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Abstract

The CHAB-I-5 cluster is a pelagic lineage that can comprise a significant proportion of all
roseobacters in surface oceans and have predicted roles in biogeochemical cycling via
heterotrophy, aerobic anoxygenic photosynthesis (AAnP), CO oxidation, DMSP degradation, and
other metabolisms. Though cultures of CHAB-I-5 have been reported, none have been explored
and the best known representative, strain SB2, was lost from culture after obtaining the
genome sequence. We have isolated two new CHAB-I-5 representatives, strains US3C007 and
FZCC0083, and assembled complete, circularized genomes with 98.7% and 92.5% average
nucleotide identities with the SB2 genome. Comparison of these three with 49 other unique
CHAB-I-5 metagenome-assembled and single-cell genomes indicated that the cluster represents
a genus with two species, and we identified subtle differences in genomic content between the
two species subclusters. Metagenomic recruitment from over fourteen hundred samples
expanded their known global distribution and highlighted both isolated strains as
representative members of the clade. FZCC0083 grew over twice as fast as US3C007 and over a
wider range of temperatures. The axenic culture of US3C007 occurs as pleomorphic cells with
most exhibiting a coccobacillus/vibrioid shape. We propose the name Thalassovivens spotae,
gen nov., sp. nov. for the type strain US3C007".
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Introduction

The Roseobacter group is one of the most ecologically successful groups of bacteria found
across marine habitats and are often associated with phytoplankton blooms [1-4]. Members of
this clade exist as free-living, attached, and in symbiont forms [1] and can make up to 20% of
bacteria in coastal regimes [5]. The most abundant roseobacters in the open ocean belong to
the Pelagic Roseobacter Cluster (PRC), which are polyphyletic in the Roseobacter phylogenomic
tree, but form a cluster in the dendrogram inferred from genome content similarity [3, 6, 7].
This results from multiple Roseobacter lineages that have evolved gene content that is adaptive
for nutrient-poor pelagic waters, such as carbon monoxide and inorganic sulfur oxidation, use
of dimethylsulfoniopropionate (DMSP) via multiple pathways, a reduction of metal import
systems, and a high proportion of ABC transporters, some of which distinguish them from
copiotrophic roseobacters [6, 8, 9]. While many Roseobacter species are easily cultured, the
PRC contains multiple clusters without currently isolated representatives, including the CHAB-I-
5 lineage. Representatives from the CHAB-I-5 cluster have been cultured on multiple occasions
but lost [7, 10, 11], for example, strain SB2 was the first [7].

The CHAB-I-5 cluster comprises free-living marine bacteria distributed from tropical to
polar latitudes [7, 12] and is one of the most abundant types of Roseobacter in global oceans. It
is found in highest abundances near coastal North America and Europe [12] and constituted up
to 20% of microbial clones in the Sargasso Sea [1, 13]. In a study of Chesapeake Bay, CHAB-I-5
was the only Roseobacter that did not decrease in abundance along a salinity gradient and was
present in samples across salinities from 13.9-30.5 [14]. While some other members of the
Roseobacter group typically associate with phytoplankton blooms, this pattern does not seem
to hold for CHAB-I-5 [7]. The abundance and distribution of CHAB-I-5 in global ocean waters
corresponds to a high activity level in the cluster [1, 7, 12, 14, 15]. Furthermore, CHAB-I-5 phage
are abundant in global waters, particularly in the polar and estuarine systems [10]. This
abundance, activity, and widespread phage distribution indicate this group is essential to global
nutrient cycling, though the mechanisms of these dynamics are still unexplored.

Current predictions of CHAB-I-5 metabolism come from only four partial genomes [7,
12]. CHAB-I-5 appears to be motile with metabolic pathways for aerobic anoxygenic
photosynthesis, carbon monoxide oxidation, inorganic sulfur oxidation, DMSP degradation,
phosphonate metabolism, and evidence for thiamin and biotin auxotrophy similar to other PRC
members [7, 9, 12]. Incomplete genomes have made it unclear whether CHAB-I-5 can use
nitrate, nitrite, or reduce sulfur [7]. Furthermore, we have no knowledge of cell volumes,
growth rates, or other fundamental physiological characteristics of this group. No CHAB-I-5
isolate has been maintained in culture long enough for experimental analysis except for the
recent isolate FZCC0083, which remains uncharacterized except for use in phage isolations [10].
Thus, our current knowledge of CHAB-I-5 remains limited.

Here we present another new strain, US3C007, an axenic representative of the CHAB-I-5
cluster that is readily propagated on artificial seawater medium and reliably revived from
frozen stocks. We conducted the first physiological characterization of CHAB-I-5, and the most
extensive genomic analysis of the group to date using new, complete genomes from both
US3C007 and FZCCO083 and other publicly-available data. We showed the first morphology of a
CHAB-I-5 member and examined the growth dynamics of both strains across ranges of salinity
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and temperature. Additionally, we analyzed the ecological distribution of CHAB-I-5 from an
expanded set of global metagenomic samples that span a wide range of marine and estuarine
locations. Together, these data constitute the most in-depth investigation of CHAB-I-5 thus far
and provide new insights on the genomics and physiology of these organisms.

Materials and Methods

US3C007 isolation

We obtained surface water (2m) from the San Pedro Ocean Time series (SPOTs) monthly cruise
on 09/16/2020 via CTD cast. The seawater was transported into the lab and filtered through a
2.7um GF/D filter, stained with 1x Sybr green (Lonza) for 30 minutes in the dark, and cell
density was enumerated on a Guava Easy Cyte 5HT flow cytometer (Millipore, Massachusetts,
USA) with settings as described previously [16]. We diluted cells to a final concentration of 1
cell/uL in 10mL of sterilized AMS1 artificial seawater medium [17] and inoculated 3 uL of the
diluted cell solution into each well of a 96 x 2.1mL well PTFE plate (Radleys, Essex, UK)
containing 1.5mL of AMS1 for a final theoretical concentration of 3 cells/well. Plates incubated
in the dark without shaking for 2.5 weeks and enumerated as described above. Positive wells
(>10* cells/mL) were transferred to Nalgene Oak Ridge PTFE centrifuge tubes (Thermo Fisher,
Massachusetts, USA) containing MWH1 medium [18] in an attempt to move the cultures to a
more frequently used medium for convenience. Subsequent transfers of isolates in MWH1
were not successful, so we transferred the initial cultures in the Oak Ridge tubes containing
MWH1 to acid-washed 125 ml polycarbonate flasks containing the original isolation medium,
AMS1, and growth resumed. The culture has been maintained in this manner over continual
transfers. Cultures were cryopreserved in both 10% DMSO and 10% glycerol diluted with AMS1.
We grew US3C007 to late-log phase and filtered the cells onto a 0.2um polycarbonate filter
(Millipore) and extracted its DNA using a GenElute Bacterial Genomic DNA Kit (Sigma-Aldrich
Co, Darmstadt, Germany). We amplified the DNA and purified the PCR products as previously
reported [19], and sent samples for Sanger sequencing to Genewiz (Azenta Life Sciences, New
Jersey, USA). We inspected the resulting chromatograms to verify purity through a lack of
multiple peaks for a given base call, assembled a contiguous sequence from the forward and
reverse complement sequences using CAP3 (https://doua.prabi.fr/software/cap3), and used
the web-based NCBI BLASTn with the nr/nt database for sequence identification.

16S rRNA gene phylogeny to determine placement within CHAB-I-5

We created a 16S rRNA gene phylogeny to verify placement of US3C007 within the CHAB-I-5
cluster using the Alphaproteobacteria tree and methods from previous work [18, 19] with the
addition of known CHAB-I-5 relatives including SB2 [7], three CHAB-I-5 SAGs [12], the original
CHAB-I-5 clone [20], and US3C007. We aligned sequences with muscle v3.8.1551 [21], trimmed
with trimal v1.4.1 [22], and inferred the phylogeny with IQ-TREE v2.0.6 with flag “-B 1000” [23].
The phylogeny was visualized with Figtree v1.4.4 and all nodes were collapsed except for the
branches containing CHAB-I-5 and PRC member HIMB11 to highlight US3C007’s inclusion within
the CHAB-I-5 (Fig. S1).

Genome sequencing and assembly

Page 4 of 25


https://paperpile.com/c/0oqYFc/v3rhp
https://paperpile.com/c/0oqYFc/mCNjk
https://paperpile.com/c/0oqYFc/WuXz
https://paperpile.com/c/0oqYFc/jKLt
https://doua.prabi.fr/software/cap3
https://paperpile.com/c/0oqYFc/jKLt+WuXz
https://paperpile.com/c/0oqYFc/6y2b7
https://paperpile.com/c/0oqYFc/ADKLF
https://paperpile.com/c/0oqYFc/NinKu
https://paperpile.com/c/0oqYFc/DOwGy
https://paperpile.com/c/0oqYFc/i4qn3
https://paperpile.com/c/0oqYFc/t80Ij
https://doi.org/10.1101/2024.05.28.596239
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.28.596239; this version posted May 28, 2024. The copyright holder for this preprint (which

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We revived US3C007 from cryostocks and grew the culture in multiple 1L batches to gather
DNA for genome sequencing. We filtered the cells onto 0.1um polycarbonate filters (Millipore)
and extracted DNA with a phenol chloroform approach
(https://www.protocols.io/view/modified-phenol-chloroform-genomic-dna-extraction-
ebnvwkjzwvmk/v2). DNA was pooled together and sent for llluminia NextSeq 2000 paired end
(2x151bp) sequencing at the Microbial Genome Sequencing Center (MiGS) (Pittsburgh,
Pennsylvania, USA). lllumina libraries were prepared with the Illumina DNA Prep kit and 10bp
UDI indices. Demultiplexing, quality control and adapter trimming was performed with
bcl2fastq (v2.20.0422)

(https://support.illumina.com/sequencing/sequencing software/bcl2fastg-conversion-
software.html). lllumina reads were trimmed using Trimmomatic (v0.38) to remove poor
quality bases [24]. We also performed long-read sequencing in-house using an Oxford
Nanopore MinlON with a R9.4.1 (FLOMIN106) flow cell (Oxford, UK). For Nanopore sequencing,
DNA was sheared with a size selection of 20,000bp or greater using Covaris g-tubes (D-Mark
Biosystems, Woburn, USA) and we constructed libraries with the SQK-LSK108 genomic DNA
ligation kit (Oxford Nanopore, UK) with modifications
(https://doi.org/10.17504/protocols.io.bixskfne). Reads were base-called with Guppy v4.4.1
[25], and demultiplexed using Porechop v0.2.4 (https://github.com/rrwick/Porechop). We
assembled the long-read sequence data using Flye v2.9.1 [26] using the “nano-hq” setting and
4 rounds of polishing with minimap [27], included in the Flye assembler. We then used short-
reads from Illumina to further improve the assembly with Polypolish v0.5.0 [28]. The resulting
assembly was visualized for completion with Bandage v0.8.1 [29].

Bacterial cultivation and DNA extraction of FZCC0083 were performed following our
previous paper [10]. Briefly, a surface water sample was collected from the coast of the East
China Sea. The FZCC0083 strain was isolated following the dilution cultivation procedure [11],
and genomic DNA was extracted using EZ.N.A. Library preparation and genome sequencing was
performed following the standard protocols for lllumina sequencing on BGISEQ500 platform
(PE100, Qingdao Huada Gene Biotechnology Co., Ltd) [30] and Nanopore sequencing on a
Nanopore MinlON sequencer (Oxford Nanopore Technologies Inc.) with a R9.4.1 (FLO-
MIN106D) flow cell and the SQK-LSK109 genomic DNA ligation kit (Oxford Nanopore, UK). The
Illumina sequencing reads (coverage > 200x) were quality trimmed using Trimmomatic v0.36
[24] with options ‘SLIDINGWINDOW:4:15 MAXINFO:40:0.9 MINLEN:40’. The Nanopore
sequencing reads (coverage >700x) were base-called with Guppy v5.0.0 [25] via MinKNOW
v21.11.8 and corrected using Necat v0.0.1 [31] with 'PREP_OUTPUT_COVERAGE=100
CNS_OUTPUT_COVERAGE=50' options then assembled using Flye v2.6 [26] with default
parameters. The initial assembly was corrected using polished Nanopore sequencing reads by
racon [32] twice with '-m 8 -x -6 -g -8 -w 500' options and the lllumina sequencing reads by
Pilon v1.24 [33] three times with default parameters. The assembled contig was closed as
validated using Bandage v0.8.1 [29].

Taxon selection and phylogenomics

To expand the taxon selection for the CHAB-I-5 clade, we downloaded Rhodobacterales
genomes from the NCBI and IMG databases (October, 2022), as well as large-scale
metagenomic analyses including TARA Ocean [34, 35], BioGoShip [36], and OceanDNA [37].
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169  First, a total of 259 genomes closely related to CHAB-I-5 (and a sister clade, represented by
170 genomes like AG-337-111 [38]) were selected based on having ANI values below 80% to other
171  Roseobacters outside of these two groups. To categorically define the CHAB-I-5 cluster separate
172 from the AG-337-111 outgroup clade, 120 conserved bacterial single-copy genes were extracted
173  and aligned using GTDB-tk v1.7.0 [39], and a phylogenetic tree was then constructed using 1Q-
174  TREE v2.2.0 [23] with parameters “-m LG+I+G -B 1000” (Fig. S2). We then dereplicated

175  redundant CHAB-I-5 genomes using dRep v3.2.0 [40] with option ‘-pa 0.99 -ps 0.99’, which sets
176  average nucleotide identity at 99%. Genomes with higher estimated quality, which was defined
177  as completeness minus five times the amount of contamination [41], were selected as

178 representatives for the recruitment analysis. We also excluded one genome,

179  OceanDNA_b28631, because of its occurrence on a long branch in the phylogenomic tree and
180  very low ANI (see below) to the remaining CHAB-I-5 genomes, which made its membership in
181 this cluster questionable (Fig. $3). The resulting set included 52 representative CHAB-I-5

182  genomes, which were used to build the final phylogenomic tree using the same approach

183  described above (Fig. 1). This phylogenomic tree was rooted using mad v2.2 based on minimal
184  ancestor deviation approach [42]. This approach considers each branch as a possible root

185  position, evaluates the ancestor-descendant relationships of all possible ancestral nodes in the
186 tree, and chooses the branch with the minimal relative deviation as the root node [42].

187

188  Comparative genomics

189  We compared the pairwise average nucleotide identity (ANI) with fastANI v1.33 [43] and

190 visualized it in R. We used CheckM v1.1.3 [41] to evaluate all genomes and the specific

191  ssu_finder function to identify the bacterial 16S rRNA genes. NCBI BLASTn was used for pairwise
192  16S rRNA gene comparisons. We also analyzed the metabolic potential of the final 52 genomes
193  using Anvio’ v7.1 [44] to generate predicted amino acid sequences from genome sequences
194  and GhostKOALA [45] for annotation of the amino acid sequences with the KEGG orthology
195 database [46]. The resulting annotations and the original amino acid sequences were used with
196  KEGG-Decoder and KEGG-Expander v.1.3 [47] to catalog the metabolic pathways present (Fig.
197  3). These metabolic annotations were further validated by searching against reference

198 Roseobacter genomes (including Ruegeria pomeroyi DSS-3, Dinoroseobacter shibae DFL12, and
199  Planktomarina temperata RCA23) using Orthofinder v2.2.1 [48]. These KEGG comparisons for
200 all genomes are included in Table S1.

201

202  Metagenomic read recruitment

203  Using 1,425 metagenomic samples from Yaquina bay [49], Sapelo Island [50], San Pedro

204  Channel [51, 52], Baltic Sea [53, 54] , Chesapeake Bay [55, 56], Columbia River [57], Black Sea
205  [58], Gulf of Mexico [59], Pearl River [60], San Francisco Bay [61], and the North Pacific

206  Subtropical Gyre [62] along with globally distributed metagenomic datasets [63-67], we

207  recruited reads to the CHAB-I-5 genomes using competitive read recruitment via RRAP (91) as
208  previously reported (20). Briefly, RRAP uses the latest versions of Bowtie2 [68] and SAMtools
209  [69] to perform a competitive read recruitment from metagenomic samples to genomes, sort
210 and index mapped reads, and normalize the data into RPKM values (Reads Per Kilobase (of

211  genome) per Million (of recruited read base pairs)). We then analyzed the output in R. The

212  OceanDNA_b28631 was included in the recruitment with the other 52 genomes, but excluded
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from visualization since we excluded it from our comparative genomics. The RPKM values for all
the genomes are in Table S1.

Microscopy

We initiated sample preparation by growing the US3C007 culture to a density of up to 10°
cells/ml, ensuring they were in the exponential growth phase. Subsequently, we fixed the cells
in 2.5% (final concentration) glutaraldehyde. To harvest the fixed cells, we passed 10 mL of the
bacterial suspension through a 0.2 um Isopore polycarbonate filter (MilliporeSigma) coated
with poly-L-lysine, facilitating cell adhesion to the filter membrane. Poly-L-lysine coating was
achieved by immersing the membrane filter in a solution of Sigma P92155 at a concentration of
0.1 mg/mL. For cell membrane staining, we utilized a solution comprising 0.1 M HEPES buffered
0.05% Ruthenium Red (RuRed) with 10% sucrose. 10 mL of the RuRed solution was slowly
passed through the filter, allowing for a 10-minute incubation period to ensure thorough
staining. Then we performed a staining-fixing step using a solution containing 0.1 M HEPES
buffered 0.05% RuRed, 0.8% Osmium tetroxide, and 10% sucrose. Similar to the previous step,
10 mL of the solution was slowly passed through the filter, with cells incubated for a minimum
of 25 minutes. Following the staining-fixing process, we washed the membrane filter
sequentially with two solutions: 10 mL of 0.1 M HEPES with 10% sucrose, followed by 10 mL of
deionized water. Each washing step was carried out over a 10-minute duration. Subsequently,
the samples underwent sequential dehydration in 50%, 70%, 95%, and 100% ethanol. The filter
membrane was transferred to corresponding ethanol solutions in small containers and
subjected to microwave treatment for one minute in a laboratory microwave oven, maintaining
a temperature below 40°C. Finally, the samples were preserved in 100% ethanol on the filter
and stored at room temperature for further analysis. The filters were sputtercoated for 45s
with a Cressington 108 and imaged with the JSM-7001F-LV scanning electron microscope at the
University of Southern California Core Center of Excellence in Nanolmaging
(https://cni.usc.edu). Resulting images were analyzed as described previously [70].

Cell size analyses

Here we used a method adapted from previous studies [70]. Briefly, we segmented the cell
image into two half spheres and a curved cylinder, mimicking a capsule geometry. The cell
volume was then calculated as the sum of the volumes of the curved cylinder and the two half-
spheres. While an ideal capsule assumes uniform radii for the half-spheres and the curved
cylinder, variations in radii across different cell sections were addressed by measuring radii at
multiple points and calculating geometric parameters (surface areas, volumes, lengths) based
on each radius. Mean and median values of these parameters were used for visualization in our
final violin plots (Fig. 5A).

We use Concepts for iPad v6.13 to measure to scale the image and to manually segment the
cell area, measured in pixel squared (S). Additionally, the ruler feature in the application was
employed to measure the radii of the cell by drawing circles covering widths at various sections,
with each circle’s radius recorded as ‘r'. Mathematical equations for calculating surface areas
(SA), volumes (V), lengths (1), and height (h) based on S and r are detailed in Fig. $9. Our analysis
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encompassed the geometries of 24 cells, as depicted in Figs. S9 and S$10, where we also
showcase the segmentations and circles drawn for measurements.

Growth experiments

The carbon substrate experiment for US3C007 was completed first using modified versions of
the isolation medium, AMS1 (Table S1), to adjust the carbon concentrations while keeping all
other components of the isolation medium the same. We tested the following concentrations
of carbon serving as the presumptive electron donor and carbon source: 0, 9.37, 18.8, 37.5, 75,
150, 300, and 600 uM, as a 1:5:5 molar ratio mixture of methionine, glycine, and pyruvate
(Table S1). For better cell yields, we then further modified the media compositions in AMS1 and
created a new recipe, CCM (Table S1). In brief, the CCM media has no sulfate, completely relies
on methionine for reduced sulfur, and has a 20X concentrated vitamin mix compared to AMS1.
In addition, we substituted asparagine instead of glycine (which was added to aid in culturing
SAR11 [17]) based on the genomic prediction of asparagine auxotrophy. We calculated the
salinity of our media based on the chlorinity (salinity (ppt) = 1.80655 x Cl (ppt) [71]) of the “base
salts”. Although a small amount of chloride also comes from our nutrients (e.g. ammonium
chloride as the nitrogen source, manganese chloride and nickel chloride in the trace metals),
the concentrations were negligible and we therefore did not incorporate those into the
calculation of chlorinity. To test the salinity range of US3C0007, we made two batches of CCM
at 0 and 50 ppt salinity and mixed them in different proportions (Table S1) to obtain the
following salinities (ppt): 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 49. The salinity experiment was
conducted at 18.5°C (room temperature at that time). The temperature experiment was
conducted using the CCM 30 ppt salinity medium at the following temperatures (°C): 4, 12, 16,
18.5, 21, 25, 28.5, 30, and 35.

Our methods of cell enumeration also evolved. For the carbon experiments, we counted cells
with flow cytometry after staining with 1x Sybr green (Lonza 50513) for 30 minutes in the dark.
The carbon experiments were enumerated on the Guava Easy Cyte 5HT flow cytometer
(Millipore, Massachusetts, USA) as described above, except for the third transfer (fourth growth
cycle) of the carbon concentration experiment, which was enumerated with an Accuri C6 Plus
(Becton Dickinson, New Jersey, USA). The cell signals on the flow cytometry were gated based
on the scatter plot of forward scatter vs. green fluorescence area. For the salinity and
temperature experiments, we stained the cells using a final concentration of 10X Sybr green in
addition to 10X Tris-EDTA (Sigma-Aldrich T9285) and 0.25% glutaraldehyde (Sigma-Aldrich
354400). Tris-EDTA maintains the nucleotide staining reaction at pH 8. Glutaraldehyde helps fix
the cells and permeabilize the membrane. Together with the more concentrated Sybr green,
the additional pH buffer and fixative help improve the staining performance. For enumeration,
we counted 30 pL—100 pL of sample/staining cocktail mixture using a medium flow rate
(35uL/min, 15 um core size), threshold (triggering channel) of green fluorescence (533/30 nm)
intensity at 1000. The cell signals were gated based on the green (533/30 nm) vs. yellow
(585/40 nm) fluorescence intensity scatter plot. Based on the emission spectrum of Sybr green-
stained DNA, we gated the signals with a ratio around 10:3 for green vs. yellow fluorescence
intensities. We excluded autofluorescence signals from debris or media components, which
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usually have significantly higher yellow or red fluorescence compared to Sybr green-stained
cells.

Culturing experiments for FZCC0083 were completed with an AMS1-based medium
supplemented with a modified mixed carbon source [72], (1x concentrations of carbon
mixtures were composed of 0.001% [wt/vol] D-glucose, D-ribose, methionine, pyruvic acid,
glycine, taurine, N-acetyl D-glucosamine, and 0.002% [vol/vol] ethanol). This medium was used
at the following temperatures (°C): 4, 12, 16, 20, 24, 26, 30, 37. For the salinity experiment, we
also used modified versions of the AMS1. We kept the concentration of all added nutrient
stocks constant and changed salinity by diluting or increasing the salt stocks while keeping the
ratio of components constant. The exception to this was for sodium bicarbonate, which we kept
constant to maintain buffering capacity. We tested the following salinities (ppt): 1, 2.3, 4.5, 9,
18, 22.6, 25.8, 30.1, 36, 43 at 24°C in the dark. Cells were enumerated on a Guava EasyCyte 5HT
flow cytometer as described above.

Growth curve analysis

Growth rates were calculated using a method adapted from our previously published sparse-
growth-curve [73]. First we applied a sliding window for every three time points and generated
a linear regression of the time vs. log2 transformed cell densities using SciPy package (1.13.0).
The slope of the linear regression gives us the instantaneous doubling rate. To fully capture the
uncertainties and variation of the statistics, we assigned each of the estimated slopes, plus and
minus the standard deviation, to the start, middle, and end of the sliding window. This gave us
nine candidate instantaneous doubling rates from any three time point cell densities. Since the
end of a sliding window would become the middle of the next sliding window, and the start of
the next, etc., each unique time point contributes to multiple estimated growth rates. We took
the median estimated growth rate for each unique time point. We used an automated method
to identify the instantaneous growth rates belonging to exponential phase. We attempted to fit
a sigmoid decay curve to the time vs. instantaneous doubling rate data with the expectation
that the exponential phase would correspond to the period before the inflection point. If the
curve fit failed, we took the top three instantaneous doubling rates with maximum absolute
values. To demonstrate this growth rate calculation method, we have added an example
iPython notebook at GitHub (https://github.com/thrash-lab/insta growth).

Spectrophotometry

We attempted to measure bacteriochlorophyll in strain US3C007 via spectrophotometry of in
vivo (whole cells) and pigment extracts. We performed direct in vivo measurements of culture
volumes ranging from 50mL to 1L and cell densities from mid 10° to mid 10° cells/mL. Some
runs involved filtering the cells onto sterile 0.1 um polyethersulfone (PES) Supor filters (PALL
Corporation, Port Washington, NY, USA) or centrifugation of cells at 9,000 rpm for 30 minutes.
We used sterile CCM2 media for blanks and references. We also performed a washed cell-
suspension using 950mL of US3C007 culture filtered onto a sterile 0.1 um PES Supor filter with a
100mL wash of carbonless artificial seawater media (YBC) [74] and resuspension in 2mL of 1x
PBS. In this case, 1x PBS was used as the reference and blank. For both in vivo approaches, cells
were placed in a quartz cuvette (Hellma GmbH & Co. KG, Miillheim, DEU) and analyzed on a
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342  SpectraMax M2 plate reader (Molecular Devices, San Jose, CA, USA). The settings used were
343  "Absorbance ", 350 - 900nm and 700 - 840nm, to obtain a full and detailed spectra profile. We
344  performed extract measurements by first filtering 500mL of US3C007 culture (5x10°~ cells mL?;
345  sterile 0.1 um PES Supor). Following previous methodology [75], the PES filter with the cells was
346  extracted in 2 mL of 100% EtOH using the following minor modifications: PES filters were
347  incubated for ~24 hours in sealed borosilicate glass tubes (VWR International LLC, Radnor, PA,
348 USA). Following extraction, the 2mL solution was then centrifuged at 5,000 rpm for 5 minutes
349  and 700ulL of supernatant was placed in a quartz cuvette for analysis with the plate reader as
350 described above. 100% EtOH was used as the blank and reference. All samples were kept in the
351  dark or wrapped in foil to prevent BChla degradation.
352  Results
353  Isolation, Identification, and Genome Sequencing
354  US3CO007 originated from a cultivation experiment inoculated with surface water collected from
355 the San Pedro Ocean Time series (SPOT) monthly cruise on 16 September 2020. Its top 16S
356 rRNA gene BLAST hit was 100% identity to Roseobacter sp. SB2, accession KX467571.1 [7]. The
357  16S rRNA gene phylogeny at the time of isolation indicated US3C007 was the nearest
358 phylogenetic neighbor to SB2 and the original clone library sequence of CHAB-I-5 [20] (Fig. S1).
359  Strain FZCCO083 was isolated from the coastal waters of the East China Sea as previously
360 described [10]. Hybrid long and short read genome sequencing resulted in single circularized
361  contigs for both strains. Statistics for both genomes are reported in Table 1 in comparison to
362 the previously isolated strain SB2 [7]. All three strains have very similar sizes, GC content, and
363 coding densities.
364
365 Table 1. CheckM genome statistics for the current and previously isolated strains

Genome Length (bp) | Scaffolds N50 (bp) | GC % Coding Coding # rRNA Reference

(circular) genes density gene
operons

us3coo7 3,622,411 1(y) 50.7 3,513 0.88 2 This study

FZCC0083 3,646,439 1(y) 50.5 3,564 0.88 2 This study

SB2 3,636,317 38 (n) 323,631 50.5 3,527 0.89 1 [7]
366
367 Phylogenomic analysis of 52 CHAB-I-5 genomes resulted in two subgroups, with US3C007 and
368 SB2 on one branch and FZCC0083 on the other (Fig. 1A). We refer to these two branches as
369  Subcluster 1 and Subcluster 2, respectively. Subcluster 1 had a minimum within-cluster average
370 nucleotide identity (ANI) of 95.2%, whereas Subluster 2 had a minimum within-cluster ANI of
371  94.5%. Between-cluster ANI percentages decreased below the species boundary, with a
372 minimum of 90.6%, matching the phylogenomic branching pattern (Fig. 1). US3C007 and
373  FZCCO0083 both had two copies of the 16S rRNA gene. The two from US3C007 had 100% identity
374  with SB2 (accession KX467571.1) and the two from FZCC0083 had 99.91% identity with SB2.
375 The SB2 genome had only one copy of the rRNA gene operon located on a short contig,
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suggesting the other copy might not have assembled successfully. Comparisons of bulk genome
characteristics across all 52 genomes showed a strong conservation of GC content (51.3 £ 0.4
%) and predicted coding density (89.3 £ 0.9 %) within CHAB-I-5 (Table S1).

Biogeography

We mapped metagenomic reads to the CHAB-I-5 genomes from over fourteen hundred
samples spanning a wide biogeography, including large ranges of salinity and temperature, to
quantify CHAB-I-5 distribution. CHAB-I-5 was cosmopolitan, recruiting reads from around the
globe. US3C007 was one of the top three most abundant representative genomes, including
FZCCO083 and the ERR559527_bin_47_MetaBAT_v2_12 1 MAG as the first and second most
abundant, with AA076_117 and SB2 rounding out the top five (Fig. 2A). We observed
recruitment across all latitudes and saw no specific relationship between genomes and latitude
separate from that conferred by the locational bias of the samples themselves (Figs. S4, S7).
Comparison of read recruitment with salinity demonstrated that all members of CHAB-I-5
prefer marine habitats, though some genomes do recruit limited numbers of reads from
samples with a salinity as low as 8 (Figs. S5, S7). We also observed a tendency for genomes to
recruit more reads from samples between temperatures of 11-20°C, even though most samples
were from warmer locations (Figs. S6, $7). When abundance was summed by phylogenetic
subcluster, the median recruited reads were smaller for Subcluster 1 than that of Subcluster 2
(Fig. 2B). However, Subcluster 1, containing isolates US3C007 and SB2, had a higher
recruitment than Subcluster 2, the FZCC0083 type, at sites such as the Western United States
coast, the Western South African coast, the North Sea, and the English Channel (Fig. 2B).
Cluster 2 had higher recruitment at locations such as the Mediterranean, Pearl River, and much
of the North Atlantic Gyre.

Genomic content

We compared CHAB-I-5 genomes to determine the conservation of metabolic potential and
whether the two subclusters could be distinguished genomically (Fig. 3, Table S1).
Corroborating previous reports [7, 12], these organisms were predicted to be capable of
aerobic chemoorganoheterotrophic metabolism with the potential for anoxygenic phototrophy.
All of the 52 non-redundant genomes had the potential for glycolysis via the Entner-Doudoroff
pathway and the TCA cycle. All genomes contained nearly or fully complete electron transport
pathways consisting of NADH-quinone oxidoreductases, F-type ATPases, cytochrome ¢
oxidases, and ubiquinol-cytochrome c reductases. One genome, CPC58, contained a predicted
cbbs-type cytochrome c oxidase. Most genomes had genes for polyhydroxyalkanoate (PHA)
synthesis, a partial formaldehyde assimilation pathway, and a di/tri methylamine
dehydrogenase. Most genomes had the potential to convert ethanol to acetate and
acetaldehyde, and genes for anaplerotic C-fixation. Most genomes also contained a complete
anoxygenic type-Il reaction center. We found predicted genes for synthesis of
bacteriochlorophyll a and/or b (bchXYZ, bchC, bchF, chlG, chlP- situated near the puf gene
operon in US3C007) conserved across the CHAB-I-5 group, but found no annotated homologs
for synthesis of bacteriochlorophyll d, c, or e. Full or partial pathways for flagella were also
conserved.
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Genes for metabolism of nitrogen, sulfur, phosphorous, trace metals, and vitamins were
largely similar between subclusters. We found transporters for urea, ammonium, and
phosphate were conserved, and most genomes contained a phosphonate transporter (Fig. 3).
All 52 non-redundant genomes had the napA nitrate reductase, and CPC58 was the sole
genome to encode a nirK nitrite reductase. All genomes except for CPC58 contained nearly or
full pathways for thiosulfate oxidation via the sox gene cluster, and a gene encoding a sulfite
dehydrogenase quinone was conserved. All non-redundant genomes in Subcluster 1 and most
in Subcluster 2 had genes for sulfide oxidation. Most genomes had a DMSP lyase, all had genes
for DMSP demethylation and most genomes also encoded a DMSP synthase. Predicted urease
genes were prevalent throughout both Subclusters. Several genomes also encoded the C-P
lyase complex, operon, and cleavage potential, although the latter was more common in
Subcluster 2, and the US3C007 genome did not encode for the C-P lyase. Most genomes had a
predicted Mg-Co transporter, Mg-Zn transport potential, and some genomes in Subcluster 1,
including US3C007, had a copA copper transporter. Most genomes had ferric iron, Mn-Zn-Fe,
zinc, and tungstate transporters. Most genomes in Subcluster 1 contained partial or nearly
complete pathways for molybdate transport whereas only one genome in Subcluster 2
contained at least a half pathway. No genome contained the full pathway for thiamin
biosynthesis, though a partial pathway was common. Most genomes contained either a full or
partial pathway for riboflavin and cobalamin biosynthesis and thiamin transport.

Amino acid metabolism was also very similar between subclusters. Prototrophy for
lysine, serine, threonine, glutamine, histidine, arginine, cysteine, glycine, valine, methionine,
isoleucine, tryptophan, aspartate, and glutamate was largely conserved, whereas asparagine
auxotrophy was widespread (Fig. 3). Glycine betaine synthesis, glycine betaine/proline
transport, and ectoine/hydroxyectoine transport were also conserved. Most genomes in
Subcluster 1 could transport taurine, with no genomes from Subcluster 2 containing this
pathway, including the complete genome of FZCC0083.

Thus, the genome content across both subclusters was remarkably similar. The notable
differences between the subclusters were the presence of the taurine and copper transporters
as well as pcaGH dioxygenase genes exclusively within Subcluster 1, a greater prevalence of C-P
lyase genes and low affinity phosphate transporter in Subcluster 2. Therefore, the Subclusters
within CHAB-I-5 may exhibit some niche differentiation based on dissolved organic nitrogen and
phosphorus utilization.

Physiology and morphology

US3C007 grew consistently between 16 - 25°C, but not at temperatures of 12°C or below, or at
28.5°C or above (Fig. 4A). Additionally, US3C007 grew at salinities of 15-49 ppt, but not at 10
ppt or below (Fig. 4B). The maximum observed growth rate was 1.55 +/- 0.05 divisions day™ at
18.5°C and 30 ppt (Fig. 4B; Table S1). We tested US3C007’s growth across a range of carbon
concentrations to determine the carbon concentration to which it was best adapted. The
primary carbon sources in the carbon mix were methionine, glycine, and pyruvate at a 1:5:5
molar ratio. We tested eight concentrations up to 600 uM carbon, with 300 uM carbon being
the concentration in AMS1 medium (resulting from 10 uM methionine, 50 uM glycine, and 50
UM pyruvate) (Table S1). We observed no net change in growth rate with increasing carbon
concentration, but an increase in yield (Fig. 4C,D). The consistent growth rate at low carbon
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concentrations indicates that this strain is particularly well adapted to low carbon
environments. However, even after three transfers (four total growth cycles from lag to late log
or stationary phase), we observed continued growth in the negative control, (Fig. 4C), albeit to
lower cell densities than those cultures receiving carbon additions (Fig. 4D). We hypothesize
this growth resulted from the strain having genes for PHA storage (Fig. 3), but this remains to
be tested. We attempted to measure bacteriochlorophyll in whole cells, but were unable to
determine a definitive spectrophotometric peak. This could have been the result of inadequate
biomass or growth conditions that did not lend themselves to bacteriochlorophyll production.

FZCC0083 grew considerably faster than US3C007 in all conditions tested (Fig. 4A,B;
Table S1). The maximum observed growth rate was 3.41 +/- 0.44 divisions day™* at 24°C and
30.1 ppt (Fig. 4B)- more than twice the division rate of US3C007. FZCCO083 had a wider
temperature growth envelope than US3C007, growing between 12 - 30°C with no growth at 4°C
or 37°C. Its salinity tolerance was similar to that of US3C007, growing between 18-43 ppt, but
not at 9 ppt or below. Thus, these two strains have notable differences in physiology which
reflects their phylogenetic separation (Fig. 1).

US3C007 cells were small, having average cell lengths ~1.65um and radii ~0.23 um,
yielding cell volumes ~0.44 um? (Fig. 5A). We observed multiple morphologies within a single
clonal culture (Fig. 5B-E, Figs. $9, $10). Single cells were usually bacillus-shaped, with some
displaying more curved rod morphology or bulbous coccobacillus shapes (Fig. 5B-E, Figs. $9-10).

Discussion

This study is the most comprehensive analysis of the CHAB-I-5 subcluster within the larger
“Roseobacter” group of Rhodobacterales to date. We have expanded the genomic and
ecological characterization from four to 52 unique CHAB-I-5 genomes, including the first two
circularized CHAB-I-5 genomes, and two new, publicly available CHAB-I-5 isolates, strains
US3C007 and FZCCOO083. Both strains are reliably propagated in artificial seawater media that
are easily modified and we provided the first physiological and morphological characterization
for members of the CHAB-I-5 group. Our expanded analysis also took advantage of recently
generated, publicly available CHAB-I-5 genomes to understand intra-clade genomic diversity
using phylogenomics and ANI. A prior study established two subclusters within CHAB-I-5 using
environmental 16S rRNA gene sequence phylogeny [7], and we see the same division in our
analysis. Both phylogenomics and average nucleotide identity support at least two subgroups
within CHAB-I-5, denoted Subcluster 1 and Subcluster 2, that represent two species within a
genus based on within- and between-subcluster ANI (Fig. 1). Isolate US3C007 belongs to
Subcluster 1 and isolate FZCCO083 belongs to Subcluster 2.

Metabolic potential within CHAB-I-5 was highly conserved (Fig. 3). Nevertheless, we
observed a few differences between Subclusters that may point to specific metabolic
adaptations. The taurine ABC transporter tauABC was present in Subcluster 1 and not
Subcluster 2 is (Fig. 3). Taurine is an important, multifunctional compound that serves as an
osmoregulation tool and as a source for carbon, nitrogen, and sulfur for marine bacteria [76].
This differential ability to transport taurine may confer a growth advantage for Subcluster 1, but
future research is needed to confirm how taurine is used, as all genomes encoded pathways for
taurine catabolism. Another notable difference in metabolic content between the CHAB-I-5
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subclusters was that of the C-P lyase genes. C-P lyases cleave carbon-phosphorous bonds and
are used as a phosphate scavenging strategy that produces methane aerobically [77, 78].
Although all strains had typical pstABCS phosphate transporters, Subcluster 2 was enriched in C-
P lyase genes, while only a few Subcluster 1 genomes had the pathway (Fig. 3). These results
suggest Subcluster 2 interacts more consistently with the dissolved organic phosphorous pool
and may contribute to methane production in global oceans. A subset of genomes in Subcluster
1 also contained the copA copper transporter exclusively, including US3C007, but distribution
was spotty, suggesting a lack of conservation for the use of copper and/or that we didn’t
observe the gene due to incomplete genomes.

We also extended the analysis of CHAB-I-5 distribution through read recruitment from
over fourteen hundred metagenomic samples, including those in brackish and freshwater
environments. Our results expand the known ecological distribution of CHAB-I-5 members,
showing their presence in sample sites such as the North Atlantic gyre, South Pacific, Gulf of
Mexico, Red Sea, and polar locations that were unavailable or had fewer sites surveyed in
previous reports of CHAB-I-5 biogeography (Fig. 2) [7, 12]. Our work confirms and extends the
view of CHAB-I-5 as a cosmopolitan member of the global oceans, and although the Subclusters
were generally found in all the same locations, there were some samples where one Subcluster
dominated (Fig. 2B). Subcluster 2 recruited more overall reads than Subcluster 1 (Fig. 2B), and
the FZCC0O083 and US3C007 genomes recruited the first and third most reads across all the
samples (Fig. 2A). This suggests that these genomes are highly representative of CHAB-I-5
across the global oceans and make the strains excellent candidates for further study of the
clade.

CHAB-I-5 can be abundant and active in polar latitudes [7, 12], however, our data did
not show strong evidence of latitudinal preferences by genome (Fig. S4). Our initial
physiological findings demonstrated restricted temperature range for both strains, representing
each subcluster. US3C007 grew between 16-28.5°C and FZCCO083 grew between 12-30°C.
These ranges are narrower than the observed range in metagenomic data for each genome,
which both had substantial read recruitment in samples where the water temperatures were
below 10°C (Fig. S7). This suggests the presence of (still uncultured) strains closely-related to
US3C007 and FZCCO083 with greater psychrotolerance. In fact, many of the other SAG/MAG
CHAB-I-5 genomes showed maximum read recruitment in samples below 15°C (Fig. $6), so it is
likely that multiple strains of CHAB-I-5 are better cold-adapted than the two isolates.

On the other hand, the discrepancy between the lab and field measurements for
US3C007 and FZCCO083 could describe the difference between realized and fundamental
niches. Although the ideal fundamental niche space is sometimes envisioned as more extensive
than the realized niche [79, 80], the reverse can also be true. For example, multiple ecotypes of
Prochlorococcus had narrower temperature growth ranges in the laboratory than the ranges
observed in nature via molecular data [81]. This is similar to the pattern we observed in both
US3C007 and FZCCO083, where the realized niche appears larger than the fundamental niche
with regards to temperature (Figs. 4, S4). For Prochlorococcus, the authors considered that a
cultivation bias, stemming from continual maintenance of cultures in a restricted temperature
range, could have led strains to evolve a different temperature optimum than the original
population [81]. Similarly, continual culturing could also lead strains to evolve a more narrow
temperature tolerance than would have been maintained by strains in the fluctuating natural

Page 14 of 25


https://paperpile.com/c/0oqYFc/HCmDH+98QJT
https://paperpile.com/c/0oqYFc/6y2b7+ADKLF
https://paperpile.com/c/0oqYFc/6y2b7+ADKLF
https://paperpile.com/c/0oqYFc/M0lLV+Z3TT2
https://paperpile.com/c/0oqYFc/RrVPx
https://paperpile.com/c/0oqYFc/RrVPx
https://doi.org/10.1101/2024.05.28.596239
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.28.596239; this version posted May 28, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

549  environment. This would result in a contraction of the measured fundamental niche relative to
550 the realized niche. However, another plausible explanation was that dispersal of

551  Prochlorococcus resulted in cells being distributed to many locations outside their optimal

552  temperature range [81]. Since our culture experiments are regularly restarted from

553  cryopreserved samples, it was unlikely that our strains had evolved a more restricted

554  temperature range since their isolation. Therefore, we consider our observations of a wider
555  realized niche than fundamental niche to be consistent with the dispersal hypothesis as well.
556 Where salinity was concerned, our experiments suggested that CHAB-I-5 is an

557  exclusively marine organism (Fig. 4B). Our read recruitment agreed - no genomes showed

558 strong preferences for brackish or freshwater habitats (Figs. S5, $7). This contrasts with other
559  abundant free-living microorganisms like SAR11 and Aegean-169 which both have subclades
560 adapted to lower salinities [70, 82]. Other Roseobacter relatives have been isolated from

561  brackish salinities as well [18, 19, 83, 84], and CHAB-I-5 members have been observed in

562  equivalent abundances along the salinity gradient of the Chesapeake Bay [14]. While we found
563  no clear evidence of fresh or brackish water specialists within CHAB-I-5, multiple genomes did
564  recruit low numbers of reads from brackish waters with salinities as low as 8 (Fig. S5). Future
565  work measuring activity of CHAB-I-5 across salinities could provide insight to whether the cells
566  might be active in these lower salinity environments.

567 The US3C007 and FZCCO083 cultures have provided the first growth and morphological
568  data for CHAB-I-5. These cultures span a wide range of growth rates, with the maximum for
569  FZCCO083 being over twice as fast as that of US3C007 (3.41 +/- 0.44 vs. 1.55 +/- 0.05 divisions
570 day?). These phenotypic differences likely reflect that these are different species, isolated from
571  different oceanic regimes. Strain US3C007 was isolated from surface water collected at SPOT, a
572  unique temperate semi-coastal location between Catalina Island and the coast of California
573  overlying the San Pedro Basin at nearly 900m depth. Water circulation patterns in the Southern
574  California Bight are complex [85, 86], but SPOT is inshore of the California Current system and
575 average fall surface temperatures (warmest of the year) in the nearby Santa Monica Basin can
576  reach 20.5°C [87]. Conversely, strain FZCC0083 was isolated from coastal waters off Pingtan
577 Island, in the shallow Taiwan Strait very near the delineation of the East and South China Seas
578 [10]. This location is in shallow water (< 30m) and over 8 degrees of latitude south of SPOT

579  (~900 km). Regional currents in this area branch from the Kuroshio Current system and fall

580 average surface temperatures can reach 26°C [88]. Minimum temperatures in both areas are
581 near 14°C. The optimization of FZCC0083 for growth at higher temperatures than US3C007, as
582  well as the ability of FZCC0083 to grow at higher maximum temperatures (Fig. 4A), likely

583  reflects the higher average temperatures in the Taiwan Strait compared to the Southern

584  California Bight. Overall relative abundances of Subcluster 1 (US3C007-type) and Subcluster 2
585  (FZCC0083-type) with temperature were subtle, but showed general trends that match the
586 isolate physiology: both trended downward with temperature, but Subcluster 1 had a slightly
587  more negative correlation (Fig. S11). Thus, the growth physiology may signify larger habitat
588 preferences for the Subclusters.

589 The considerable differences in growth rate between the two strains suggests more
590 complex evolutionary diversification acting on multiple aspects of cell physiology. Nevertheless,
591 the growth rates of these two strains span that of others in the larger PRC. Division rates for the
592  model Roseobacter group organism, Ruegeria pomeroyi DSS-3", which is not a PRC member,
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have been reported at up to 2.5 hour? [89]. The PRC includes many organisms with distinct
genomic and lifestyle differences from better-studied copiotrophic Roseobacter group
members like R. pomeroyi [7, 9, 90] and there are a few examples of cultured representatives
from the PRC. Isolates from the DC5-80-3 (also called RCA) and CHUG groups that accompany
CHAB-I-5 in the PRC have yielded some important growth insights [9, 91-93]. Strain LE17 had
division rates of roughly 1 day [92], and strain HKCCA1288 had division rates closer to 2 day
[9], although optimized medium has reduced this to just under 5 hours [89]. The type strain for
the DC5-80-3 cluster, Planktomarina temperata RCA23T, as well as another close relative of
US3C007, strain HIMB11, grew preferentially at mesophilic temperatures like US3C007,
although rates were not reported [91, 94]. Given the close relationship between them, the
variation in growth rates between US3C007 and FZCC0O083 provide an excellent opportunity to
investigate fundamental limits on growth rate. More strains from different locales will be
important for exploring phenotypic heterogeneity within the group.

Our microscopic observation of strain US3C007 revealed significant pleomorphism in the
culture (Fig. 5B-E). Pleomorphism and irregular morphology has been recorded in other
Roseobacter group members, including HIMB11 [94]. Both HIMB11 and US3C007 have cells that
are coccobacillus as well irregular rods [94] (Fig. 5B-E). The weighted average cell volume of
1,276 heterotrophic cells across 23 coastal ocean samples was 0.11 + 0.17 um?3 [95], whereas
average US3C007 volume was 0.44 + 0.06 um? across a variety of morphologies (Fig. 5A). Thus,
US3C007’s average cell volume is greater than the average heterotrophic bacterium, stemming
in part from a relatively large radius for the cell length, compared to cells like that of SAR11 [70,
96, 97]. Future work to determine the extent of morphological variation and its drivers in
natural populations of CHAB-I-5 will be important to understand the biology of these organisms
more generally and for modeling the impact of carbon cycling by CHAB-I-5.

Overall, this work provides the most comprehensive genomic and ecological
characterization of CHAB-I-5 and defines the first physiological data of the group. These recent
advances in the availability of public CHAB-I-5 genomes and a new isolate that is representative
of the CHAB-I-5 in global waters is a crucial component needed to characterize this abundant
and highly active fraction of the microbial community. Future work is needed on US3C007 and
the CHAB-I-5 cluster that could include comparative physiology between FZCC0083 and
US3C007 to highlight whether a growth advantage might be conferred in the environment
based on phosphorous, copper, or taurine availability and to quantify global estimates of CHAB-
I-5’s contribution to biogeochemical cycling in the oceans.

Description of Thalassovivens, gen. nov.

Thalassovivens (Tha.las.so.vi'vens. Gr. fem. n. thalassa, the sea; L. pres. part. vivens, living, N.L.
fem. n. Thalassovivens, an organism living in the sea, in reference to the marine habitat of these
organisms)

Aerobic, with chemoorganoheterotrophic, chemolithotrophic, and anoxygenic
phototrophic metabolisms. Encodes genes for glycolysis through the Entner-Doudoroff pathway
and the TCA cycle. Genome sizes of ~3.6 Mbp, with GC content ~51% and a coding density
~89%. Prototrophy predicted for lysine, serine, threonine, glutamine, histidine, arginine,
cysteine, glycine, valine, methionine, isoleucine, tryptophan, aspartate, and glutamate, with
asparagine auxotrophy. Glycine betaine synthesis, glycine betaine/proline transport, and
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ecotine/hydroxyectoine transport genomically conserved. Genes for the PII nitrogen regulatory
system, ntrXY, amtB, and urease conserved. Most genomes also encode genes for aerobic
vitamin B12 synthesis. Genes for synthesis of bacteriochlorophyll a and/or b conserved. Motility
via flagella is predicted.

Description of Thalassovivens spotae, sp. nov.
Thalassovivens spotae (spo'tae. N.L. gen. n. spotae, in reference to the San Pedro Ocean Time
series (SPOT), from which the strain was isolated).

In addition to the characteristics of the genus, it has the following features. Cells are
coccobacillus shaped, pleomorphic, with average dimensions of 0.23 um radius, 1.65 um length,
and 0.44 um? volume. Halotolerant, growing in salinities of 15-49 ppt, but not at 10 ppt or
below. Mesophilic, growing between 16 -25°C, but not at temperatures of 12°C or below, or at
28.5°C or above. Has a maximum growth rate of 1.55 +/- 0.05 divisions day* at 20°C and salinity
of 30 ppt.

The type strain, US3C0077, was isolated from surface water (2m) collected at the San
Pedro Ocean Time series (33°33’ N, 118°24” W). The genome sequence is circularized at
3,622,411 bp with 50.7% GC content. The genome is available on NCBI at BioProject number
PRINA1044073.

Note to editors/reviewers: we sent strain US3C007 to both the DSMZ and ATCC culture
collections in January 2024 and February 2024, respectively, and are awaiting confirmation of
deposition. We would like to undergo review while the deposition process moves forward and
we will update the accession numbers (ATCC XXXXX = DSMZ XXXXX) as part of our later
revisions.
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Figures

Figure 1. Phylogenomics and average nucleotide identity (ANI) of CHAB-I-5. A) Phylogenomic
tree of 52 CHAB-I-5 genomes rooted with minimal ancestor deviation. CHAB-I-5 isolates are
highlighted in red and Subclusters are labeled. Scale bar indicates changes per position. Filled
circles indicate nodes with bootstrap values > 95%. B) Pairwise ANI of the CHAB-I-5 Subclusters,
colorized according to the key. Squares denoting 100% identity of each genome to itself are not
colored.

Figure 2. Biogeography and prevalence of CHAB-I-5 representatives. A) Boxplots of all RPKM
values for each genome in the analysis. Black lines within the boxes indicate median RPKM
values. The top five recruiting genomes are colored. B) Summed RPKM values for all genomes in
each Subcluster, plotted according to sample location. RPKM values are depicted by circle size
according to the key. Boxplot indicates the range of values for all genomes in each Subcluster.

Figure 3. Predicted metabolism of CHAB-I-5. Subclusters are organized top to bottom to match
the phylogeny of Fig. 2. Colors inside boxes correspond to pathway completion percentage
according to the key. Genomes from isolates are noted in red.

Figure 4. Growth rates for US3C007 and FZCC0083 across A) temperatures, B) salinities, and for
US3C007 C) at differing low carbon concentrations. D) Growth yields for US3C007 under the
same carbon experiments for C. Data in A-C comes from instantaneous growth rates
throughout exponential phase. Data points are plotted along with medians (lines) and the
distribution (violin plot shaded region).

Figure 5. Cell size and shape of US3C007. A) Dimensions from analysis of 24 separate cells (see
Figs. S9, S10) of different sizes and shapes. Medians are indicated with a bar and the violin plot
shading shows the distribution of the data. B-E) Representative cells of different size/shape
configurations seen in the culture. Scale bars (500 nm B,C; 400 nm D; 1 um E) are indicated
below each image.

Supplemental Tables and Figures

Table S1. Excel spreadsheet containing genome statistics, computed ANI values, metabolic
predictions, AMS1 medium recipe and modifications, growth rates for growth experiments,
RPKM values from metagenomic recruitment, and microscopic size calculations. Table S1 is
hosted at FigShare 10.6084/m9.figshare.25898389.

Figure S1. Phylogenetic tree of 16S rRNA gene sequences from the Alphaproteobacteria with
US3C007 and other CHAB-I-5 representatives. Nodes outside of the CHAB-I-5 and Roseobacter
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HIMB11 clade have been collapsed to show US3C007’s inclusion with the CHAB-I-5 sequences.
The CHAB-I-5 cluster is boxed in red and strain US3C007 is starred.

Figure S2. Phylogenomic tree of all CHAB-I-5 genomes prior to dereplication and those of the
sister clade containing AG-337-111 and others. Scale bar indicates changes per position. Filled
circles indicate nodes with bootstrap values > 95%.

Figure S3. Phylogenomic tree of dereplicated CHAB-I-5 genomes (excepting the dual copies of
the SB2 genome), and associated ANI values. Dotted lines indicate the position of the
OceanDNA_b28631 genome, which was removed due to the low ANI values and the long
unsupported branch on the tree. Scale bar indicates changes per position. Filled circles indicate
nodes with bootstrap values > 95%.

Figure S4. Metagenomic recruitment (normalized as RPKM) to all genomes by latitude with
non-linear regression lines featuring shading that represents the 95% confidence intervals. The
histogram below the RPKM plots shows the sample distribution according to latitude.

Figure S5. Metagenomic recruitment (normalized as RPKM) to all genomes by salinity with non-
linear regression lines featuring shading that represents the 95% confidence intervals. The
histogram below the RPKM plots shows the sample distribution according to salinity.

Figure S6. Metagenomic recruitment (normalized as RPKM) to all genomes by temperature with
non-linear regression lines featuring shading that represents the 95% confidence intervals. The
histogram below the RPKM plots shows the sample distribution according to temperature.

Figure S7. Metagenomic recruitment (normalized as RPKM) for the top 5 recruiting genomes
according to A) latitude, B) salinity, and C) temperature with non-linear regression lines
featuring shading that represents the 95% confidence intervals. Histograms below the RPKM
plots show the sample distribution according to the same x-axis variable. Note that while all
metagenomic samples had latitude values, the metadata did not always include salinity or
temperature, and thus the total number of points in B) and C) are different.

Figure S8. Growth curves of strains US3C007 and FZCCO083 for the temperature and salinity
experiments. Y-axes are cell concentrations in cells/ml, x-axes are time. Conditions are written
at the top of each plot.

Figure S9. Notes and marks for the analyses of cell morphologies. Using the pixel and scale
features in Concepts for iPad v6.13, we measured the radii (R) and area of the cross section (S)
of the cells. The formula of the lengths (l), volumes (V), and surface areas (SA) calculated based
on r (we denoted r as the mean radii of each cell) and S are shown at the top of the figure. The
detailed formula could also be found at Table S1.

Figure $10. Same as Figure S9, marks of measurements for the SEM images.
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746  Figure S11. Relative abundance of Subclusters 1 (green) and 2 (blue) compared to temperature.
747  Subcluster RPKMs were summed as in Figure 2B. R? values for the linear regressions are plotted
748  at the top. Shading around the linear regression indicates 95% confidence intervals.

749
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Carbon concentration (UM

Salinity (ppt)
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Volume Surface areaSurface area  Radius Length
/NMolume

.5 5\% spot WD tilt mag [ HFW [ det lens mode oD 5\% spot WD tilt mag [ HFW dwell det lens mode
4.00kv | 25 | 3.2mm | 0° | 150000 x | 2.76 ym | 100 ns  TLD = Immersion ~ 1 400kv | 25 [32mm 0°  150000x 2.76 pm 100 ns | TLD  Immersion

i P PN o L
,\& HV spot WD tilt mag [ HFW dwell | det | lens mode € HV spot wD tit | mag [ dwell | det | lens mode
4.00kv | 25 [ 3.2mm 0° | 200000x | 2.07um | 100 ns TLD & Immersion X 4.00kv | 25 3.2mm 0° 80000x | 518 pum | 100ns TLD | Immersion
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