

1 **New isolates refine the ecophysiology of the Roseobacter CHAB-I-5 lineage**

2 V. Celeste Lanclos^{1,*}, Xiaoyuan Feng^{2,3}, Chuankai Cheng¹, Mingyu Yang⁴, Cole J. Hider¹, Jordan T.
3 Coelho¹, Conner Y. Kojima¹, Shelby J. Barnes¹, Catie S. Cleveland¹, Mei Xie^{2,3}, Yanlin Zhao⁴,
4 Haiwei Luo^{2,3}, and J. Cameron Thrash^{1,#}

5 1. Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA

6 2. Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of
7 Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong, China

8 3. Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China

9 4. Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College
10 of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China

11

12

13 **#Correspondence:** thrash@usc.edu

14 *Current address: Department of Plant and Microbial Biology, University of California, Berkeley,
15 Berkeley, CA, USA

16

17 **Running title:** *Updated ecophysiology of Roseobacter CHAB-I-5*

18

19

20

21 **Abstract**

22 The CHAB-I-5 cluster is a pelagic lineage that can comprise a significant proportion of all
23 roseobacters in surface oceans and have predicted roles in biogeochemical cycling via
24 heterotrophy, aerobic anoxygenic photosynthesis (AAnP), CO oxidation, DMSP degradation, and
25 other metabolisms. Though cultures of CHAB-I-5 have been reported, none have been explored
26 and the best known representative, strain SB2, was lost from culture after obtaining the
27 genome sequence. We have isolated two new CHAB-I-5 representatives, strains US3C007 and
28 FZCC0083, and assembled complete, circularized genomes with 98.7% and 92.5% average
29 nucleotide identities with the SB2 genome. Comparison of these three with 49 other unique
30 CHAB-I-5 metagenome-assembled and single-cell genomes indicated that the cluster represents
31 a genus with two species, and we identified subtle differences in genomic content between the
32 two species subclusters. Metagenomic recruitment from over fourteen hundred samples
33 expanded their known global distribution and highlighted both isolated strains as
34 representative members of the clade. FZCC0083 grew over twice as fast as US3C007 and over a
35 wider range of temperatures. The axenic culture of US3C007 occurs as pleomorphic cells with
36 most exhibiting a coccobacillus/vibrioid shape. We propose the name *Thalassovivens spotae*,
37 gen nov., sp. nov. for the type strain US3C007^T.

38

39

40 Introduction

41 The Roseobacter group is one of the most ecologically successful groups of bacteria found
42 across marine habitats and are often associated with phytoplankton blooms [1–4]. Members of
43 this clade exist as free-living, attached, and in symbiont forms [1] and can make up to 20% of
44 bacteria in coastal regimes [5]. The most abundant roseobacters in the open ocean belong to
45 the Pelagic Roseobacter Cluster (PRC), which are polyphyletic in the Roseobacter phylogenomic
46 tree, but form a cluster in the dendrogram inferred from genome content similarity [3, 6, 7].
47 This results from multiple Roseobacter lineages that have evolved gene content that is adaptive
48 for nutrient-poor pelagic waters, such as carbon monoxide and inorganic sulfur oxidation, use
49 of dimethylsulfoniopropionate (DMSP) via multiple pathways, a reduction of metal import
50 systems, and a high proportion of ABC transporters, some of which distinguish them from
51 copiotrophic roseobacters [6, 8, 9]. While many Roseobacter species are easily cultured, the
52 PRC contains multiple clusters without currently isolated representatives, including the CHAB-I-
53 5 lineage. Representatives from the CHAB-I-5 cluster have been cultured on multiple occasions
54 but lost [7, 10, 11], for example, strain SB2 was the first [7].

55 The CHAB-I-5 cluster comprises free-living marine bacteria distributed from tropical to
56 polar latitudes [7, 12] and is one of the most abundant types of Roseobacter in global oceans. It
57 is found in highest abundances near coastal North America and Europe [12] and constituted up
58 to 20% of microbial clones in the Sargasso Sea [1, 13]. In a study of Chesapeake Bay, CHAB-I-5
59 was the only Roseobacter that did not decrease in abundance along a salinity gradient and was
60 present in samples across salinities from 13.9–30.5 [14]. While some other members of the
61 Roseobacter group typically associate with phytoplankton blooms, this pattern does not seem
62 to hold for CHAB-I-5 [7]. The abundance and distribution of CHAB-I-5 in global ocean waters
63 corresponds to a high activity level in the cluster [1, 7, 12, 14, 15]. Furthermore, CHAB-I-5 phage
64 are abundant in global waters, particularly in the polar and estuarine systems [10]. This
65 abundance, activity, and widespread phage distribution indicate this group is essential to global
66 nutrient cycling, though the mechanisms of these dynamics are still unexplored.

67 Current predictions of CHAB-I-5 metabolism come from only four partial genomes [7,
68 12]. CHAB-I-5 appears to be motile with metabolic pathways for aerobic anoxygenic
69 photosynthesis, carbon monoxide oxidation, inorganic sulfur oxidation, DMSP degradation,
70 phosphonate metabolism, and evidence for thiamin and biotin auxotrophy similar to other PRC
71 members [7, 9, 12]. Incomplete genomes have made it unclear whether CHAB-I-5 can use
72 nitrate, nitrite, or reduce sulfur [7]. Furthermore, we have no knowledge of cell volumes,
73 growth rates, or other fundamental physiological characteristics of this group. No CHAB-I-5
74 isolate has been maintained in culture long enough for experimental analysis except for the
75 recent isolate FZCC0083, which remains uncharacterized except for use in phage isolations [10].
76 Thus, our current knowledge of CHAB-I-5 remains limited.

77 Here we present another new strain, US3C007, an axenic representative of the CHAB-I-5
78 cluster that is readily propagated on artificial seawater medium and reliably revived from
79 frozen stocks. We conducted the first physiological characterization of CHAB-I-5, and the most
80 extensive genomic analysis of the group to date using new, complete genomes from both
81 US3C007 and FZCC0083 and other publicly-available data. We showed the first morphology of a
82 CHAB-I-5 member and examined the growth dynamics of both strains across ranges of salinity

83 and temperature. Additionally, we analyzed the ecological distribution of CHAB-I-5 from an
84 expanded set of global metagenomic samples that span a wide range of marine and estuarine
85 locations. Together, these data constitute the most in-depth investigation of CHAB-I-5 thus far
86 and provide new insights on the genomics and physiology of these organisms.

87 **Materials and Methods**

88 *US3C007 isolation*

89 We obtained surface water (2m) from the San Pedro Ocean Time series (SPOTs) monthly cruise
90 on 09/16/2020 via CTD cast. The seawater was transported into the lab and filtered through a
91 2.7µm GF/D filter, stained with 1x Sybr green (Lonza) for 30 minutes in the dark, and cell
92 density was enumerated on a Guava Easy Cyté 5HT flow cytometer (Millipore, Massachusetts,
93 USA) with settings as described previously [16]. We diluted cells to a final concentration of 1
94 cell/µL in 10mL of sterilized AMS1 artificial seawater medium [17] and inoculated 3 µL of the
95 diluted cell solution into each well of a 96 x 2.1mL well PTFE plate (Radleys, Essex, UK)
96 containing 1.5mL of AMS1 for a final theoretical concentration of 3 cells/well. Plates incubated
97 in the dark without shaking for 2.5 weeks and enumerated as described above. Positive wells
98 (>10⁴ cells/mL) were transferred to Nalgene Oak Ridge PTFE centrifuge tubes (Thermo Fisher,
99 Massachusetts, USA) containing MWH1 medium [18] in an attempt to move the cultures to a
100 more frequently used medium for convenience. Subsequent transfers of isolates in MWH1
101 were not successful, so we transferred the initial cultures in the Oak Ridge tubes containing
102 MWH1 to acid-washed 125 ml polycarbonate flasks containing the original isolation medium,
103 AMS1, and growth resumed. The culture has been maintained in this manner over continual
104 transfers. Cultures were cryopreserved in both 10% DMSO and 10% glycerol diluted with AMS1.
105 We grew US3C007 to late-log phase and filtered the cells onto a 0.2µm polycarbonate filter
106 (Millipore) and extracted its DNA using a GenElute Bacterial Genomic DNA Kit (Sigma-Aldrich
107 Co, Darmstadt, Germany). We amplified the DNA and purified the PCR products as previously
108 reported [19], and sent samples for Sanger sequencing to Genewiz (Azenta Life Sciences, New
109 Jersey, USA). We inspected the resulting chromatograms to verify purity through a lack of
110 multiple peaks for a given base call, assembled a contiguous sequence from the forward and
111 reverse complement sequences using CAP3 (<https://doua.prabi.fr/software/cap3>), and used
112 the web-based NCBI BLASTn with the nr/nt database for sequence identification.

113

114 *16S rRNA gene phylogeny to determine placement within CHAB-I-5*

115 We created a 16S rRNA gene phylogeny to verify placement of US3C007 within the CHAB-I-5
116 cluster using the Alphaproteobacteria tree and methods from previous work [18, 19] with the
117 addition of known CHAB-I-5 relatives including SB2 [7], three CHAB-I-5 SAGs [12], the original
118 CHAB-I-5 clone [20], and US3C007. We aligned sequences with muscle v3.8.1551 [21], trimmed
119 with trimal v1.4.1 [22], and inferred the phylogeny with IQ-TREE v2.0.6 with flag “-B 1000” [23].
120 The phylogeny was visualized with Figtree v1.4.4 and all nodes were collapsed except for the
121 branches containing CHAB-I-5 and PRC member HIMB11 to highlight US3C007’s inclusion within
122 the CHAB-I-5 (**Fig. S1**).
123

124 *Genome sequencing and assembly*

125 We revived US3C007 from cryostocks and grew the culture in multiple 1L batches to gather
126 DNA for genome sequencing. We filtered the cells onto 0.1µm polycarbonate filters (Millipore)
127 and extracted DNA with a phenol chloroform approach
128 (<https://www.protocols.io/view/modified-phenol-chloroform-genomic-dna-extraction-e6nvwkjzwvmk/v2>). DNA was pooled together and sent for Illuminia NextSeq 2000 paired end
129 (2x151bp) sequencing at the Microbial Genome Sequencing Center (MiGS) (Pittsburgh,
130 Pennsylvania, USA). Illumina libraries were prepared with the Illumina DNA Prep kit and 10bp
131 UDI indices. Demultiplexing, quality control and adapter trimming was performed with
132 bcl2fastq (v2.20.0422)
133 (https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html). Illumina reads were trimmed using Trimmomatic (v0.38) to remove poor
134 quality bases [24]. We also performed long-read sequencing in-house using an Oxford
135 Nanopore MinION with a R9.4.1 (FLOMIN106) flow cell (Oxford, UK). For Nanopore sequencing,
136 DNA was sheared with a size selection of 20,000bp or greater using Covaris g-tubes (D-Mark
137 Biosystems, Woburn, USA) and we constructed libraries with the SQK-LSK108 genomic DNA
138 ligation kit (Oxford Nanopore, UK) with modifications
139 (<https://doi.org/10.17504/protocols.io.bixskfne>). Reads were base-called with Guppy v4.4.1
140 [25], and demultiplexed using Porechop v0.2.4 (<https://github.com/rrwick/Porechop>). We
141 assembled the long-read sequence data using Flye v2.9.1 [26] using the “nano-hq” setting and
142 4 rounds of polishing with minimap [27], included in the Flye assembler. We then used short-
143 reads from Illumina to further improve the assembly with Polypolish v0.5.0 [28]. The resulting
144 assembly was visualized for completion with Bandage v0.8.1 [29].

145 Bacterial cultivation and DNA extraction of FZCC0083 were performed following our
146 previous paper [10]. Briefly, a surface water sample was collected from the coast of the East
147 China Sea. The FZCC0083 strain was isolated following the dilution cultivation procedure [11],
148 and genomic DNA was extracted using EZ.N.A. Library preparation and genome sequencing was
149 performed following the standard protocols for Illumina sequencing on BGISEQ500 platform
150 (PE100, Qingdao Huada Gene Biotechnology Co., Ltd) [30] and Nanopore sequencing on a
151 Nanopore MinION sequencer (Oxford Nanopore Technologies Inc.) with a R9.4.1 (FLO-
152 MIN106D) flow cell and the SQK-LSK109 genomic DNA ligation kit (Oxford Nanopore, UK). The
153 Illumina sequencing reads (coverage > 200x) were quality trimmed using Trimmomatic v0.36
154 [24] with options ‘SLIDINGWINDOW:4:15 MAXINFO:40:0.9 MINLEN:40’. The Nanopore
155 sequencing reads (coverage >700x) were base-called with Guppy v5.0.0 [25] via MinKNOW
156 v21.11.8 and corrected using Necat v0.0.1 [31] with 'PREP_OUTPUT_COVERAGE=100
157 CNS_OUTPUT_COVERAGE=50' options then assembled using Flye v2.6 [26] with default
158 parameters. The initial assembly was corrected using polished Nanopore sequencing reads by
159 racon [32] twice with '-m 8 -x -6 -g -8 -w 500' options and the Illumina sequencing reads by
160 Pilon v1.24 [33] three times with default parameters. The assembled contig was closed as
161 validated using Bandage v0.8.1 [29].

162
163
164
165 *Taxon selection and phylogenomics*
166 To expand the taxon selection for the CHAB-I-5 clade, we downloaded Rhodobacterales
167 genomes from the NCBI and IMG databases (October, 2022), as well as large-scale
168 metagenomic analyses including TARA Ocean [34, 35], BioGoShip [36], and OceanDNA [37].

169 First, a total of 259 genomes closely related to CHAB-I-5 (and a sister clade, represented by
170 genomes like AG-337-I11 [38]) were selected based on having ANI values below 80% to other
171 Roseobacters outside of these two groups. To categorically define the CHAB-I-5 cluster separate
172 from the AG-337-I11 outgroup clade, 120 conserved bacterial single-copy genes were extracted
173 and aligned using GTDB-tk v1.7.0 [39], and a phylogenetic tree was then constructed using IQ-
174 TREE v2.2.0 [23] with parameters “-m LG+I+G -B 1000” (Fig. S2). We then dereplicated
175 redundant CHAB-I-5 genomes using dRep v3.2.0 [40] with option ‘-pa 0.99 -ps 0.99’, which sets
176 average nucleotide identity at 99%. Genomes with higher estimated quality, which was defined
177 as completeness minus five times the amount of contamination [41], were selected as
178 representatives for the recruitment analysis. We also excluded one genome,
179 OceanDNA_b28631, because of its occurrence on a long branch in the phylogenomic tree and
180 very low ANI (see below) to the remaining CHAB-I-5 genomes, which made its membership in
181 this cluster questionable (Fig. S3). The resulting set included 52 representative CHAB-I-5
182 genomes, which were used to build the final phylogenomic tree using the same approach
183 described above (Fig. 1). This phylogenomic tree was rooted using mad v2.2 based on minimal
184 ancestor deviation approach [42]. This approach considers each branch as a possible root
185 position, evaluates the ancestor-descendant relationships of all possible ancestral nodes in the
186 tree, and chooses the branch with the minimal relative deviation as the root node [42].
187

188 *Comparative genomics*

189 We compared the pairwise average nucleotide identity (ANI) with fastANI v1.33 [43] and
190 visualized it in R. We used CheckM v1.1.3 [41] to evaluate all genomes and the specific
191 ssu_finder function to identify the bacterial 16S rRNA genes. NCBI BLASTn was used for pairwise
192 16S rRNA gene comparisons. We also analyzed the metabolic potential of the final 52 genomes
193 using Anvio’ v7.1 [44] to generate predicted amino acid sequences from genome sequences
194 and GhostKOALA [45] for annotation of the amino acid sequences with the KEGG orthology
195 database [46]. The resulting annotations and the original amino acid sequences were used with
196 KEGG-Decoder and KEGG-Expander v.1.3 [47] to catalog the metabolic pathways present (Fig.
197 3). These metabolic annotations were further validated by searching against reference
198 Roseobacter genomes (including *Ruegeria pomeroyi* DSS-3, *Dinoroseobacter shibae* DFL12, and
199 *Planktomarina temperata* RCA23) using Orthofinder v2.2.1 [48]. These KEGG comparisons for
200 all genomes are included in Table S1.

201 *Metagenomic read recruitment*

202 Using 1,425 metagenomic samples from Yaquina bay [49], Sapelo Island [50], San Pedro
203 Channel [51, 52], Baltic Sea [53, 54], Chesapeake Bay [55, 56], Columbia River [57], Black Sea
205 [58], Gulf of Mexico [59], Pearl River [60], San Francisco Bay [61], and the North Pacific
206 Subtropical Gyre [62] along with globally distributed metagenomic datasets [63–67], we
207 recruited reads to the CHAB-I-5 genomes using competitive read recruitment via RRAP (91) as
208 previously reported (20). Briefly, RRAP uses the latest versions of Bowtie2 [68] and SAMtools
209 [69] to perform a competitive read recruitment from metagenomic samples to genomes, sort
210 and index mapped reads, and normalize the data into RPKM values (Reads Per Kilobase (of
211 genome) per Million (of recruited read base pairs)). We then analyzed the output in R. The
212 OceanDNA_b28631 was included in the recruitment with the other 52 genomes, but excluded

213 from visualization since we excluded it from our comparative genomics. The RPKM values for all
214 the genomes are in **Table S1**.

215

216 *Microscopy*

217 We initiated sample preparation by growing the US3C007 culture to a density of up to 10^6
218 cells/ml, ensuring they were in the exponential growth phase. Subsequently, we fixed the cells
219 in 2.5% (final concentration) glutaraldehyde. To harvest the fixed cells, we passed 10 mL of the
220 bacterial suspension through a 0.2 μ m Isopore polycarbonate filter (MilliporeSigma) coated
221 with poly-L-lysine, facilitating cell adhesion to the filter membrane. Poly-L-lysine coating was
222 achieved by immersing the membrane filter in a solution of Sigma P92155 at a concentration of
223 0.1 mg/mL. For cell membrane staining, we utilized a solution comprising 0.1 M HEPES buffered
224 0.05% Ruthenium Red (RuRed) with 10% sucrose. 10 mL of the RuRed solution was slowly
225 passed through the filter, allowing for a 10-minute incubation period to ensure thorough
226 staining. Then we performed a staining-fixing step using a solution containing 0.1 M HEPES
227 buffered 0.05% RuRed, 0.8% Osmium tetroxide, and 10% sucrose. Similar to the previous step,
228 10 mL of the solution was slowly passed through the filter, with cells incubated for a minimum
229 of 25 minutes. Following the staining-fixing process, we washed the membrane filter
230 sequentially with two solutions: 10 mL of 0.1 M HEPES with 10% sucrose, followed by 10 mL of
231 deionized water. Each washing step was carried out over a 10-minute duration. Subsequently,
232 the samples underwent sequential dehydration in 50%, 70%, 95%, and 100% ethanol. The filter
233 membrane was transferred to corresponding ethanol solutions in small containers and
234 subjected to microwave treatment for one minute in a laboratory microwave oven, maintaining
235 a temperature below 40°C. Finally, the samples were preserved in 100% ethanol on the filter
236 and stored at room temperature for further analysis. The filters were sputtercoated for 45s
237 with a Cressington 108 and imaged with the JSM-7001F-LV scanning electron microscope at the
238 University of Southern California Core Center of Excellence in Nanolmaging
239 (<https://cni.usc.edu>). Resulting images were analyzed as described previously [70].

240 *Cell size analyses*

241 Here we used a method adapted from previous studies [70]. Briefly, we segmented the cell
242 image into two half spheres and a curved cylinder, mimicking a capsule geometry. The cell
243 volume was then calculated as the sum of the volumes of the curved cylinder and the two half-
244 spheres. While an ideal capsule assumes uniform radii for the half-spheres and the curved
245 cylinder, variations in radii across different cell sections were addressed by measuring radii at
246 multiple points and calculating geometric parameters (surface areas, volumes, lengths) based
247 on each radius. Mean and median values of these parameters were used for visualization in our
248 final violin plots (**Fig. 5A**).

249

250 We use Concepts for iPad v6.13 to measure to scale the image and to manually segment the
251 cell area, measured in pixel squared (S). Additionally, the ruler feature in the application was
252 employed to measure the radii of the cell by drawing circles covering widths at various sections,
253 with each circle's radius recorded as 'r'. Mathematical equations for calculating surface areas
254 (SA), volumes (V), lengths (l), and height (h) based on S and r are detailed in **Fig. S9**. Our analysis

255 encompassed the geometries of 24 cells, as depicted in **Figs. S9** and **S10**, where we also
256 showcase the segmentations and circles drawn for measurements.

257

258 *Growth experiments*

259 The carbon substrate experiment for US3C007 was completed first using modified versions of
260 the isolation medium, AMS1 (**Table S1**), to adjust the carbon concentrations while keeping all
261 other components of the isolation medium the same. We tested the following concentrations
262 of carbon serving as the presumptive electron donor and carbon source: 0, 9.37, 18.8, 37.5, 75,
263 150, 300, and 600 μ M, as a 1:5:5 molar ratio mixture of methionine, glycine, and pyruvate
264 (**Table S1**). For better cell yields, we then further modified the media compositions in AMS1 and
265 created a new recipe, CCM (**Table S1**). In brief, the CCM media has no sulfate, completely relies
266 on methionine for reduced sulfur, and has a 20X concentrated vitamin mix compared to AMS1.
267 In addition, we substituted asparagine instead of glycine (which was added to aid in culturing
268 SAR11 [17]) based on the genomic prediction of asparagine auxotrophy. We calculated the
269 salinity of our media based on the chlorinity (salinity (ppt) = 1.80655 x Cl (ppt) [71]) of the “base
270 salts”. Although a small amount of chloride also comes from our nutrients (e.g. ammonium
271 chloride as the nitrogen source, manganese chloride and nickel chloride in the trace metals),
272 the concentrations were negligible and we therefore did not incorporate those into the
273 calculation of chlorinity. To test the salinity range of US3C0007, we made two batches of CCM
274 at 0 and 50 ppt salinity and mixed them in different proportions (**Table S1**) to obtain the
275 following salinities (ppt): 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 49. The salinity experiment was
276 conducted at 18.5°C (room temperature at that time). The temperature experiment was
277 conducted using the CCM 30 ppt salinity medium at the following temperatures (°C): 4, 12, 16,
278 18.5, 21, 25, 28.5, 30, and 35.

279

280 Our methods of cell enumeration also evolved. For the carbon experiments, we counted cells
281 with flow cytometry after staining with 1x Sybr green (Lonza 50513) for 30 minutes in the dark.
282 The carbon experiments were enumerated on the Guava Easy Cyte 5HT flow cytometer
283 (Millipore, Massachusetts, USA) as described above, except for the third transfer (fourth growth
284 cycle) of the carbon concentration experiment, which was enumerated with an Accuri C6 Plus
285 (Becton Dickinson, New Jersey, USA). The cell signals on the flow cytometry were gated based
286 on the scatter plot of forward scatter vs. green fluorescence area. For the salinity and
287 temperature experiments, we stained the cells using a final concentration of 10X Sybr green in
288 addition to 10X Tris-EDTA (Sigma-Aldrich T9285) and 0.25% glutaraldehyde (Sigma-Aldrich
289 354400). Tris-EDTA maintains the nucleotide staining reaction at pH 8. Glutaraldehyde helps fix
290 the cells and permeabilize the membrane. Together with the more concentrated Sybr green,
291 the additional pH buffer and fixative help improve the staining performance. For enumeration,
292 we counted 30 μ L–100 μ L of sample/staining cocktail mixture using a medium flow rate
293 (35 μ L/min, 15 μ m core size), threshold (triggering channel) of green fluorescence (533/30 nm)
294 intensity at 1000. The cell signals were gated based on the green (533/30 nm) vs. yellow
295 (585/40 nm) fluorescence intensity scatter plot. Based on the emission spectrum of Sybr green-
296 stained DNA, we gated the signals with a ratio around 10:3 for green vs. yellow fluorescence
297 intensities. We excluded autofluorescence signals from debris or media components, which

298 usually have significantly higher yellow or red fluorescence compared to Sybr green-stained
299 cells.

300
301 Culturing experiments for FZCC0083 were completed with an AMS1-based medium
302 supplemented with a modified mixed carbon source [72], (1× concentrations of carbon
303 mixtures were composed of 0.001% [wt/vol] D-glucose, D-ribose, methionine, pyruvic acid,
304 glycine, taurine, N-acetyl D-glucosamine, and 0.002% [vol/vol] ethanol). This medium was used
305 at the following temperatures (°C): 4, 12, 16, 20, 24, 26, 30, 37. For the salinity experiment, we
306 also used modified versions of the AMS1. We kept the concentration of all added nutrient
307 stocks constant and changed salinity by diluting or increasing the salt stocks while keeping the
308 ratio of components constant. The exception to this was for sodium bicarbonate, which we kept
309 constant to maintain buffering capacity. We tested the following salinities (ppt): 1, 2.3, 4.5, 9,
310 18, 22.6, 25.8, 30.1, 36, 43 at 24°C in the dark. Cells were enumerated on a Guava EasyCyte 5HT
311 flow cytometer as described above.

312
313 *Growth curve analysis*
314 Growth rates were calculated using a method adapted from our previously published sparse-
315 growth-curve [73]. First we applied a sliding window for every three time points and generated
316 a linear regression of the time vs. log2 transformed cell densities using SciPy package (1.13.0).
317 The slope of the linear regression gives us the instantaneous doubling rate. To fully capture the
318 uncertainties and variation of the statistics, we assigned each of the estimated slopes, plus and
319 minus the standard deviation, to the start, middle, and end of the sliding window. This gave us
320 nine candidate instantaneous doubling rates from any three time point cell densities. Since the
321 end of a sliding window would become the middle of the next sliding window, and the start of
322 the next, etc., each unique time point contributes to multiple estimated growth rates. We took
323 the median estimated growth rate for each unique time point. We used an automated method
324 to identify the instantaneous growth rates belonging to exponential phase. We attempted to fit
325 a sigmoid decay curve to the time vs. instantaneous doubling rate data with the expectation
326 that the exponential phase would correspond to the period before the inflection point. If the
327 curve fit failed, we took the top three instantaneous doubling rates with maximum absolute
328 values. To demonstrate this growth rate calculation method, we have added an example
329 iPython notebook at GitHub (https://github.com/thrash-lab/insta_growth).

330
331 *Spectrophotometry*
332 We attempted to measure bacteriochlorophyll in strain US3C007 via spectrophotometry of *in*
333 *vivo* (whole cells) and pigment extracts. We performed direct *in vivo* measurements of culture
334 volumes ranging from 50mL to 1L and cell densities from mid 10⁵ to mid 10⁶ cells/mL. Some
335 runs involved filtering the cells onto sterile 0.1 µm polyethersulfone (PES) Supor filters (PALL
336 Corporation, Port Washington, NY, USA) or centrifugation of cells at 9,000 rpm for 30 minutes.
337 We used sterile CCM2 media for blanks and references. We also performed a washed cell-
338 suspension using 950mL of US3C007 culture filtered onto a sterile 0.1 µm PES Supor filter with a
339 100mL wash of carbonless artificial seawater media (YBC) [74] and resuspension in 2mL of 1x
340 PBS. In this case, 1x PBS was used as the reference and blank. For both *in vivo* approaches, cells
341 were placed in a quartz cuvette (Hellma GmbH & Co. KG, Müllheim, DEU) and analyzed on a

342 SpectraMax M2 plate reader (Molecular Devices, San Jose, CA, USA). The settings used were
343 "Absorbance ", 350 - 900nm and 700 - 840nm, to obtain a full and detailed spectra profile. We
344 performed extract measurements by first filtering 500mL of US3C007 culture (5×10^5 cells mL $^{-1}$;
345 sterile 0.1 μ m PES Supor). Following previous methodology [75], the PES filter with the cells was
346 extracted in 2 mL of 100% EtOH using the following minor modifications: PES filters were
347 incubated for ~24 hours in sealed borosilicate glass tubes (VWR International LLC, Radnor, PA,
348 USA). Following extraction, the 2mL solution was then centrifuged at 5,000 rpm for 5 minutes
349 and 700 μ L of supernatant was placed in a quartz cuvette for analysis with the plate reader as
350 described above. 100% EtOH was used as the blank and reference. All samples were kept in the
351 dark or wrapped in foil to prevent BChla degradation.

352 **Results**

353 *Isolation, Identification, and Genome Sequencing*

354 US3C007 originated from a cultivation experiment inoculated with surface water collected from
355 the San Pedro Ocean Time series (SPOT) monthly cruise on 16 September 2020. Its top 16S
356 rRNA gene BLAST hit was 100% identity to Roseobacter sp. SB2, accession KX467571.1 [7]. The
357 16S rRNA gene phylogeny at the time of isolation indicated US3C007 was the nearest
358 phylogenetic neighbor to SB2 and the original clone library sequence of CHAB-I-5 [20] (**Fig. S1**).
359 Strain FZCC0083 was isolated from the coastal waters of the East China Sea as previously
360 described [10]. Hybrid long and short read genome sequencing resulted in single circularized
361 contigs for both strains. Statistics for both genomes are reported in **Table 1** in comparison to
362 the previously isolated strain SB2 [7]. All three strains have very similar sizes, GC content, and
363 coding densities.

364

365 **Table 1.** CheckM genome statistics for the current and previously isolated strains

Genome	Length (bp)	Scaffolds (circular)	N50 (bp)	GC %	Coding genes	Coding density	# rRNA gene operons	Reference
US3C007	3,622,411	1 (y)		50.7	3,513	0.88	2	This study
FZCC0083	3,646,439	1 (y)		50.5	3,564	0.88	2	This study
SB2	3,636,317	38 (n)	323,631	50.5	3,527	0.89	1	[7]

366

367 Phylogenomic analysis of 52 CHAB-I-5 genomes resulted in two subgroups, with US3C007 and
368 SB2 on one branch and FZCC0083 on the other (**Fig. 1A**). We refer to these two branches as
369 Subcluster 1 and Subcluster 2, respectively. Subcluster 1 had a minimum within-cluster average
370 nucleotide identity (ANI) of 95.2%, whereas Subcluster 2 had a minimum within-cluster ANI of
371 94.5%. Between-cluster ANI percentages decreased below the species boundary, with a
372 minimum of 90.6%, matching the phylogenomic branching pattern (**Fig. 1**). US3C007 and
373 FZCC0083 both had two copies of the 16S rRNA gene. The two from US3C007 had 100% identity
374 with SB2 (accession KX467571.1) and the two from FZCC0083 had 99.91% identity with SB2.
375 The SB2 genome had only one copy of the rRNA gene operon located on a short contig,

376 suggesting the other copy might not have assembled successfully. Comparisons of bulk genome
377 characteristics across all 52 genomes showed a strong conservation of GC content (51.3 ± 0.4
378 %) and predicted coding density (89.3 ± 0.9 %) within CHAB-I-5 (**Table S1**).
379

380 *Biogeography*

381 We mapped metagenomic reads to the CHAB-I-5 genomes from over fourteen hundred
382 samples spanning a wide biogeography, including large ranges of salinity and temperature, to
383 quantify CHAB-I-5 distribution. CHAB-I-5 was cosmopolitan, recruiting reads from around the
384 globe. US3C007 was one of the top three most abundant representative genomes, including
385 FZCC0083 and the ERR559527_bin_47_MetaBAT_v2_12_1_MAG as the first and second most
386 abundant, with AA076_I17 and SB2 rounding out the top five (**Fig. 2A**). We observed
387 recruitment across all latitudes and saw no specific relationship between genomes and latitude
388 separate from that conferred by the locational bias of the samples themselves (**Figs. S4, S7**).
389 Comparison of read recruitment with salinity demonstrated that all members of CHAB-I-5
390 prefer marine habitats, though some genomes do recruit limited numbers of reads from
391 samples with a salinity as low as 8 (**Figs. S5, S7**). We also observed a tendency for genomes to
392 recruit more reads from samples between temperatures of 11-20°C, even though most samples
393 were from warmer locations (**Figs. S6, S7**). When abundance was summed by phylogenetic
394 subcluster, the median recruited reads were smaller for Subcluster 1 than that of Subcluster 2
395 (**Fig. 2B**). However, Subcluster 1, containing isolates US3C007 and SB2, had a higher
396 recruitment than Subcluster 2, the FZCC0083 type, at sites such as the Western United States
397 coast, the Western South African coast, the North Sea, and the English Channel (**Fig. 2B**).
398 Cluster 2 had higher recruitment at locations such as the Mediterranean, Pearl River, and much
399 of the North Atlantic Gyre.
400

401 *Genomic content*

402 We compared CHAB-I-5 genomes to determine the conservation of metabolic potential and
403 whether the two subclusters could be distinguished genomically (**Fig. 3, Table S1**).
404 Corroborating previous reports [7, 12], these organisms were predicted to be capable of
405 aerobic chemoorganoheterotrophic metabolism with the potential for anoxygenic phototrophy.
406 All of the 52 non-redundant genomes had the potential for glycolysis via the Entner-Doudoroff
407 pathway and the TCA cycle. All genomes contained nearly or fully complete electron transport
408 pathways consisting of NADH-quinone oxidoreductases, F-type ATPases, cytochrome c
409 oxidases, and ubiquinol-cytochrome c reductases. One genome, CPC58, contained a predicted
410 *cbb₃*-type cytochrome c oxidase. Most genomes had genes for polyhydroxyalkanoate (PHA)
411 synthesis, a partial formaldehyde assimilation pathway, and a di/tri methylamine
412 dehydrogenase. Most genomes had the potential to convert ethanol to acetate and
413 acetaldehyde, and genes for anaplerotic C-fixation. Most genomes also contained a complete
414 anoxygenic type-II reaction center. We found predicted genes for synthesis of
415 bacteriochlorophyll a and/or b (*bchXYZ*, *bchC*, *bchF*, *chlG*, *chlP*- situated near the *puf* gene
416 operon in US3C007) conserved across the CHAB-I-5 group, but found no annotated homologs
417 for synthesis of bacteriochlorophyll d, c, or e. Full or partial pathways for flagella were also
418 conserved.

419 Genes for metabolism of nitrogen, sulfur, phosphorous, trace metals, and vitamins were
420 largely similar between subclusters. We found transporters for urea, ammonium, and
421 phosphate were conserved, and most genomes contained a phosphonate transporter (**Fig. 3**).
422 All 52 non-redundant genomes had the *napA* nitrate reductase, and CPC58 was the sole
423 genome to encode a *nirK* nitrite reductase. All genomes except for CPC58 contained nearly or
424 full pathways for thiosulfate oxidation via the *sox* gene cluster, and a gene encoding a sulfite
425 dehydrogenase quinone was conserved. All non-redundant genomes in Subcluster 1 and most
426 in Subcluster 2 had genes for sulfide oxidation. Most genomes had a DMSP lyase, all had genes
427 for DMSP demethylation and most genomes also encoded a DMSP synthase. Predicted urease
428 genes were prevalent throughout both Subclusters. Several genomes also encoded the C-P
429 lyase complex, operon, and cleavage potential, although the latter was more common in
430 Subcluster 2, and the US3C007 genome did not encode for the C-P lyase. Most genomes had a
431 predicted Mg-Co transporter, Mg-Zn transport potential, and some genomes in Subcluster 1,
432 including US3C007, had a *copA* copper transporter. Most genomes had ferric iron, Mn-Zn-Fe,
433 zinc, and tungstate transporters. Most genomes in Subcluster 1 contained partial or nearly
434 complete pathways for molybdate transport whereas only one genome in Subcluster 2
435 contained at least a half pathway. No genome contained the full pathway for thiamin
436 biosynthesis, though a partial pathway was common. Most genomes contained either a full or
437 partial pathway for riboflavin and cobalamin biosynthesis and thiamin transport.

438 Amino acid metabolism was also very similar between subclusters. Prototrophy for
439 lysine, serine, threonine, glutamine, histidine, arginine, cysteine, glycine, valine, methionine,
440 isoleucine, tryptophan, aspartate, and glutamate was largely conserved, whereas asparagine
441 auxotrophy was widespread (**Fig. 3**). Glycine betaine synthesis, glycine betaine/proline
442 transport, and ectoine/hydroxyectoine transport were also conserved. Most genomes in
443 Subcluster 1 could transport taurine, with no genomes from Subcluster 2 containing this
444 pathway, including the complete genome of FZCC0083.

445 Thus, the genome content across both subclusters was remarkably similar. The notable
446 differences between the subclusters were the presence of the taurine and copper transporters
447 as well as *pcaGH* dioxygenase genes exclusively within Subcluster 1, a greater prevalence of C-P
448 lyase genes and low affinity phosphate transporter in Subcluster 2. Therefore, the Subclusters
449 within CHAB-I-5 may exhibit some niche differentiation based on dissolved organic nitrogen and
450 phosphorus utilization.

451

452 *Physiology and morphology*

453 US3C007 grew consistently between 16 - 25°C, but not at temperatures of 12°C or below, or at
454 28.5°C or above (**Fig. 4A**). Additionally, US3C007 grew at salinities of 15-49 ppt, but not at 10
455 ppt or below (**Fig. 4B**). The maximum observed growth rate was 1.55 ± 0.05 divisions day⁻¹ at
456 18.5°C and 30 ppt (**Fig. 4B; Table S1**). We tested US3C007's growth across a range of carbon
457 concentrations to determine the carbon concentration to which it was best adapted. The
458 primary carbon sources in the carbon mix were methionine, glycine, and pyruvate at a 1:5:5
459 molar ratio. We tested eight concentrations up to 600 µM carbon, with 300 µM carbon being
460 the concentration in AMS1 medium (resulting from 10 µM methionine, 50 µM glycine, and 50
461 µM pyruvate) (**Table S1**). We observed no net change in growth rate with increasing carbon
462 concentration, but an increase in yield (**Fig. 4C,D**). The consistent growth rate at low carbon

463 concentrations indicates that this strain is particularly well adapted to low carbon
464 environments. However, even after three transfers (four total growth cycles from lag to late log
465 or stationary phase), we observed continued growth in the negative control, (Fig. 4C), albeit to
466 lower cell densities than those cultures receiving carbon additions (Fig. 4D). We hypothesize
467 this growth resulted from the strain having genes for PHA storage (Fig. 3), but this remains to
468 be tested. We attempted to measure bacteriochlorophyll in whole cells, but were unable to
469 determine a definitive spectrophotometric peak. This could have been the result of inadequate
470 biomass or growth conditions that did not lend themselves to bacteriochlorophyll production.

471 FZCC0083 grew considerably faster than US3C007 in all conditions tested (Fig. 4A,B;
472 Table S1). The maximum observed growth rate was $3.41 +/ - 0.44$ divisions day $^{-1}$ at 24°C and
473 30.1 ppt (Fig. 4B)- more than twice the division rate of US3C007. FZCC0083 had a wider
474 temperature growth envelope than US3C007, growing between 12 - 30°C with no growth at 4°C
475 or 37°C. Its salinity tolerance was similar to that of US3C007, growing between 18-43 ppt, but
476 not at 9 ppt or below. Thus, these two strains have notable differences in physiology which
477 reflects their phylogenetic separation (Fig. 1).

478 US3C007 cells were small, having average cell lengths $\sim 1.65\mu\text{m}$ and radii $\sim 0.23\mu\text{m}$,
479 yielding cell volumes $\sim 0.44\mu\text{m}^3$ (Fig. 5A). We observed multiple morphologies within a single
480 clonal culture (Fig. 5B-E, Figs. S9, S10). Single cells were usually bacillus-shaped, with some
481 displaying more curved rod morphology or bulbous coccobacillus shapes (Fig. 5B-E, Figs. S9-10).

482 Discussion

483 This study is the most comprehensive analysis of the CHAB-I-5 subcluster within the larger
484 “Roseobacter” group of *Rhodobacterales* to date. We have expanded the genomic and
485 ecological characterization from four to 52 unique CHAB-I-5 genomes, including the first two
486 circularized CHAB-I-5 genomes, and two new, publicly available CHAB-I-5 isolates, strains
487 US3C007 and FZCC0083. Both strains are reliably propagated in artificial seawater media that
488 are easily modified and we provided the first physiological and morphological characterization
489 for members of the CHAB-I-5 group. Our expanded analysis also took advantage of recently
490 generated, publicly available CHAB-I-5 genomes to understand intra-clade genomic diversity
491 using phylogenomics and ANI. A prior study established two subclusters within CHAB-I-5 using
492 environmental 16S rRNA gene sequence phylogeny [7], and we see the same division in our
493 analysis. Both phylogenomics and average nucleotide identity support at least two subgroups
494 within CHAB-I-5, denoted Subcluster 1 and Subcluster 2, that represent two species within a
495 genus based on within- and between-subcluster ANI (Fig. 1). Isolate US3C007 belongs to
496 Subcluster 1 and isolate FZCC0083 belongs to Subcluster 2.

497 Metabolic potential within CHAB-I-5 was highly conserved (Fig. 3). Nevertheless, we
498 observed a few differences between Subclusters that may point to specific metabolic
499 adaptations. The taurine ABC transporter *tauABC* was present in Subcluster 1 and not
500 Subcluster 2 is (Fig. 3). Taurine is an important, multifunctional compound that serves as an
501 osmoregulation tool and as a source for carbon, nitrogen, and sulfur for marine bacteria [76].
502 This differential ability to transport taurine may confer a growth advantage for Subcluster 1, but
503 future research is needed to confirm how taurine is used, as all genomes encoded pathways for
504 taurine catabolism. Another notable difference in metabolic content between the CHAB-I-5

505 subclusters was that of the C-P lyase genes. C-P lyases cleave carbon-phosphorous bonds and
506 are used as a phosphate scavenging strategy that produces methane aerobically [77, 78].
507 Although all strains had typical *pstABCS* phosphate transporters, Subcluster 2 was enriched in C-
508 P lyase genes, while only a few Subcluster 1 genomes had the pathway (**Fig. 3**). These results
509 suggest Subcluster 2 interacts more consistently with the dissolved organic phosphorous pool
510 and may contribute to methane production in global oceans. A subset of genomes in Subcluster
511 1 also contained the *copA* copper transporter exclusively, including US3C007, but distribution
512 was spotty, suggesting a lack of conservation for the use of copper and/or that we didn't
513 observe the gene due to incomplete genomes.

514 We also extended the analysis of CHAB-I-5 distribution through read recruitment from
515 over fourteen hundred metagenomic samples, including those in brackish and freshwater
516 environments. Our results expand the known ecological distribution of CHAB-I-5 members,
517 showing their presence in sample sites such as the North Atlantic gyre, South Pacific, Gulf of
518 Mexico, Red Sea, and polar locations that were unavailable or had fewer sites surveyed in
519 previous reports of CHAB-I-5 biogeography (**Fig. 2**) [7, 12]. Our work confirms and extends the
520 view of CHAB-I-5 as a cosmopolitan member of the global oceans, and although the Subclusters
521 were generally found in all the same locations, there were some samples where one Subcluster
522 dominated (**Fig. 2B**). Subcluster 2 recruited more overall reads than Subcluster 1 (**Fig. 2B**), and
523 the FZCC0083 and US3C007 genomes recruited the first and third most reads across all the
524 samples (**Fig. 2A**). This suggests that these genomes are highly representative of CHAB-I-5
525 across the global oceans and make the strains excellent candidates for further study of the
526 clade.

527 CHAB-I-5 can be abundant and active in polar latitudes [7, 12], however, our data did
528 not show strong evidence of latitudinal preferences by genome (**Fig. S4**). Our initial
529 physiological findings demonstrated restricted temperature range for both strains, representing
530 each subcluster. US3C007 grew between 16-28.5°C and FZCC0083 grew between 12-30°C.
531 These ranges are narrower than the observed range in metagenomic data for each genome,
532 which both had substantial read recruitment in samples where the water temperatures were
533 below 10°C (**Fig. S7**). This suggests the presence of (still uncultured) strains closely-related to
534 US3C007 and FZCC0083 with greater psychrotolerance. In fact, many of the other SAG/MAG
535 CHAB-I-5 genomes showed maximum read recruitment in samples below 15°C (**Fig. S6**), so it is
536 likely that multiple strains of CHAB-I-5 are better cold-adapted than the two isolates.

537 On the other hand, the discrepancy between the lab and field measurements for
538 US3C007 and FZCC0083 could describe the difference between realized and fundamental
539 niches. Although the ideal fundamental niche space is sometimes envisioned as more extensive
540 than the realized niche [79, 80], the reverse can also be true. For example, multiple ecotypes of
541 *Prochlorococcus* had narrower temperature growth ranges in the laboratory than the ranges
542 observed in nature via molecular data [81]. This is similar to the pattern we observed in both
543 US3C007 and FZCC0083, where the realized niche appears larger than the fundamental niche
544 with regards to temperature (**Figs. 4, S4**). For *Prochlorococcus*, the authors considered that a
545 cultivation bias, stemming from continual maintenance of cultures in a restricted temperature
546 range, could have led strains to evolve a different temperature optimum than the original
547 population [81]. Similarly, continual culturing could also lead strains to evolve a more narrow
548 temperature tolerance than would have been maintained by strains in the fluctuating natural

549 environment. This would result in a contraction of the measured fundamental niche relative to
550 the realized niche. However, another plausible explanation was that dispersal of
551 *Prochlorococcus* resulted in cells being distributed to many locations outside their optimal
552 temperature range [81]. Since our culture experiments are regularly restarted from
553 cryopreserved samples, it was unlikely that our strains had evolved a more restricted
554 temperature range since their isolation. Therefore, we consider our observations of a wider
555 realized niche than fundamental niche to be consistent with the dispersal hypothesis as well.

556 Where salinity was concerned, our experiments suggested that CHAB-I-5 is an
557 exclusively marine organism (**Fig. 4B**). Our read recruitment agreed - no genomes showed
558 strong preferences for brackish or freshwater habitats (**Figs. S5, S7**). This contrasts with other
559 abundant free-living microorganisms like SAR11 and Aegean-169 which both have subclades
560 adapted to lower salinities [70, 82]. Other Roseobacter relatives have been isolated from
561 brackish salinities as well [18, 19, 83, 84], and CHAB-I-5 members have been observed in
562 equivalent abundances along the salinity gradient of the Chesapeake Bay [14]. While we found
563 no clear evidence of fresh or brackish water specialists within CHAB-I-5, multiple genomes did
564 recruit low numbers of reads from brackish waters with salinities as low as 8 (**Fig. S5**). Future
565 work measuring activity of CHAB-I-5 across salinities could provide insight to whether the cells
566 might be active in these lower salinity environments.

567 The US3C007 and FZCC0083 cultures have provided the first growth and morphological
568 data for CHAB-I-5. These cultures span a wide range of growth rates, with the maximum for
569 FZCC0083 being over twice as fast as that of US3C007 (3.41 +/- 0.44 vs. 1.55 +/- 0.05 divisions
570 day⁻¹). These phenotypic differences likely reflect that these are different species, isolated from
571 different oceanic regimes. Strain US3C007 was isolated from surface water collected at SPOT, a
572 unique temperate semi-coastal location between Catalina Island and the coast of California
573 overlying the San Pedro Basin at nearly 900m depth. Water circulation patterns in the Southern
574 California Bight are complex [85, 86], but SPOT is inshore of the California Current system and
575 average fall surface temperatures (warmest of the year) in the nearby Santa Monica Basin can
576 reach 20.5°C [87]. Conversely, strain FZCC0083 was isolated from coastal waters off Pingtan
577 Island, in the shallow Taiwan Strait very near the delineation of the East and South China Seas
578 [10]. This location is in shallow water (< 30m) and over 8 degrees of latitude south of SPOT
579 (~900 km). Regional currents in this area branch from the Kuroshio Current system and fall
580 average surface temperatures can reach 26°C [88]. Minimum temperatures in both areas are
581 near 14°C. The optimization of FZCC0083 for growth at higher temperatures than US3C007, as
582 well as the ability of FZCC0083 to grow at higher maximum temperatures (**Fig. 4A**), likely
583 reflects the higher average temperatures in the Taiwan Strait compared to the Southern
584 California Bight. Overall relative abundances of Subcluster 1 (US3C007-type) and Subcluster 2
585 (FZCC0083-type) with temperature were subtle, but showed general trends that match the
586 isolate physiology: both trended downward with temperature, but Subcluster 1 had a slightly
587 more negative correlation (**Fig. S11**). Thus, the growth physiology may signify larger habitat
588 preferences for the Subclusters.

589 The considerable differences in growth rate between the two strains suggests more
590 complex evolutionary diversification acting on multiple aspects of cell physiology. Nevertheless,
591 the growth rates of these two strains span that of others in the larger PRC. Division rates for the
592 model Roseobacter group organism, *Ruegeria pomeroyi* DSS-3^T, which is not a PRC member,

593 have been reported at up to 2.5 hour⁻¹ [89]. The PRC includes many organisms with distinct
594 genomic and lifestyle differences from better-studied copiotrophic Roseobacter group
595 members like *R. pomeroyi* [7, 9, 90] and there are a few examples of cultured representatives
596 from the PRC. Isolates from the DC5-80-3 (also called RCA) and CHUG groups that accompany
597 CHAB-I-5 in the PRC have yielded some important growth insights [9, 91–93]. Strain LE17 had
598 division rates of roughly 1 day⁻¹ [92], and strain HKCCA1288 had division rates closer to 2 day⁻¹
599 [9], although optimized medium has reduced this to just under 5 hours [89]. The type strain for
600 the DC5-80-3 cluster, *Planktomarina temperata* RCA23^T, as well as another close relative of
601 US3C007, strain HIMB11, grew preferentially at mesophilic temperatures like US3C007,
602 although rates were not reported [91, 94]. Given the close relationship between them, the
603 variation in growth rates between US3C007 and FZCC0083 provide an excellent opportunity to
604 investigate fundamental limits on growth rate. More strains from different locales will be
605 important for exploring phenotypic heterogeneity within the group.

606 Our microscopic observation of strain US3C007 revealed significant pleomorphism in the
607 culture (**Fig. 5B-E**). Pleomorphism and irregular morphology has been recorded in other
608 Roseobacter group members, including HIMB11 [94]. Both HIMB11 and US3C007 have cells that
609 are coccobacillus as well irregular rods [94] (**Fig. 5B-E**). The weighted average cell volume of
610 1,276 heterotrophic cells across 23 coastal ocean samples was $0.11 \pm 0.17 \mu\text{m}^3$ [95], whereas
611 average US3C007 volume was $0.44 \pm 0.06 \mu\text{m}^3$ across a variety of morphologies (**Fig. 5A**). Thus,
612 US3C007's average cell volume is greater than the average heterotrophic bacterium, stemming
613 in part from a relatively large radius for the cell length, compared to cells like that of SAR11 [70,
614 96, 97]. Future work to determine the extent of morphological variation and its drivers in
615 natural populations of CHAB-I-5 will be important to understand the biology of these organisms
616 more generally and for modeling the impact of carbon cycling by CHAB-I-5.

617 Overall, this work provides the most comprehensive genomic and ecological
618 characterization of CHAB-I-5 and defines the first physiological data of the group. These recent
619 advances in the availability of public CHAB-I-5 genomes and a new isolate that is representative
620 of the CHAB-I-5 in global waters is a crucial component needed to characterize this abundant
621 and highly active fraction of the microbial community. Future work is needed on US3C007 and
622 the CHAB-I-5 cluster that could include comparative physiology between FZCC0083 and
623 US3C007 to highlight whether a growth advantage might be conferred in the environment
624 based on phosphorous, copper, or taurine availability and to quantify global estimates of CHAB-
625 I-5's contribution to biogeochemical cycling in the oceans.

626

627 **Description of *Thalassovivens*, gen. nov.**

628 *Thalassovivens* (Tha.las.so.vi'vens. Gr. fem. n. *thalassa*, the sea; L. pres. part. *vivens*, living, N.L.
629 fem. n. *Thalassovivens*, an organism living in the sea, in reference to the marine habitat of these
630 organisms)

631 Aerobic, with chemoorganoheterotrophic, chemolithotrophic, and anoxygenic
632 phototrophic metabolisms. Encodes genes for glycolysis through the Entner-Doudoroff pathway
633 and the TCA cycle. Genome sizes of ~3.6 Mbp, with GC content ~51% and a coding density
634 ~89%. Prototrophy predicted for lysine, serine, threonine, glutamine, histidine, arginine,
635 cysteine, glycine, valine, methionine, isoleucine, tryptophan, aspartate, and glutamate, with
636 asparagine auxotrophy. Glycine betaine synthesis, glycine betaine/proline transport, and

637 ecotine/hydroxyectoine transport genomically conserved. Genes for the PII nitrogen regulatory
638 system, *ntrXY*, *amtB*, and urease conserved. Most genomes also encode genes for aerobic
639 vitamin B₁₂ synthesis. Genes for synthesis of bacteriochlorophyll a and/or b conserved. Motility
640 via flagella is predicted.

641

642 **Description of *Thalassovivens spotae*, sp. nov.**

643 *Thalassovivens spotae* (spo'tae. N.L. gen. n. spotae, in reference to the San Pedro Ocean Time
644 series (SPOT), from which the strain was isolated).

645 In addition to the characteristics of the genus, it has the following features. Cells are
646 coccobacillus shaped, pleomorphic, with average dimensions of 0.23 µm radius, 1.65 µm length,
647 and 0.44 µm³ volume. Halotolerant, growing in salinities of 15-49 ppt, but not at 10 ppt or
648 below. Mesophilic, growing between 16 -25°C, but not at temperatures of 12°C or below, or at
649 28.5°C or above. Has a maximum growth rate of 1.55 +/- 0.05 divisions day⁻¹ at 20°C and salinity
650 of 30 ppt.

651 The type strain, US3C007^T, was isolated from surface water (2m) collected at the San
652 Pedro Ocean Time series (33°33' N, 118°24' W). The genome sequence is circularized at
653 3,622,411 bp with 50.7% GC content. The genome is available on NCBI at BioProject number
654 PRJNA1044073.

655

656 ***Note to editors/reviewers: we sent strain US3C007 to both the DSMZ and ATCC culture***
657 ***collections in January 2024 and February 2024, respectively, and are awaiting confirmation of***
658 ***deposition. We would like to undergo review while the deposition process moves forward and***
659 ***we will update the accession numbers (ATCC XXXXX = DSMZ XXXXX) as part of our later***
660 ***revisions.***

661 **Acknowledgments**

662 We thank Dr. Aharon Oren for assistance with nomenclature and acknowledge the Center for
663 Advanced Research Computing (CARC) at the University of Southern California for providing
664 computing resources that have contributed to the research results reported within this
665 publication (<https://carc.usc.edu>). This work was supported by a Simons Early Career
666 Investigator in Marine Microbial Ecology and Evolution Award, and NSF Biological
667 Oceanography Program OCE-1945279 and Emerging Frontiers Program EF-2125191 grants to
668 J.C.T.

669 **Competing Interests**

670 The authors declare no competing financial interests.

671 **Data Availability**

672 The genome sequences and raw reads for strains US3C007 and FZCC0083 can be found at NCBI
673 under BioProject numbers PRJNA1044073 and PRJNA1047292, respectively. Supplementary
674 material, including scripts, tree files, and **Table S1**, can be found on FigShare
675 10.6084/m9.figshare.25898389.

676 **Figures**

677

678 **Figure 1.** Phylogenomics and average nucleotide identity (ANI) of CHAB-I-5. **A)** Phylogenomic
679 tree of 52 CHAB-I-5 genomes rooted with minimal ancestor deviation. CHAB-I-5 isolates are
680 highlighted in red and Subclusters are labeled. Scale bar indicates changes per position. Filled
681 circles indicate nodes with bootstrap values $\geq 95\%$. **B)** Pairwise ANI of the CHAB-I-5 Subclusters,
682 colorized according to the key. Squares denoting 100% identity of each genome to itself are not
683 colored.

684 **Figure 2.** Biogeography and prevalence of CHAB-I-5 representatives. **A)** Boxplots of all RPKM
685 values for each genome in the analysis. Black lines within the boxes indicate median RPKM
686 values. The top five recruiting genomes are colored. **B)** Summed RPKM values for all genomes in
687 each Subcluster, plotted according to sample location. RPKM values are depicted by circle size
688 according to the key. Boxplot indicates the range of values for all genomes in each Subcluster.

689 **Figure 3.** Predicted metabolism of CHAB-I-5. Subclusters are organized top to bottom to match
690 the phylogeny of **Fig. 2**. Colors inside boxes correspond to pathway completion percentage
691 according to the key. Genomes from isolates are noted in red.

692 **Figure 4.** Growth rates for US3C007 and FZCC0083 across **A)** temperatures, **B)** salinities, and for
693 US3C007 **C)** at differing low carbon concentrations. **D)** Growth yields for US3C007 under the
694 same carbon experiments for C. Data in A-C comes from instantaneous growth rates
695 throughout exponential phase. Data points are plotted along with medians (lines) and the
696 distribution (violin plot shaded region).

697 **Figure 5.** Cell size and shape of US3C007. **A)** Dimensions from analysis of 24 separate cells (see
698 Figs. S9, S10) of different sizes and shapes. Medians are indicated with a bar and the violin plot
699 shading shows the distribution of the data. **B-E)** Representative cells of different size/shape
700 configurations seen in the culture. Scale bars (500 nm B,C; 400 nm D; 1 μm E) are indicated
701 below each image.

702

703

704 **Supplemental Tables and Figures**

705 **Table S1.** Excel spreadsheet containing genome statistics, computed ANI values, metabolic
706 predictions, AMS1 medium recipe and modifications, growth rates for growth experiments,
707 RPKM values from metagenomic recruitment, and microscopic size calculations. Table S1 is
708 hosted at FigShare 10.6084/m9.figshare.25898389.

709

710 **Figure S1.** Phylogenetic tree of 16S rRNA gene sequences from the Alphaproteobacteria with
711 US3C007 and other CHAB-I-5 representatives. Nodes outside of the CHAB-I-5 and Roseobacter

712 HIMB11 clade have been collapsed to show US3C007's inclusion with the CHAB-I-5 sequences.
713 The CHAB-I-5 cluster is boxed in red and strain US3C007 is starred.

714 **Figure S2.** Phylogenomic tree of all CHAB-I-5 genomes prior to dereplication and those of the
715 sister clade containing AG-337-I11 and others. Scale bar indicates changes per position. Filled
716 circles indicate nodes with bootstrap values $\geq 95\%$.

717 **Figure S3.** Phylogenomic tree of dereplicated CHAB-I-5 genomes (excepting the dual copies of
718 the SB2 genome), and associated ANI values. Dotted lines indicate the position of the
719 OceanDNA_b28631 genome, which was removed due to the low ANI values and the long
720 unsupported branch on the tree. Scale bar indicates changes per position. Filled circles indicate
721 nodes with bootstrap values $\geq 95\%$.

722 **Figure S4.** Metagenomic recruitment (normalized as RPKM) to all genomes by latitude with
723 non-linear regression lines featuring shading that represents the 95% confidence intervals. The
724 histogram below the RPKM plots shows the sample distribution according to latitude.

725 **Figure S5.** Metagenomic recruitment (normalized as RPKM) to all genomes by salinity with non-
726 linear regression lines featuring shading that represents the 95% confidence intervals. The
727 histogram below the RPKM plots shows the sample distribution according to salinity.

728 **Figure S6.** Metagenomic recruitment (normalized as RPKM) to all genomes by temperature with
729 non-linear regression lines featuring shading that represents the 95% confidence intervals. The
730 histogram below the RPKM plots shows the sample distribution according to temperature.

731 **Figure S7.** Metagenomic recruitment (normalized as RPKM) for the top 5 recruiting genomes
732 according to **A)** latitude, **B)** salinity, and **C)** temperature with non-linear regression lines
733 featuring shading that represents the 95% confidence intervals. Histograms below the RPKM
734 plots show the sample distribution according to the same x-axis variable. Note that while all
735 metagenomic samples had latitude values, the metadata did not always include salinity or
736 temperature, and thus the total number of points in B) and C) are different.

737 **Figure S8.** Growth curves of strains US3C007 and FZCC0083 for the temperature and salinity
738 experiments. Y-axes are cell concentrations in cells/ml, x-axes are time. Conditions are written
739 at the top of each plot.

740 **Figure S9.** Notes and marks for the analyses of cell morphologies. Using the pixel and scale
741 features in Concepts for iPad v6.13, we measured the radii (R) and area of the cross section (S)
742 of the cells. The formula of the lengths (l), volumes (V), and surface areas (SA) calculated based
743 on r (we denoted r as the mean radii of each cell) and S are shown at the top of the figure. The
744 detailed formula could also be found at **Table S1**.

745 **Figure S10.** Same as Figure S9, marks of measurements for the SEM images.

746 **Figure S11.** Relative abundance of Subclusters 1 (green) and 2 (blue) compared to temperature.
747 Subcluster RPKMs were summed as in Figure 2B. R^2 values for the linear regressions are plotted
748 at the top. Shading around the linear regression indicates 95% confidence intervals.
749
750

751

752 **References**

- 753 1. Buchan A, González JM, Moran MA. Overview of the marine roseobacter lineage. *Appl Environ Microbiol* 2005; **71**: 5665–5677.
- 754 2. Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. *Nat Rev Microbiol* 2014; **12**: 686–698.
- 755 3. Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, Ulbrich M, et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. *ISME J* 2017; **11**: 1483–1499.
- 756 4. Liang KYH, Orata FD, Boucher YF, Case RJ. Roseobacters in a Sea of Poly- and Paraphyly: Whole Genome-Based Taxonomy of the Family Rhodobacteraceae and the Proposal for the Split of the ‘Roseobacter Clade’ Into a Novel Family, Roseobacteraceae fam. nov. *Front Microbiol* 2021; **12**: 683109.
- 757 5. Moran MA, Belas R, Schell MA, González JM, Sun F, Sun S, et al. Ecological genomics of marine Roseobacters. *Appl Environ Microbiol* 2007; **73**: 4559–4569.
- 758 6. Luo H, Löytynoja A, Moran MA. Genome content of uncultivated marine Roseobacters in the surface ocean: Genome content of wild Roseobacters. *Environ Microbiol* 2012; **14**: 41–51.
- 759 7. Billerbeck S, Wemheuer B, Voget S, Poehlein A, Giebel H-A, Brinkhoff T, et al. Biogeography and environmental genomics of the Roseobacter-affiliated pelagic CHAB-I-5 lineage. *Nat Microbiol* 2016; **1**: 16063.
- 760 8. Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. *Microbiol Mol Biol Rev* 2014; **78**: 573–587.
- 761 9. Feng X, Chu X, Qian Y, Henson MW, Celeste Lanclos V, Qin F, et al. Mechanisms driving genome reduction of a novel Roseobacter lineage. *ISME J* 2021; 1–11.
- 762 10. Zhang Z, Wu Z, Liu H, Yang M, Wang R, Zhao Y, et al. Genomic analysis and characterization of phages infecting the marine Roseobacter CHAB-I-5 lineage reveal a globally distributed and abundant phage genus. *Front Microbiol* 2023; **14**.
- 763 11. Yang S-J, Kang I, Cho J-C. Expansion of Cultured Bacterial Diversity by Large-Scale Dilution-to-Extinction Culturing from a Single Seawater Sample. *Microb Ecol* 2016; **71**: 29–43.
- 764 12. Zhang Y, Sun Y, Jiao N, Stepanauskas R, Luo H. Ecological Genomics of the Uncultivated Marine Roseobacter Lineage CHAB-I-5. *Appl Environ Microbiol* 2016; **82**: 2100–2111.
- 765 13. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, et al. Environmental genome shotgun sequencing of the Sargasso Sea. *Science* 2004; **304**: 66–74.
- 766 14. Buchan A, Hadden M, Suzuki MT. Development and application of quantitative-PCR tools for subgroups of the Roseobacter clade. *Appl Environ Microbiol* 2009; **75**: 7542–7547.
- 767 15. Henriques IS, Almeida A, Cunha A, Correia A. Molecular sequence analysis of prokaryotic diversity in the middle and outer sections of the Portuguese estuary Ria de Aveiro. *FEMS Microbiol Ecol* 2004; **49**: 269–279.
- 768 16. Thrash JC, Weckhorst JL, Pitre DM. Cultivating Fastidious Microbes. In: McGenity TJ, Timmis KN, Nogales B (eds). *Springer Protocols Handbooks*. 2015. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 57–78.
- 769 17. Carini P, Steindler L, Beszteri S, Giovannoni SJ. Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium. *ISME J* 2013; **7**: 592–602.
- 770 18. Henson MW, Lanclos VC, Pitre DM, Weckhorst JL, Lucchesi AM, Cheng C, et al. Expanding the

796 Diversity of Bacterioplankton Isolates and Modeling Isolation Efficacy with Large-Scale Dilution-to-
797 Extinction Cultivation. *Appl Environ Microbiol* 2020; **86**.

798 19. Henson MW, Pitre DM, Weckhorst JL, Lanclos VC, Webber AT, Thrash JC. Artificial Seawater Media
799 Facilitate Cultivating Members of the Microbial Majority from the Gulf of Mexico. *mSphere* 2016; **1**.

800 20. Schäfer H, Servais P, Muyzer G. Successional changes in the genetic diversity of a marine bacterial
801 assemblage during confinement. *Arch Microbiol* 2000; **173**: 138–145.

802 21. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic
803 Acids Res* 2004; **32**: 1792–1797.

804 22. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment
805 trimming in large-scale phylogenetic analyses. *Bioinformatics* 2009; **25**: 1972–1973.

806 23. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2:
807 New models and efficient methods for phylogenetic inference in the genomic era. *Mol Biol Evol*
808 2020.

809 24. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
810 *Bioinformatics* 2014; **30**: 2114–2120.

811 25. Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford Nanopore
812 sequencing. *Genome Biol* 2019; **20**: 129.

813 26. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs.
814 *Nat Biotechnol* 2019; **37**: 540–546.

815 27. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
816 *Bioinformatics* 2016; **32**: 2103–2110.

817 28. Wick RR, Holt KE. Polypolish: Short-read polishing of long-read bacterial genome assemblies. *PLoS
818 Comput Biol* 2022; **18**: e1009802.

819 29. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome
820 assemblies. *Bioinformatics* 2015; **31**: 3350–3352.

821 30. Mak SST, Gopalakrishnan S, Carøe C, Geng C, Liu S, Sinding M-HS, et al. Comparative performance
822 of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing.
823 *Gigascience* 2017; **6**: 1–13.

824 31. Chen Y, Nie F, Xie S-Q, Zheng Y-F, Dai Q, Bray T, et al. Efficient assembly of nanopore reads via
825 highly accurate and intact error correction. *Nat Commun* 2021; **12**: 60.

826 32. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long
827 uncorrected reads. *Genome Res* 2017; **27**: 737–746.

828 33. Walker BJ, Abeel T, Shea T, Priest M, Abouelhail A, Sakthikumar S, et al. Pilon: an integrated tool for
829 comprehensive microbial variant detection and genome assembly improvement. *PLoS One* 2014; **9**:
830 e112963.

831 34. Sunagawa S, Acinas SG, Bork P, Bowler C, Acinas SG, Babin M, et al. Tara Oceans: towards global
832 ocean ecosystems biology. *Nat Rev Microbiol* 2020.

833 35. Royo-Llonch M, Sánchez P, Ruiz-González C, Salazar G, Pedrós-Alió C, Sebastián M, et al.
834 Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic
835 Ocean. *Nat Microbiol* 2021.

836 36. Larkin AA, Garcia CA, Garcia N, Brock ML, Lee JA, Ustick LJ, et al. High spatial resolution global
837 ocean metagenomes from Bio-GO-SHIP repeat hydrography transects. *Scientific Data* 2021; **8**: 1–6.

838 37. Nishimura Y, Yoshizawa S. The OceanDNA MAG catalog contains over 50,000 prokaryotic genomes
839 originated from various marine environments. *Scientific Data* 2022; **9**: 1–11.

840 38. Silvano E, Yang M, Wolterink M, Giebel H-A, Simon M, Scanlan DJ, et al. Lipidomic analysis of
841 roseobacters of the pelagic RCA cluster and their response to phosphorus limitation. *Front
842 Microbiol* 2020; **11**: 552135.

843 39. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the

844 Genome Taxonomy Database. *Bioinformatics* 2019.

845 40. Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons
846 that enables improved genome recovery from metagenomes through de-replication. *ISME J* 2017;
847 **11**: 2864–2868.

848 41. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of
849 microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res* 2015; **25**:
850 1043–1055.

851 42. Tria FDK, Landan G, Dagan T. Phylogenetic rooting using minimal ancestor deviation. *Nat Ecol Evol*
852 2017; **1**: 193.

853 43. Jain C, Rodriguez-R LM, Phillippe AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of
854 90K prokaryotic genomes reveals clear species boundaries. *Nat Commun* 2018; **9**: 5114.

855 44. Murat Eren A, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi'o: an advanced
856 analysis and visualization platform for 'omics data. *PeerJ* 2015; **3**: e1319.

857 45. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for Functional
858 Characterization of Genome and Metagenome Sequences. *J Mol Biol* 2016; **428**: 726–731.

859 46. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene
860 and protein annotation. *Nucleic Acids Res* 2016; **44**: D457–62.

861 47. Graham ED, Heidelberg JF, Tully BJ. Potential for primary productivity in a globally-distributed
862 bacterial phototroph. *ISME J* 2018; **12**: 1861–1866.

863 48. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics.
864 *Genome Biol* 2019; **20**: 238.

865 49. Kieft B, Li Z, Bryson S, Crump BC, Hettich R, Pan C, et al. Microbial Community Structure-Function
866 Relationships in Yaquina Bay Estuary Reveal Spatially Distinct Carbon and Nitrogen Cycling
867 Capacities. *Front Microbiol* 2018; **9**: 1282.

868 50. Damashek J, Edwardson CF, Tolar BB, Gifford SM, Moran MA, Hollibaugh JT. Coastal ocean
869 metagenomes and curated metagenome-assembled genomes from marsh landing, Sapelo Island
870 (Georgia, USA). *Microbiol Resour Announc* 2019; **8**.

871 51. Sieradzki ET, Morando M, Fuhrman JA. Metagenomics and Quantitative Stable Isotope Probing
872 Offer Insights into Metabolism of Polycyclic Aromatic Hydrocarbon Degraders in Chronically
873 Polluted Seawater. *mSystems* 2021; **6**.

874 52. Sieradzki ET, Fuhrman JA, Rivero-Calle S, Gómez-Consarnau L. Proteorhodopsins dominate the
875 expression of phototrophic mechanisms in seasonal and dynamic marine picoplankton
876 communities. *PeerJ* 2018; **6**: e5798.

877 53. Alneberg J, Bennke C, Beier S, Bunse C, Quince C, Ininbergs K, et al. Ecosystem-wide metagenomic
878 binning enables prediction of ecological niches from genomes. *Commun Biol* 2020; **3**: 119.

879 54. Alneberg J, Sundh J, Bennke C, Beier S, Lundin D, Hugenthal LW, et al. BARM and BalticMicrobeDB, a
880 reference metagenome and interface to meta-omic data for the Baltic Sea. *Sci Data* 2018; **5**:
881 180146.

882 55. Ahmed MA, Lim SJ, Campbell BJ. Metagenomes, Metatranscriptomes, and Metagenome-Assembled
883 Genomes from Chesapeake and Delaware Bay (USA) Water Samples. *Microbiol Resour Announc*
884 2021; **10**: e0026221.

885 56. Sakowski EG, Arora-Williams K, Tian F, Zayed AA, Zablocki O, Sullivan MB, et al. Interaction
886 dynamics and virus-host range for estuarine actinophages captured by epicPCR. *Nat Microbiol*
887 2021; **6**: 630–642.

888 57. Fortunato CS, Crump BC. Microbial Gene Abundance and Expression Patterns across a River to
889 Ocean Salinity Gradient. *PLoS One* 2015; **10**: e0140578.

890 58. Di Cesare A, Dzhembekova N, Cabello-Yeves PJ, Eckert EM, Slabakova V, Slabakova N, et al.
891 Genomic comparison and spatial distribution of different *Synechococcus* phylotypes in the Black

892 Sea. *Front Microbiol* 2020; **11**: 1979.

893 59. Thrash JC, Seitz KW, Baker BJ, Temperton B, Gillies LE, Rabalais NN, et al. Metabolic Roles of
894 Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico 'Dead Zone'. *MBio* 2017; **8**:
895 e01017–17.

896 60. Xu B, Li F, Cai L, Zhang R, Fan L, Zhang C. A holistic genome dataset of bacteria, archaea and viruses
897 of the Pearl River estuary. *Scientific Data* 2022; **9**: 1–9.

898 61. Rasmussen AN, Francis CA. Genome-resolved metagenomic insights into massive seasonal
899 ammonia-oxidizing Archaea blooms in San Francisco Bay. *mSystems* 2022; **7**: e0127021.

900 62. Mende DR, Bryant JA, Aylward FO, Eppley JM, Nielsen T, Karl DM, et al. Environmental drivers of a
901 microbial genomic transition zone in the ocean's interior. *Nature Microbiology* 2017; **2**: 1367–1373.

902 63. Kopf A, Bicak M, Kottmann R, Schnetzer J, Kostadinov I, Lehmann K, et al. The ocean sampling day
903 consortium. *Gigascience* 2015; **4**: 27.

904 64. Tragin M, Vaulot D. Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD)
905 dataset. *Sci Rep* 2018; **8**: 14020.

906 65. Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastián M, Logares R, et al. Deep ocean
907 metagenomes provide insight into the metabolic architecture of bathypelagic microbial
908 communities. *Commun Biol* 2021; **4**: 604.

909 66. Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, Hackl T, et al. Marine microbial
910 metagenomes sampled across space and time. *Sci Data* 2018; **5**: 180176.

911 67. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Ocean plankton.
912 Structure and function of the global ocean microbiome. *Science* 2015; **348**: 1261359.

913 68. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods* 2012; **9**: 357–
914 359.

915 69. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools
916 and BCFtools. *Gigascience* 2021; **10**: giab008.

917 70. Lanclos VC, Rasmussen AN, Kojima CY, Cheng C, Henson MW, Faircloth BC, et al. Ecophysiology and
918 genomics of the brackish water adapted SAR11 subclade IIIa. *ISME J* 2023.

919 71. Lewis E. The practical salinity scale 1978 and its antecedents. *IEEE J Oceanic Eng* 1980; **5**: 3–8.

920 72. Cho J-C, Giovannoni SJ. Cultivation and growth characteristics of a diverse group of oligotrophic
921 marine Gammaproteobacteria. *Appl Environ Microbiol* 2004; **70**: 432–440.

922 73. Cheng C, Thrash JC. Sparse-growth-curve: A computational pipeline for parsing cellular growth
923 curves with low temporal resolution. *Microbiol Resour Announc* 2021; **10**.

924 74. Chen Y-B, Zehr JP, Mellon M. GROWTH AND NITROGEN FIXATION OF THE DIAZOTROPHIC
925 FILAMENTOUS NONHETEROCYSTOUS CYANOBACTERIUM *TRICHOODESMIUM* SP. IMS 101 IN
926 DEFINED MEDIA: EVIDENCE FOR A CIRCADIAN RHYTHM¹. *J Phycol* 1996; **32**: 916–923.

927 75. Ritchie RJ. Measurement of chlorophylls a and b and bacteriochlorophyll a in organisms from
928 hypereutrophic auxinic waters. *J Appl Phycol* 2018; **30**: 3075–3087.

929 76. Clifford EL, Varela MM, De Corte D, Bode A, Ortiz V, Herndl GJ, et al. Taurine Is a Major Carbon and
930 Energy Source for Marine Prokaryotes in the North Atlantic Ocean off the Iberian Peninsula. *Microb
931 Ecol* 2019.

932 77. Carini P, White AE, Campbell EO, Giovannoni SJ. Methane production by phosphate-starved SAR11
933 chemoheterotrophic marine bacteria. *Nat Commun* 2014; **5**: 4346.

934 78. Repeta DJ, Ferrón S, Sosa OA, Johnson CG, Repeta LD, Acker M, et al. Marine methane paradox
935 explained by bacterial degradation of dissolved organic matter. *Nat Geosci* 2016; **9**: 884–887.

936 79. Malard LA, Guisan A. Into the microbial niche. *Trends Ecol Evol* 2023; **0**.

937 80. Colwell RK, Rangel TF. Hutchinson's duality: the once and future niche. *Proc Natl Acad Sci U S A
938 2009; **106 Suppl 2**: 19651–19658.*

939 81. Smith AN, Hennon GMM, Zinser ER, Calfee BC, Chandler JW, Barton AD. Comparing

940 Prochlorococcus temperature niches in the lab and across ocean basins. *Limnol Oceanogr* 2021.

941 82. Getz EW, Lanclos VC, Kojima CY, Cheng C, Henson MW, Schön ME, et al. The AEGEAN-169 clade of
942 bacterioplankton is synonymous with SAR11 subclade V (HIMB59) and metabolically distinct.
943 *mSystems* 2023; **8**: e0017923.

944 83. González JM, Kiene RP, Moran MA. Transformation of sulfur compounds by an abundant lineage of
945 marine bacteria in the α -subclass of the class Proteobacteria. *Appl Environ Microbiol* 1999; **65**:
946 3810–3819.

947 84. Feng X, Xing P. Genomics of Yoonia sp. Isolates (family Roseobacteraceae) from lake zhangnai on
948 the Tibetan Plateau. *Microorganisms* 2023; **11**: 2817.

949 85. Dong C, Idica EY, McWilliams JC. Circulation and multiple-scale variability in the Southern California
950 Bight. *Prog Oceanogr* 2009; **82**: 168–190.

951 86. Hickey BM, Dobbins EL, Allen SE. Local and remote forcing of currents and temperature in the
952 central Southern California Bight. *Journal of Geophysical Research: Oceans* 2003; **108**.

953 87. National Centers for Environmental Information, National Oceanic and Atmospheric
954 Administration. Coastal Water Temperature Guide. <https://www.ncei.noaa.gov/products/coastal-water-temperature-guide>. Accessed 10 May 2024.

955 88. Kuo Y-C, Chan J-W, Wang Y-C, Shen Y-L, Chang Y, Lee M-A. Long-term observation on sea surface
956 temperature variability in the Taiwan Strait during the northeast monsoon season. *Int J Remote
957 Sens* 2018; **39**: 4330–4342.

958 89. Wang X, Xie M, Ho KEY, Sun Y, Chu X, Zhang S, et al. A neutral process of genome reduction in
959 marine bacterioplankton. *bioRxiv* . 2024. , 2024.02.04.578831

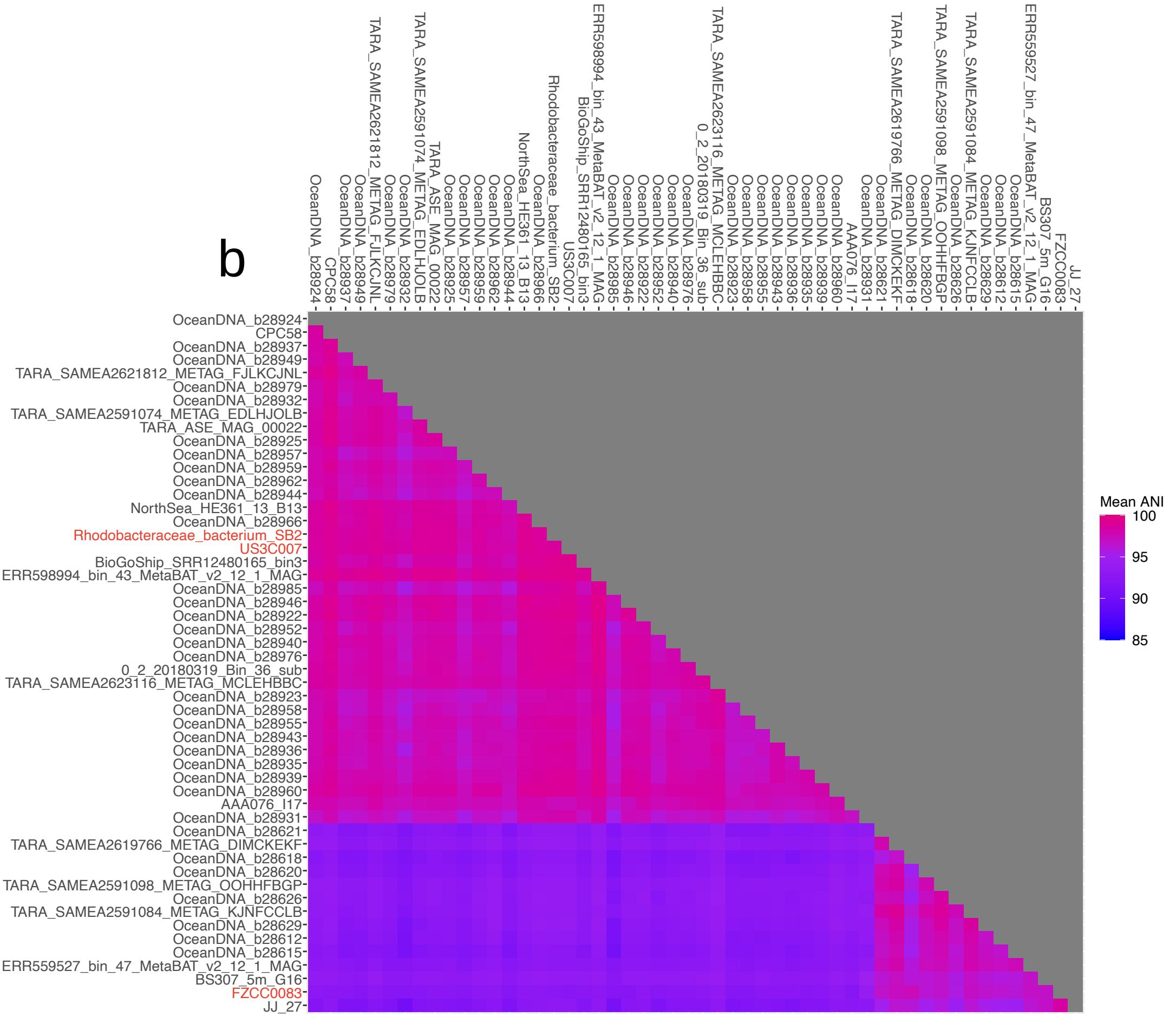
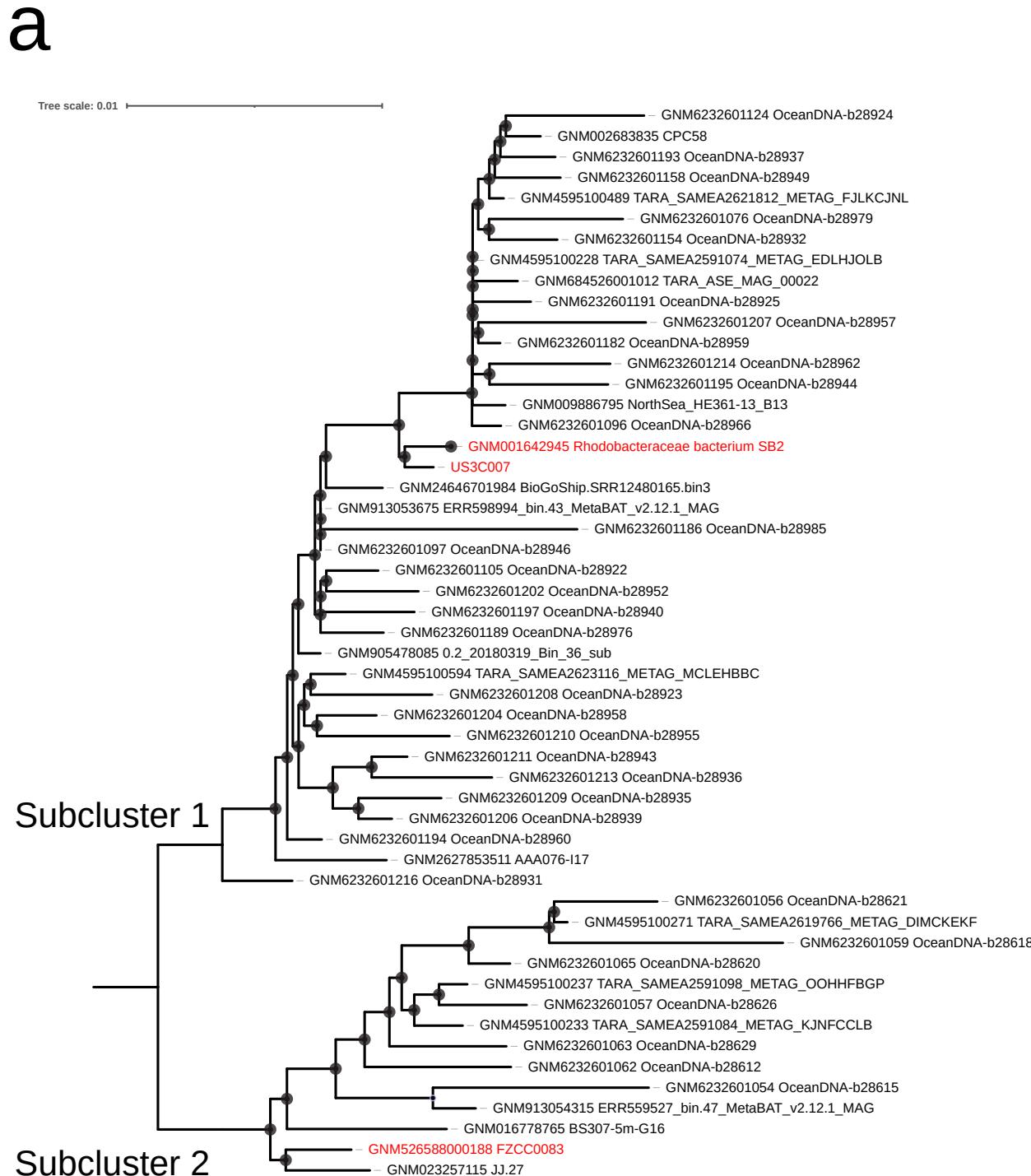
960 90. Liu Y, Brinkhoff T, Berger M, Poehlein A, Voget S, Paoli L, et al. Metagenome-assembled genomes
961 reveal greatly expanded taxonomic and functional diversification of the abundant marine
962 Roseobacter RCA cluster. *Microbiome* 2023; **11**: 1–18.

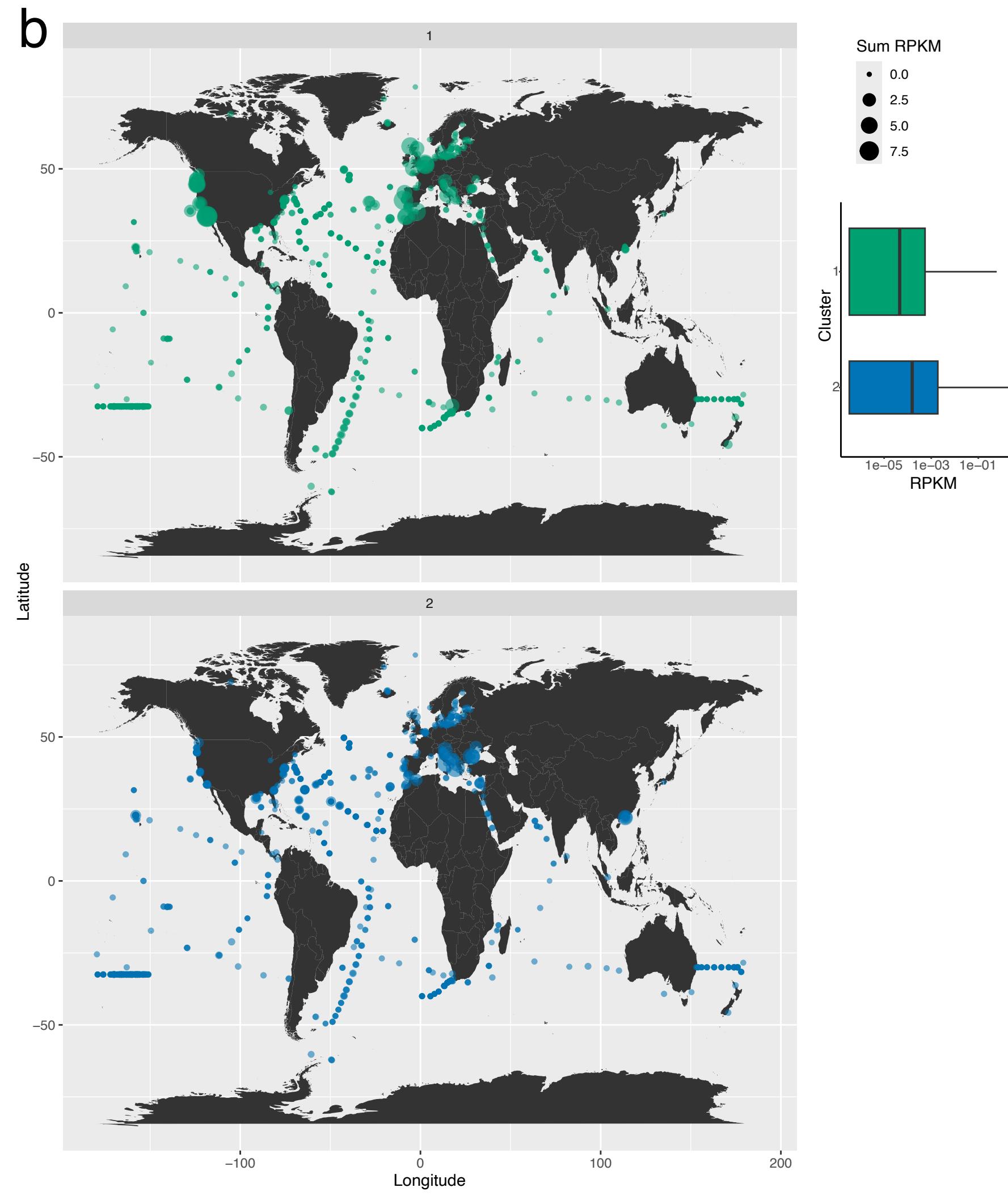
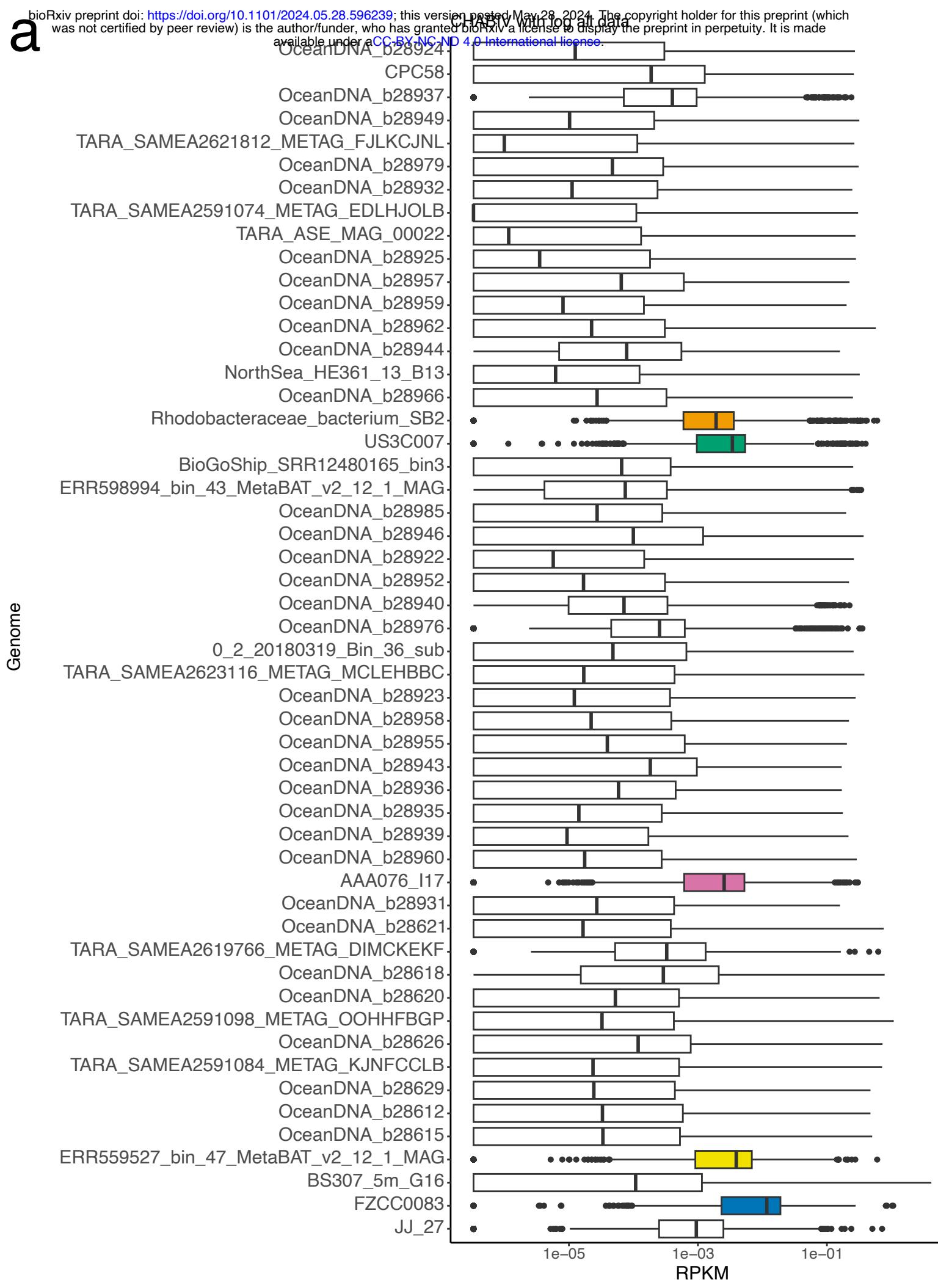
963 91. Giebel H-A, Kalhoefer D, Gahl-Janssen R, Choo Y-J, Lee K, Cho J-C, et al. Planktomarina temperata
964 gen. nov., sp. nov., belonging to the globally distributed RCA cluster of the marine Roseobacter
965 clade, isolated from the German Wadden Sea. *Int J Syst Evol Microbiol* 2013; **63**: 4207–4217.

966 92. Mayali X, Franks PJS, Azam F. Cultivation and ecosystem role of a marine Roseobacter clade-
967 affiliated cluster bacterium. *Appl Environ Microbiol* 2008; **74**: 2595–2603.

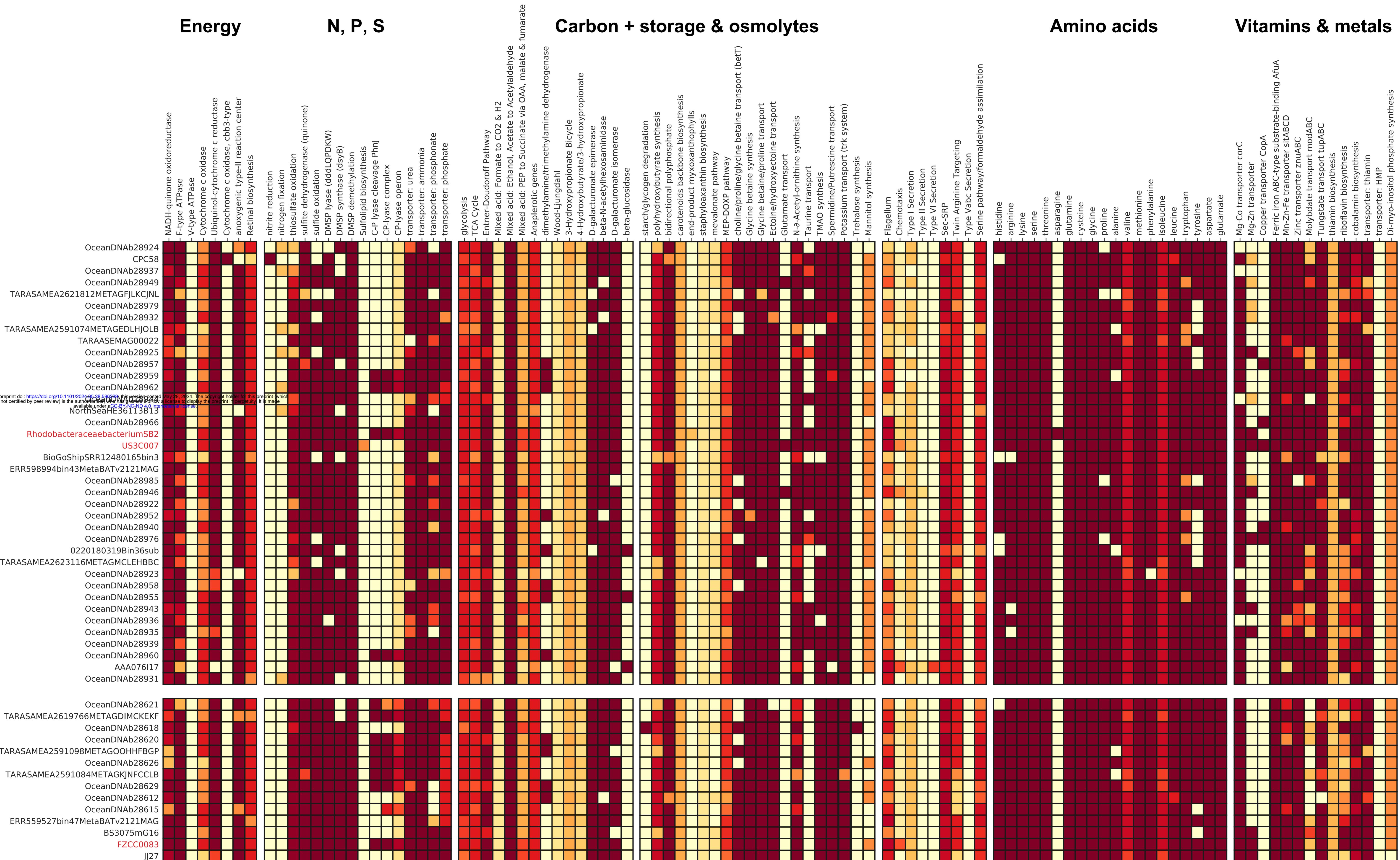
968 93. Zhang Z, Chen F, Chu X, Zhang H, Luo H, Qin F, et al. Diverse, abundant, and novel viruses infecting
969 the marine Roseobacter RCA lineage. *mSystems* 2019; **4**.

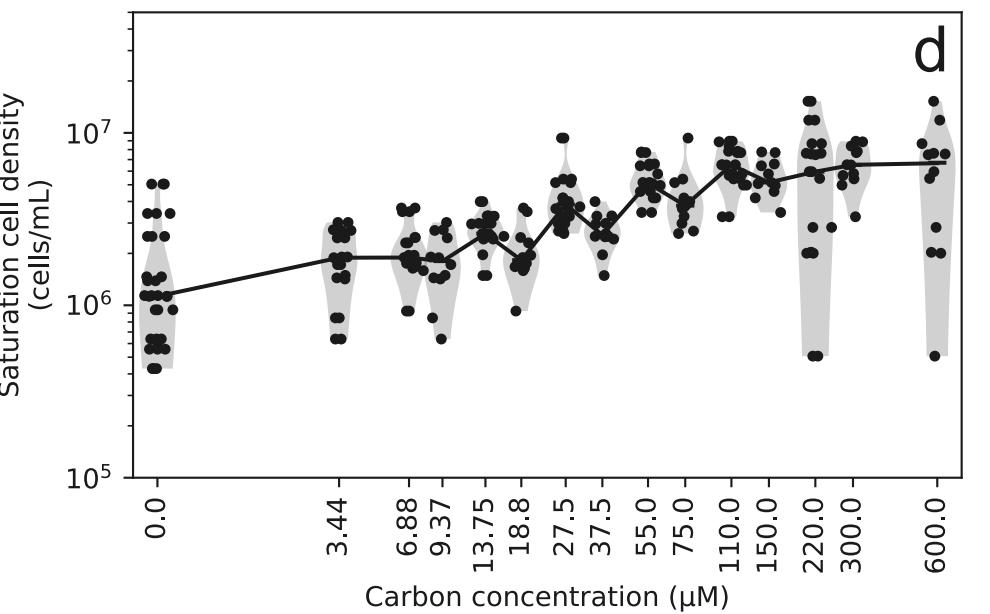
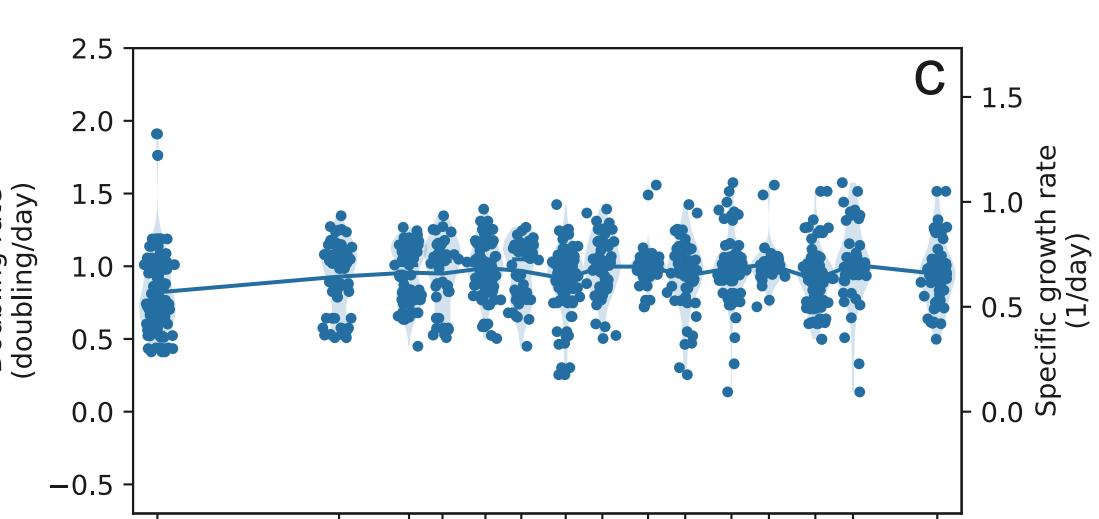
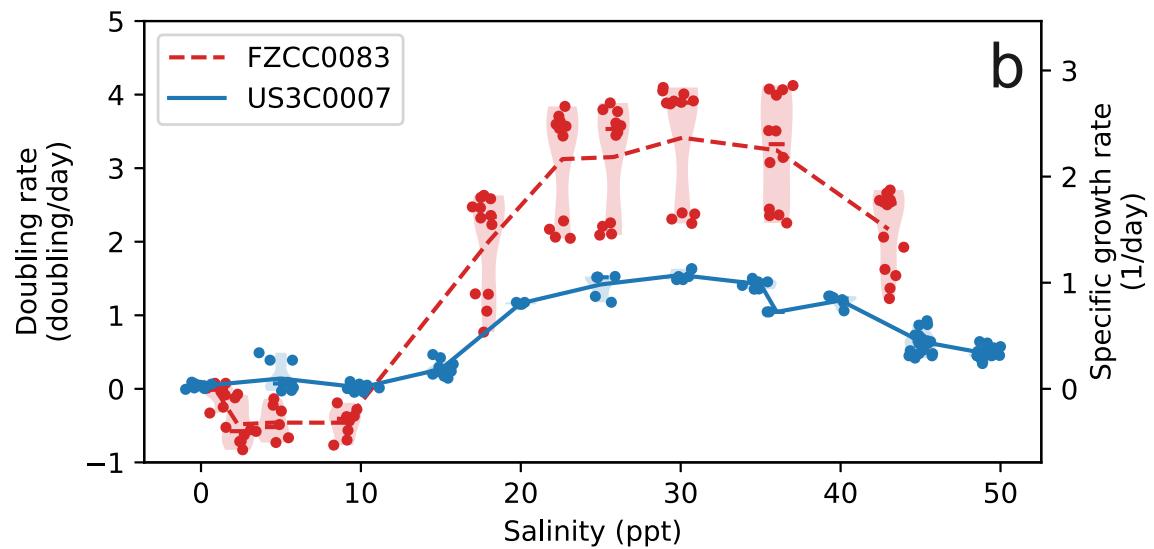
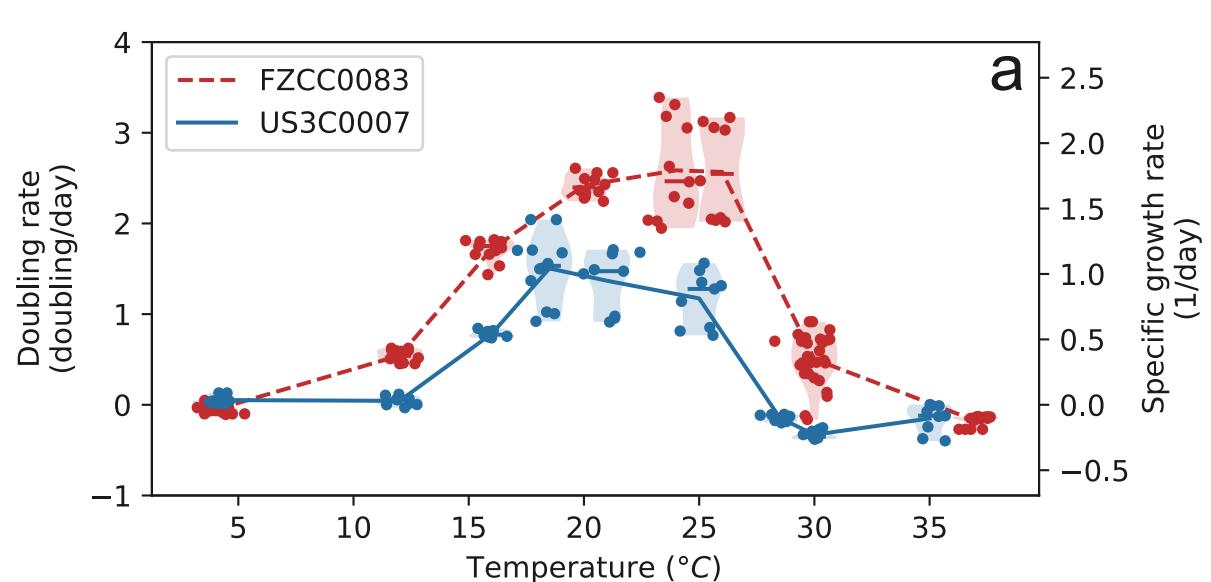
970 94. Durham BP, Grote J, Whittaker KA, Bender SJ, Luo H, Grim SL, et al. Draft genome sequence of
971 marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage
972 within the Roseobacter clade possessing an unusually small genome. *Stand Genomic Sci* 2014; **9**:
973 632–645.

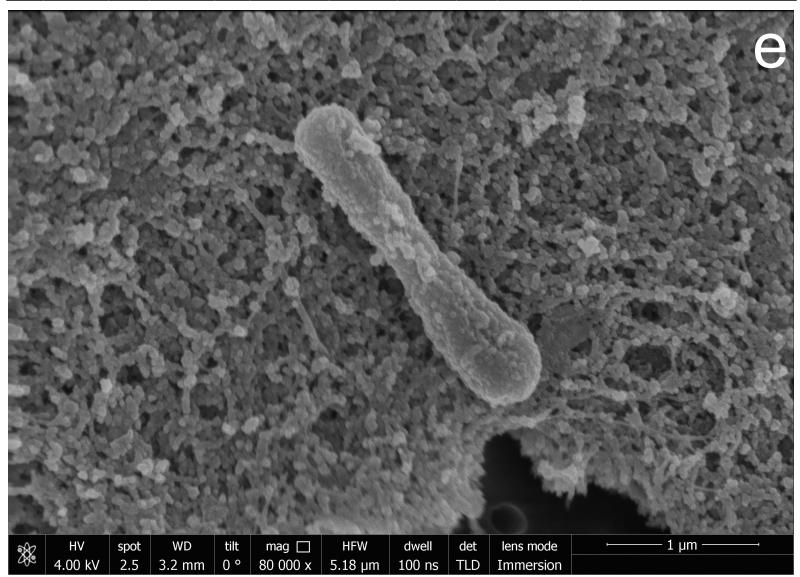
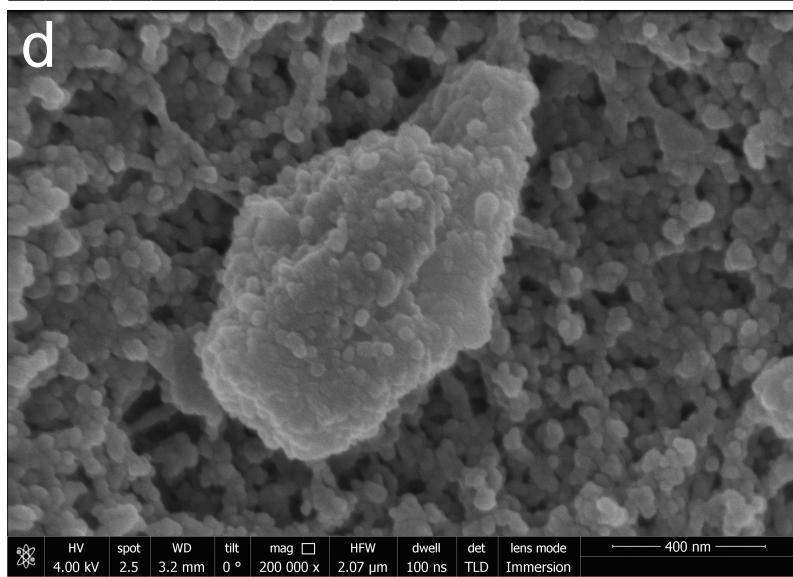
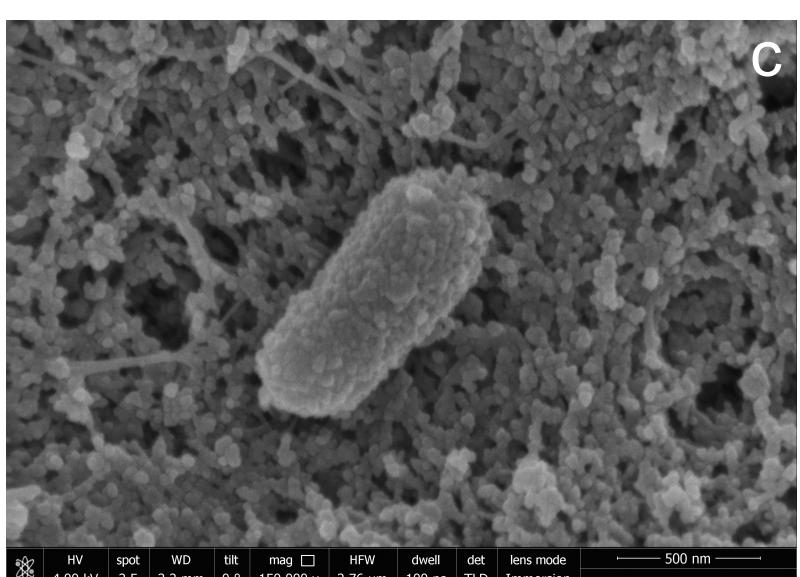
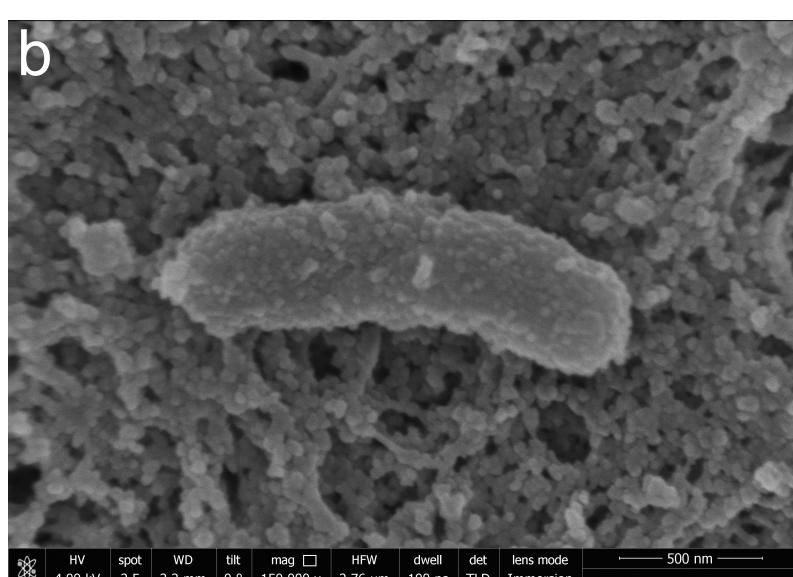
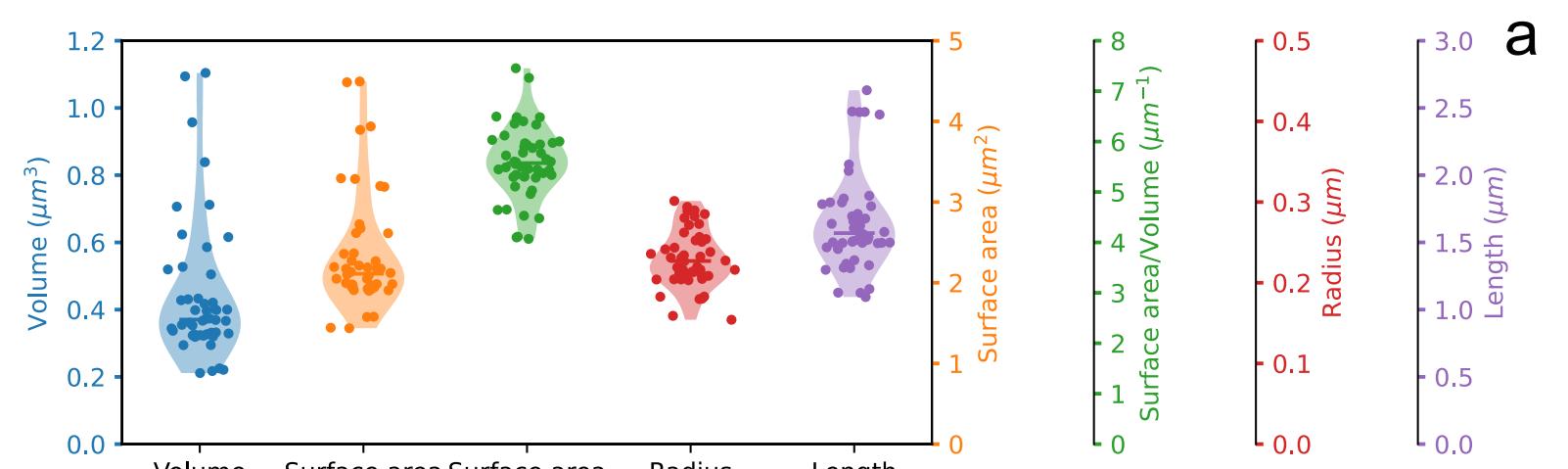


974 95. Malfatti F, Samo TJ, Azam F. High-resolution imaging of pelagic bacteria by Atomic Force
975 Microscopy and implications for carbon cycling. *ISME J* 2010; **4**: 427–439.



976 96. Henson MW, Lanclos VC, Faircloth BC, Thrash JC. Cultivation and genomics of the first freshwater
977 SAR11 (LD12) isolate. *ISME J* 2018; **12**: 1846–1860.

978 97. Zhao X, Schwartz CL, Pierson J, Giovannoni SJ, Richard McIntosh J, Nicastro D. Three-Dimensional
979 Structure of the Ultraoligotrophic Marine Bacterium 'Candidatus Pelagibacter ubique'. *Appl Environ
980 Microbiol* 2017; **83**: e02807–16.


981





982

Subcluster 1

