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Abstract

Unprecedented floods from extreme rainfall events worldwide emphasize the need for flood inundation mapping for
floodplain management and risk reduction. Access to flood inundation maps and risk evaluation tools remains challenging
in most parts of the world, particularly in rural regions, leading to decreased flood resilience. The use of hydraulic and
hydrodynamic models in rural areas has been hindered by excessive data and computational requirements. In this study,
we mapped the flood inundation in Huron Creek watershed, Michigan, USA for an extreme rainfall event (1000-year
return period) that occurred in 2018 (Father’s Day Flood) using the Height Above Nearest Drainage (HAND) model and
a synthetic rating curve developed from LIDAR DEM. We compared the flood inundation extent and depth modeled by
the HAND with flood inundation characteristics predicted by two hydrodynamic models, viz., HEC-RAS 2D and SMS-
SRH 2D. The flood discharge of the event was simulated using the HEC-HMS hydrologic model. Results suggest that, in
different channel segments, the HAND model produces different degrees of concurrence in both flood inundation extent
and depth when compared to the hydrodynamic models. The differences in flood inundation characteristics produced by
the HAND model are primarily due to the uncertainties associated with optimal parameter estimation of the synthetic
rating curve. Analyzing the differences between the HAND and hydrodynamic models also highlights the significance of
terrain characteristics in model predictions. Based on the comparable predictive capability of the HAND model to map
flood inundation areas during extreme rainfall events, we demonstrate the suitability of the HAND-based approach for
mitigating flood risk in data-scarce, rural regions.

Keywords Flood inundation mapping - Father’s Day Flood - Data-scarce regions - HAND - HEC-RAS 2D - SMS-SRH
2D

Introduction

Flooding is one of the most frequent natural disasters caus-
ing significant damage to natural and human resources and
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likely to escalate flood risks. It is projected to increase the
flood risk in a warming climate due to the shifts in precipi-
tation distribution and variability (i.e., intensity, frequency,
and duration) by the intensification of the hydrological
cycle, as well as changes in socio-economic development
factors (Arnell and Gosling 2014; Hirabayashi et al. 2013;
Madakumbura et al. 2019; Tellman et al. 2021; Winsemius
et al. 2015). Flooding is a leading cause of weather-related
natural disasters in the United States, with a Congressional
Budget Office estimate of $54 billion in losses (from hur-
ricane winds and storm-related flooding) each year (CBO
2019). According to Swain et al. (2020), the United States is
expected to witness a mean increase of ~20% (magnitude)
and >200% (frequency) in a 100-year storm event under
the high-emission scenario (RCPS8.5), yielding a~30-127%
increase in population exposure. Although flood suscepti-
bility across the United States is spatially heterogeneous
(Saharia et al. 2017), flood risk significantly differs between
urban and rural areas. Predictably much of the research
attention focuses on flooding in urban regions overlooking
the rural areas, yet those are significantly vulnerable to the
impacts of flooding (Bukvic and Harrald 2019; Cutter et al.
2016; Rhubart and Sun 2021).

Along with the different social and physical characteris-
tics (Rhubart and Sun 2021), the decreased flood resilience
in rural areas is also a result of the lack (and access) of ade-
quate data and appropriate tools to understand and assess
the flood risk. However, the level of flood resilience in rural
communities can be enhanced considerably by mapping
inundation areas before flood events, as these maps facili-
tate risk communication to different stakeholders (Henstra
et al. 2019). Such non-structural measures help mitigate the
impacts of floods and facilitate the development of climate-
resilient, risk-informed rural communities. Traditionally,
flood inundation mapping uses various hydrodynamic and
hydraulic models, such as HEC-RAS, SMS-SRH, MIKE-
FLOOD, etc. (Deslauriers and Mahdi 2018; Patel et al.
2017; Vozinaki et al. 2015) which require a variety of basin-
and channel-related data input and/or higher computational
power and time. However, in most rural regions, such data
at finer spatial and temporal scales are unavailable, leav-
ing the rural communities and emergency managers without
flood inundation mapping they could use to mitigate flood
impacts. Numerous efforts focused on mapping flood haz-
ards without detailed data and observations have resulted
in the development of a range of models and tools with dif-
ferent data and computational requirements. For instance,
the AutoRoute model has been developed to produce flood
inundation maps for extreme flood events from DEM (Fol-
lum 2013). Wing et al. (2017) developed a 2D hydrodynamic
model, capable of simulating pluvial flooding and fluvial
flooding (only in reaches with catchment area exceeding 50

@ Springer

km?) at ~30 m resolution, for the conterminous US using
publicly available data.

In a similar sense, significant research has also been
dedicated to simplifying the flood models and their data
requirements for universal applications. One such simpli-
fied approach is the Height Above the Nearest Drainage
(HAND) model (Renno et al. 2008). The HAND, a DEM-
derived terrain attribute, implying the draining potential and
soil moisture dynamics, is a suitable descriptor for identify-
ing hydrologically different landscape units (Gharari et al.
2011; Nobre et al. 2011). Major advantages of the HAND-
based approach over the hydraulic/hydrodynamic models
are the computational efficiency and lower complexity with
simplified input data requirements. Numerous researchers
have demonstrated the suitability of the HAND model in
flood inundation and floodplain mapping studies in various
hydroenvironmental conditions (e.g., Bhatt and Srinivasa
Rao 2018; Diehl et al. 2021; Rahmati et al. 2018; Scriven et
al. 2021; Speckhann et al. 2017) resulting in the application
of HAND in different web-based flood inundation mapping
as well as real-time and forecast flood guidance systems
(e.g., Chaudhuri et al. 2021; Hu and Demir 2021; Johnson
et al. 2019; Unnithan et al. 2024; Zheng et al. 2018a).

Since the HAND indicates the difference in the eleva-
tion of a given point in the catchment area and the elevation
of the stream channel to which the point drains follow-
ing the flow direction, the inundation depth at the point
can be estimated as the difference between the water level
(flood stage) and the HAND value. However, the estima-
tion of stage height remains the major constraint, particu-
larly in ungauged watersheds. To overcome this, Zheng et
al. (2018b) developed an approach to compute the river
channel geometry and estimate the synthetic rating curve
(on a reach-average level) based on HAND values. The syn-
thetic rating curve demonstrates the empirical relationship
between discharge and stage height for a given reach and its
catchment area. Further, Zheng et al. (2018b) noted that opti-
mization of Manning’s n generates a reasonable synthetic
rating curve comparable to that derived using HEC-RAS
and gauge observations. Subsequently, various researchers
(e.g., Ghanghas et al. 2022; Johnson et al. 2019; Scriven
et al. 2021; Zheng et al. 2022) also tested the performance
of the synthetic rating curve at wide spatial scales and rec-
ommended it as a viable approach in ungauged basins and
data-scarce regions.

Considering the advancements in HAND-based flood
inundation mapping, it is also essential to investigate the
efficiency and representativeness of the HAND model over
data- and computationally-intensive hydraulic/hydrody-
namic models. Previous studies comparing the flood inun-
dation extent and depth between HAND and HEC-RAS
2D models suggest that the HAND model generates an
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inundation extent similar to that modeled by HEC-RAS 2D.
For instance, Afshari et al. (2018) observed that the results
of the HAND model are significantly close to the HEC-
RAS 2D for flood extent and depth in simple landscapes
at large spatial scales. However, significant differences are
evident in complex conditions, such as meandering chan-
nels and stream confluences. Afshari et al. (2016) reported
that the HAND model underestimates inundation extent by
up to 40% in a flat, urbanized area with a controlled/man-
aged river channel. In contrast, the model showed improved
accuracy in areas having undulating topography. While
comparing the flood inundation extent and depth in small
headwater catchments of southeastern France, Hocini et al.
(2021) reported an overall better performance of hydraulic
models (i.e., caRtino 1D, and Floodos 2D) solving Saint-
Venant shallow water equations compared to the HAND-
based approach.

Since the major limiting factor for developing effective
flood mitigation strategies is the lack of reliable data, results
of the approaches with less data and computational require-
ments, such as the HAND model, should be validated with
various hydraulic and hydrodynamic models, to assess the
applicability of HAND model in rural regions to enhance
decision-making for flood risk reduction and adaptation.
However, the suitability of the HAND model for flood inun-
dation mapping in data-scarce regions and ungauged water-
sheds is less explored and assessed. In this study, we assess
the relative accuracy of HAND vis-a-vis different hydrody-
namic/hydraulic models, viz., HEC-RAS 2D and SMS-SRH
2D, for an extreme magnitude flood event (1000-year return
period) in terms of the flood inundation extent and depth in
Huron Creek watershed in Michigan, USA.

Father’s day flood in Michigan, 2018

The western portion of the Upper Peninsula of Michigan
experienced very heavy rainfall on 17 June 2018 with the
majority of the rainfall occurring between 2 am and 5 am.
The region received 3 to 7 inches (76.2 to 177.8 mm) of
rainfall in less than 6 h (NWS, 2018), which the NOAA
Precipitation Frequency Atlas (https://hdsc.nws.noaa.gov/
hdsc/pfds) described as a 1000-year storm event. Although
the storm occurred across the Upper Peninsula, the greatest
concentration of the storm centered on Houghton County,
resulting in unprecedented widespread flooding across the
region known as the Father’s Day flood. Hardly any weather
events of this severity have occurred in the region, and the
flash flooding caused severe damage to residential and public
infrastructure worth more than 100 million US$ (WUPPDR
2020). Among the various severely flood-affected areas,
the Huron Creek watershed in Houghton is of particular

interest because of the enormous damage to infrastruc-
ture that occurred along the main channel of Huron Creek.
Many culverts and embankments along the main channel
displayed evidence of scour, and the culvert at Sharon Ave-
nue failed to cause extended flooding, rerouting the channel
bed, and scouring vegetation (Washko 2019). Although the
primary source of floodplain mapping information in the
region is the Flood Insurance Rate Maps, which are devel-
oped by the Federal Emergency Management Agency, the
region remains unmapped and therefore lacks flood hazard
information (https://msc.fema.gov/portal/home). Hence, in
this study, we analyze the suitability of the HAND model to
map the flood-prone areas of the Huron Creek watershed by
comparing the flooding extent and depth due to the 1000-
year storm event produced by the HAND model with HEC-
RAS 2D and SMS-SRH 2D simulations and quantify the
similarities/differences between the approaches.

Study area: Huron Creek watershed

The Huron Creek watershed is located in the northern part
of Houghton County in the Upper Peninsula of Michi-
gan, USA. The watershed drains an area of about 2.8 mi?
(7.25 km?) and empties into the Portage Canal, the water-
way connected to Lake Superior (Fig. 1). The mainstream
of the watershed has a length of about 3.2 mi (5.15 km).
The streamflow of Huron Creek is partially regulated by a
small dam, Huron Dam, which was built in 1865 to utilize
water for mining-related activities, thereby creating Huron
Lake. Elevation in the watershed ranges from 1085 to 602 ft
(330.7 to 183.5 m). In general, the south and central portions
of the watershed are characterized by nearly level to gently
sloping surface topography, whereas the north-central part
of the watershed is relatively steeper. The average bed slope
of Huron Creek upstream of Huron Lake is about 1%, while
the average channel bed slope is approximately 4 to 5%
between Huron Lake and the Portage Canal (CWS 2009).
Although a wide range of soil types occur in the watershed,
the predominant soil textures are sand, sandy loam, and
gravelly sand (Fig. 2a; Table S1). However, a few soil types,
particularly across the southern and northeastern areas of
the watershed, have relatively higher fractions of silt con-
tent. Among the different land use/ land cover types, forests
(38.8%) and wetlands (15.7%) contribute to more than 50%
of the catchment area (Fig. 2b). Roughly one-third of the
watershed area is developed, and the majority of the urban
and built-up lands spread across the downstream areas of
the watershed. CWS (2009) reported a drastic increase in
the areal extent of the urban and built-up areas in the water-
shed since 1978 at the cost of forested and agricultural areas
as well as rangelands.
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Fig. 1 Study area: Huron Creek watershed (Houghton, Michigan, USA)

Fig. 2 Spatial distribution of (a)
soil and (b) land use/ land cover
types of Huron Creek watershed.
Refer to Table S1 (Supplemen-
tary Information) for details of

the map units

@ Springer

sSURGO I 1078 [ 1368 [ 30B || 83 [WW 92D
I 100A N 107D MM 1398 | 31A MM 868 MM 92E
I 102A [ 107 I 1390 MM 45 [ 86E [ 96E
0 1038 [ 1158 [ 142F M 55 [ soB [ W
[0 104D [] 1104 I 25 [N 72A HH 90

B to6B | 12 M2 W77 W 928

0 0.25 0.5 0.75km

[ Open Water
I Pasture/Hay

[ Emergent Herbaceous Wetlands [l Shrub/Scrub
Il Woody Wetlands

Bl Developed, Medium Intensity

NLCD 2019
[l Developed, Open Space

Barren Land
I Deciduous Forest
Bl Developed, High Intensity Il Evergreen Forest

7] Developed, Low Intensity Grassland/Herbaceous
Mixed Forest



Earth Science Informatics (2024) 17:1907-1921

1911

The Huron Creek watershed enjoys a humid continental
climate with a warm summer (Koppen Dfb). Based on the
climate data records (1952-2012) in the Western Regional
Climate Center (https://wrcc.dri.edu), the average minimum
temperature during the winter months (December through
February) was about 11 °F (-11.67 °C), and the average
maximum temperature during summer was approximately
73 °F (22.78 °C). On average, the region receives about
31 inches (787.4 mm) of rainfall annually, with the largest
amounts of rainfall in September and January (> 3.0 inches
(76.2 mm). The occurrence of extreme rainfall events is
infrequent in the climate history of the Huron Creek water-
shed. However, recent decades witnessed relatively intense
storms that caused flooding and bank erosion along Huron
Creek. The most recent intense storm event occurred on
17 June 2018 and recorded about 7 inches (177.8 mm) of
rainfall in less than 6 h. Some of the other heavy rainfall
episodes include the storms that occurred on 4 September
2007 and 16 July 2006, which produced more than 3 inches
(76.2 mm) of rainfall in less than 10 h (CWS 2009). The
annual average snowfall in the region exceeds 200 inches
(5080 mm), predominantly contributed by the lake effect.
As aresult, snowmelt runoff is a major factor controlling the
watershed hydrology of Huron Creek during the spring sea-
son. On the other hand, rainfall-derived runoff is significant
in the summer and autumn seasons.

Methodology
Simulation of flood discharge using HEC-HMS

We used the HEC-HMS hydrologic model to simulate the
Father’s Day flood event that occurred in the Huron Creek
watershed. The input data for setting up the HEC-HMS
model includes the digital elevation model (DEM), land use/
land cover, soil, and rainfall. In this study, we used a LIDAR
DEM with a spatial resolution of 2 ft x 2 ft (0.6 0.6 m)
for generating the stream network and watershed boundary.
The watershed was subdivided into seven sub-watersheds.
Land use/ land cover types of the watershed were extracted
from the National Land Cover Dataset 2019 (NLCD 2019)
(Dewitz & USGS, 2021). We extracted soil data of the water-
shed from the Soil Survey Geographic Database (SSURGO)
(Soil Survey Staff). In this study, we used the Soil Conserva-
tion Service Curve Number (SCS-CN) method to estimate
the runoff, the SCS unit hydrograph method to transform
the runoff volume into a hydrograph, and the Muskingum
method for channel routing. We estimated the weighted
average curve number of each sub-watershed based on the
spatial variability of land use/ land cover types and hydro-
logic soil groups in the sub-watersheds. The lag time was

estimated using the SCS method (Chow et al. 1988), and the
routing parameters were computed using the method (for
ungauged watersheds) described in USACE (2022). Rainfall
data at fine spatial and temporal scales is not available for
the watershed and hence, we used the rainfall (at 1-minute
intervals) recorded on 17 June 2018 at Keweenaw Research
Centre, Michigan Technological University as the meteo-
rological forcing data for the watershed. The Huron Creek
watershed does not have an observed hydrograph of the
Father’s Day flood event. However, the Michigan Depart-
ment of Environment, Great Lakes and Energy (EGLE)
maintains a record of flood discharges of different return
periods (up to 500 years). According to the database, the
discharge magnitudes corresponding to 100-year and 500-
year floods are 440 ft*/s (12.46 m>/s) and 650 ft*/s (18.41
m’/s) (https://www.egle.state.mi.us/flow/hflowqry.asp). As
the EGLE lacks streamflow magnitude for a return period
as infrequent as the 0.001% flood, we estimated the 1000-
year magnitude on the basis of extrapolation. Hence, we
fine-tuned the default parameters of the HEC-HMS model
to simulate the flood hydrograph to reasonably match the
1000-year flood discharge magnitude.

HAND

Estimation of the flood inundation depth and extent in the
Huron Creek watershed using the HAND model involves
three steps: (1) computation of HAND raster for the Huron
Creek, (2) derivation of hydraulic properties of the river
reach under investigation, and (3) generation of the syn-
thetic rating curve for the reach. Derivation of the HAND
model from DEM involves two sets of procedures: (1) gen-
erating a seamless, hydrologically-corrected DEM, defining
flow paths, and delineating drainage channel network, and
(2) deriving the HAND model from the hydrologically-cor-
rected DEM using local drain directions and the drainage
network. We used the LIDAR DEM with a spatial resolution
of 2 ft x 2 ft (0.6 0.6 m) for computing the HAND raster.
First, we identified the hydraulic structures along the stream
channel and processed them to create a flow continuum
through hydro-enforcing. We used different spatial analyst
tools (in ArcGIS) to generate the hydrologically conditioned
DEM, flow direction, and flow accumulation. Since the
drainage delineation from DEM is sensitive to the channel
initiation threshold, we used the USGS National Hydrogra-
phy Datasets (i.e., NHDPlus flowlines) as the reference for
delineating the stream network of the Huron Creek water-
shed. We calculated the weighted flow accumulation using
the channel head source grid cells (from NHDPlus streams)
as input and defined the stream raster. Finally, we calculated
the HAND using the Doo flow distance function with the
vertical drop option. The computed HAND raster provides
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the spatially distributed values of the difference in elevation
between a given point (pixel) and the nearest stream (i.e.,
the downslope grid cell where the flow from the point enters
the channel following the local drainage direction). For any
given stage height, inundation occurs in pixels with HAND
values smaller than the specified stage height. For example,
when the water level in a channel reaches 3 ft (0.91 m), the
pixels in the floodplain with HAND values less than 3 ft
(0.91 m) will be inundated. Thus, the inundation area and
average inundation depth for different stage heights were
estimated from the HAND raster. These values were used
to derive the cross-sectional area (A) and hydraulic radius
(R) of the channel reach (see Zheng et al. 2018b for detailed
methodology). The reach length and average slope (S)
were estimated from the DEM-derived channel network.
Although the channel roughness varies along the reach, we
used the average value (0.035) of the surveyed reaches in
Huron Creek as Manning’s n. We used the Manning’s equa-
tion to generate river discharge at the reach (Eq. 1):

1.49

Qi= T xAxRxS? (1)

where Q; is the predicted discharge (in ft*/s) for any given
stage height, i. A comprehensive description of the genera-
tion of synthetic rating curves using HAND is provided by
Zheng et al. (2018b). The river discharges were computed
for different stage heights to develop the synthetic rating
curve for Huron Creek. The Manning’s n for the reach was
consistent for all the models. The stage height for the simu-
lated flood discharge by the HEC-HMS model (in Sect. 4.2)
was estimated using this synthetic rating curve and the inun-
dation area and depth were estimated from the stage height
and HAND raster.

Hydraulic modeling

In this study, we used two hydraulic/hydrodynamic models,
viz., HEC-RAS 2D (version 6.3.1) and SMS-SRH 2D for
flood inundation mapping in the Huron Creek watershed.
HEC-RAS, developed by the Hydrologic Engineering Cen-
ter (U.S. Army Corps of Engineers), offers capabilities for
1D, 2D, and 1D-2D combined modeling. On the other hand,
SMS-SRH 2D is a two-dimensional hydraulic model with
a user-friendly graphical interface developed by Aquaveo,
featuring a computational engine developed by the Bureau
of Reclamation (Aquaveo, 2021; Lai, 2008). We employed
a two-dimensional flood routing approach in both models
to analyze flooding dynamics. Despite the variations in the
model structure, we maintained consistent parameter usage
throughout the modeling process. The LIDAR DEM, which
was used to derive the HAND model, served as the basis for
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the terrain model in HEC-RAS 2D and SMS-SRH 2D. Sub-
sequently, we used a computational mesh with a grid size of
10 ft x 10 ft (3% 3 m), chosen in consideration of the river
channel width and to leverage the high-resolution DEM.
Breaklines were strategically placed along the river banks
to facilitate water flow through the channel. The hydraulic
model domain spanned from downstream of the Huron Dam
to the outlet point at the Portage Canal (Fig. 1). Notably,
the canal and its backwater effects were omitted from the
model, as the canal’s stage level remained below that of the
stream during the 2018 flood, exerting hardly any influence
on the streamflow. Boundary conditions were provided with
the simulated hydrograph from the HEC-HMS model as the
input, while normal depth was designated as the output con-
dition. Both models relied on the National Land Cover Data
Set 2016 (NLCD) as the foundational land use/land cover
dataset, with Manning’s roughness values assigned based
on Chow (1959). Manual adjustments to the land use/land
cover data were made where necessary to mitigate the NLCD
dataset’s coarse spatial resolution (30 x 30 m). In both mod-
els, the unsteady flow module incorporated the Saint Venant
equation. Results encompassed flood inundation extent, and
inundation depth, which were further analyzed.

Model performance evaluation

Flood inundation maps generated by the three approaches
(i.e., HAND, HEC-RAS 2D, and SMS-SRH 2D) were used
for the comparative assessment. Each model was simulated
for the 1000-year storm event. The inundation extents pre-
dicted by the different models were validated using field
observations and photographic evidence during the flood
event. In this study, we identified 15 locations (from field
photographs) that were inundated during the flood and ran-
domly generated 15 locations (within the floodplain) that
were not inundated during the flood. Since hardly any data
are available on the inundation depth, we did not evaluate the
accuracy of the predictions, but the results of the hydraulic/
hydrodynamic models were compared against the HAND
model to assess the general agreement. The accuracy of the
predicted classification was evaluated using different pre-
diction performance measures, such as accuracy, Matthews
correlation coefficient (MCC), and F; Score (Egs. 1-5).

TP+ TN
Accuracy = (TP+TN) 0
(TP+FP+TN+FN)
MCC = (TP+TN)—(FP*FN) )
V(TP +FP)+ (TP +FN)# (TN + FP) « (TN + FN) ©)
TP 3
precision = (TP . FP> ( )
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F\Score = 2 % precision x recall 5)

precision + recall

where TP (true positive) and TN (true negative) represent
the number of observed data that are correctly classified as
inundation and non-inundation, respectively, whereas the
false positive (FP) and false negative (FN) are the number
of data points that are incorrectly classified. In addition,
the area under the receiver operating characteristics curve
(ROC-AUC) and precision-recall curve (PRC-AUC) were
estimated to assess the overall performance of the model
predictions. The overall methodological framework adopted
in this study is given in Fig. 3.

Results
Streamflow simulation using HEC-HMS

The catchment area of Huron Creek received about 7 in
(177.8 mm) of rainfall in less than 6 h (on 17 June 2018)
resulting in significant flooding across the floodplain. The
simulated hydrograph of the extreme rainfall event using
the HEC-HMS model shows a peak discharge of 808 ft*/s
(22.88 m’/s) at the outlet of Huron Dam at 4.50 am on 17
Jun 2018 (Fig. 4). Due to the lack of observed data records,
the accuracy of the HEC-HMS simulated hydrograph was
not assessed. Although the EGLE flood discharge database
has the discharge magnitude for floods of different return
periods (10, 50, 100, 200, and 500), it does not have stream-
flow magnitude for a return period as infrequent as a 1000-
year flood. The EGLE database indicates that the discharge
magnitude corresponding to a 500-year flood is 650 ft*/s

(18.40 m>/s). Although extrapolation of frequency is not
standard hydrological practice, we plotted the flows for the
other frequencies on a log probability graph and extended
it to the 0.001% frequency. We noted that the HEC-HMS
simulated peak flood magnitude of 808 ft*/s (22.88 m?/s)
for a 1000-year rainfall event is a reasonable estimate when
compared to the extrapolated discharge.

Inundation mapping

The flood inundation extent and depth estimated by the
HAND, HEC-RAS 2D, and SMS-SRH 2D models were
compared for the storm event on 17 June 2018. Since we
used the hydrograph at the Huron dam as the inflow bound-
ary condition in the hydraulic/hydrodynamic models, the
scope of the comparison is limited to the channel reach
between the Huron dam and the outlet point at the Portage
Canal (see Fig. 1 for geographic extent). Table 1 facilitates
comparison of various metrics of model performance for
mapping flood inundation areas in the Huron Creek water-
shed. The HAND model classified the inundation and non-
inundation areas with an accuracy of 80%, slightly lower
than that of the hydrodynamic models (i.e., 83%) (Table 1).
The non-inundated areas in the watershed were predicted rel-
atively better by all the models than the inundated locations,
which is evident in the high values of precision. Further,
the HAND model has better precision than the hydraulic/
hydrodynamic models (Table 1). On the other hand, while
predicting the inundated areas, the hydraulic/hydrodynamic
models outperform the HAND model, which is obvious by
the recall values. The HAND model has a relatively lower
recall (0.60) compared to the HEC-RAS 2D and SMS-SRH
2D models (0.80 and 0.73, respectively) (Table 1). The F1
Scores of the models also show a similar pattern as the score
is independent of the number of data that are correctly clas-
sified as non-inundated (Chicco and Jurman 2020). The
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Fig.4 HEC-HMS simulated flood hydrograph downstream of Huron dam in Huron Creek watershed

Table 1 Model performance measures of inundation extent

HAND HEC-RAS 2D SMS-SRH 2D
Accuracy 0.80 0.83 0.83
MCC 0.65 0.67 0.68
Precision 1.00 0.86 0.92
Recall 0.60 0.80 0.73
F,-Score 0.75 0.83 0.81
ROC-AUC 0.80 0.83 0.83
PRC-AUC 0.86 0.81 0.84

MCC values of all the models are moderate (0.65-0.68) as
the coefficient produces a high score only when the models
predict good results in all the four categories of the confu-
sion matrix (i.e., TP, TN, FP, and FN), proportional to the
size of the inundation and non-inundation datasets (Chicco
and Jurman 2020). Although all the models are better at
classifying the non-inundated areas, misclassification in
the identification of areas under inundation leads to moder-
ate values of MCC. A general comparison of the various
performance indicators of different models implies that the
HAND model has significant competence in mapping the
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Table 2 Areal extent of flood inundation modeled by different
approaches used in Huron Creek

Channel section  Inundation area (ha) Mean chan- Mean
HAND HEC- SMS- nel gradient valley
RAS SRH  (ft/ft) slope
2D 2D (%)
Entire reach 2.4 6.1 54 0.04 12.6
S1 0.5 0.8 0.7 0.05 13.0
S2 0.3 0.6 0.5 0.02 19.7
S3 0.4 1.1 1.2 0.04 9.0
S4 0.3 2.4 1.7 0.04 11.1

inundation areas in data-scarce conditions (such as in the
Huron Creek watershed) during extreme rainfall events.

A comparison of the inundation extent among the dif-
ferent models indicates that the HAND model resulted in
a significantly smaller inundation area compared to the
hydraulic models (Table 2). Based on the estimates of the
HAND model, the inundation area during the Father’s Day
flood in the Huron Creek watershed was 2.4 ha, whereas
the hydraulic/hydrodynamic models predicted an area more
than twice the extent of that of the HAND model. Although
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the HAND model underestimates the modeled inundation
extent, a similar spatial pattern of inundation extent is noted
among the different approaches. Hence, we analyzed the
spatial variability of the inundation extent in four channel
segments (S1 to S4) of Huron Creek (Fig. 5). The inunda-
tion area predicted by the three models in the four chan-
nel sections (S1 to S4) shows that the differences between
the approaches vary among these sections (Table 2). For
instance, the differences in the inundation area between
the models are significantly smaller in S1 and S2, whereas
S4 has remarkable variability, i.e., 0.3 ha (HAND), 2.4 ha
(HEC-RAS 2D), and 1.7 ha (SMS-SRH 2D). Interestingly,
the valley slope in S1 and S2 is comparatively higher than
in S3 and S4 (Table 2), implying the significance of valley
setting in flood inundation estimation using low complexity
models, such as HAND.

The flood inundation depths simulated by different models
are also compared to assess the general agreement between
the models. Since hardly any data on flood inundation depth

I Inundation by all the models
[ inundation by HAND & HEC-RAS 2D
I Inundation by HAND & SMS-SRH 2D
- Inundation by HAND only
Inundation by HEC-RAS 2D & SMS-SRH 2D

- Inundation by HEC-RAS 2D only
- Inundation by SMS-SRH 2D only
Field observation

® Inundated

A Non-inundated ~

B

0 25 50m

for the Father’s Day flood in Huron Creek is available, we
compared the simulated depth generated by the hydraulic/
hydrodynamic models against the HAND model. Hence,
we limited the scope of the comparative analysis to the
intersecting area of the inundation extent produced by the
HAND model and the hydrodynamic models. Results indi-
cate that the HAND model underestimated the flood depth
in the Huron Creek watershed compared to the HEC-RAS
2D and SMS-SRH 2D simulations (Table 3; Fig. 6). On
average, the flood depth produced by the HAND model is
about 2 ft (0.6 m) shallower than the HEC-RAS 2D and
SMS-SRH 2D simulated depths. Such an underestimation
is evident in all the channel segments, except for S1, where
the HAND model overestimates flood inundation depth in
the upstream and underestimates in the downstream com-
pared to both HEC-RAS 2D and SMS-SRH 2D simulations
(Fig. 6). Although S2 (along with S1) shows significant
agreement in flood inundation extent between the HAND
and the hydraulic/hydrodynamic models (Table 3), the flood

0 100 200 ft

|_'_|_‘_J

25 50 m

100 200 ft 100 200 ft

e

w0 25 50m

Fig.5 Inundation extent in the different channel segments (S1 to S4) predicted by HAND, HEC-RAS 2D, and SMS-SRH 2D
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Table 3 Difference in flood inundation depth modeled by different approaches used in this study

Channel section

Difference in inundation depth (ft)

HAND - HEC-RAS 2D

HAND - SMS-SRH 2D

Mean Minimum Maximum Mean Minimum Maximum
Entire reach -1.7 -9.1 3.1 -2.0 -12.9 2.9
S1 0.0 -3.9 3.0 0.2 -3.8 2.9
S2 2.8 9.1 -0.1 -2.8 -8.4 0.4
S3 2.4 -7.9 1.5 -2.3 -7.0 2.0
S4 -1.6 -8.1 3.0 -3.6 -9.5 2.9
a) s1 % b) s2 % c) s3 Yd) & )
s ¥ 4 ¢ 4
o A, ~
,.‘
|
{ /
! 'j “\l\
\ £ 5
, r
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;/ Legend \.
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Fig. 6 Differences in the inundation depth predicted by the HAND model in different segments (S1 to S4) compared to HEC-RAS 2D (a-d) and

SMS-SRH 2D (e-h)

depth predicted by the HAND exhibits larger deviation
compared to HEC-RAS 2D and SMS-SRH 2D models.

Discussion

The capability of the HAND model to map the inundated
areas during the Father’s Day flood in the Huron Creek
watershed is evident in various model performance mea-
sures, except recall (Table 1). A lower recall value (0.60)
for the HAND model arises due to misclassifying the areas
under inundation as non-inundated areas (i.e., six cases out
of 15). Although HEC-RAS 2D (0.80) and SMS-SRH 2D
(0.73) also failed to map some of the inundation areas (i.e.,

@ Springer

three cases in HEC-RAS 2D and four cases in SMS-SRH
2D), the HAND model was less successful than the hydrau-
lic/hydrodynamic models. Interestingly, all three models
failed to map inundation at three locations in S2. However,
the major cause of the inundation downstream of S2 was
the failure of a culvert and associated obstruction. Fur-
ther, the damaging scour that occurred at S2 modified the
downstream fluvial landscape (i.e., S3) by rerouting chan-
nel beds, displacing bed load material, and scouring vegeta-
tion (Washko 2019). However, the hydraulic/hydrodynamic
models accurately predicted the inundation locations in S3,
even if the inundation in one of the locations occurred due to
the rerouting of the channel at S2. Although it is considered
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an accurate prediction, this is a clear case of overestimation
of inundation by the hydraulic’/hydrodynamic models in S3.

In general, the results of this analysis suggest varying
levels of performance of the HAND model compared to
the hydraulic/hydrodynamic models, such as HEC-RAS 2D
and SMS-SRH 2D, to identify flood inundation areas. The
observations of Zheng et al. (2018b) imply that the HAND-
based flood inundation mapping shows better performance
in hilly, rural catchments where the topographic setting has
major control over the flood routing process, compared to
urbanized catchments with a gentle slope, where artificial
structures significantly affect the hydrodynamic processes.
In a similar context, Afshari et al. (2018) observed that
the prediction of inundation areas by the HAND model is
comparable to the HEC-RAS 2D model in simple fluvial
landscapes (e.g., straight, headwater reaches), whereas the
HAND model fails in complex conditions, such as meander-
ing sections and tributary confluences. It may be noted that
the hydraulic/hydrodynamic model simulations in Huron
Creek resulted in significantly larger areas under inundation
in general and particularly in S3 and S4 (Table 2; Fig. 5).
Similarly, the HEC-RAS 2D simulations of Afshari et al.
(2018) also generated wider areas under inundation com-
pared to the outputs generated by low-complexity models,
such as HAND and AutoRoute while using simple terrain
setup (i.e., without incorporating channel bathymetry or
other possible floodplain features, such as levees). How-
ever, the predicted depth of inundation by the HAND model
along the Huron Creek tends to be underestimated, which
could be a reflection of the inability of the model to con-
sider channel hydraulics and hydrodynamics in computing
flood inundation. Contrastingly, Afshari et al. (2018) noted
that the HAND model overestimates flood inundation depth
(compared to HEC-RAS 2D) in simple terrain setup (i.e.,
without incorporating bathymetry or floodplain features),
whereas ‘bathymetry-informed’ terrain setup results in
underestimation of the depth of flood inundation. However,
the results of this study show that the HAND model under-
estimates inundation depth even with a simple terrain setup.

The possibilities of underestimation of the HAND model
include (1) a depiction of the actual (bathy-informed) ter-
rain profile in the LIDAR DEM, and (2) uncertainties in the
HAND model and the synthetic rating curve. The channel
geometry may not be accurately characterized in large rivers
even with high-resolution DEMs due to the water column
within the channel. Practically, Huron Creek downstream of
the Huron Dam is a small stream channel with well-defined
valleys and the magnitude of streamflow is low except dur-
ing intense storm events. Hence, the LIDAR DEM could
have captured the actual terrain profile (including bathymet-
ric information) in most of its channel length. However, we
did not compare the actual bathymetry and DEM-derived

cross-sections to reaffirm this possibility. The uncertainty in
the HAND model may be caused by watershed morphologi-
cal and channel characteristics (Li et al. 2022). The flood
inundation estimation using the HAND model heavily relies
on the accuracy of the synthetic rating curve generated
using the LIDAR DEM. In this study, we used the NHDPlus
flowlines to identify the headwater location and Manning’s
equation to compute the flood discharge. Further, the stage
corresponding to the Father’s Day flood discharge (808 ft*/s
(22.8 m?/s) in this case) was estimated from the synthetic
rating curve. The inundation depth was calculated by sub-
tracting the HAND raster from the stage height obtained
from the rating curve (Zheng et al. 2018b). Hence, the uncer-
tainties in estimating the synthetic rating curve would have
significant effects on the flood inundation depth. Although
Zheng et al. (2018b) could not generate a globally accurate
synthetic rating curve from the HAND raster with a constant
Manning’s n, they demonstrated that optimizing Manning’s
n considering the channel roughness condition results in a
rating curve comparable to that derived from gauge obser-
vations. In this study, we used Manning’s n of 0.035 derived
from field observations. Further, Washko (2019) also used
a similar Manning’s n for hydraulic modeling in the Huron
Creek watershed. However, the differences in Manning’s n
along the river reach and the possible range of values were
not considered when calculating the synthetic rating curve.
Keeping the channel attributes (i.e., cross-sectional area,
hydraulic radius, and slope) constant, we independently var-
ied the roughness coefficient, solving for the flood discharge
of 808 ft*/s. In doing so, we noted that that the synthetic
rating curve relationships are sensitive to the changes in
Manning’s n. In addition, terrain and channel characteristics
could also affect the accuracy of the rating curve. Godbout
et al. (2019) noted that the accuracy of the synthetic rating
curve is largely influenced by reach length, reach slope, and
hydraulic structures, where short reaches, reaches with low
gradients, and reaches close to hydraulic structures were
found to predict the poor performance of synthetic rating
curve. Similarly, Ghanghas et al. (2022) also showed that
channels with low slopes and large catchment areas tend
to overpredict the synthetic rating curve, while channels in
hilly tracts tend to underpredict.

The HAND model shows similar performance in map-
ping flooding extent in some sections of Huron Creek (i.e.,
S1 and S2) compared to the hydraulic/hydrodynamic mod-
els. However, large deviations are observed in specific sec-
tions (S3 and S4; Table 3) where the valleys are broader than
the other sections. This difference could be mostly due to
the simplified representation in the HAND model and gen-
eralization (i.e., uniform flow, invariant channel roughness).
While estimating the synthetic rating curve, the hydraulic
properties are averaged assuming uniform channel geometry
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along the reach. Although such an assumption could be
partly valid for steep channels with uniform morphology
in well-defined valleys, the assumption adds to uncertainty
in broad valleys. For instance, Hocini et al. (2021) noted
large deviations in HAND-based flood inundation estimates
compared to hydrodynamic methods in large and flat flood-
plains, with a longitudinal slope significantly higher than
the transverse slope in the floodplain. Flat areas in DEM
lack local elevation gradients resulting in an inaccurate rep-
resentation of local flow direction (Martz and Garbrecht
1998; Tarboton 1997), and hence, inaccurate HAND values
thereby erroneous cross-sectional geometry derived from
the HAND-based approach. The significant negative bias in
the HAND model estimates of flood inundation depth com-
pared to the hydraulic/hydrodynamic models (Table 3) also
partly contributed by the generalization of the geometry
(Hocini et al. 2021).

The HAND model is sensitive to the channel initiation
threshold, one of the major parameters used in HAND-
based approaches (Li et al. 2022). In this study, we used the
NHD flowlines (mapped at a scale of 1: 24,000) to identify
the headwater location. Hence, the difference in the spatial
scale between the channel initiation point and the DEM
used for HAND estimation also results in discrepancies
in hydraulic properties which propagate into the inunda-
tion mapping (Garousi-Nejad et al. 2019). Other potential
reasons for the deviation between the HAND and hydrau-
lic/hydrodynamic models could be the boundary effects
between sub-basins particularly at stream confluences and
the absence of representation of backwater effects (Afshari
et al. 2018; Hocini et al. 2021). Although many researchers
demonstrated the significance of these effects in flood inun-
dation estimates in river channels developed in large flood-
plains, we noted that such effects are significant in stream
channels of smaller rural watersheds too. Considering the
limitations of the HAND model for mapping flood inun-
dation, several researchers argued that the HAND model
can be improved by proposing various modifications. For
example, Godbout et al. (2019) proposed a moving window
approach to recalculate the reach slope in Manning’s equa-
tion as the weighted average over a minimum distance. Sim-
ilarly, Garousi-Nejad et al. (2019) also suggested various
modifications for improving the HAND-based flood inun-
dation mapping, e.g., derivation of hydraulic properties and
synthetic rating curves using the DEM-based drainage net-
work and catchments based on evenly spaced nodes along
a stream reach, and a hybrid filling-breaching algorithm to
hydrologically condition the DEM. It is also suggested to
infer stream reach hydraulic roughness using observed past
flood inundation data.

Access to flood inundation maps showing potential areas,
assets, and populations that are vulnerable is a high priority
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in the context of flood risk planning and risk reduction pro-
grams, particularly in rural regions. The decreased flood
resilience in rural regions in the US (e.g., Upper Peninsula
in Michigan) is attributed to the lack of data and appropri-
ate tools to assess flood risk calling for the development of
flood risk mapping tools for efficient floodplain manage-
ment (Thomas et al., 2022). Since the HAND is a topogra-
phy-based model, the approach has several advantages over
the traditional hydraulic/hydrodynamic models. The HAND
model is conceptually simpler compared to the hydraulic/
hydrodynamic models. Further, the applicability of hydrau-
lic/hydrodynamic models has always been hindered by the
availability of input data at required spatial and temporal
scales and computational requirements. Hence, the HAND-
based approach is easy to set up and update and can be useful
in ungauged basins to provide quick estimates of potential
flood extents and inundation patterns. Despite the varying
levels of performance across the different channel segments
of Huron Creek, the HAND-based approach reiterates the
suitability of the HAND model for flood inundation map-
ping in data-scarce regions. Hence, flood inundation and
risk mapping approaches based on low complexity models,
such as HAND have a promising future as these serve as a
vital guidance tool for enhancing flood resilience in data-
scarce rural regions and ungauged watersheds to a great
extent.

Summary and conclusion

This study investigated the suitability of the HAND model
for flood inundation mapping in data-scarce regions by
comparing the flood inundation characteristics with hydrau-
lic/hydrodynamic models, such as HEC-RAS 2D and SMS-
SRH 2D. Flood inundation extent and depth were mapped
in the Huron Creek watershed (in Houghton County, Michi-
gan, USA) for an extreme rainfall event (Father’s Day flood)
with a recurrence interval of more than 1000 years. Being
an ungauged watershed, flood discharge for the storm event
was simulated using the HEC-HMS model and was used as
the input inflow boundary condition of the flood event. The
simulated flood hydrograph of the event resulted in a peak
discharge of 808 ft*/s (22.88 m?/s) at the outlet of Huron
Dam. The performance of the various models was assessed
using different metrics. A comparison of the performance
measures of different models implies the suitability of the
HAND model to map the extent of flood inundation areas.
While the HAND model slightly underestimates the inun-
dation extent, the hydraulic/hydrodynamic models show
overestimation. Further, HEC-RAS 2D shows a relatively
larger areal extent compared to SMS-SRH 2D. Among the
different channel segments in Huron Creek, S3 and S4, with



Earth Science Informatics (2024) 17:1907-1921

1919

less steep valleys, show larger deviations in the inundation
area between the HAND and the hydraulic/hydrodynamic
models. Further, the HAND model underestimates the flood
depth compared to HEC-RAS 2D and SMS-SRH 2D simu-
lations, mostly due to the uncertainties in the estimation of
the synthetic rating curve.

Supplementary Information The online version  contains
supplementary material available at https://doi.org/10.1007/s12145-
023-01218-x.
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