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Introduction

Flooding is one of the most frequent natural disasters caus-
ing significant damage to natural and human resources and 
affecting millions worldwide. On average, the world wit-
nessed 163 flood events annually between 2001 and 2020 
with economic losses worth 34.1 billion US$ (CRED, 2022). 
However, 2021 recorded a marked increase in flood events 
(223) and extensive economic losses (74.4  billion US$). 
While the flood impacts are substantial with the current cli-
mate scenario, land use/ land cover conditions, and societal 
development (Cutter and Emrich 2005; Grahn and Nyberg 
2017), climate change and land use/ land cover modifica-
tions, particularly urbanization of flood plains, are highly 
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Abstract
Unprecedented floods from extreme rainfall events worldwide emphasize the need for flood inundation mapping for 
floodplain management and risk reduction. Access to flood inundation maps and risk evaluation tools remains challenging 
in most parts of the world, particularly in rural regions, leading to decreased flood resilience. The use of hydraulic and 
hydrodynamic models in rural areas has been hindered by excessive data and computational requirements. In this study, 
we mapped the flood inundation in Huron Creek watershed, Michigan, USA for an extreme rainfall event (1000-year 
return period) that occurred in 2018 (Father’s Day Flood) using the Height Above Nearest Drainage (HAND) model and 
a synthetic rating curve developed from LIDAR DEM. We compared the flood inundation extent and depth modeled by 
the HAND with flood inundation characteristics predicted by two hydrodynamic models, viz., HEC-RAS 2D and SMS-
SRH 2D. The flood discharge of the event was simulated using the HEC-HMS hydrologic model. Results suggest that, in 
different channel segments, the HAND model produces different degrees of concurrence in both flood inundation extent 
and depth when compared to the hydrodynamic models. The differences in flood inundation characteristics produced by 
the HAND model are primarily due to the uncertainties associated with optimal parameter estimation of the synthetic 
rating curve. Analyzing the differences between the HAND and hydrodynamic models also highlights the significance of 
terrain characteristics in model predictions. Based on the comparable predictive capability of the HAND model to map 
flood inundation areas during extreme rainfall events, we demonstrate the suitability of the HAND-based approach for 
mitigating flood risk in data-scarce, rural regions.
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likely to escalate flood risks. It is projected to increase the 
flood risk in a warming climate due to the shifts in precipi-
tation distribution and variability (i.e., intensity, frequency, 
and duration) by the intensification of the hydrological 
cycle, as well as changes in socio-economic development 
factors (Arnell and Gosling 2014; Hirabayashi et al. 2013; 
Madakumbura et al. 2019; Tellman et al. 2021; Winsemius 
et al. 2015). Flooding is a leading cause of weather-related 
natural disasters in the United States, with a Congressional 
Budget Office estimate of $54 billion in losses (from hur-
ricane winds and storm-related flooding) each year (CBO 
2019). According to Swain et al. (2020), the United States is 
expected to witness a mean increase of ~ 20% (magnitude) 
and > 200% (frequency) in a 100-year storm event under 
the high-emission scenario (RCP8.5), yielding a ~ 30–127% 
increase in population exposure. Although flood suscepti-
bility across the United States is spatially heterogeneous 
(Saharia et al. 2017), flood risk significantly differs between 
urban and rural areas. Predictably much of the research 
attention focuses on flooding in urban regions overlooking 
the rural areas, yet those are significantly vulnerable to the 
impacts of flooding (Bukvic and Harrald 2019; Cutter et al. 
2016; Rhubart and Sun 2021).

Along with the different social and physical characteris-
tics (Rhubart and Sun 2021), the decreased flood resilience 
in rural areas is also a result of the lack (and access) of ade-
quate data and appropriate tools to understand and assess 
the flood risk. However, the level of flood resilience in rural 
communities can be enhanced considerably by mapping 
inundation areas before flood events, as these maps facili-
tate risk communication to different stakeholders (Henstra 
et al. 2019). Such non-structural measures help mitigate the 
impacts of floods and facilitate the development of climate-
resilient, risk-informed rural communities. Traditionally, 
flood inundation mapping uses various hydrodynamic and 
hydraulic models, such as HEC-RAS, SMS-SRH, MIKE-
FLOOD, etc. (Deslauriers and Mahdi 2018; Patel et al. 
2017; Vozinaki et al. 2015) which require a variety of basin- 
and channel-related data input and/or higher computational 
power and time. However, in most rural regions, such data 
at finer spatial and temporal scales are unavailable, leav-
ing the rural communities and emergency managers without 
flood inundation mapping they could use to mitigate flood 
impacts. Numerous efforts focused on mapping flood haz-
ards without detailed data and observations have resulted 
in the development of a range of models and tools with dif-
ferent data and computational requirements. For instance, 
the AutoRoute model has been developed to produce flood 
inundation maps for extreme flood events from DEM (Fol-
lum 2013). Wing et al. (2017) developed a 2D hydrodynamic 
model, capable of simulating pluvial flooding and fluvial 
flooding (only in reaches with catchment area exceeding 50 

km2) at ~ 30 m resolution, for the conterminous US using 
publicly available data.

In a similar sense, significant research has also been 
dedicated to simplifying the flood models and their data 
requirements for universal applications. One such simpli-
fied approach is the Height Above the Nearest Drainage 
(HAND) model (Rennó et al. 2008). The HAND, a DEM-
derived terrain attribute, implying the draining potential and 
soil moisture dynamics, is a suitable descriptor for identify-
ing hydrologically different landscape units (Gharari et al. 
2011; Nobre et al. 2011). Major advantages of the HAND-
based approach over the hydraulic/hydrodynamic models 
are the computational efficiency and lower complexity with 
simplified input data requirements. Numerous researchers 
have demonstrated the suitability of the HAND model in 
flood inundation and floodplain mapping studies in various 
hydroenvironmental conditions (e.g., Bhatt and Srinivasa 
Rao 2018; Diehl et al. 2021; Rahmati et al. 2018; Scriven et 
al. 2021; Speckhann et al. 2017) resulting in the application 
of HAND in different web-based flood inundation mapping 
as well as real-time and forecast flood guidance systems 
(e.g., Chaudhuri et al. 2021; Hu and Demir 2021; Johnson 
et al. 2019; Unnithan et al. 2024; Zheng et al. 2018a).

Since the HAND indicates the difference in the eleva-
tion of a given point in the catchment area and the elevation 
of the stream channel to which the point drains follow-
ing the flow direction, the inundation depth at the point 
can be estimated as the difference between the water level 
(flood stage) and the HAND value. However, the estima-
tion of stage height remains the major constraint, particu-
larly in ungauged watersheds. To overcome this, Zheng et 
al. (2018b) developed an approach to compute the river 
channel geometry and estimate the synthetic rating curve 
(on a reach-average level) based on HAND values. The syn-
thetic rating curve demonstrates the empirical relationship 
between discharge and stage height for a given reach and its 
catchment area. Further, Zheng et al. (2018b) noted that opti-
mization of Manning’s n generates a reasonable synthetic 
rating curve comparable to that derived using HEC-RAS 
and gauge observations. Subsequently, various researchers 
(e.g., Ghanghas et al. 2022; Johnson et al. 2019; Scriven 
et al. 2021; Zheng et al. 2022) also tested the performance 
of the synthetic rating curve at wide spatial scales and rec-
ommended it as a viable approach in ungauged basins and 
data-scarce regions.

Considering the advancements in HAND-based flood 
inundation mapping, it is also essential to investigate the 
efficiency and representativeness of the HAND model over 
data- and computationally-intensive hydraulic/hydrody-
namic models. Previous studies comparing the flood inun-
dation extent and depth between HAND and HEC-RAS 
2D models suggest that the HAND model generates an 
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inundation extent similar to that modeled by HEC-RAS 2D. 
For instance, Afshari et al. (2018) observed that the results 
of the HAND model are significantly close to the HEC-
RAS 2D for flood extent and depth in simple landscapes 
at large spatial scales. However, significant differences are 
evident in complex conditions, such as meandering chan-
nels and stream confluences. Afshari et al. (2016) reported 
that the HAND model underestimates inundation extent by 
up to 40% in a flat, urbanized area with a controlled/man-
aged river channel. In contrast, the model showed improved 
accuracy in areas having undulating topography. While 
comparing the flood inundation extent and depth in small 
headwater catchments of southeastern France, Hocini et al. 
(2021) reported an overall better performance of hydraulic 
models (i.e., caRtino 1D, and Floodos 2D) solving Saint-
Venant shallow water equations compared to the HAND-
based approach.

Since the major limiting factor for developing effective 
flood mitigation strategies is the lack of reliable data, results 
of the approaches with less data and computational require-
ments, such as the HAND model, should be validated with 
various hydraulic and hydrodynamic models, to assess the 
applicability of HAND model in rural regions to enhance 
decision-making for flood risk reduction and adaptation. 
However, the suitability of the HAND model for flood inun-
dation mapping in data-scarce regions and ungauged water-
sheds is less explored and assessed. In this study, we assess 
the relative accuracy of HAND vis-à-vis different hydrody-
namic/hydraulic models, viz., HEC-RAS 2D and SMS-SRH 
2D, for an extreme magnitude flood event (1000-year return 
period) in terms of the flood inundation extent and depth in 
Huron Creek watershed in Michigan, USA.

Father’s day flood in Michigan, 2018

The western portion of the Upper Peninsula of Michigan 
experienced very heavy rainfall on 17 June 2018 with the 
majority of the rainfall occurring between 2 am and 5 am. 
The region received 3 to 7 inches (76.2 to 177.8  mm) of 
rainfall in less than 6  h (NWS, 2018), which the NOAA 
Precipitation Frequency Atlas (https://hdsc.nws.noaa.gov/
hdsc/pfds) described as a 1000-year storm event. Although 
the storm occurred across the Upper Peninsula, the greatest 
concentration of the storm centered on Houghton County, 
resulting in unprecedented widespread flooding across the 
region known as the Father’s Day flood. Hardly any weather 
events of this severity have occurred in the region, and the 
flash flooding caused severe damage to residential and public 
infrastructure worth more than 100 million US$ (WUPPDR 
2020). Among the various severely flood-affected areas, 
the Huron Creek watershed in Houghton is of particular 

interest because of the enormous damage to infrastruc-
ture that occurred along the main channel of Huron Creek. 
Many culverts and embankments along the main channel 
displayed evidence of scour, and the culvert at Sharon Ave-
nue failed to cause extended flooding, rerouting the channel 
bed, and scouring vegetation (Washko 2019). Although the 
primary source of floodplain mapping information in the 
region is the Flood Insurance Rate Maps, which are devel-
oped by the Federal Emergency Management Agency, the 
region remains unmapped and therefore lacks flood hazard 
information (https://msc.fema.gov/portal/home). Hence, in 
this study, we analyze the suitability of the HAND model to 
map the flood-prone areas of the Huron Creek watershed by 
comparing the flooding extent and depth due to the 1000-
year storm event produced by the HAND model with HEC-
RAS 2D and SMS-SRH 2D simulations and quantify the 
similarities/differences between the approaches.

Study area: Huron Creek watershed

The Huron Creek watershed is located in the northern part 
of Houghton County in the Upper Peninsula of Michi-
gan, USA. The watershed drains an area of about 2.8 mi2 
(7.25 km2) and empties into the Portage Canal, the water-
way connected to Lake Superior (Fig. 1). The mainstream 
of the watershed has a length of about 3.2 mi (5.15 km). 
The streamflow of Huron Creek is partially regulated by a 
small dam, Huron Dam, which was built in 1865 to utilize 
water for mining-related activities, thereby creating Huron 
Lake. Elevation in the watershed ranges from 1085 to 602 ft 
(330.7 to 183.5 m). In general, the south and central portions 
of the watershed are characterized by nearly level to gently 
sloping surface topography, whereas the north-central part 
of the watershed is relatively steeper. The average bed slope 
of Huron Creek upstream of Huron Lake is about 1%, while 
the average channel bed slope is approximately 4 to 5% 
between Huron Lake and the Portage Canal (CWS 2009). 
Although a wide range of soil types occur in the watershed, 
the predominant soil textures are sand, sandy loam, and 
gravelly sand (Fig. 2a; Table S1). However, a few soil types, 
particularly across the southern and northeastern areas of 
the watershed, have relatively higher fractions of silt con-
tent. Among the different land use/ land cover types, forests 
(38.8%) and wetlands (15.7%) contribute to more than 50% 
of the catchment area (Fig. 2b). Roughly one-third of the 
watershed area is developed, and the majority of the urban 
and built-up lands spread across the downstream areas of 
the watershed. CWS (2009) reported a drastic increase in 
the areal extent of the urban and built-up areas in the water-
shed since 1978 at the cost of forested and agricultural areas 
as well as rangelands.
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Fig. 2  Spatial distribution of (a) 
soil and (b) land use/ land cover 
types of Huron Creek watershed. 
Refer to Table S1 (Supplemen-
tary Information) for details of 
the map units

 

Fig. 1  Study area: Huron Creek watershed (Houghton, Michigan, USA)
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estimated using the SCS method (Chow et al. 1988), and the 
routing parameters were computed using the method (for 
ungauged watersheds) described in USACE (2022). Rainfall 
data at fine spatial and temporal scales is not available for 
the watershed and hence, we used the rainfall (at 1-minute 
intervals) recorded on 17 June 2018 at Keweenaw Research 
Centre, Michigan Technological University as the meteo-
rological forcing data for the watershed. The Huron Creek 
watershed does not have an observed hydrograph of the 
Father’s Day flood event. However, the Michigan Depart-
ment of Environment, Great Lakes and Energy (EGLE) 
maintains a record of flood discharges of different return 
periods (up to 500 years). According to the database, the 
discharge magnitudes corresponding to 100-year and 500-
year floods are 440 ft3/s (12.46 m3/s) and 650 ft3/s (18.41 
m3/s) (https://www.egle.state.mi.us/flow/hflowqry.asp). As 
the EGLE lacks streamflow magnitude for a return period 
as infrequent as the 0.001% flood, we estimated the 1000-
year magnitude on the basis of extrapolation. Hence, we 
fine-tuned the default parameters of the HEC-HMS model 
to simulate the flood hydrograph to reasonably match the 
1000-year flood discharge magnitude.

HAND

Estimation of the flood inundation depth and extent in the 
Huron Creek watershed using the HAND model involves 
three steps: (1) computation of HAND raster for the Huron 
Creek, (2) derivation of hydraulic properties of the river 
reach under investigation, and (3) generation of the syn-
thetic rating curve for the reach. Derivation of the HAND 
model from DEM involves two sets of procedures: (1) gen-
erating a seamless, hydrologically-corrected DEM, defining 
flow paths, and delineating drainage channel network, and 
(2) deriving the HAND model from the hydrologically-cor-
rected DEM using local drain directions and the drainage 
network. We used the LIDAR DEM with a spatial resolution 
of 2 ft x 2 ft (0.6 × 0.6 m) for computing the HAND raster. 
First, we identified the hydraulic structures along the stream 
channel and processed them to create a flow continuum 
through hydro-enforcing. We used different spatial analyst 
tools (in ArcGIS) to generate the hydrologically conditioned 
DEM, flow direction, and flow accumulation. Since the 
drainage delineation from DEM is sensitive to the channel 
initiation threshold, we used the USGS National Hydrogra-
phy Datasets (i.e., NHDPlus flowlines) as the reference for 
delineating the stream network of the Huron Creek water-
shed. We calculated the weighted flow accumulation using 
the channel head source grid cells (from NHDPlus streams) 
as input and defined the stream raster. Finally, we calculated 
the HAND using the D∞ flow distance function with the 
vertical drop option. The computed HAND raster provides 

The Huron Creek watershed enjoys a humid continental 
climate with a warm summer (Koppen Dfb). Based on the 
climate data records (1952–2012) in the Western Regional 
Climate Center (https://wrcc.dri.edu), the average minimum 
temperature during the winter months (December through 
February) was about 11  °F (-11.67  °C), and the average 
maximum temperature during summer was approximately 
73  °F (22.78  °C). On average, the region receives about 
31 inches (787.4 mm) of rainfall annually, with the largest 
amounts of rainfall in September and January (> 3.0 inches 
(76.2  mm). The occurrence of extreme rainfall events is 
infrequent in the climate history of the Huron Creek water-
shed. However, recent decades witnessed relatively intense 
storms that caused flooding and bank erosion along Huron 
Creek. The most recent intense storm event occurred on 
17 June 2018 and recorded about 7 inches (177.8 mm) of 
rainfall in less than 6 h. Some of the other heavy rainfall 
episodes include the storms that occurred on 4 September 
2007 and 16 July 2006, which produced more than 3 inches 
(76.2 mm) of rainfall in less than 10 h (CWS 2009). The 
annual average snowfall in the region exceeds 200 inches 
(5080 mm), predominantly contributed by the lake effect. 
As a result, snowmelt runoff is a major factor controlling the 
watershed hydrology of Huron Creek during the spring sea-
son. On the other hand, rainfall-derived runoff is significant 
in the summer and autumn seasons.

Methodology

Simulation of flood discharge using HEC-HMS

We used the HEC-HMS hydrologic model to simulate the 
Father’s Day flood event that occurred in the Huron Creek 
watershed. The input data for setting up the HEC-HMS 
model includes the digital elevation model (DEM), land use/ 
land cover, soil, and rainfall. In this study, we used a LIDAR 
DEM with a spatial resolution of 2 ft x 2 ft (0.6 × 0.6 m) 
for generating the stream network and watershed boundary. 
The watershed was subdivided into seven sub-watersheds. 
Land use/ land cover types of the watershed were extracted 
from the National Land Cover Dataset 2019 (NLCD 2019) 
(Dewitz & USGS, 2021). We extracted soil data of the water-
shed from the Soil Survey Geographic Database (SSURGO) 
(Soil Survey Staff). In this study, we used the Soil Conserva-
tion Service Curve Number (SCS-CN) method to estimate 
the runoff, the SCS unit hydrograph method to transform 
the runoff volume into a hydrograph, and the Muskingum 
method for channel routing. We estimated the weighted 
average curve number of each sub-watershed based on the 
spatial variability of land use/ land cover types and hydro-
logic soil groups in the sub-watersheds. The lag time was 
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the terrain model in HEC-RAS 2D and SMS-SRH 2D. Sub-
sequently, we used a computational mesh with a grid size of 
10 ft x 10 ft (3 × 3 m), chosen in consideration of the river 
channel width and to leverage the high-resolution DEM. 
Breaklines were strategically placed along the river banks 
to facilitate water flow through the channel. The hydraulic 
model domain spanned from downstream of the Huron Dam 
to the outlet point at the Portage Canal (Fig. 1). Notably, 
the canal and its backwater effects were omitted from the 
model, as the canal’s stage level remained below that of the 
stream during the 2018 flood, exerting hardly any influence 
on the streamflow. Boundary conditions were provided with 
the simulated hydrograph from the HEC-HMS model as the 
input, while normal depth was designated as the output con-
dition. Both models relied on the National Land Cover Data 
Set 2016 (NLCD) as the foundational land use/land cover 
dataset, with Manning’s roughness values assigned based 
on Chow (1959). Manual adjustments to the land use/land 
cover data were made where necessary to mitigate the NLCD 
dataset’s coarse spatial resolution (30 × 30 m). In both mod-
els, the unsteady flow module incorporated the Saint Venant 
equation. Results encompassed flood inundation extent, and 
inundation depth, which were further analyzed.

Model performance evaluation

Flood inundation maps generated by the three approaches 
(i.e., HAND, HEC-RAS 2D, and SMS-SRH 2D) were used 
for the comparative assessment. Each model was simulated 
for the 1000-year storm event. The inundation extents pre-
dicted by the different models were validated using field 
observations and photographic evidence during the flood 
event. In this study, we identified 15 locations (from field 
photographs) that were inundated during the flood and ran-
domly generated 15 locations (within the floodplain) that 
were not inundated during the flood. Since hardly any data 
are available on the inundation depth, we did not evaluate the 
accuracy of the predictions, but the results of the hydraulic/
hydrodynamic models were compared against the HAND 
model to assess the general agreement. The accuracy of the 
predicted classification was evaluated using different pre-
diction performance measures, such as accuracy, Matthews 
correlation coefficient (MCC), and F1 Score (Eqs. 1–5).

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
� (1)

MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)
� (2)

precision =
TP

(TP + FP )
� (3)

the spatially distributed values of the difference in elevation 
between a given point (pixel) and the nearest stream (i.e., 
the downslope grid cell where the flow from the point enters 
the channel following the local drainage direction). For any 
given stage height, inundation occurs in pixels with HAND 
values smaller than the specified stage height. For example, 
when the water level in a channel reaches 3 ft (0.91 m), the 
pixels in the floodplain with HAND values less than 3 ft 
(0.91 m) will be inundated. Thus, the inundation area and 
average inundation depth for different stage heights were 
estimated from the HAND raster. These values were used 
to derive the cross-sectional area (A) and hydraulic radius 
(R) of the channel reach (see Zheng et al. 2018b for detailed 
methodology). The reach length and average slope (S) 
were estimated from the DEM-derived channel network. 
Although the channel roughness varies along the reach, we 
used the average value (0.035) of the surveyed reaches in 
Huron Creek as Manning’s n. We used the Manning’s equa-
tion to generate river discharge at the reach (Eq. 1):

Qi =
1.49

n
× A× R

2
3 × S

1
2� (1)

where Qi is the predicted discharge (in ft3/s) for any given 
stage height, i. A comprehensive description of the genera-
tion of synthetic rating curves using HAND is provided by 
Zheng et al. (2018b). The river discharges were computed 
for different stage heights to develop the synthetic rating 
curve for Huron Creek. The Manning’s n for the reach was 
consistent for all the models. The stage height for the simu-
lated flood discharge by the HEC-HMS model (in Sect. 4.2) 
was estimated using this synthetic rating curve and the inun-
dation area and depth were estimated from the stage height 
and HAND raster.

Hydraulic modeling

In this study, we used two hydraulic/hydrodynamic models, 
viz., HEC-RAS 2D (version 6.3.1) and SMS-SRH 2D for 
flood inundation mapping in the Huron Creek watershed. 
HEC-RAS, developed by the Hydrologic Engineering Cen-
ter (U.S. Army Corps of Engineers), offers capabilities for 
1D, 2D, and 1D-2D combined modeling. On the other hand, 
SMS-SRH 2D is a two-dimensional hydraulic model with 
a user-friendly graphical interface developed by Aquaveo, 
featuring a computational engine developed by the Bureau 
of Reclamation (Aquaveo, 2021; Lai, 2008). We employed 
a two-dimensional flood routing approach in both models 
to analyze flooding dynamics. Despite the variations in the 
model structure, we maintained consistent parameter usage 
throughout the modeling process. The LiDAR DEM, which 
was used to derive the HAND model, served as the basis for 
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(18.40 m3/s). Although extrapolation of frequency is not 
standard hydrological practice, we plotted the flows for the 
other frequencies on a log probability graph and extended 
it to the 0.001% frequency. We noted that the HEC-HMS 
simulated peak flood magnitude of 808 ft3/s (22.88 m3/s) 
for a 1000-year rainfall event is a reasonable estimate when 
compared to the extrapolated discharge.

Inundation mapping

The flood inundation extent and depth estimated by the 
HAND, HEC-RAS 2D, and SMS-SRH 2D models were 
compared for the storm event on 17 June 2018. Since we 
used the hydrograph at the Huron dam as the inflow bound-
ary condition in the hydraulic/hydrodynamic models, the 
scope of the comparison is limited to the channel reach 
between the Huron dam and the outlet point at the Portage 
Canal (see Fig. 1 for geographic extent). Table 1 facilitates 
comparison of various metrics of model performance for 
mapping flood inundation areas in the Huron Creek water-
shed. The HAND model classified the inundation and non-
inundation areas with an accuracy of 80%, slightly lower 
than that of the hydrodynamic models (i.e., 83%) (Table 1). 
The non-inundated areas in the watershed were predicted rel-
atively better by all the models than the inundated locations, 
which is evident in the high values of precision. Further, 
the HAND model has better precision than the hydraulic/
hydrodynamic models (Table 1). On the other hand, while 
predicting the inundated areas, the hydraulic/hydrodynamic 
models outperform the HAND model, which is obvious by 
the recall values. The HAND model has a relatively lower 
recall (0.60) compared to the HEC-RAS 2D and SMS-SRH 
2D models (0.80 and 0.73, respectively) (Table 1). The F1 
Scores of the models also show a similar pattern as the score 
is independent of the number of data that are correctly clas-
sified as non-inundated (Chicco and Jurman 2020). The 

recall =
TP

(TP + FN)
� (4)

F1Score = 2 ∗ precision ∗ recall
precision+ recall

� (5)

where TP (true positive) and TN (true negative) represent 
the number of observed data that are correctly classified as 
inundation and non-inundation, respectively, whereas the 
false positive (FP) and false negative (FN) are the number 
of data points that are incorrectly classified. In addition, 
the area under the receiver operating characteristics curve 
(ROC-AUC) and precision-recall curve (PRC-AUC) were 
estimated to assess the overall performance of the model 
predictions. The overall methodological framework adopted 
in this study is given in Fig. 3.

Results

Streamflow simulation using HEC-HMS

The catchment area of Huron Creek received about 7 in 
(177.8 mm) of rainfall in less than 6 h (on 17 June 2018) 
resulting in significant flooding across the floodplain. The 
simulated hydrograph of the extreme rainfall event using 
the HEC-HMS model shows a peak discharge of 808 ft3/s 
(22.88 m3/s) at the outlet of Huron Dam at 4.50 am on 17 
Jun 2018 (Fig. 4). Due to the lack of observed data records, 
the accuracy of the HEC-HMS simulated hydrograph was 
not assessed. Although the EGLE flood discharge database 
has the discharge magnitude for floods of different return 
periods (10, 50, 100, 200, and 500), it does not have stream-
flow magnitude for a return period as infrequent as a 1000-
year flood. The EGLE database indicates that the discharge 
magnitude corresponding to a 500-year flood is 650 ft3/s 

Fig. 3  Methodological framework 
adopted flood inundation map-
ping in Huron Creek
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inundation areas in data-scarce conditions (such as in the 
Huron Creek watershed) during extreme rainfall events.

A comparison of the inundation extent among the dif-
ferent models indicates that the HAND model resulted in 
a significantly smaller inundation area compared to the 
hydraulic models (Table 2). Based on the estimates of the 
HAND model, the inundation area during the Father’s Day 
flood in the Huron Creek watershed was 2.4  ha, whereas 
the hydraulic/hydrodynamic models predicted an area more 
than twice the extent of that of the HAND model. Although 

MCC values of all the models are moderate (0.65–0.68) as 
the coefficient produces a high score only when the models 
predict good results in all the four categories of the confu-
sion matrix (i.e., TP, TN, FP, and FN), proportional to the 
size of the inundation and non-inundation datasets (Chicco 
and Jurman 2020). Although all the models are better at 
classifying the non-inundated areas, misclassification in 
the identification of areas under inundation leads to moder-
ate values of MCC. A general comparison of the various 
performance indicators of different models implies that the 
HAND model has significant competence in mapping the 

Table 1  Model performance measures of inundation extent
HAND HEC-RAS 2D SMS-SRH 2D

Accuracy 0.80 0.83 0.83
MCC 0.65 0.67 0.68
Precision 1.00 0.86 0.92
Recall 0.60 0.80 0.73
F1-Score 0.75 0.83 0.81
ROC-AUC 0.80 0.83 0.83
PRC-AUC 0.86 0.81 0.84

Table 2  Areal extent of flood inundation modeled by different 
approaches used in Huron Creek
Channel section Inundation area (ha) Mean chan-

nel gradient 
(ft/ft)

Mean 
valley 
slope 
(%)

HAND HEC-
RAS 
2D

SMS-
SRH 
2D

Entire reach 2.4 6.1 5.4 0.04 12.6
S1 0.5 0.8 0.7 0.05 13.0
S2 0.3 0.6 0.5 0.02 19.7
S3 0.4 1.1 1.2 0.04 9.0
S4 0.3 2.4 1.7 0.04 11.1

Fig. 4  HEC-HMS simulated flood hydrograph downstream of Huron dam in Huron Creek watershed
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for the Father’s Day flood in Huron Creek is available, we 
compared the simulated depth generated by the hydraulic/
hydrodynamic models against the HAND model. Hence, 
we limited the scope of the comparative analysis to the 
intersecting area of the inundation extent produced by the 
HAND model and the hydrodynamic models. Results indi-
cate that the HAND model underestimated the flood depth 
in the Huron Creek watershed compared to the HEC-RAS 
2D and SMS-SRH 2D simulations (Table  3; Fig.  6). On 
average, the flood depth produced by the HAND model is 
about 2 ft (0.6  m) shallower than the HEC-RAS 2D and 
SMS-SRH 2D simulated depths. Such an underestimation 
is evident in all the channel segments, except for S1, where 
the HAND model overestimates flood inundation depth in 
the upstream and underestimates in the downstream com-
pared to both HEC-RAS 2D and SMS-SRH 2D simulations 
(Fig.  6). Although S2 (along with S1) shows significant 
agreement in flood inundation extent between the HAND 
and the hydraulic/hydrodynamic models (Table 3), the flood 

the HAND model underestimates the modeled inundation 
extent, a similar spatial pattern of inundation extent is noted 
among the different approaches. Hence, we analyzed the 
spatial variability of the inundation extent in four channel 
segments (S1 to S4) of Huron Creek (Fig. 5). The inunda-
tion area predicted by the three models in the four chan-
nel sections (S1 to S4) shows that the differences between 
the approaches vary among these sections (Table  2). For 
instance, the differences in the inundation area between 
the models are significantly smaller in S1 and S2, whereas 
S4 has remarkable variability, i.e., 0.3 ha (HAND), 2.4 ha 
(HEC-RAS 2D), and 1.7 ha (SMS-SRH 2D). Interestingly, 
the valley slope in S1 and S2 is comparatively higher than 
in S3 and S4 (Table 2), implying the significance of valley 
setting in flood inundation estimation using low complexity 
models, such as HAND.

The flood inundation depths simulated by different models 
are also compared to assess the general agreement between 
the models. Since hardly any data on flood inundation depth 

Fig. 5  Inundation extent in the different channel segments (S1 to S4) predicted by HAND, HEC-RAS 2D, and SMS-SRH 2D
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three cases in HEC-RAS 2D and four cases in SMS-SRH 
2D), the HAND model was less successful than the hydrau-
lic/hydrodynamic models. Interestingly, all three models 
failed to map inundation at three locations in S2. However, 
the major cause of the inundation downstream of S2 was 
the failure of a culvert and associated obstruction. Fur-
ther, the damaging scour that occurred at S2 modified the 
downstream fluvial landscape (i.e., S3) by rerouting chan-
nel beds, displacing bed load material, and scouring vegeta-
tion (Washko 2019). However, the hydraulic/hydrodynamic 
models accurately predicted the inundation locations in S3, 
even if the inundation in one of the locations occurred due to 
the rerouting of the channel at S2. Although it is considered 

depth predicted by the HAND exhibits larger deviation 
compared to HEC-RAS 2D and SMS-SRH 2D models.

Discussion

The capability of the HAND model to map the inundated 
areas during the Father’s Day flood in the Huron Creek 
watershed is evident in various model performance mea-
sures, except recall (Table 1). A lower recall value (0.60) 
for the HAND model arises due to misclassifying the areas 
under inundation as non-inundated areas (i.e., six cases out 
of 15). Although HEC-RAS 2D (0.80) and SMS-SRH 2D 
(0.73) also failed to map some of the inundation areas (i.e., 

Table 3  Difference in flood inundation depth modeled by different approaches used in this study
Channel section Difference in inundation depth (ft)

HAND - HEC-RAS 2D HAND - SMS-SRH 2D
Mean Minimum Maximum Mean Minimum Maximum

Entire reach -1.7 -9.1 3.1 -2.0 -12.9 2.9
S1 0.0 -3.9 3.0 0.2 -3.8 2.9
S2 -2.8 -9.1 -0.1 -2.8 -8.4 0.4
S3 -2.4 -7.9 1.5 -2.3 -7.0 2.0
S4 -1.6 -8.1 3.0 -3.6 -9.5 2.9

Fig. 6  Differences in the inundation depth predicted by the HAND model in different segments (S1 to S4) compared to HEC-RAS 2D (a-d) and 
SMS-SRH 2D (e-h)
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cross-sections to reaffirm this possibility. The uncertainty in 
the HAND model may be caused by watershed morphologi-
cal and channel characteristics (Li et al. 2022). The flood 
inundation estimation using the HAND model heavily relies 
on the accuracy of the synthetic rating curve generated 
using the LIDAR DEM. In this study, we used the NHDPlus 
flowlines to identify the headwater location and Manning’s 
equation to compute the flood discharge. Further, the stage 
corresponding to the Father’s Day flood discharge (808 ft3/s 
(22.8 m3/s) in this case) was estimated from the synthetic 
rating curve. The inundation depth was calculated by sub-
tracting the HAND raster from the stage height obtained 
from the rating curve (Zheng et al. 2018b). Hence, the uncer-
tainties in estimating the synthetic rating curve would have 
significant effects on the flood inundation depth. Although 
Zheng et al. (2018b) could not generate a globally accurate 
synthetic rating curve from the HAND raster with a constant 
Manning’s n, they demonstrated that optimizing Manning’s 
n considering the channel roughness condition results in a 
rating curve comparable to that derived from gauge obser-
vations. In this study, we used Manning’s n of 0.035 derived 
from field observations. Further, Washko (2019) also used 
a similar Manning’s n for hydraulic modeling in the Huron 
Creek watershed. However, the differences in Manning’s n 
along the river reach and the possible range of values were 
not considered when calculating the synthetic rating curve. 
Keeping the channel attributes (i.e., cross-sectional area, 
hydraulic radius, and slope) constant, we independently var-
ied the roughness coefficient, solving for the flood discharge 
of 808 ft3/s. In doing so, we noted that that the synthetic 
rating curve relationships are sensitive to the changes in 
Manning’s n. In addition, terrain and channel characteristics 
could also affect the accuracy of the rating curve. Godbout 
et al. (2019) noted that the accuracy of the synthetic rating 
curve is largely influenced by reach length, reach slope, and 
hydraulic structures, where short reaches, reaches with low 
gradients, and reaches close to hydraulic structures were 
found to predict the poor performance of synthetic rating 
curve. Similarly, Ghanghas et al. (2022) also showed that 
channels with low slopes and large catchment areas tend 
to overpredict the synthetic rating curve, while channels in 
hilly tracts tend to underpredict.

The HAND model shows similar performance in map-
ping flooding extent in some sections of Huron Creek (i.e., 
S1 and S2) compared to the hydraulic/hydrodynamic mod-
els. However, large deviations are observed in specific sec-
tions (S3 and S4; Table 3) where the valleys are broader than 
the other sections. This difference could be mostly due to 
the simplified representation in the HAND model and gen-
eralization (i.e., uniform flow, invariant channel roughness). 
While estimating the synthetic rating curve, the hydraulic 
properties are averaged assuming uniform channel geometry 

an accurate prediction, this is a clear case of overestimation 
of inundation by the hydraulic/hydrodynamic models in S3.

In general, the results of this analysis suggest varying 
levels of performance of the HAND model compared to 
the hydraulic/hydrodynamic models, such as HEC-RAS 2D 
and SMS-SRH 2D, to identify flood inundation areas. The 
observations of Zheng et al. (2018b) imply that the HAND-
based flood inundation mapping shows better performance 
in hilly, rural catchments where the topographic setting has 
major control over the flood routing process, compared to 
urbanized catchments with a gentle slope, where artificial 
structures significantly affect the hydrodynamic processes. 
In a similar context, Afshari et al. (2018) observed that 
the prediction of inundation areas by the HAND model is 
comparable to the HEC-RAS 2D model in simple fluvial 
landscapes (e.g., straight, headwater reaches), whereas the 
HAND model fails in complex conditions, such as meander-
ing sections and tributary confluences. It may be noted that 
the hydraulic/hydrodynamic model simulations in Huron 
Creek resulted in significantly larger areas under inundation 
in general and particularly in S3 and S4 (Table 2; Fig. 5). 
Similarly, the HEC-RAS 2D simulations of Afshari et al. 
(2018) also generated wider areas under inundation com-
pared to the outputs generated by low-complexity models, 
such as HAND and AutoRoute while using simple terrain 
setup (i.e., without incorporating channel bathymetry or 
other possible floodplain features, such as levees). How-
ever, the predicted depth of inundation by the HAND model 
along the Huron Creek tends to be underestimated, which 
could be a reflection of the inability of the model to con-
sider channel hydraulics and hydrodynamics in computing 
flood inundation. Contrastingly, Afshari et al. (2018) noted 
that the HAND model overestimates flood inundation depth 
(compared to HEC-RAS 2D) in simple terrain setup (i.e., 
without incorporating bathymetry or floodplain features), 
whereas ‘bathymetry-informed’ terrain setup results in 
underestimation of the depth of flood inundation. However, 
the results of this study show that the HAND model under-
estimates inundation depth even with a simple terrain setup.

The possibilities of underestimation of the HAND model 
include (1) a depiction of the actual (bathy-informed) ter-
rain profile in the LIDAR DEM, and (2) uncertainties in the 
HAND model and the synthetic rating curve. The channel 
geometry may not be accurately characterized in large rivers 
even with high-resolution DEMs due to the water column 
within the channel. Practically, Huron Creek downstream of 
the Huron Dam is a small stream channel with well-defined 
valleys and the magnitude of streamflow is low except dur-
ing intense storm events. Hence, the LIDAR DEM could 
have captured the actual terrain profile (including bathymet-
ric information) in most of its channel length. However, we 
did not compare the actual bathymetry and DEM-derived 
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in the context of flood risk planning and risk reduction pro-
grams, particularly in rural regions. The decreased flood 
resilience in rural regions in the US (e.g., Upper Peninsula 
in Michigan) is attributed to the lack of data and appropri-
ate tools to assess flood risk calling for the development of 
flood risk mapping tools for efficient floodplain manage-
ment (Thomas et al., 2022). Since the HAND is a topogra-
phy-based model, the approach has several advantages over 
the traditional hydraulic/hydrodynamic models. The HAND 
model is conceptually simpler compared to the hydraulic/
hydrodynamic models. Further, the applicability of hydrau-
lic/hydrodynamic models has always been hindered by the 
availability of input data at required spatial and temporal 
scales and computational requirements. Hence, the HAND-
based approach is easy to set up and update and can be useful 
in ungauged basins to provide quick estimates of potential 
flood extents and inundation patterns. Despite the varying 
levels of performance across the different channel segments 
of Huron Creek, the HAND-based approach reiterates the 
suitability of the HAND model for flood inundation map-
ping in data-scarce regions. Hence, flood inundation and 
risk mapping approaches based on low complexity models, 
such as HAND have a promising future as these serve as a 
vital guidance tool for enhancing flood resilience in data-
scarce rural regions and ungauged watersheds to a great 
extent.

Summary and conclusion

This study investigated the suitability of the HAND model 
for flood inundation mapping in data-scarce regions by 
comparing the flood inundation characteristics with hydrau-
lic/hydrodynamic models, such as HEC-RAS 2D and SMS-
SRH 2D. Flood inundation extent and depth were mapped 
in the Huron Creek watershed (in Houghton County, Michi-
gan, USA) for an extreme rainfall event (Father’s Day flood) 
with a recurrence interval of more than 1000 years. Being 
an ungauged watershed, flood discharge for the storm event 
was simulated using the HEC-HMS model and was used as 
the input inflow boundary condition of the flood event. The 
simulated flood hydrograph of the event resulted in a peak 
discharge of 808 ft3/s (22.88 m3/s) at the outlet of Huron 
Dam. The performance of the various models was assessed 
using different metrics. A comparison of the performance 
measures of different models implies the suitability of the 
HAND model to map the extent of flood inundation areas. 
While the HAND model slightly underestimates the inun-
dation extent, the hydraulic/hydrodynamic models show 
overestimation. Further, HEC-RAS 2D shows a relatively 
larger areal extent compared to SMS-SRH 2D. Among the 
different channel segments in Huron Creek, S3 and S4, with 

along the reach. Although such an assumption could be 
partly valid for steep channels with uniform morphology 
in well-defined valleys, the assumption adds to uncertainty 
in broad valleys. For instance, Hocini et al. (2021) noted 
large deviations in HAND-based flood inundation estimates 
compared to hydrodynamic methods in large and flat flood-
plains, with a longitudinal slope significantly higher than 
the transverse slope in the floodplain. Flat areas in DEM 
lack local elevation gradients resulting in an inaccurate rep-
resentation of local flow direction (Martz and Garbrecht 
1998; Tarboton 1997), and hence, inaccurate HAND values 
thereby erroneous cross-sectional geometry derived from 
the HAND-based approach. The significant negative bias in 
the HAND model estimates of flood inundation depth com-
pared to the hydraulic/hydrodynamic models (Table 3) also 
partly contributed by the generalization of the geometry 
(Hocini et al. 2021).

The HAND model is sensitive to the channel initiation 
threshold, one of the major parameters used in HAND-
based approaches (Li et al. 2022). In this study, we used the 
NHD flowlines (mapped at a scale of 1: 24,000) to identify 
the headwater location. Hence, the difference in the spatial 
scale between the channel initiation point and the DEM 
used for HAND estimation also results in discrepancies 
in hydraulic properties which propagate into the inunda-
tion mapping (Garousi-Nejad et al. 2019). Other potential 
reasons for the deviation between the HAND and hydrau-
lic/hydrodynamic models could be the boundary effects 
between sub-basins particularly at stream confluences and 
the absence of representation of backwater effects (Afshari 
et al. 2018; Hocini et al. 2021). Although many researchers 
demonstrated the significance of these effects in flood inun-
dation estimates in river channels developed in large flood-
plains, we noted that such effects are significant in stream 
channels of smaller rural watersheds too. Considering the 
limitations of the HAND model for mapping flood inun-
dation, several researchers argued that the HAND model 
can be improved by proposing various modifications. For 
example, Godbout et al. (2019) proposed a moving window 
approach to recalculate the reach slope in Manning’s equa-
tion as the weighted average over a minimum distance. Sim-
ilarly, Garousi‐Nejad et al. (2019) also suggested various 
modifications for improving the HAND-based flood inun-
dation mapping, e.g., derivation of hydraulic properties and 
synthetic rating curves using the DEM‐based drainage net-
work and catchments based on evenly spaced nodes along 
a stream reach, and a hybrid filling‐breaching algorithm to 
hydrologically condition the DEM. It is also suggested to 
infer stream reach hydraulic roughness using observed past 
flood inundation data.

Access to flood inundation maps showing potential areas, 
assets, and populations that are vulnerable is a high priority 
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less steep valleys, show larger deviations in the inundation 
area between the HAND and the hydraulic/hydrodynamic 
models. Further, the HAND model underestimates the flood 
depth compared to HEC-RAS 2D and SMS-SRH 2D simu-
lations, mostly due to the uncertainties in the estimation of 
the synthetic rating curve.
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