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ABSTRACT: Host-parasite coevolution is expected to drive the evo-
lution of genetic diversity because the traits used in arms races—
namely, host range and parasite resistance—are hypothesized to trade
off with traits used in resource competition. We therefore tested data
for several trade-offs among 93 isolates of bacteriophage A and
51 Escherichia coli genotypes that coevolved during a laboratory exper-
iment. Surprisingly, we found multiple trade-ups (positive trait cor-
relations) but little evidence of several canonical trade-offs. For exam-
ple, some bacterial genotypes evaded a trade-off between phage resistance
and absolute fitness, instead evolving simultaneous improvements in
both traits. This was surprising because our experimental design was
predicted to expose resistance-fitness trade-offs by culturing E. coli
in a medium where the phage receptor, LamB, is also used for nutrient
acquisition. On reflection, LamB mediates not one but many trade-
offs, allowing for more complex trait interactions than just pairwise
trade-offs. Here, we report that mathematical reasoning and laboratory
data highlight how trade-ups should exist whenever an evolutionary
system exhibits multiple interacting trade-offs. Does this mean that co-
evolution should not promote genetic diversity? No, quite the contrary.
We deduce that whenever positive trait correlations are observed in
multidimensional traits, other traits may trade off and so provide the
right circumstances for diversity maintenance. Overall, this study
reveals that there are predictive limits when data account only for
pairwise trait correlations, and it argues that a wider range of cir-
cumstances than previously anticipated can promote genetic and spe-
cies diversity.
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Introduction
Phages and Costs of Resistance

Many different theoretical frameworks are consistent in
their prediction that when improvements in one trait incur
costs in a second trait, then natural selection can drive the
evolution and maintenance of genetic and species diversity
(Metz etal. 1996; Gudelj et al. 2006; Mealor and Boots 2006;
Meyer et al. 2015). While empirical and theoretical studies
have focused on trait pairs to test this idea, less attention has
been paid to correlations between three or more traits, yet
this is said to be crucial to our understanding of how micro-
bial communities function (Lindsay et al. 2021). This gap in
our understanding is particularly problematic because multi-
trait interactions are hard to reconcile with theories derived
from two-trait trade-offs. This is because it is logically im-
possible that three traits engage in simultaneous, mutual
trade-offs: logic dictates that if trait X trades off with Y
and Y trades off with Z, then X and Z will necessarily “trade
up” (i.e., X and Z are positively correlated). Given this and
the observation that traits do not evolve as pairs in isolation
but rather within complex organisms, we seek insights into
multitrait trade-off relationships.

We therefore studied a tractable two-species laboratory
system: the bacterium Escherichia coli B(REL606) and one
of its viruses, bacteriophage A. We selected these because
their molecular interactions are well understood, allowing
for careful experimental controls, and a large number of an-
alytical tools are available for interpreting experimental
outcomes. These organisms are also amenable to the gener-
ation of libraries of genetic variants that can be used to test
trade-off theories, and within days of coculture, here we see
E. coli-A coevolution yield genetically distinct bacterial var-
iants that differ in key resistance and host range traits that
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are predicted to trade off with other aspects of reproduction.
This permits the rapid generation of genotypes that vary sig-
nificantly in phenotypes that fall at varying positions in trait
space.

This system was also studied because the trade-offs in-
trinsic to phages and bacteria have important clinical impli-
cations. The World Health Organization predicts that the
next 30 years will see more people die from antibiotic-resistant
bacterial infections than from cancer (Interagency Coor-
dination Group on Antimicrobial Resistance 2019), al-
though this prediction could be overstated (de Kraker
et al. 2016; Baquero 2021). Nevertheless, a search for alter-
native treatments has revived phages as an antibacterial ther-
apeutic (Summers 2001; Miedzybrodzki et al. 2012; Rohde
et al. 2018; Petrovic Fabijan et al. 2020) for which trade-off
theory makes important predictions: trade-offs that secure
permanent fitness costs of phage resistance will help main-
tain the utility of phage therapy. However, this was already
said for costs of antibiotics that can fail because costs either
do not materialize (Borghi et al. 2014) or are compensated
by additional mutations (Sandegren and Andersson 2009;
Andersson and Hughes 2010). Much worse than a lack of
costs would be a scenario where phage resistance brings with
it an increase in bacterial fitness; we call this a “trade-up.”
Given this and the strength of selection for phage resistance,
resistant genotypes would likely sweep the population and
lead to untreatable infections with increased capacity to re-
produce and greater virulence. Moreover, mutations with
trade-ups have been observed in phage-bacterial interac-
tions (Andrews and Fields 2020; Burmeister et al. 2020).

We therefore set out to systematically quantify a number
of bacterial and phage life history traits that evolve during
coevolution and to understand how trait values correlate.
We focused on three trade-offs. The first is the host range
trade-oft (HRTO): infection by parasites is a known driver
of genetic diversity, and this parasitism trade-off is central
to our understanding of how parasites target their hosts.
HRTO theory postulates that if a parasite is efficient at tar-
geting one host, it will be inefficient at targeting others
(Agrawal and Lively 2002; Forde et al. 2008; Weitz et al.
2013). The second is the cost of resistance trade-off
(CORTO): trade-offs play a role in phage therapy, for if a
pathogenic bacterium evolves to evade all of the phages that
it is currently susceptible to, that bacterium will no longer
be treatable therapeutically by phages. However, a postu-
lated CORTO (Hall et al. 2012) whereby increases in phage
resistance incur reductions in bacterial growth rate suggests
that such highly resistant bacteria, which can be observed in
patients (Rohde et al. 2018), will be poor replicators. Third,
we study the rate-yield trade-off (RYTO), where slower-
growing bacteria are more efficient at producing biomass
per available nutrient, a trait known as “biomass yield”
(Meyer et al. 2015).

We observed a within-strain RYTO for almost all bacte-
rial variants, but the main finding is this: the totality of data
we generated contains of thousands of trait measurements,
but it exhibits little trade-oft data. We observed no robust
between-strain RYTO and no CORTO, and a trade-up ap-
peared where we had expected to find an HRTO. The re-
mainder therefore discusses a multitrait trade-off theory
that provides a mechanistic understanding of the absence
of trade-offs and assesses the implications of our data for
microbial diversity and phage therapy.

Algebra of Multiple Traits: Two-Trait
Trade-Offs Yield Trade-Ups

To create genetic variants, we cultured E. coli and A under
conditions where a trade-off between bacterial growth and
phage resistance was expected (see “Methods”). Bacterio-
phage A uses the E. coli outer membrane protein LamB as
a receptor, and E. coli mutations in this protein can confer
resistance to A (Thirion and Hofnung 1972; Hofnung et al.
1976). Escherichia coli also uses LamB to transport malto-
dextrins, and LamB mediates other functions too, as dis-
cussed below. By culturing E. coli in growth medium where
maltodextrins are the limiting resource, we expected that A-
resistant mutants would pay a fitness cost for their ability to
grow. However, this prediction did not materialize, and in-
stead we observed fitness-resistance trade-ups in some mu-
tants. This unexpected observation led us to develop theory
to help identify which assumptions led to our faulty predic-
tion, leading to new insights into multitrait interactions.

The fact that one protein can mediate many traits can be
problematic for the generalizability of two-trait trade-off the-
ory. Here, LamB mediates several trade-offs (fig. 1): self-
preservation and nutritional competence (SPANC) balance
(Ferenci 2005), the RYTO (Pfeiffer and Bonhoeffer 2002;
MacLean and Gudelj 2006; Novak et al. 2006; Maharjan
et al. 2007; Lipson et al. 2009), CORTOs (Sanchez 2011),
the rate-affinity trade-off (Gudelj et al. 2007; Meyer et al.
2015), and the HRTO (Weitz et al. 2005; Forde et al.
2008). So we asked this: what would theory predict if a third
trait depends in a functional, mechanistic manner on two
other traits that are already known to trade off with each
other?

To address this, consider an idealized context whereby
quantitative traits X and Y are traded mathematically, so as-
sume X = f(Y), where f(-) represents a one-dimensional
trait relationship that is decreasing: f(Y,) > f(Y,) whenever
Y, <Y,. Thus, if fis a smooth function, it has negative de-
rivative df /dY. Now assume traits Y and Z are also traded:
Y = ¢(Z), where g is a decreasing function. This places a
constraint on how X and Z can interact—X = f(g(Z))—
and elementary calculus implies
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Figure 1: The membrane protein LamB is a virus receptor and maltoporin transporter, thus a bottleneck for many trade-offs. Both extra-
cellular maltotriose and phage A DNA enter Escherichia coli by first passing through the LamB maltoporin, so A resistance and maltotriose
uptake rates and affinities are codependent, which could create fitness costs of resistance. Moreover, nutrient transporters exhibit bio-
physical rate-affinity trade-offs by virtue of their function: transporters with higher affinities cannot translocate their substrates as quickly.
A host range trade-off could also arise whereby A’s tail binds preferentially to certain LamB structures but binds suboptimally to other
structures. Interactions are complicated further by a branching of trade-offs whereby phage DNA traverses the inner membrane through a
different transporter (ManXYZ) to maltotriose (MalFGK). Once inside the cell, maltotriose produces glucose, and metabolic trade-offs could
then ensue whereby slower glycolytic pathways are more adenosine triphosphate efficient. And as it takes less time to assemble fewer virions,
a latency trade-off could arise for viruses with smaller burst sizes. As a result of A biology, these processes place several trade-offs down-
stream of each other in a serial and a parallel arrangement that forms an X-shaped topology.

ax _df

dz — dy
The signs of the derivatives in equation (1) ensure that
dX/dZ is positive because it is the product of two negative
quantities; thus, X and Z engage in a trade-up. For this rea-
son, trade-off relationships are not transitive between trait
pairs, but trade-ups (i.e., the functional relationship f(g)
between X and Z here) are.

Extending this rationale, we reason that a biological
system harboring 7 idealized trade-offs could also exhibit
n(n — 1)/2 trade-ups. To see this, assume that n traits
trade off with some trait A. There are

dg
(820 (2). ()

"G, = nn+1)/2

trait pairings in total, of which # are trade-offs; thus, the re-
maining n(n + 1)/2 —n = n(n — 1)/2 trait pairs must
form trade-ups (because all of those traits trade off with
A). We deduce that if n > 4 traits trade off with A, because
n(n — 1)/2 > n there are more trade-ups than trade-offs;
table 1 illustrates cases n = 3,4, 5. We note that this anal-
ysis is not exhaustive because other trade-off tables could
exist than the parity structure indicated in table 1.

The logic of table 1 simplistically assumes that trait inter-
actions are pairwise and cannot be mediated by a third trait.

This restriction is unlikely to apply in practice, where trait
relationships can be mediated by many exogenous factors,
both environmental and genetic, so we now illustrate how
the above-described logic extends to a more realistic biolog-
ical context, motivated by LamB mutants of E. coli.

Algebra of Multiple Traits: A Detailed
Theoretical Example

To better understand table 1, we now present a mechanistic
rationale whereby two traits, A and B, trade off and so too

Table 1: Parity relationships when different numbers of traits
(A-E) exhibit trade-offs

Three traits Four traits Five traits

B C B C D B C D E

A -1 -1 -1 -1 -1 -1 -1 -1 -1
B +1 +1 +1 +1 +1 +1
C +1 +1 +1
D +1

Note: According to equation (1), there should be parity relationships between
trade-offs, and some are shown here: trade-offs (denoted by —1) are more com-
mon than trade-ups (denoted by +1) when three traits are considered, but when
five traits or more are considered, trade-ups are more common.
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do A and C, yet B and C have a positively related functional
dependence. We achieve this by arguing that certain envi-
ronmental conditions can support increased phage resis-
tance (this will be trait A) among bacterial cells with higher
absolute fitness (also known as growth rate; trait B) because
of changes in those cells’ nutrient acquisition properties
(trait C). This rationale will show that fitness costs of phage
resistance (the CORTO) need not materialize in practice
because there are metabolic routes to fitness benefits that
accrue when phage resistance increases.

The argument starts thus: the LamB protein is both a
maltotriose transporter and a A receptor. So, suppose a
structural mutation in the lamB gene located in the mal op-
eron occurs in an ancestral (also known as wild type) phage-
susceptible bacterial strain. Suppose this mutation hampers
phage binding and renders the mutantless phage suscepti-
ble. There follow two possible nontrivial side effects: this mu-
tation either (i) hastens maltotriose uptake or (ii) slows mal-
totriose uptake. In case i, for which mutations have been
observed (Andrews and Fields 2020), this could incur no
cost of resistance because increased nutrient uptake could
also increase growth rate, bestowing a dual benefit on the
bacterium. However, these mutations appear to be rare,
and instead most mutations that cause resistance also slow
maltotriose uptake, either by lowering maltotriose affinity
for LamB or by reducing the maltotriose translocation rate
through LamB, as per case ii (Andrews and Fields 2020).

Now, mutations in case ii would, by virtue of decreasing
nutrient uptake, seem deleterious for the mutant because
they reduce intracellular nutrient concentration, creating a
cost of resistance because these nutrients are used for bio-
mass production. However, the consideration of function-
ally related traits is important here: once inside the cell,
downstream metabolism is impacted by different rates of
flux of nutrients that can produce unintuitive growth re-
sponses. For example, glucose metabolism (glycolysis) can
exhibit an RYTO whereby a slowing of adenosine triphos-
phate (ATP) production by reduced nutrient uptake can
improve ATP production efficiency (MacLean and Gudelj
2006; Meyer et al. 2015; Reding-Roman et al. 2017). As
maltotriose is degraded by protein products of mal into glu-
cose, it may therefore experience efficiency increases that
could potentially benefit absolute fitness.

At this point, table 1 is relevant because this argument
invokes two trade-offs, one downstream of the other, to
form a trade-up. Details of the argument will depend cru-
cially on the relative strengths of all of the traits and trade-offs
involved, but we postulate that the following could happen.
On one hand, slower maltotriose uptake through a mutant
LamB could quite reasonably incur a fitness cost of resis-
tance, but on the other hand, it need not do so because if
circumstances see slower nutrient uptake lead to a lower
rate of glycolytic metabolism, this can lead to a concomitant

increase in glycolytic efficiency (measured in ATP pro-
duced per substrate processed; MacLean and Gudelj 2006).
If this efficiency gain is sufficiently large, cellular growth rate
could then increase. Thus, while there might be a cost of re-
sistance in terms of reduced nutrient uptake, there is no cost
in terms of the derived absolute fitness, and there may even
be a benefit.

We can formalize this verbal argument mathematically
as follows. Write cellular growth rate, G(S; V), as a non-
linear function of the extracellular nutrient concentration
(maltotriose, S) that plateaus at the maximum growth
rate, just as Jacques Monod described:

biomass yield /conversion efficiency

G(S; V) = nutrient-to-biomas conversion
x nutrient uptake rate (2)

VS
K, +S’

= c(S)

Here, mutable trait V is a maximal maltotriose uptake rate
phenotype, K,, is a half-saturation phenotype, and ¢(S) is
biomass yield measured per intracellular maltotriose, S,
where S; depends on extracellular maltotriose S. Decreasing
functions are appropriate (Meyer et al. 2015) for ¢(S,), for in-
stance if we assume S; = S, in which case the theoretical form

Si
p Cio

o(S) = ey m (3)

1+ pS,
can be derived using elementary properties of branched
metabolic pathways with different ATP yield efficiencies
on each branch (Meyer et al. 2015).

Here, ¢, and ¢, are maltotriose-to-biomass conversion
efficiencies, respectively, the low-maltotriose and high-
maltotriose asymptotes in biomass yield that cells can
achieve, where ¢,; > ¢, > 0. The function ¢(S;) is a “within-
strain” RYTO, and accordingly dc/dS; < 0, meaning that
increased maltotriose concentration reduces biomass
yield and the variable p > 0 controls trade-off “strength.”
A within-strain RYTO here means that as nutrient supply
increases, so too does growth rate, but the strain will pro-
duce less biomass per unit of nutrient supplied. There is no
particular biological reason to use model (3), and the func-
tion ¢(S;) = cn exp(—pS;) will be used below because it
vastly simplifies several theoretical calculations.

Now, there are many possible models that relate extracel-
lular and intracellular sugars to each other, so S; to S, each
assuming different biophysical properties of the cell. One
could suppose cell volume is constant, for simplicity; set
D > 0 to be a nutrient diffusion rate in and out of the cell,
and let m be the rate at which S, is enzymatically degraded.
We could then write

d VS

—8 =DES—S)+
dt ( ) K,+S

— mS,, (4)



and assuming equation (4) to be in equilibrium, it relates S;
to Suniquely: S, = DS/(m + D) + VS/(m + D)(K,, + S).
The latter relation can be inverted so that the external nu-
trient concentration can be inferred from the intracellular
nutrient concentration, S = S(S;; V, K,,), which has the
consequence of rendering biomass efficiency a function
of extracellular nutrient concentration, namely, ¢(S;) =
c(Si(S; V,K,)).

Returning to case ii of the verbal argument given above,
now suppose a mutation that reduces the binding affinity
of A phage to LamB also decreases the maximal maltotriose
uptake rate, which is V. Denoting the change in Vby dV <0,
we ask this: are there any circumstances under which G(S; V)
increases for some values of S when V decreases? If the an-
swer to this is affirmative, then, paradoxically, absolute fitness
will increase in some environmental conditions if phage re-
sistance brings about a reduction in maltotriose uptake.
Mathematically, for this to happen we require

G
W<O for dV <0,

as then
- X — =+
——

G(S;V +dV) = G(S; V) + g—g(s, V) -dV + 0(dV?)

> G(S; V),

(5)
provided dV is sufficiently small in size and negative.
Equation (5) follows by Taylor’s theorem from elementary
calculus, which states that functions of dV can be approx-
imated by power series in dV.

To determine the sign of dG/dV, write the uptake
function U:= VS/(K + S) so dU/dV = U/V and use a
prime symbol (') to denote an ordinary derivative. From
elementary calculus

G 9
v
C(Si)av U+ c(S) v
Q9=
U 3 o(s)
= — ./ /(S . i—}— i
y ) (Vav c’(Si))’

and this expression is negative when the bracketed term
is positive because U, V' > 0 and ¢(§;) < 0. It is so impor-
tant we define the bracketed expression as a function in
its own right:

a5 | <(S)
+ . 6
oV c(S) (6)
The condition Q(S) > 0 applied to definition (6) formal-
izes a requirement on the environment and the strength of

QS =V
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the RYTO needed to produce growth rate increases when
nutrient acquisition is impaired by a phage-resistance
mutation.

To tailor this calculation to a particular circumstance,
let ¢(S;) = ayexp(—pS;) and consider definition (6). In
this case, the algebra is much simplified relative to using
model (3), and then

VS 1

AS) = (m+D)K, +S) p

(7)

In this case, Q is a scaled and shifted Monod function.
Straightforward algebra shows that Q(S) changes sign
once at a critical value of S, passing from negative to pos-
itive as S increases provided the RYTO is strong enough
(i.e., p>(m + D)/ V). Hence, there are two zones of nu-
trient concentration, S, based on the signs of Q(S) situated
at high and low S, which delineate positive and “negative”
fitness costs of phage resistance.

Thus, we predict that absolute fitness of a bacterium can
increase when nutrient uptake rate decreases provided the
RYTO is present and the extracellular environment is suf-
ficiently nutrient rich. We also predict that fitness can de-
crease when uptake rate decreases due to an analogous
mutation if the extracellular environment is sufficiently
nutrient poor.

This analysis can be extended (we omit the mathematical
details, and calculations are possible but more arduous if
model [3] is used), although its scope is limited due to its bi-
ological assumptions and so other possibilities exist whereby
trade-offs and fitness costs may not be observed when resis-
tance to phage evolves. It is, for example, feasible that com-
pensatory mutations quickly mitigate fitness costs that were
present at some point but that are not detected in practice
because the compensated genotypes fix too quickly. The lat-
ter could occur within LamB itself or else in a downstream
glycolytic mutation that increases nutrient-biomass conver-
sion efficiency, which might compensate for reductions in
nutrient uptake. Moreover, missense mutations have been
identified in LamB where phage binding is impaired relative
to an ancestral strain yet maltodextrin uptake is maintained
or improved, although deep mutational scanning shows that
these are likely rare (Andrews and Fields 2020). More trivial
possibilities exist too; for instance, LamB expression is not
needed for cell growth if no maltodextrin is present in the
extracellular environment, and in that case down-regulation
of the mal operon or loss-of-function mutations in mal can
render cells resistant to A with no fitness cost at all (Borin
et al. 2021). These possibilities sit outside the context of
the above-described theory, which addresses a nontrivial
context in which two trade-offs can conspire to create a
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trade-up of fitness benefits, just as table 1 predicts in a man-
ner free of biological context.

Methods

We now seek data to test our theory using a library of labo-
ratory phage and bacterial variants with different growth
rates and resistance phenotypes to test whether data are con-
sistent or in conflict with theory. Those data will also be used
to test for the presence of several trade-offs (Kraaijeveld and
Godfray 1997; Bohannan et al. 2002; Ferenci 2005; Lipson
et al. 2009; Molenaar et al. 2009; Beardmore et al. 2011;
Poelwijk et al. 2011; Aktipis et al. 2013; Keen 2014).

Phage and Bacterial Mutant Library Generation

To create a library of phage and bacterial variants, we
cocultured Escherichia coli strain B(REL606) with the obli-
gately lytic A phage strain cI26. When cocultured with cI26,
RELG606 experiences pressure to evolve resistance because E.
coli B strains lack generalized phage defenses, such as mucoid
cell formation, restriction modification, or CRISPR adaptive
immunity (Spanakis and Horne 1987; Daegelen et al. 2009).
This pressure is magnified by the Iytic phage’s increased vir-
ulence compared with its lysogenic relatives (Lenski 1988).
Once E. coli evolve resistance, phages typically experience
selection to evolve a counterattack, triggering a rapid arms
race within few generations.

Thus, 100 flasks were initiated with phages (~10> par-
ticles) and 10° bacterial cells that were preconditioned in
the experimental environment for 24 h. These small initial
populations were used to increase the likelihood that muta-
tions for defense and counterdefense would arise de novo,
increasing the likelihood of isolating unique lamB mutations
and evolving divergent phage genotypes between replicates.
Flasks were filled with 10 mL of modified Davis medium
(DM; Lenski et al. 1991; 125 pg/mL maltotriose instead of
glucose and 1 pg/mL magnesium sulphate). Bacteria and
phages were allowed to reproduce for 24 h at 37°C and
shaken at 120 rpm. At 24 h, a 100-uL random sample of
each flask was added to a fresh flask, and the bacteria
and phage populations were allowed to grow again. This
cycle was repeated once more, and phages and bacteria
were sampled after the third day of growth. We terminated
the experiment at this early time point to try to ensure that
bacteria would acquire a small number of mutations so as
to simplify the relationships between genotypes and pheno-
types, avoiding compensatory or other types of mutations
that could have confounding effects. Moreover, a prior
study observed the greatest genotypic diversity on day 3
(Meyer and Lenski 2019). We show below that E. coli evolve
resistance in this assay through several loci, the most com-
mon of which is lamB.

Bacterial and Phage Isolation and Storage Procedures

To isolate mutant bacteria, we streaked liquid samples on
Luria-Bertani (LB) agar plates (Sambrook and Russell
2001), randomly picked two colonies, and then replated
two more times to remove all phages. Finally, we grew each
colony in liquid LB medium overnight and preserved two
1-mL samples in 15% glycerol, frozen at —80°C. The entire
phage population for each flask was preserved by chlo-
roform preparation of the remaining volume of culture,
8 mL (Adams 1959). Clonal isolates of the phages were
created by picking plaques (miniature epidemics derived
from a single phage particle) from bacterial lawns (films
of bacteria immobilized in soft agar spread on top of petri
dishes (Adams 1959). For each phage population, we at-
tempted to isolate phages from three separate lawns, one
derived from the ancestral bacteria (REL606) and the two
bacteria isolated from the very same flask. By using the co-
evolved bacteria or phage isolation, we reasoned that this
increased the likelihood of sampling phages that had evolved
specialized local interactions with their coevolved bacteria,
thereby improving the likelihood of uncovering more phage
diversity with modular bacteria-phage interactions than if we
had used only ancestral bacteria. Two plaques from each flask
were isolated and clonal cultures were created according to
Adams (1959). When choosing phages, plaques were fa-
vored that formed on the lawns of the coevolved bacteria.
This procedure yielded more bacteria than appear in this
study, and a bacterial isolate was removed if it showed iden-
tical levels of resistance to another isolate from the same
flask. Thereafter, bacteria were removed if they did not pos-
sess a lamB mutation. This left 50 mutant strains and the
ancestral strain to form the study library of 51 bacteria; it
also left 93 phages. All of these strains were sent from the
US laboratory (University of California, San Diego) to a col-
laborating UK laboratory (Exeter University) for analysis,
but only 46 bacteria could be cultured in the different lab
conditions. This left some missing data; for instance, five
strains (20b, 52a, 65b, 67a, 96a) had infectivity phenotypes
but no growth rate data and vice versa for two strains (8a,
14a), leaving 44 strains with both those data types intact.

Estimating Bacterial Resistance to a Library of Phages

We measured A resistance by challenging every isolated
bacterium with every phage isolate (fig. 2). To do this, we
made spot plates by dripping ~2.5 uL of each phage stock
(between half a million to 1 million phage particles) on bac-
terial lawns (Adams 1959). After 24 h of growth at 37°C, the
bacterial lawn would thicken unless a phage was able to lyse
it, in which case a round clearing (spot) formed under the
drip. Digital images were taken of each plate using an
Alphalmager 2200 (Alpha Innotech). Data for the matrix
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Figure 2: Escherichia coli susceptibility to A was quantified by analyzing images of phage clearing on bacterial lawns (of 51 bacterial strains, 12 are
panresistant, noting that strain 19a is not). A, This infectivity matrix is the result of applying a blob-based imaging procedure (see fig. S1) in which the
blob area represents phage infectivity. This matrix represents the infectivities of the entire bacteria and phage libraries after having sorted rows and
columns, and it appears to be banded, exhibiting no blocked submatrices within its structure. A statistical analysis makes this precise; by seeking
modular subnetworks of interacting phage and bacterial clusters one can show that the matrix has no isolated interacting submodules and, instead,
has a graded structure (see fig. S2, where matrix entries are normalized so as to lie between 0 and 1). B, We validate the quantitative imaging approach
from A by comparing a traditional phage counting method with these imaging data: plaque-forming units (PFUs) and image blob area (pixels* are
positively correlated over three orders of magnitude via a slowly saturating nonlinearity; eq. [8]). CI = confidence interval.

of interactions used here was previously reported qualita- tivity of each phage to each bacterium. These spot plates
tively where clearings were determined by eye and a 0 or were repeated twice and yielded similar qualitative results,
1 was recorded for whether or not a given phage infected but image analysis-based quantification was performed
a given bacterium (Flores et al. 2011). Here, we used an im- only on the second set after our techniques had improved.

age analysis procedure described later to quantify the infec- We then validated this procedure by varying the density of
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cI26 and spotting on the sensitive bacteria. In total, 56 spots
with phages and 40 negative control spots were analyzed.
Next, we estimated phage density by counting plaque-
forming units (PFUs) and tested whether there was a mono-
tonic relationship between PFUs and the spot size, some-
thing we found using the shifted Hill function:

polx = ps|"
Alx) = ———, 8
pitlx—pif )
where A is one more than the area of the imaged spot (pixels?),
xrepresentslog(1 + PFUs), and each parameter p; was deter-

mined using a data-fitting procedure implemented in Matlab
(fig. 2B).

Growth Assays

To estimate growth rate, biomass yield, and other growth
parameters of each LamB variant, we monitored the growth
of each E. coli isolate in microtiter plates using a Tecan
M200 Infinite Pro. Each strain was cultured in DM with
varying concentrations of maltotriose (2.5, 5, 10, 20, 40,
80, 160, and 250 ug/mL). Before growth was measured, cells
were revived from the freezer in 4 mL of liquid LB medium
at 37°C, shaken at 160 rpm, and grown overnight. The next
day, 10 pL of the culture was propagated in DM with
125 pg/mL maltotriose and grown for 24 h. This step was
repeated for one additional day to acclimate the cells to
experimental growth conditions. Approximately 100 cells
were inoculated into each well filled with 200 uL of DM.
Cultures were incubated at 37°C, optical density (OD) at
wavelength 600 nm was read every 20 min, and the plates
were shaken before each reading to suspend the cells and
oxygenate the cultures. Experiments lasted until all isolates
reached carrying capacity, typically at about 18 h, although
some cultures did not reach carrying capacity. Wells on the
edge of the plate were not used to measure changes in OD,
and the experiment was batched so that every isolate was
cultured on each plate and maltotriose concentration varied
between batches.

When stationary phase is achieved during a growth as-
say, yield can be determined by dividing population density
by the maltotriose concentration (Meyer et al. 2015). We
state yield in units of OD per microgram per milliliter
throughout, but this can be converted into natural units of
cells per microgram using the fact that growth assays were
conducted in 200-uL volumes and 1 OD =~ 7.6 x 10 cells in
our culture conditions (Meyer et al. 2015).

Competitive Ability Assays

Competitive fitnesses of the bacterial library mutants were
measured by competing each genotype “head to head” with

a genetically marked version of the ancestor, REL607.
REL607 (ara®) can metabolize arabinose whereas REL606
(ara™) cannot because of a single nucleotide substitution
that has little effect on bacterial fitness in our culture con-
ditions. Marked and unmarked genotypes can be distin-
guished on tetrazolium arabinose plates, which provides a
tool for estimating the relative frequency of each in a mixed
population. Full descriptions of these competition experi-
ments can be found elsewhere (Lenski et al. 1991; Travisano
et al. 1995), but to summarize we initiated each flask with
50% of the resistant type and 50% of its ara® ancestor.
We cultured them for 3 days, as per the above-described co-
evolution experiment, and then measured their initial and
final densities and calculated the ratio of the Malthusian
parameters for the evolved strain versus the ancestor. We
performed three replicates for each lamB variant.

Sequencing

We sequenced lamB for at least one bacterial isolate
from each flask, and a second isolate was sequenced if
preliminary tests revealed that the two sympatric isolates
had different levels of phage resistance. Sequencing was
performed with an automated ABI sequencer maintained
at the Michigan State University Research Technology Sup-
port Facility. Polymerase chain reaction-amplified fragments
purified with GFX columns were used as templates. Frag-
ments were amplified with primer sequences 5-TTCCCG
GTAATGTGGAGATGC-3' and 5-AATGTTTGCCGGG
ACGCTGTA-3, placed 1,398 bases upstream and 504 bases
downstream of the gene, respectively.

Of all the variants isolated, full genomes of 13 E. coli
lamB mutants were sequenced to test whether the bacteria
evolved more than a single mutation for resistance and
whether other mutations may have impacted E. coli lamB
growth. Isolates that we suspected had multiple A-resistant
mutations were chosen because they evolved high levels of
resistance despite only possessing a single amino acid
change in LamB, because a mutation in lamB was not dis-
covered, or because the genotype possessed a distinct resis-
tance profile. Technicians at the Research Technology
Support Facility at Michigan State University sequenced
the genomes using an Illumina Genome Analyzer IIx. Ge-
nomic DNA samples were created by reviving frozen bac-
teria in LB medium, growing them overnight, and then
isolating DNA from several milliliters of the culture with
Qiagen genome tips. Samples were fragmented by sonifi-
cation, prepared with bar-coded attachments, and multi-
plexed over four lanes. Mutations were predicted from
the resulting 75-base DNA single end reads using breseq
(ver. 0.13; https://www.sanger.ac.uk/science/tools/ssaha2
-0) and the ancestral genome (GenBank accession number
NC_012967.1) used as the reference.


https://www.sanger.ac.uk/science/tools/ssaha2-0
https://www.sanger.ac.uk/science/tools/ssaha2-0

Protein Shape Prediction from Amino Acid Sequence

Mutant LamB protein structures were predicted for each var-
iant using Modeller (http://salilab.org/modeller/). Predic-
tions were made in two steps. First, homology-based tech-
niques were used to generate a protein structure by using
the known ancestral LamB shape as a guide; LamB structure
was then determined by X-ray crystallography to 3.10-A
resolution (Schirmer et al. 1995; GenBank accession num-
ber YP_003047080). Next, de novo loop refinement re-
organized protein conformation to minimize entropy cre-
ated by electrostatic conflicts introduced by the substituted
amino acid.

Results

Testing for an HRTO Using Imaging
Analysis (Figs. 2, 3)

Having generated a library of phages and bacteria, we tested
for nonrandom patterns in the interaction network be-
tween the two (Flores et al. 2011, 2013, 2016; Weitz et al.
2013; see especially fig. 3 in Flores et al. 2013) as a first step
toward designing a test for the HRTO. One can determine
such a network from two sets of N bacteria and M phages by
calculating an infection matrix, which isan N x M array of
likelihoods that bacterial genotype i is infected by phage ge-
notype j on contact (Werts et al. 1994; Flores et al. 2013). To
obtain proxies for these likelihoods, where traits are called
“infectivities” for phages and “susceptibilities” for bacteria,
we performed infection assays (see “Methods”) on N bacte-
rial lawns, one lawn per bacterium, each inoculated with all
M phages. Finally, infectivities and susceptibilities were
quantified using imaging algorithms (fig. S1) to produce
an infectivity matrix, ® (fig. 2A). Note how some library
phages are able to infect none of the bacteria; we call these
“panresistant” bacteria.

The numerical structure of the infectivity matrix, ®, can
be used to test the idea that phages and bacteria cluster into
highly interacting functional subunits. For instance, some
phage subgroups could be highly infectious to a subgroup
of bacteria without infecting other bacteria not in that group.
If multiple such groupings were present in data, this would
be evidence of modularity, and ® would look approximately
“block structured.” For instance, a matching-alleles infection
mechanism would provide an example of a modular struc-
ture (Agrawal and Lively 2002). However, our bacteria and
phage strains provide no statistical support for this because
& is better described as having a graded, or nested, structure
(this is apparent from a visual inspection of ®; fig. 24; fig. S2
supports this with statistics). These data exhibit a grading
that ranges from low-infectious to highly infectious phages
and a second grading that ranges from low-resistant to highly
resistant bacteria. We asked why such a structure would de-
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scribe bacteria-phage infectivities, and a biophysical study
of LamB mutants provides some insights into this, as de-
scribed in “Adaptation Hot Spots in LamB Structure” below.

The nested infection matrix, ®, provides a convenient
method for testing the HRTO that modular networks do
not afford. In a nested infection matrix, the phage with
the narrowest host range infects hosts that are a subgroup
within the larger set that broad host range phages can also
infect. To test the HRTO, one can ask whether phages with
the broader host range are less able to infect the host they
share with the narrow host range phage. By focusing on
shared hosts, this analysis controls for any host-specific ef-
fects that might drive differences in infectivity measure-
ments. Given that few hosts would be shared across mod-
ules if & were modular, this control and analysis would
not be possible if the matrix had a modular structure. Ac-
cordingly, the data in ® provide no evidence of an HRTO
because they exhibit consistent trade-ups, whereby phages
that are more infective to one bacterial host than another
are also likely to infect more hosts (figs. 3, S3).

Adaptation Hot Spots in Lamb Structure (Figs. 4, 5)

Whole-genome sequencing of library strains (and other bac-
teria generated using the same assay that were not included
in the library) revealed that each possessed only a single
mutation in genes known to interact with A (Rajagopala
et al. 2011; Blasche et al. 2013; Ragunathan and Vander-
pool 2019). All of the mutations were related to resistance
mechanisms in either inner-membrane manYZ or outer-
membrane lamB or else were involved in membrane protein
regulation (malT; tables S1, S2); these mutations have been
documented to confer resistance to A (Meyer et al. 2012).
Targeted Sanger sequencing of lamB of 50 library strains
(table S3) showed that all have lamB mutations. To under-
stand the mechanisms by which these mutations might affect
both A resistance and nutrient uptake, we predicted LamB
structural changes using the folding algorithm Modeller
(https://salilab.org/modeller/). We then searched for corre-
lations between deformations in LamB geometry and pheno-
typic data by seeking physical differences between the wild-
type LamB and its mutants to ascertain whether LamB
changes would reflect known A resistance mechanisms or
impact structures responsible for nutrient (maltodextrin)
transport. As we now show, some mutations affect struc-
tures implicated in both, which helps provide a biophysical
basis for some of the trait correlations we observe.

To quantify changes in LamB geometries, we imple-
mented an extension of morphometry (Zelditch et al.
2012) using landmarks provided by the (« carbon) Co
structure of the LamB peptide, which serves as a skeleton
of the full protein. These changes were estimated by solving


http://salilab.org/modeller/
https://salilab.org/modeller/
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a mathematical pattern-matching problem whereby two sets
of 3D vectors must be compared and the closest matches
found between them (fig. 4A, 4B). One complication en-
countered when comparing a mutant LamB structure to
its wild type was caused by insertions and deletion muta-
tions in lamB that insert or remove amino acids, changing
the number of landmarks and confounding which land-
marks should be compared by the pattern-matching pro-
cess. To overcome this, we developed an approach that
identified morphological differences between proteins of
different sizes, developing an algorithmic heuristic (fig. 4A)
that extends the Hungarian matching algorithm (“LamB
Morphometrics,” supplemental PDF). The latter itera-
tively compares, and rejects, poorly matching substruc-
tures of the smaller protein to find better matches within
the larger protein.

We applied this algorithm to the wild-type LamB Ceu
structure, using it as a backbone against which LamB var-
iant structures were compared. The algorithm returns a
structure in the lowest dimension of the two being com-
pared that optimally matches a substructure of the larg-
est to the smallest with respect to Euclidean distance. This
difference determines structural hot spots, which are
those Cae matches contributing more than p% of the total
between-protein difference in Euclidean space. Through-
out, we made the arbitrary choice of p = 1 (black circles
in fig. 4B; “LamB Morphometrics,” supplemental PDF).

First note that the wild-type LamB peptide contains
421 Co coordinates. To quantify LamB hot spots that cor-
relate with our phenotypes of interest (A resistance and
maltotriose-limited growth), we applied k-means cluster-
ing to determine where protein changes clustered for the
set of (i) all LamB variant structures with 400 Cor coordi-
nates or more (a set that includes all single-nucleotide poly-
morphism [SNPs]; table $3) and (ii) only panresistant bac-
teria (noting there are no lamB SNPs in this set; table S3).
The number of clusters for sets i and ii was determined by
the number of local maxima of a kernel density estimate of
the wild type-to-mutant LamB difference data collated for
each set of strains.

The resulting hot spots for all library variants are not uni-
formly distributed throughout LamB but rather are found in
the following regions (figs. 5A, S4): cluster centers for sets i
and ii are found in LamB’s outer loops (fig. 5B; loops L2, L4,
L5, L6, and L9), where loop L2 coincides with a cluster from
the set of panresistant hot spots, which is situated at the en-
try to the so-called greasy slide (fig. S5; loop L2). The latter is
aregion of aromatic residues along which maltodextrins en-
ter the cell (Schirmer et al. 1995; Van Gelder et al. 2002).
Loops L4, L5, L6, and L9 are disjointed from the clusters
of panresistant hot spots from set ii (fig. S5), so we speculate
that these loops may be associated with lower levels of phage
resistance than some, if not all, of the mutations in L2, not-
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ing that L2 contains hot-spot clusters of both sets i and ii.
In summary, the location of hot spots are consistent with
LamB functions that are known to mediate A resistance
and maltotriose uptake.

Reconciling RYTO Theory and CORTO Data: How
Nutrient Uptake Reduction Might Increase
Absolute Fitness (Figs. 6-9)

Having shown that our bacterial variants have structural al-
terations implicated in nutrient uptake, we asked whether
an RYTO might be found among them because changes
in nutrient uptake impact growth rate. The ancestral strain
exhibits an RYTO when grown at different resource concen-
trations, whereby the highest resource concentrations yield
the fastest and least efficient growth (Meyer et al. 2015).
We therefore tested whether the library derived from that
ancestor possessed both within-strain and between-strain
RYTOs. Indeed, relating growth rate to population densities
per maltotriose supplied (also known as biomass yield)
for eight different maltotriose concentrations shows that
within-strain RYTOs are present throughout the library
(figs. 6B, S6). Between-strain growth rate versus yield data
do form weak but significant RYTOs at the very lowest
maltotriose supply concentrations tested (fig. S7), but in
sufficiently rich maltotriose environments variants with
greater growth rates also have higher yields (figs. 74, S7);
thus, we observe a between-strain rate-yield trade-up, as
elsewhere (Reding-Roman et al. 2017).

The analysis culminating in equation (6) provides one in-
sight consistent with this trade-up: given two LamB mutants
with different nutrient uptake rates, in an otherwise isogenic
background the mutant with slower uptake is predicted to
have higher yield. Equation (7) then predicts that slow-
uptake strains with elevated yields can also have higher
growth rates provided the nutrient supply concentration
is high enough; this prediction is consistent with data
(figs. 7A, S7). Equation (7) also predicts negative between-
strain rate-yield correlations at low maltotriose supply, and
this is broadly consistent with data (fig. S7). However, the
low signal-to-noise ratios present in yield measurements
at the low maltotriose concentrations needed to achieve
low growth rates means that these negative correlations
are weak (fig. S7) and not robust, for example, to outlier
removal (scripts for tests are provided in “Testing for con-
sistency of results under different assumptions on data
quality,” supplemental PDF).

Now, lamB missense mutations can increase resistance
with little or no impact on nutrient uptake through LamB
(Andrews and Fields 2020), and this is relevant because
of the CORTO: such mutations leave open the possibility
that some library strains might not be subject to the con-
straints on resistance and fitness that a CORTO would
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Figure 4: Quantifying the largest geometric changes in mutant LamB structures algorithmically. A, Blue points and red circles are spots
connected by edges representing two shapes, X and Y, where no common origin is available for both. When X and Y have the same number
of nodes, a distance-preserving affine transform, or isometry, T, can be found that places X as close as possible to T(Y), whereafter the
transformed nodes in T(Y) can be matched to X using one application of the munkres algorithm. When X and Y have different numbers
of nodes, such optimal matches may not be possible (the top right box shows an example where a triangle can be matched optimally into a
square of side length a in four different ways due to the rotational symmetry of both). Nevertheless, optimal matches between X-sized
subsets of X and Y can be sought iteratively by creating a sequence of isometries whereby subsets of Y (the larger set) are optimally matched
to X using munkres (“LamB Morphometrics” in the supplemental PDF provides links to a Matlab implementation). B, Shown is a 2D pro-
jection of a 3D LamB structure marked with hot spots (black circles) that were obtained by applying the algorithm described in the main text
to a mutant LamB Ce structure. Regions lost because of deletion mutations (green circles) are detected, and the largest 1% of differences
between matched substructures are highlighted as black circles, denoting a hot spot.

impose. Given this possibility, we asked whether analogies
of the rare mutations observed before (Andrews and Fields
2020) might be found within our library.

To address this, we sought a CORTO whereby in-
creased A resistance would correlate with reductions in
some fitness measure, and the response to this is multi-
faceted. First, there is no correlation between fitness rel-

ative to the ancestral strain and A resistance (fig. 7C).
Second, all but one bacterial variant has increased A re-
sistance relative to the ancestor, and while some variants
pay a growth rate penalty for this, many do not (fig. 8).
Indeed, two strains (labeled 26a and 56a) have different
dual benefits in different measures (fig. 8): first, they have
higher than ancestral growth rates at all maltotriose
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Figure 7: Between-strain data illustrating that growth rate, yield, and relative fitnesses do not exhibit trade-offs (A and B use data
from the 46 strains in fig. S6, while C uses the 51 strains from fig. 2). A, Significantly positive correlations (i.e., trade-ups) are observed
between growth rate and yield in four of eight maltotriose concentrations tested, as illustrated here for 250 pg/mL maltotriose. Not shown
here are weak negative correlations (i.e., putative trade-offs) observed at low maltotriose concentrations (see fig. S7). B, Placing eight rate-
yield data sets from A and fig. S7 within common axes indicates a potential Pareto front in (rate, yield) space whereby Escherichia coli may
be metabolically constrained to lie below that front. A hand-drawn front is shown for illustration. C, Relative fitnesses (y-axis) were deter-
mined with respect to the wild type (n = 3 replicates, vertical bars show SE) where the x-axis labels denote the bacterial strains tested. The
inset is a semilogx scatterplot of A susceptibility (data from fig. 2) versus relative fitness where the colors—consistent between the main plot
and inset—denote one strain. The inset shows that no correlation exists between A susceptibility and relative fitness; thus, there is no phage
resistance cost in terms of relative fitness. Where mean phage susceptibility is zero for a resistant strain, this has been placed at —3 units on
the x-axis of the inset. CI = confidence interval; OD,,, = optical density at 600 nm.

concentrations assayed, and they are panphage resistant (fig. 8C). As a result, there is a significant reduction in
(figs. 9, 2A); second, they have reduced maltotriose half- median half-saturation constant relative to the wild type
saturation constants (fig. 8; half-saturation constant K,,, is (P=3.1 x 107%, sign test). Thus, analogies of the rare
defined in eq. [2]; K,, is determined from data fits detailed dual-benefit mutations found before (Andrews and Fields
in “Bacterial growth phenotypes,” supplemental PDF). 2020) are found here too, albeit as deletions; taken across

Finally, variant 2b is panresistant and has growth rate the strain library, although there is no significant change
benefits, but it pays a cost in terms of its decreased half- from the ancestral strain in terms of mean growth rate, there

saturation constant, as, indeed, most other strains do is in terms of half-saturation constant (fig. 8).
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Figure 8: Strains 26a and 56a have improved growth rate, half-
saturation constant, and A resistance relative to the wild type
(wt; showing all 46 strains from figs. 6B, S6). A, This scatterplot
shows maximal growth rate (r,,,; x-axis) relative to the wild type
versus mean A susceptibility (¢) relative to the wild type (y-axis);

Discussion
Summary: Evidence For and Against Trade-Offs

We summarize our findings according to three trade-
offs: the HRTO, the RYTO, and the CORTO.

i. Data from our image analysis that sought to address the
HRTO found no evidence for it. Rather, we found a nested
pairwise interaction consistent with a grading of phages ac-
cording to their infective abilities. There is a debate as to the
interpretation of nested pairwise interaction structures in
ecology, particularly for mutualistic interactions between
species (Payrato-Borras et al. 2019), but as ours is an antag-
onistic interaction between two species resulting from a
molecular interaction where the analysis is conducted
within a species pair, the interpretation of nestedness in
figure 2A is straightforward: some bacteria resist phages
better than others, and some phages attack bacteria more
efficiently than others. The consistent relationships in data
(figs. 3, S3) suggests that phages can be trained to have su-
perior lytic efficacy by having both broad host range and
high infectivity.

ii. We expected to observe an RYTO; we do, and its pres-
ence is central to our arguments. Data show that most cells
harbor an RYTO whereby growth efficiency decreases as nu-
trient supply increases (figs. 6B, S6). Thus, changes in growth
rate due to phage resistance mutations in lamB tension two
opposing forces. First, nutrient transport rate can decrease
whereby intracellular sugars become less abundant, possibly
decreasing growth rate. Second, however, increases in bio-
mass yield could result from a reduction in nutrient uptake,
thus increasing growth rate. Magnitudes of these respective
changes will, in practice, dictate whether growth rates in-
crease or decrease as a result of reductions in nutrient uptake,
and theory predicts at least two different possibilities: equa-
tion (7) delineates the environment into either case under
one particular set of modeling assumptions. Consistent with
equation (7), we observe no between-strain RYTO in our

thus, the wild type (blue point) is unity on both axes. For brevity
we have written p(r,,) = rosnt /i, where 7,,, is growth rate ob-
served at 250 ug/mL maltotriose. Analogously, the mean A suscep-
tibility relative to the wild type is written p(¢) = ¢™*/¢"". These
phenotypes are shown for other library strains using a gray point,
the library mean is a black point, and crosshairs are estimated 95%
confidence intervals (CIs). Importantly, data for strains 26a, 56a,
and 2b lie in the regions labeled “dual benefits,” where strains have
both reduced their A susceptibility and increased their growth rate
relative to the wild type. B, This shows the analogous plot to A but
for mean growth rate (r,...) taken across eight maltotriose con-
centrations (see “Methods”), where 26a, 56a, and 2b again exhibit
dual benefits. C, Strains 26a and 56a have improved their half-
saturation constant, K,, (see “Bacterial growth phenotypes,” sup-
plemental PDF), by reducing it relative to the wild type, but 2b
has not. Indeed, most strains have paid a cost for resistance in
terms of increased K, relative to the wild type (the x-axis shows
the change in 1/K,, relative to the wild type).
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Figure 9: Strains 26a and 56a grow more quickly than the wild
type (wt) at all maltotriose concentrations assayed. To see this,
note the nonlinear Monod regression (eq. [S1], supplemental
PDF) that has been fitted to wild-type growth rate data is shown
in A, with adjusted R* values in the legend. This is repeated in B
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strain library at high maltotriose concentration, and ac-
cording to equation (7), this is precisely because strains with
higher growth rates also have higher biomass yields (figs. 74,
S7). Also consistent with equation (7) is the between-strain
RYTO found at low maltotriose concentrations (fig. S7),
but this is not robust and may be due to the low signal-to-
noise ratio in OD measurements at low population densities.
iii. CORTO data exhibit substantial variation between li-
brary variants. Some bacteria pay a fitness cost for resistance,
but others, unexpectedly, achieve fitness increases alongside
resistance increases. In extreme cases, we observe panresistant
bacteria with improved growth rate relative to their ancestor
that are within approximately 15% of the fastest observed
growth rate in the library (fig. 8). Thus, there is no well-
defined CORTO in terms of growth rate, but there is one
in terms of half-saturation constant (fig. 8), despite strains
26a and 56a not suffering this cost of resistance either.
Although ours is a laboratory study, if clinical phage
therapy were to cause both phage resistance and increased
bacterial growth rates, it could be catastrophic for a patient,
so it is important to understand how this arises. There are at
least two mechanisms by which phage resistance evolution
could also increase growth rate. One is synergistic plei-
otropy: a structural mutation could simultaneously increase
the nutrient uptake rate, which could increase growth rate
and reduce the binding affinity of the phage. Such muta-
tions have been observed (Andrews and Fields 2020), but
this idea is not consistent with our data. First, from the
LamB structure analysis, we know mutations deform outer
loops and the greasy slide, which are important for sugar
translocation (figs. 5, S4). Second, between-strain growth
rate increases can come with increased yield (figs. 74, S7).
However, growth rate increases come with decreased yield
for most individual strains when more maltotriose is sup-
plied (the within-strain RYTO; figs. 6B, S6). Thus, the
above-described hypothetical synergistic pleiotropy that in-
creases resistance, maltotriose uptake, and therefore growth
rate should, in the absence of other mutational changes, de-
crease yield, yet it need not (figs. 7A, S7). Synergistic pleiot-
ropy is therefore unlikely to be the mechanism that explains

and C (see arrows) and the wild-type Monod fit (labeled “WT
fit”) is placed next to analogous Monod fits of growth rates of
26a and 56a; note how the wild-type fit lies below the confidence
intervals (CIs) of the fits of 26a and 56a when the maltotriose con-
centration is 250 ug/mL or less. Now, because a rate-yield trade-
off (RYTO) is exhibited by these library strains (figs. 6B, S6), an
RYTO-adjusted Monod regression based on equation (2) has also
been fitted to the growth rate data of the wild type, 26a, and 56a,
which assumes that yield decreases with increasing maltotriose
supply. These are visually indistinguishable from the standard
Monod data fit, which assumes constant yield; consistent with this,
none of the relative likelihoods (RLs) between the two types of fit
are statistically significant. Section “Bacterial growth phenotypes”
in the supplemental PDF details how these fits were performed.
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our data because here, mutations in LamB must increase
phage resistance, growth rate, and yield simultaneously.
One argument consistent with data supporting such “Dar-
winian demons” that have optimized three traits simulta-
neously is, again, the analysis supporting equations (6) and
(7). Given that we expect a reduction in the maltodextrin up-
take rate from the structural analysis, consistent with the re-
duced growth of 13a, 19a, 28b, and 94a (fig. 6C), we argue
that the source of this trade-up stems from the phenomenon
described by equation (6), whereby increased growth rates
result from two processes trading off, one downstream of
the other: the transportation of nutrients into the cell, and
thereafter the conversion of nutrients into biomass. Equa-
tions (6) and (7) (i.e., the condition Q(S) > 0) show that
phage resistance and reduction in nutrient transportation
can increase yield and growth rate provided the maltotriose
supply concentration is high enough, as our data require.

Compensatory Mutations

There is another plausible explanation for trade-ups be-
tween resistance and fitness: compensatory mutations that
overcome the cost of resistance by causing fitness gains
could confound the arguments given above. It seems unlikely
that 3-day coevolution assays provide enough time for com-
pensatory mutations. However, genomic data provide direct
insight into this: 2b’s genome reveals just one mutation (ta-
ble S1), a deletion in lamB, despite 2b possessing a trade-up
between resistance and growth rate (fig. 8). The LamB struc-
ture of 2b has a localized hot spot of greatest geometric
change with respect to the wild-type LamB in loop L2 at
the entry to the greasy slide; this is situated on the face of
the LamB monomers, where the latter binds to form a LamB
trimer (Andrews and Fields 2020, their fig. 2, label T; see fig-
ure S8). However, we cannot argue that this deletion muta-
tion is entirely cost-free because 2b carries a resistance cost
through its increased half-saturation constant (fig. 8).

The genome of 56a exhibits no costs, however, only trade-
ups, but it has additional mutations in 7spB besides one ob-
served in lamB. Now, rspAB is a starvation-sensing operon
that can be upregulated in sugar transport mutants, and it
mediates acetate production and increases recombinant pro-
tein yield (Jung et al. 2019); there is also evidence that it
mediates increases in biomass yield (Weikert et al. 2000).
Therefore, 56a may harbor a compensatory mutation in
metabolism, but more data are needed to prove this.

Genomes of other library strains reveal additional muta-
tions besides ones for resistance, and an alternative expla-
nation for these “auxiliary” mutations may be passive hitch-
hiking (table S1). Hitchhikers are likely if strains have
elevated mutation rates or if hitchhiking mutations them-
selves have an elevated rate. There is no evidence that the
strains evolved to be mutators, but there is evidence that

many of the hitchhikers are common mutations: 73% of
these auxiliary mutations are caused by IS element indels
that are known to have a high mutation rate in this Esche-
richia coli strain (Consuegra et al. 2021).

We remark that rbsD deletion mutations occur frequently
in the library in a member of the high-affinity ribose-
transport system of E. coli (table S1). The latter consists of
six proteins encoded in the rbs operon (rbsDACBK and R),
and rbsD encodes ribose pyranase that is involved in the me-
tabolism of ribose whose overexpression reduces levels of the
stress response sigma factor RpoS (Peterson et al. 2019),
which itself regulates many genes during starvation (Ferenci
2005). We therefore speculate that the loss of rbsD increases
RpoS expression, which if true would help cells survive the
periods of maltotriose depletion they experience each day
while in stationary phase (Notley-McRobb et al. 2002).

Conclusion

Trade-offs are usually studied between two traits held in
isolation, and to the best of our knowledge there are few, if
any, analyses of interacting trade-offs, although multiple
trait interactions are said to be increasingly important for
understanding microbial ecosystems (Lindsay et al. 2021).
Bacterial fitness is typically a complex function of many
genes and traits where interactions are likely, and we have
argued that if trait X trades off with Y and trait Y trades
off with Z, then X and Z must trade up. Thus, trait interac-
tions can emerge in three-trait data sets that are invisible to
two-trait studies.

We reiterate that the logical basis of our main finding is
this simple argument. First, phage resistance can be achieved
by changes in membrane protein structure that can affect
nutrient acquisition. If nutrients enter the bacterium more
quickly as a result, then resistance could be cost-free to the
host because growth rates could increase. However, if those
changes act to slow nutrient uptake, then downstream ben-
efits in metabolism could still accrue and growth rates could
increase in any case because of the RYTO, which bestows a
benefit of more efficient metabolism when nutrient uptake is
reduced. Equation (6) makes this argument precise, and
equation (7) provides one theoretical context where this ver-
bal argument applies. Our phenotypic data are consistent
with this idea, but the genomes indicate that yet more
mechanisms are involved, such as fitness benefits accruing
from resistance via mutational pathways that compensate
for fitness costs.

A feature we cannot easily address is empirical gener-
alizability: library bacteria and phages were isolated after
3 days of exposure, but suppose we had waited longer—
how might that impact our findings? Would trade-ups
and trade-offs still be present in the same configurations?
Our theory cannot easily address this, nor can our data,



and more highly (i.e., longer) adapted E. coli-A pairs might
yet form HRTOs.

To understand how assay duration could be important,
imagine that two traits begin by adapting free of any
constraints whereby both improve—and thus are positively
correlated—before trait limitations are encountered later
during the adaptive process. Trade-offs might then only
arise as those limits force trait adaptation along a limiting
front in trait space (Petrie et al. 2018; Schuech et al. 2019),
after sufficient evolutionary time has elapsed. However,
for the case of growth rate-resistance trade-offs in our data,
we find evidence that trade-ups arise from multiple trade-
offs whose interaction has a metabolic and mechanistic ba-
sis, not just a correlative one. On that basis, the appearance
of trade-ups does not appear to be a case of insufficient time
preventing the imposition of physical limits because trade-
offs, like the RYTO, are immediately apparent in our data.

For the phage HRTOs, we have not attempted to track
down what third (or fourth) trait might trade with host
range and infectivity, although we hypothesize that protein
stability will (Petrie et al. 2018). Without further investiga-
tion, we cannot determine whether the trade-up in A infec-
tivity is due to evolving far from physical limits or whether
other traits may be trading off to produce that particular
trade-up. Either way, our data demonstrate that the trade-
off between host range and infectivity does not constrain the
early stages of coevolution between phage A and E. coli.
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