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Abstract—We study the trade-off between communication rate
and privacy for distributed batch matrix multiplication of two
independent sequences of matrices A and B with uniformly
distributed entries. In our setting, B is publicly accessible by all
the servers while A must remain private. A user is interested in
evaluating the product AB with the responses from the k fastest
servers. For a given parameter α ∈ [0, 1], our privacy constraint
must ensure that any set of ℓ colluding servers cannot learn
more than a fraction α of A. Additionally, we study the trade-off
between the amount of local randomness needed at the encoder
and privacy, which to the best of our knowledge no previous work
has characterized. Finally, we establish the optimal trade-offs
when the matrices are square and identify a linear relationship
between information leakage and communication rate.

Index Terms—Secure Distributed Matrix Multiplication, Secret
Sharing, Data Privacy, Distributed Computing.

I. INTRODUCTION

THE task of multiparty computation with security guar-
antees, first explored in [1], [2], recently developed

into outsourcing large-scale matrix multiplication tasks to
distributed servers to speed up computation. It has applications
in machine learning, signal processing, data encryption, and
computational efficiency in cloud computing, e.g., [3]–[6].
For instance, privacy-preserving machine learning may involve
training on encrypted data and protecting private information
like health records. In several applications, only one matrix
needs to be private. [7] and [8] explore secure outsourcing
matrix computations in neural networks, requiring the privacy
of input matrices (A) while allowing computation results
or model parameters (B) to be openly handled. This setup
exemplifies the principle of keeping sensitive data private
while utilizing public model parameters.

The information-theoretic investigation of secure distributed
matrix multiplication emerged in [9], where two matrices A
and B are securely encoded and transmitted to N servers
by the user who retrieves AB from the data downloaded.
However, a scenario where a controlled amount of informa-
tion leakage is permissible can help reduce communication
complexity. To study the trade-off between privacy leakage
and communication rate, we consider a setting with a newly
defined privacy constraint that allows a controlled amount
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of leakage and design a coding scheme that meets such
constraint.

In this paper, we study the problem of secure batch matrix
multiplication for two sequences of matrices, A and B,
independently and uniformly distributed over a finite field.
The user is interested in distributing the computation of the
product AB over N servers. By downloading responses from
the k fastest servers, the user can retrieve AB (Recoverability
Constraint). The download rate is the ratio of the number of
bits required to represent the computation result to the total
number of bits that the servers must transmit to the user.
Unlike previous studies, which considered perfect privacy,
e.g., [6], [9], [10], in our setting, a controlled amount of
information leakage is permissible, meaning that, for a given
parameter α ∈ [0, 1], no more than a fraction α of information
about A can be learned by any set of ℓ colluding servers
(Privacy Constraint). The capacity is defined as the supremum
of the download rate. The capacity of this model has been
characterized in [9], [10] when α = 0, and its characterization
when the matrices are non-uniform is an open problem [10].
Our main contributions are:

(i) Formalizing a new problem setting that enables the
study of the trade-off between download rate and privacy
leakage. Our results generalize [9, Theorem 1] and [10,
Theorem 3] obtained when α = 0.

(ii) Understanding the trade-off between privacy leakage and
local randomness to efficiently use this costly resource
at the encoder. Specifically, we determine bounds for the
amount of randomness needed to meet the privacy con-
straint, which to the best of our knowledge, no previous
works had investigated, even when α = 0.

(iii) Characterizing the capacity for square matrices and show-
ing a download rate gain of min

(
(k−ℓ)α
k(1−α) ,

ℓ
k

)
compared

to the case α = 0. We also identify a linear relationship
between communication rate and privacy leakage by
finding that the capacity is proportional to 1

1−α . Finally,
we establish the optimal rate of local randomness needed
at the encoder and show a gain of min

(
αk
k−ℓ ,

ℓ
k−ℓ

)
compared to the case α = 0.
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A. Related works

[9] is the first information-theoretic work that studies the
capacity for secure distributed multiplication of two matrices
A and B. The authors designed two models: a one-sided secure
model where only matrix A is private, and a fully secured
model where both matrices are private. Recent works, e.g., [5],
[6], [9]–[11], aimed to optimize communication overheads in
this problem. This problem is also explored in [11]–[13], [13]–
[22] to investigate the use of coding techniques that reduce
communication costs. Additionally, [23] and [24] considered
the setting with distributed nodes where data does not originate
at the user requesting the computation. These works focus
on reducing the download and upload rate while preserving
privacy.

Note that the above references only considered perfect
security without any information leakage in their problem
settings. Notably, [25] has explored the trade-off between
privacy and sparsity in distributed computing by examining
sparse secret-sharing schemes, where increased sparsity results
in weaker privacy.

Compared to previous works, our study demonstrates how
relaxing privacy constraints can enhance communication effi-
ciency in distributed matrix multiplication.

B. Main differences with previous works

The recent models in [10], [6], and [13], use matrix parti-
tioning techniques introduced in [26]. These methods consider
no privacy leakage, ensuring that any set of colluding servers
cannot obtain any information about private matrices. To the
best of our knowledge, no previous work characterizes the
capacity for secure distributed matrix multiplication when
information leakage is allowed. In this study, we define a
new problem setting that incorporates a privacy constraint
with an information leakage parameter α, which could not
be addressed with previous techniques, as detailed next. With
such a privacy constraint, we obtain bounds on the capacity
that generalize previously found bounds in [9, Theorem 1]
and [10, Theorem 3]. Another contrast between this work
and previous studies is that we bound the optimal rate of
local randomness needed at the encoder to satisfy the privacy
constraint, making this the first study to explore such bounds.

In our setting, a significant challenge lies in satisfying the
new privacy constraint, preventing any set of ℓ < k colluding
servers to learn more than a fraction α ∈ [0, 1] of information
about A. We cannot rely on traditional secret sharing [27],
[28], which does not allow any information leakage. We
modify ramp secret-sharing schemes [29] to integrate the
matrix multiplication task. Inspired by recent studies on the
trade-offs between privacy and communication rate [30], as
well as storage considerations [31], we combine two ramp
coding schemes—a strategy not previously investigated—to
allow a controlled privacy leakage.

C. Paper organization

The remainder of the paper is organized as follows. We
define the problem in Section II and present our main results

in Section III. We discuss our converse and achievability in
Sections IV and V, respectively.

II. PROBLEM STATEMENT

Notation: Let Fq be a finite field characterized by a large
prime number q. Let Q, N, and R be the set of rational, natural,
and real numbers, respectively. For any a, b ∈ N, define [a] ≜
[1, a] ∩ N, [a : b] ≜ [a, b] ∩ N, and [a : b) ≜ [a, b − 1] ∩ N.
Sets are represented by calligraphic letters, and sequences of
matrices are represented by bold uppercase letters. Let [a]=b ∆

=
{I ⊆ [a] : |I| = b} be the set of all the subsets of [a] that
have cardinality b; [a]≤b ∆

= {I ⊆ [a] : |I| ≤ b} be the set
of all the subsets of [a] that have a cardinality less than or
equal to b. Logarithms are defined with base q. Also, define
[a]+ ≜ max{0, a}.

Definition 1. Let N, r ∈ N, and k ∈ [N ], an (N, k, r)-coding
scheme consists of

• N ≥ 2 servers;
• Two sequences of matrices, A ≜ (As)s∈[m] and B ≜
(Bs)s∈[m], where m is a large integer. For any s ∈ [m],
the matrices As and Bs are assumed to be independent
and uniformly distributed over FC×D

q and FD×E
q , respec-

tively. B is public while A is private and accessible only
by the user;

• Local randomness in the form of a uniform random
variable R which is distributed over Fr

q and independent
of (A,B);

• N encoding functions fi : (A, R) 7→ Ãi, i ∈ [N ], such
that A can be recovered from encoded matrices ÃI ≜
(Ãi)i∈I , I ∈ [N ]≥k, i.e.,

H(A|ÃI) = 0; (1)

• N processing functions hi : (Ãi,B) 7→ Zi, i ∈ [N ];
• A decoding function d taking ZI ≜ (Zi)i∈I , I ⊆ [N ],

and returning an estimate of AB ≜ (AsBs)s∈[m];
and operates as follows:

• For all i ∈ [N ], the user sends the encoded matrices
Ãi ≜ fi(A, R) to Server i over a private channel;

• For all i ∈ [N ], Server i generates a response Zi ≜
hi(Ãi,B);

• The user computes an estimate of AB as d(ZI), where
ZI is a sequence of received responses from the k fastest
servers.

Definition 2. For any ℓ ∈ [0 : k) and α ∈ [0, 1) ∩ Q, an
(N, k, r)-coding scheme is (ℓ, α)-private if

max
I∈[N ]≥k

H(AB|ZI) = 0, (Recoverability) (2)

max
L∈[N ]≤ℓ

I(A; ÃL)

H(A)
≤ α. (Privacy) (3)

An achievable rate Λk for an (N, k, r)-coding scheme that
satisfies (2) and (3) is determined by the ratio of the desired
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User

A ≜ (A1, . . . , Am) B ≜ (B1, . . . , Bm)

fN ÃN
B

Server 1 Server i Server N
. . .. . .

h1 hNhiZ1 Zi ZN

AB ≜ (A1B1, . . . , AmBm)

. . . . . .

fif1 Ã1 Ãi B B

Figure 1. The matrices in A are first encoded by the user using the functions
fi. These encoded matrices, denoted as Ãi, are then distributed to each
Server i ∈ [N ]. Server i processes Ãi and B to compute a response Zi

using the function hi. Once the computations are complete, the user collects
the responses from the k fastest servers and reconstructs the product AB.

information to the total download from the k fastest servers

Λk ≜
H(AB|B)

maxI∈[N ]=k

∑
i∈I H(Zi)

. (4)

The capacity C(ℓ,α,k) is the supremum of all achievable rates.
Additionally, we define the optimal rate of local randomness
as R(ℓ,α,k) ≜ min{r ∈ N : ∃(ℓ, α)-private (N, k, r)-coding
scheme}/H(AB|B).

Equation (2) means that the responses from any subset of k
or more servers are sufficient to reconstruct the product AB.
Equation (3) means that ℓ colluding servers cannot learn more
than a fraction α of A from the encoded matrices ÃL. Note
that α is chosen as a rational number, which is not a restrictive
assumption because by density of Q in R, for any β ∈ [0, 1],
ϵ > 0, there exists α ∈ [0, 1) ∩Q such that |α− β| < ϵ.

In Equation (4), we consider the maximum over any subset
of k servers in the denominator to account for the worst-case
scenario.

Fig. 1 illustrates our setting.

III. MAIN RESULTS

The following theorem establishes upper and lower bounds
on the capacity.

Theorem 1 (Communication Rate). For any α ∈ [0, 1) ∩ Q

and ℓ ∈ [0 : k), the capacity C(ℓ,α,k) satisfies

C(ℓ,α,k) ≤

min

(
k−ℓ

k(1−αmax(1,DE ))
, 1

)
α < 1

max(1,DE )
1 α ≥ 1

max(1,DE )

,

(5)

C(ℓ,α,k) ≥
{ k−ℓ

k(1−α) min
(
1, D

E

)
α < ℓ

k

min
(
1, D

E

)
α ≥ ℓ

k

. (6)

Proof. We prove the converse and achievability in Sections IV
and V, respectively.

Theorem 2 (Local Randomness). For any α ∈ [0, 1)∩Q and
ℓ ∈ [1 : k), the optimal rate of local randomness necessary at
the encoder satisfies

R(ℓ,α,k) ≤
{

ℓ−αk
k−ℓ max

(
1, D

E

)
α < ℓ

k

0 α ≥ ℓ
k

, (7)

R(ℓ,α,k) ≥
[
ℓ− αkmax

(
1, D

E

)]+
k − ℓ

. (8)

Proof. We prove the converse and achievability in Sec-
tions IV-B and V-B2, respectively.

The bounds established in the previous theorems match
when the matrices are square.

Theorem 3 (Optimality Results). If A and B are two se-
quences of independent and square matrices with uniformly
distributed entries, then the capacity is

C(ℓ,α,k) = min

(
k − ℓ

k(1− α)
, 1

)
=

{ k−ℓ
k(1−α) α < ℓ

k

1 α ≥ ℓ
k

,

and the optimal rate of local randomness is

R(ℓ,α,k) =
[ℓ− αk]

+

k − ℓ
=

{
ℓ−αk
k−ℓ α < ℓ

k

0 α ≥ ℓ
k

.

Proof. One can deduce these results from the bounds in
Theorems 1 and 2 with D = E.

IV. CONVERSE PROOF

Define L ⊆ [N ] such that |L| = ℓ.

A. Rate

Initially, consider α < 1

max(1,DE )
. For all I ∈ [N ]=k such

that L ⊆ I, we have

H(AB|B) = H(AB|B)−H(AB|ZI ,B) +H(AB|ZI ,B)

(a)
= I(ZI ;AB|B)

= H(ZI |B)−H(ZI |AB,B)

(b)

≤ H(ZI |B)−H(ZL|AB,B) (9)
(c)

≤ H(ZI |B)−H(ZL|B) + αH(A), (10)

where
(a) holds by (2);
(b) holds because L ⊆ I;
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(c) holds because H(ZL|AB,B) ≥ H(ZL|B) − αH(A).
The proof is omitted due to space constraints.

Then, we have

H(AB|B)
(a)

≤ H(ZI |B)− ℓ
1(
k
ℓ

) ∑
L∈I=ℓ

H(ZL|B)

ℓ
+ αH(A)

(b)

≤ H(ZI |B)− ℓ
H(ZI |B)

k
+ αH(A)

=

(
1− ℓ

k

)
H(ZI |B) + αH(A)

≤
(
1− ℓ

k

)∑
i∈I

H(Zi) + αH(A), (11)

where
(a) holds by averaging (10) over all possible subsets L of

servers of size ℓ in I;
(b) holds by Han’s inequality [32, section 17.6].

Then, from (11) we have

Λk =
H(AB|B)

maxI∈[N ]=k

∑
i∈I H(Zi)

≤
1− ℓ

k

1− α H(A)
H(AB|B)

. (12)

Given that the matrices in A and B are independent and
uniformly distributed over FC×D

q and FD×E
q , using [10,

Lemma 2], we have

q → ∞ ⇒ H(AB|B) = m×min(CD,CE). (13)

Also, for any α ∈ [0, 1), we have from (9)

H(AB|B) ≤ H(ZI |B)−H(ZL|AB,B)

(a)
= H(ZI |B)

(b)

≤
∑
i∈I

H(Zi), (14)

where
(a) holds by (9) with |L| = 0;
(b) holds because conditioning reduces entropy.

Then, from (14), we have

Λk =
H(AB|B)

maxI∈[N ]=k

∑
i∈I H(Zi)

≤
∑

i∈I H(Zi)

maxI∈[N ]=k

∑
i∈I H(Zi)

≤ 1. (15)

Finally, we obtain (5) from (12), (13) and (15).

B. Local Randomness

Consider α ∈ [0, 1] ∩ Q and ℓ ∈ [1 : k). Let V ⊆ L define
v ≜ |V|, V0 ≜ ∅, and for j ∈ L, Vj ≜ Vj−1 ∪ {i∗(V)}. Then,
we have

ℓ− kα
(

H(A)
H(AB|B)

)
k − ℓ

H(AB|B)

= −αH(A) + ℓ
1− α H(A)

H(AB|B)

k − ℓ
H(AB|B)

(a)

≤ −αH(A) +

ℓ−1∑
i=0

[
H(Ã[N ]|ÃVi

)−H(Ã[N ]|ÃVi+1
)
]

= −αH(A) +H(Ã[N ])−H(Ã[N ]|ÃVℓ
)

(b)

≤ −αH(A) +H(A, R)−H(Ã[N ]|ÃVℓ
)

(c)
= (1− α)H(A) +H(R)−H(Ã[N ]|ÃVℓ

)

(d)
= (1− α)H(A) +H(R)−H(AÃ[N ]|ÃVℓ

)

≤ (1− α)H(A) +H(R)−H(A|ÃVℓ
)

(e)

≤ H(R), (16)

where
(a) holds by the definition of Vj , j ∈ L, and applying ℓ times

the following inequality

1− α H(A)
H(AB|B)

k − ℓ
H(AB|B)

≤ H(Ã[N ]|ÃV)−H(Ã[N ]|ÃV∪{i∗(V)}), (17)

where i∗(V) ∈ argmaxi∈[N ]\V H(Ãi|ÃV) and the proof
for (17) is omitted due to space constraints;

(b) holds because Ã[N ] is a deterministic function of (A, R);
(c) holds by independence between A and R;
(d) holds because, by (1), we have

H(AÃ[N ]|ÃVℓ
) = H(A|Ã[N ]) +H(Ã[N ]|ÃVℓ

)

= H(Ã[N ]|ÃVℓ
);

(e) holds because −H(A|ÃVℓ
) ≤ −(1− α)H(A) by (3).

Using (16) and (13), we have

ℓ− kα
(
max

(
1, D

E

))
k − ℓ

H(AB|B) ≤ H(R). (18)

Finally, (8) holds by (18), and since H(R) ≥ 0.

V. ACHIEVABILITY PROOF

For the achievability, the idea is to design a coding scheme
with the following leakage symmetry condition

∀t ∈ [N ],∃ Et ∈ [0, 1],∀ I ⊆ [N ],

|I| = t ⇒ I(A; ÃI)

H(A)
= Et, (19)

which means that the leakage of any set of encoded matrices
ÃI ≜ (Ãi)i∈I only depends on the cardinality of I. Conse-
quently, the amount of information leakage of A can be fully
described by the function

g : [N ] → [0, 1], t 7→ Et.

The recoverability and privacy constraints in Equations (2) and
(3) impose the following constraints on g:

∀t ∈ [ℓ], g(t) ≤ α, ∀t ∈ [k : N ], g(t) = 1.
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Consider two cases: α ≥ ℓ
k and α < ℓ

k . The case α ≥ ℓ
k will

be handled with a modified ramp secret-sharing scheme with
g defined as

g : i 7→
{

i
k , i ∈ [0 : k)
1, i ∈ [k : N ]

. (20)

In the case α < ℓ
k , we define g as

g = g1 + g2, (21)

with

g1 : i 7→
{

α
ℓ i, i ∈ [0 : k)
α
ℓ k, i ∈ [k : N ]

, (22)

g2 : i 7→


0, i ∈ [0 : ℓ]

1−α
k−ℓ (i− ℓ) + α− α

ℓ i, i ∈ (ℓ : k)

1− α
ℓ k, i ∈ [k : N ]

, (23)

and construct a coding scheme by combining two modified
ramp secret-sharing schemes with normalized access functions
g1 and g2.

In Section V-A, we present our coding scheme. Then, in
Section V-B, we analyze our coding scheme and show that it
satisfies our setting constraints, (2) and (3).

A. Coding Scheme

1) Case 1: α ≥ ℓ
k . We divide the sequence of m matrices

in A and B into blocks of k matrices. Given k < m, there
are

⌈
m
k

⌉
blocks. For any b ∈

⌈
m
k

⌉
, define

Sb ≜ [(b− 1)k + 1 : bk].

Consider k distinct non-zero constants xi ∈ Fq, i ∈ [k]. For
any b ∈

⌈
m
k

⌉
, i ∈ [N ], define

∀s ∈ Sb, Ã
s
i ≜ xs−1

i As.

The response for each block from Server i ∈ [N ] is

∀b ∈
⌈m
k

⌉
, Zb

i ≜
∑
s∈Sb

Ãs
iBs

=
∑
s∈Sb

xs−1
i AsBs. (24)

The total response from Server i ∈ [N ] is

Zi
∆
= (Zb

i )b∈⌈m
k ⌉. (25)

Upon receiving responses from k servers, the user can decode
the product matrices (As × Bs)s∈Sb

for each block Sb as
follows. Define

Mb ≜


x
(b−1)k
1 x

(b−1)k+1
1 . . . xbk−1

1

x
(b−1)k
2 x

(b−1)k+1
2 . . . xbk−1

2
...

...
. . .

...
x
(b−1)k
k x

(b−1)k+1
k . . . xbk−1

k

 ∈ Fk×k
q ,

∀b ∈
⌈
m
k

⌉
,


Zb
1

Zb
2
...
Zb
k

 = Mb


A(b−1)k+1B(b−1)k+1

A(b−1)k+2B(b−1)k+2

...
AbkBbk

 . (26)

Equation (26) has a unique solution because Mb is invertible,
since its determinant is a minor of a Vandermonde Matrix, for
which each row i can be factored by x

(b−1)k
i , and (xi)i∈[k]

are non-zero and distinct.

2) Case 2: α < ℓ
k . Define the following index sets

P ≜ [p], p =

⌈
α
k

ℓ
m

⌉
, (27)

P ≜ [m] \ P, |P| = m− p. (28)

We partition A into two sub-sequences AP ≜ (Aj)j∈P and
AP ≜ (Aj)j∈P , then proceed as follows.

1) Break down the sequences AP and BP into blocks of k
matrices. The encoding is the same as (24) and we have a
matrix equation similar to (26). For b ∈

⌈
p
k

⌉
, the response

from Server i ∈ [k] is

ZP
i

∆
= (Zb

i )b∈⌈ p
k⌉. (29)

2) Break down the sequence of matrices in AP and BP into
blocks of k − ℓ matrices. For any b ∈

⌈
m−p
k−ℓ

⌉
, define

Sb ≜ [(b− 1)(k − ℓ) + 1 : b(k − ℓ)]. (30)

For any s ∈ Sb, let Rs ≜ (R(s,r))r∈[ℓ] be uniformly
distributed random matrices over FC×D

q . Consider k − ℓ
distinct non-zero constants xi ∈ Fq, i ∈ [k − ℓ], then for
any i ∈ [N ], define

∀s ∈ Sb, Ã
s
i ≜ xs−1

i As +
∑
r∈[ℓ]

xi
r+(k−ℓ)−1R(s,r). (31)

For b ∈
⌈
m−p
k−ℓ

⌉
, the response from Server i ∈ [k] is

Zb
i

≜
∑
s∈Sb

Ãs
iBs

=
∑
s∈Sb

(xs−1
i AsBs) +

∑
s∈Sb

∑
r∈[ℓ]

xi
r+(k−ℓ)−1R(s,r)Bs.

(32)

The user downloads Zb
i and upon receiving k answers

from the servers, recovers (As ×Bs)s∈Sb
from a matrix

equation similar to (26) but with the following coefficient
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matrix,

MP
b ≜

x
(b−1)(k−ℓ)
1 . . . x

b(k−ℓ)−1
1 . . . x1

bk−1

x
(b−1)(k−ℓ)
2 . . . x

b(k−ℓ)−1
2 . . . x2

bk−1

...
. . .

...
. . .

...
x
(b−1)(k−ℓ)
k−ℓ . . . x

b(k−ℓ)−1
k−ℓ . . . xk−ℓ

bk−1

x
(b−1)(k−ℓ)
k−ℓ+1 . . . x

b(k−ℓ)−1
k−ℓ+1 . . . xk−ℓ+1

bk−1

...
. . .

...
. . .

...
x
(b−1)(k−ℓ)
k . . . x

b(k−ℓ)−1
k . . . xbk−1

k


∈ Fk×k

q .

The determinant of MP
b is also a minor of a Vander-

monde matrix, for which each row i can be factored by
x
(b−1)(k−ℓ)
i . The response from Server i ∈ [k] is

ZP
i

∆
= (Zb

i )b∈⌈m−p
k−ℓ ⌉. (33)

Finally, from (29) and (33) the total response Zi from
Server i ∈ [N ] is

Zi
∆
= (ZP

i , ZP
i ). (34)

B. Analysis of the Coding Scheme

1) Rate: For the case α ≥ ℓ
k , we have

Λk =
H(AB|B)

maxI∈[N ]=k

∑
i∈I H(Zi)

≥H(AB|B)⌈
m
k

⌉
kCE

=
m

(
min

(
D
E , 1

))
k
⌈
m
k

⌉
m→∞−→ min

(
D

E
, 1

)
,

where the inequality holds because for the entropy of
the response Zi, i ∈ [N ], defined in (25), we have
H(Zi) ≤

⌈
m
k

⌉
CE. The proof is omitted due to space

constraints. Then, by summing up the entropy of the responses
over k servers, we have

max
I∈[N ]=k

∑
i∈I

H(Zi) ≤ k
⌈m
k

⌉
CE;

the second equality holds by (13).
For the case α < ℓ

k , from (34), we have

∀i ∈ [N ], H(Zi) = H(ZP
i ) +H(ZP

i ). (35)

Then, we have

H(ZP
i )

(a)
= H

(
(Zb

i )b∈⌈ p
k⌉

)
(b)
=

⌈p
k

⌉
H(Zb

i )

(c)

≤
⌈p
k

⌉
CE, (36)

where

(a) holds by (29);
(b) holds by independence of the blocks;
(c) holds because for any s ∈ Sb, Ãs

iBs ∈ FC×E
q .

Similarly, for matrices in blocks Sb defined in (30), we have

H(ZP
i )≤

⌈
m− p

k − ℓ

⌉
CE. (37)

Then, from (35), (36), and (37), we have

H(Zi) ≤
⌈p
k

⌉
CE +

⌈
m− p

k − ℓ

⌉
CE. (38)

For the Communication rate, we have

Λk =
H(AB|B)

maxI∈[N ]=k

∑
i∈I H(Zi)

≥ H(AB|B)

k
(⌈

p
k

⌉
+

⌈
m−p
k−ℓ

⌉)
CE

=
m

(
min(1, D

E )
)

k

(⌈
⌈α k

ℓ m⌉
k

⌉
+

⌈
m−⌈α k

ℓ m⌉
k−ℓ

⌉)
m→∞−→

min
(
1, D

E

)
k( 1−α

k−ℓ )
,

where the first inequality holds by summing up the entropy of
the responses over k servers and using (38), and the second
equality holds by (13), (27) and (28).

2) Local Randomness: When α ≥ ℓ
k , no randomness was

used in the coding scheme, hence R(ℓ,α,k) = 0. However,
when α < ℓ

k , we use randomness in (32). For any s ∈ Sb, we
have

H(Rs) = ℓCD. (39)

The proof for (39) is omitted due to space constraints. Then,
the rate of local randomness is

R(ℓ,α,k)

H(AB|B)
=

⌈
m−p
k−ℓ

⌉
H ((Rs)s∈Sb

)

H(AB|B)

≤
ℓ

⌈
m−⌈α k

ℓ m⌉
k−ℓ

⌉
m

max(1,
D

E
)

m→∞−→ ℓ− αk

k − ℓ
max(1,

D

E
),

where the equality holds because there are
⌈
m−p
k−ℓ

⌉
blocks and

within each block, the Rs, s ∈ Sb are jointly independent; the
inequality holds by (28), (13), and (39).

3) Recoverability Constraint: For each block Sb, the user
can recover (AsBs)s∈Sb

because all the matrices Mb and MP
b

are invertible, as explained in Sections V-A1 and V-A2, respec-
tively. Hence, the coding scheme designed in Section V-A,
satisfies (2).
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4) Privacy Constraint: For any L ∈ [N ]≤ℓ, we have

I(A; ÃL) = g(|L|)H(A)

≤ αH(A),

where the proof for the equality is omitted due to space
constraints; the inequality holds by (20) when α ≥ ℓ

k , and
in the case α < ℓ

k it holds by (21), (22), and (23).
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[14] H. H. López, G. L. Matthews, and D. Valvo, “Secure matdot codes:
A secure, distributed matrix multiplication scheme,” in Proc. IEEE Inf.
Theory Workshop (ITW), pp. 149–154, IEEE, 2022.

[15] R. G. D’Oliveira, S. El Rouayheb, and D. Karpuk, “GASP codes
for secure distributed matrix multiplication,” IEEE Trans. Inf. Theory,
vol. 66, no. 7, pp. 4038–4050, 2020.

[16] Q. Yu and A. S. Avestimehr, “Coded computing for resilient, secure,
and privacy-preserving distributed matrix multiplication,” IEEE Trans.
Commun., vol. 69, no. 1, pp. 59–72, 2020.

[17] Q. Yu and A. S. Avestimehr, “Entangled polynomial codes for secure,
private, and batch distributed matrix multiplication: Breaking the ”cubic”
barrier,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 245–250, IEEE,
2020.
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mial coding for efficient distributed matrix multiplication,” IEEE J. Sel.
Areas Inf. Theory, vol. 2, no. 3, pp. 814–829, 2021.

[22] A. K. Pradhan, A. Heidarzadeh, and K. R. Narayanan, “Factored lt and
factored raptor codes for large-scale distributed matrix multiplication,”
IEEE J. Sel. Areas Inf. Theory, vol. 2, no. 3, pp. 893–906, 2021.
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