1)), and total energy (sum of the three

energies). In Figure 10, we show the time evolution of the increment
(with respect to the initial status) of these energies. Solid lines are the
run with α = 0.49 and without explicit viscosity and resistivity. To
prove that including viscosity and resistivity does not break the total
energy conservation, we conduct onemore simulation with α = 0.49
and ν = η = 10–3. Results of this run are shown as dashed lines. One
can see that in both of the two runs, the total energy is exactly
conserved (ΔEtot ≡ 0). Due to diffusion effect, in the run with finite
viscosity and resistivity, the magnetic energy and kinetic energy
are lower than the run without viscosity and resistivity. However,
the internal energy is higher in this run such that the total energy
remains unchanged.

4.4 Parametric decay instability

A circularly-polarized Alfvén wave is susceptible to the growth
of parametric decay instability (PDI), which breaks the forward
propagating Alfvén wave into a forward propagating sound wave

and a backward propagating Alfvén wave. Growth of PDI is a
compressive process and thus serves as a good test for compressible
MHD codes. Here we conduct a 1D simulation using the
compressible version of LAPS. The domain size is Lx = 128 and the
number of grid is Nx = 4,096. No numerical filter is activated and
only the de-aliasing takes effect. Besides, viscosity and resistivity
are both zero to avoid effect of diffusion on the growth rate of
PDI. The simulation is initialized with a uniform background
magnetic field B0 = B0 ̂ex with B0 = 1, a uniform density ρ = 1, and
a uniform thermal pressure p = 0.1, i.e., β = 0.2. We set Ct = 0.5 and
the resultant Δt is roughly 1.5× 10−2. A monochromatic circularly
polarized Alfvén wave is added:

U (x) = ΔB[cos (2πx) ̂ey + sin (2πx) ̂ez] , B (x) = B0 −U (x) (17)

with ΔB = 0.1. Random fluctuations in density are added on modes
with wavelengths between 2 and 1/4.

In Figure 11, we show the evolution of density ρ(x) at three
different time moments. One can see that the amplitude of
the density fluctuation increases with time. At t = 40, coherent
wave packets develop, implying the growth of a narrow range of
dominating wave modes. At t = 80, the instability enters nonlinear
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FIGURE 9
1D profile of thermal pressure along x at y = 0.43 (top) and y = 0.31 (bottom) at t = 0.5. Different curves correspond to different levels of numerical
filtering controlled by the parameter α (Eq. 9).

FIGURE 10
Time evolution of the increment of kinetic energy (blue), magnetic
energy (orange), internal energy (green), and total energy (black and
white) in the Orszag-Tang vortex test. Solid lines are the run with
α = 0.49and without explicit viscosity and resistivity. Dotted lines are
the run with α = 0.49and ν = η = 10–3.

stage with nearly all wave modes exited. In Panel a) of Figure 12,
we show time evolution of density fluctuations on wave modes from
k = 1.36 (purple) to k = 1.47 (yellow).There is a clear linear growing

phase between t ≈ 20 and t ≈ 60, so we apply linear fit between t = 30
and t = 50 to calculate the growth rate of the density fluctuations.
In panel b), the blue curve shows the estimated growth rate as a
function of the wavenumber from the simulation result. ω0 = 1 and
k0 = 1 are the frequency and wavenumber of the mother wave. The
orange curve shows the theory prediction of the growth rate of PDI
for a circularly-polarized monochromatic Alfvén wave by solving
the equation (Derby Jr, 1978)

(ω+ k+ 2) (ω+ k− 2) (ω− k)(ω2 − ̃βk2) −A2k2 (ω3 + kω2 − 3ω+ k) = 0.
(18)

Here A = ΔB/B0 is the normalized amplitude of the mother wave, ̃β
is the square of the ratio between sound speed and Alfvén speed and
is 1/6 in this case. We can see that the simulation result is consistent
with the theory predication.

5 Summary

In this paper, we present the recently developed 3D Hall-
MHD code LAPS (UCLA-Pseudo-Spectral), which is a Fourier
transform based pseudo-spectral code and has the expanding-box-
model implemented. The code adopts a “pencil” parallelization
strategy and has an extremely high scalability. We present test
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FIGURE 11
Profiles of density at t = 0 (top), 40 (middle), and 80 (bottom) in the 1D compressible simulation of a monochromatic circularly polarized Alfvén wave.

FIGURE 12
Result of the 1D simulation of parametric decay instability. (A) Time evolution of the amplitude of density fluctuations with wavenumbers from 1.36
(purple) to 1.47 (yellow). The yellow shade marks the time interval for linear fitting. (B) Growth rate as a function of wavenumber estimated from the
simulation result (blue) and theory prediction (orange) based on Eq. 18.

simulations of four benchmark physics problems, including 1)
incompressible Hall-MHD waves, 2) incompressible tearing mode
instability, 3) Orszag-Tang vortex test, and 4) parametric decay
instability of a monochromatic circularly polarized Alfvén wave.
The simulation results are well consistent with theory predictions

and previous studies, indicating that LAPS is able to simulate Hall-
MHD, incompressible-MHD, and compressible-MHD problems
with extremely high accuracy. We note that, in this paper,
we do not present test results of the expanding-box module.
In (Shi et al., 2020b), we introduced the EBM in detail and
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presented a test simulation on the formation of corotating-
interaction-region. Simulations of plasma turbulence conducted
using LAPS with EBM were discussed in (Shi et al., 2020b; 2022;
Artemyev et al., 2022; Shi et al., 2023). In conclusion, LAPS is a
powerful tool in numerical studies of all kinds of MHD and Hall-
MHD processes. As a pseudo-spectral code, it is able to resolve
all scales with perfect accuracy. Together with the EBM, it is very
useful in numerical investigations of turbulence in the expanding
solar wind.
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