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ABSTRACT

Tensegrity structures have emerged as important components
of various engineering structures due to their high stiffness, light
weight, and deployable capability. Existing studies on dynamic
analyses of tensegrity structures mainly focus on responses of
their nodal points while overlook deformations of their cable and
strut members. This study aims to propose a non-contact ap-
proach for experimental modal analysis of a tensegrity structure
to identify its three-dimensional (3D) natural frequencies and
full-field mode shapes, which include modes with deformations
of its cable and strut members. A 3D scanning laser Doppler
vibrometer (SLDV) is used with a mirror for extending its field
of view to measure full-field vibration of a three-strut tensegrity
column with free boundaries. Tensions and axial stiffnesses of
cable members of the tensegrity column are determined using
natural frequencies of their transverse and longitudinal modes,
respectively, and used to build a numerical model of the tenseg-
rity column for dynamic analysis and model validation purposes.
Modal assurance criterion (MAC) values between experimental
and numerical mode shapes are used to identify their paired
modes. Natural frequencies and mode shapes of the first 15 elas-
tic modes of the tensegrity column are identified from the experi-
ment, which include modes of the overall structure and its cable
members. These identified modes can be classified into five mode
groups depending on their types. Five modes are paired between
experimental and numerical results with MAC values larger than
78%. Differences between natural frequencies of paired modes
of the tensegrity column are less than 15%. The non-contact
3D vibration measurement approach presented in this work can
measure responses of nodal points, as well as deformations of
cable and strut members, of the tensegrity column, and allows
accurate estimation of its 3D full-field modal parameters.
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1. INTRODUCTION

Tensegrity structures are a type of structures that consist
of only cable and strut members and can be in self-equilibrium
and free-standing without any external support [1]. They have
been widely used as elements of various engineering structures,
such as pedestrian bridges [2], membrane roof skeletons [3],
and nanoscale structures [4], due to their optimized shape, high
stiffness, and light weight. They can also be used in soft robots [5,
6] and satellite reflectors [7-9] due to their deployable capability.

Many studies focused on form-finding of a tensegrity struc-
ture [10], which was the key and first step to build its accurate nu-
merical or analytical model. Tibert and Pellegrino [11] reviewed
seven commonly used form-finding methods for tensegrity struc-
tures and classified them as kinematic and static methods. It
was reported that kinematic methods were suitable for tensegrity
structures with well-known configuration details, while the force
density method, which was one of the static methods, was suitable
for searching for new configurations of tensegrity structures. For
the form-finding problem of a large-scale tensegrity structure, the
calculation efficiency became a major concern. Koohestani [12]
proposed an efficient form-finding method using a genetic algo-
rithm, which was validated by various symmetrical tensegrity
structures. Recently, Yuan and Zhu [13] proposed a stochastic
fixed nodal position method by combining a fixed nodal posi-
tion method [14] and a stochastic optimization algorithm [15].
This method was applicable for form-finding of a large-scale and
geometrically irregular tensegrity structure. With an accurate
numerical or analytical model of a tensegrity structure, a static
analysis aiming to evaluate its rigidity and stability, as well as
a dynamic analysis aiming to obtain its dynamic characteristics,
can be conducted. Guest [16] investigated relations between the
stiffness of a tensegrity structure and its connectivity, geome-
try, material properties, and prestress using its analytical model.
Kan et al. [17] conducted static and dynamic analyses of a two-
strut collision model of a tensegrity structure to address its strut
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collision problem. Ma et al. [18] developed a finite element
(FE) method that was denoted as TsgFEM using the Lagrangian
method with nodal coordinate vectors considered as generalized
coordinates to conduct dynamic analyses on tensegrity structures.
Another important application related to tensegrity structure dy-
namics is tensegrity feedback control [19-21]. Linear and nonlin-
ear dynamics of a tensegrity system, such as a tensegrity robotic
reacher and a tensegrity-membrane system, can be used to design
its controller.

There are still insufficient investigations on 1) the dynamic
analysis of an entire tensegrity structure, incorporating responses
of its nodal points as well as deformations of its cable and strut
members, and 2) comparison and validation between experimen-
tal and numerical modal analyses of the entire tensegrity struc-
ture. The first research gap is due to oversimplification of dynamic
models of tensegrity structures in traditional modeling methods,
such as the Lagrange method [22] and the FE method [23], where
internal displacements of cable and strut members are usually
ignored. In Refs. [24, 25], numerical modeling problems of
tensegrity-membrane systems were systematically investigated.
A shell-beam-cable model, a membrane-truss-cable model and
a control-oriented model were developed to obtain dynamic re-
sponses of structural members of a tensegrity-membrane system
including its membrane, bars, and tendons, as well as those of the
entire system. Yuan and Zhu [26] developed a numerical method,
which was referred to as the Cartesian spatial discretization (CSD)
method, to incorporate internal displacements of structural mem-
bers, comprising both cables and struts, of a tensegrity structure
in its dynamic modeling. Incorporation of member internal dis-
placements grants the CSD method an ability to provide accurate
results for vibration analysis of the entire tensegrity structure. In
addition, use of the global Cartesian coordinate system in the
CSD method provides a fast and straight-forward assembly of
equations of motion when deriving them for the entire tenseg-
rity structure. However, dynamic responses of the tensegrity
structure calculated by the CSD method have not been compared
to those from the experiment, which constitutes the second re-
search gap. The major reason for the second research gap is that
previous studies on experimental modal analysis of a tensegrity
structure used accelerometers to measure its responses. As a
type of contact sensors, while an accelerometer can be attached
to nodal points of a tensegrity structure to obtain their responses,
it was not suitable for measuring vibrations of cable members of
the tensegrity structure due to the mass-loading problem. For
instance, Bossens et al. [27] conducted modal analysis of a three-
stage tensegrity structure using single-axis accelerometers to ac-
quire its response data at its nodal points. Without knowing exact
properties and pretensions of cable members, they conducted
model updating on a FE model of the tensegrity structure based
on its experimental modal parameters. It was reported that the
first two bending and torsional modes from the updated FE model
matched those obtained from the experiment in the frequency do-
main. Matlyszko and Rutkiewicz [28] conducted modal analysis
of a single-stage tensegrity simplex using a modal hammer and
triaxial accelerometers attached to its nodal points. Prestresses
of cable members were adjusted to different levels and measured
by build-in force transducers, and the effect of the prestress level

on natural frequencies of the tensegrity simplex was investigated
using both experimental and FE methods. In both studies, only
overall mode shapes of the tensegrity structure were identified
using accelerometers.

To address research gaps mentioned above, this work first
proposed a non-contact vibration measurement method for ob-
taining three-dimensional (3D) full-field modal parameters of a
tensegrity column. A 3D scanning laser Doppler vibrometer
(SLDV) was used along with a mirror to obtain 3D vibrations
all of its nodal points and cable and strut members to identify
its natural frequencies and full-field mode shapes. Unlike an
accelerometer, a laser vibrometer can avoid the mass-loading
problem via a non-contact way [29, 30], which is essential for
structures like a tensegrity column since mass-loading can sig-
nificantly affect its dynamic response. Although the laser vi-
brometer has been widely used in modal parameter estimation
[31, 32] and structural damage detection [33],its field of view
(FOV) can be limiting when measuring the tensegrity column
with a complex spatial shape. A mirror was used in this work
to extend the FOV of the 3D SLDV, enabling its laser beams to
reach areas beyond its FOV. Natural frequencies and mode shapes
of the first 15 elastic modes of the tensegrity column are iden-
tified from the experiment, which include modes of the overall
structure and its cable members. These identified modes can
be classified into five mode groups depending on their types.
Modal assurance criterion (MAC) values among experimental
mode shapes that are referred to as AutoMAC show that obtain-
ing 3D vibrations and mode shapes of a structure with a complex
3D shape, such as the tensegrity column in this work, is signifi-
cant for distinguishing its modes, which can be indistinguishable
from its one-dimensional (1D) vibration and mode shapes. A
cable clamping device was designed and used with the 3D SLDV
to measure transverse and longitudinal vibrations of cable mem-
bers for determining accurate cable tensions and axial stiffnesses,
respectively. A form-finding method referred to as the force
density method with member grouping was used to build a nu-
merical model of the tensegrity column with initial parameters,
including cable tensions and axial stiffnesses, which are obtained
from vibration-based measurements. The CSD method, which
avoids the oversimplification problem in traditional methods for
dynamic analyses of tensegrity structures, is used to obtain modal
parameters of the tensegrity column. MAC values between ex-
perimental and numerical mode shapes are used to identify their
paired modes. Five modes are paired between experimental and
numerical results with MAC values larger than 78%. Differences
between natural frequencies of paired modes of the tensegrity
column are less than 15%.

The remainder of this paper is organized as follows. Design
considerations of a strut-cable interface of a three-strut tenseg-
rity column are discussed in Section 2 to address construction
and robustness issues. Dimensions of the final assembled tenseg-
rity column are presented there. Experimental modal analysis
of the tensegrity column, including details of the experimental
setup and modal parameter estimation are presented in Section 3.
Methods for building the numerical model of the tensegrity col-
umn using results from vibration measurements, and numerical
modal analysis using the CSD method are proposed in Section
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4. This section also includes comparison between experimental
and numerical modal parameters, followed by some discussions.
Section 5 presents some conclusions.

2. DESIGN AND ASSEMBLY OF THE THREE-STRUT
TENSEGRITY COLUMN

The test structure in this work is a typical three-strut tenseg-
rity column as shown in Fig. 1. It is selected as the analyzed
structure in this work as it is a basic type of tensegrity structures
and suitable for validation of the experimental modal analysis
method proposed in this work. It consists of three strut mem-
bers, represented by black solid lines in Fig. 1a, in compression,
and nine cable members, represented by red dashed lines, in ten-
sion. The tensegrity column has two equilateral triangular bases
formed by six horizontal cables. Their six vertices are connected
by three vertical cables along with three struts, resulting in six
nodal points of the tensegrity column. In this work, a cable or
strut member is denoted by nodal numbers of its two ends; for
instance the cable 2_6 and the strut 1_5. Two design rules for
a reasonable strut-cable interface of a tensegrity structure, ad-
dressing construction and robustness issues, were proposed in
Ref. [27]:

(I Lengths and tensions of cables attached to the interface
should be adjustable to achieve the desired stiffness of the
overall structure; and

(II) Cables attached to the strut-cable interface should be easily
replaceable in case of breakage due to overloading during
testing.

- - -- Cable member
— Strut member

-1000

() (b)

FIGURE 1: (a) Concept of the three-strut tensegrity column, con-
sisting of three strut members represented by black solid lines in
compression, and nine cable members represented by red dashed
lines in tension, and (b) the actual constructed tensegrity column
used as the test structure in this work

2.1 Design considerations of the tensegrity column

A mounting plate with three small holes and one large hole,
as shown in Fig. 2a, was designed to mount cable and strut
members at nodal points to form the strut-cable interface in this
work. The mounting plate had an optimized triangular shape to
reduce its size and weight, and a thickness of 0.125 inches (3.18
mm). The strut member was screwed onto the mounting plate

via a nylon-insert lock nut to avoid slacking, as shown in Fig.
2b, and cable members were attached to the mounting plate via
cable crimps and machine screw hangers, as shown in Fig. 2c.
Cable members were locked by crimps at their ends to achieve the
desired length, and screw hangers could be tightened or loosened
to achieve desired tensions of cable members, following rule (I).
A failed cable member could be easily replaced by cutting it
at its ends and installing a new cable. Therefore, replacement
of the cable member would not affect the strut member in the
strut-cable interface since they were assembled through mounting
plates rather than being directly interfaced, aligning with rule (II).

(a) (b) ()

FIGURE 2: (a) Mounting plate designed for assembling cable and
strut members at nodal points to form the strut-cable interface of
the three-strut tensegrity column in this work, and (b) and (c) details
of the strut-cable interface

2.2 Components used to assemble the tensegrity column

The assembled tensegrity column, following design consid-
erations discussed in the previous section, is shown in Fig. 1b.
Components of the tensegrity column are marked by indices, and
their descriptions and numbers are detailed in Table 1. In this
work, stainless-steel threaded rods with a diameter of 3/8 inches
(9.53 mm) are used as strut members, and stainless-steel aircraft
wires with a diameter of 1/16 inches (1.59 mm) are used as cable
members. The height of the final assembled tensegrity column is
21.1 inches (535.94 mm). Lengths of its cable and strut members
can be found in Table 2, with member numbers corresponding to
numbers shown in Fig. la. Note that the vertical cable 3_5 is
slightly longer than the other two vertical cables, 1_4 and 2_6,
due to some assembly error. One can also see that lengths of
horizontal cables vary in the range from 8.8 inches (223.52 mm)
to 9.14 inches (232.16 mm) due to the same reason.

3. EXPERIMENTAL MODAL ANALYSIS OF THE
THREE-STRUT TENSEGRITY COLUMN

3.1 Experimental setup

In this work, a Polytec PSV-500-3D SLDV was used to mea-
sure vibration of the tensegrity column and obtain its natural
frequencies and mode shapes. The experimental setup for modal
analysis of the tensegrity column is shown in Fig. 3. Non-contact
measurement using the 3D SLDV can obtain not only responses
of nodal points of the tensegrity column but also deformations
of its cable and strut members, which was not available in pre-
vious studies using accelerometers. Two strings were used to
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TABLE 1: Descriptions and numbers of components used to as-
semble the tensegrity column

Index Description Number
| Mounting plates and nylon-insert locks 6
used as nodal points
Stainless-steel aircraft wires with a di-
2 ameter of 1/16 inches used as horizontal 6
cables
3 Stainless-steel threaded rods with a di- 3
ameter of 3/8 inches used as struts
Stainless-steel aircraft wires with a di-
4 ameter of 1/16 inches used as vertical 3

cables

TABLE 2: Lengths of cable and strut members of the final assem-
bled tensegrity column

Length Length

Member No. (incﬁ /mm) Member No. (incﬁ /mm)

Strut 1_5 24.00/609.60 Cable 1_2 8.88/225.55
Strut 2_4 24.00/609.60 Cable 2_3 9.14/232.16
Strut 3_6 24.00/609.60 Cable 1_3 9.09/230.89
Cable 1_4 19.06/484.12 Cable 4_6 9.09/230.89
Cable 3_5 19.50/495.30 Cable 5_6 8.99/228.35
Cable 2_6 19.13/485.90 Cable 4_5 8.80/223.52

suspend the tensegrity column from a stable frame at its nodal
points 1 and 4, respectively, simulating its free boundary condi-
tions. A Labworks ET-126B shaker was attached to the nodal
point 3 through a stinger to excite the tensegrity column, and a
periodic chirp with a frequency bandwidth of 1000 Hz was used
as the excitation source for the experiment. Small pieces of retro-
reflective tapes were attached at multiple positions on surfaces
of nodal points as well as those of cable and strut members to
enhance signal-to-noise ratios of measured responses by the 3D
SLDV. Based on the stand-off distance between the 3D SLDV
and the tensegrity column during measurement, the diameter of
the laser spot was about 0.02 inches (0.51 mm), which was much
smaller than that of cable members (0.625 inches or 15.88 mm).
This ensured that laser spots of the 3D SLDV could be precisely
focused on surfaces of cable members to capture their vibrations.

As an optical-based vibration measurement device, the 3D
SLDV can be limited by its FOV, especially when measuring a 3D
spatial structure like the tensegrity column in this work. The 3D
SLDV was fixed at one position in the experiment, with its laser
beams approximately perpendicular to the cable 2_6 as shown in
Fig. 3, to avoid potential errors arising from system movements.
Therefore, cables 2_5, 5_6, and 2_3 were outside the FOV of
the 3D SLDV. To measure their vibrations, a mirror was used
to extend the FOV of the 3D SLDV [34, 35]. In Fig. 3, laser
spots of the 3D SLDV could reach cables 4_5 and 5_6 when the
mirror was placed at the position 1, and the cable 2_3 when at
the position 2. The schematic of vibration measurement with the
assistance of the mirror for areas outside the FOV of the 3D SLDV
is shown in Fig. 4a. The first step of the experiment was system
calibration. A reference object shown in Fig. 3 was used to

calibrate the 3D SLDV and establish a global coordinate system
for the tensegrity column. Another goal of calibration was to
ensure that three laser spots could be focused at the same position
for each measurement point, allowing acquisition of coordinates
of measurement points in the FOV of the 3D SLDV. The second
step was to obtain coordinates of three points on the mirror to
define its plane. Coordinates of actual points on target cables
and their corresponding virtual points behind the mirror could be
determined. Finally, three laser spots could be focused at same
positions for measurement points on cables outside the FOV of
the 3D SLDV to obtain their vibrations.

(a) (b)

FIGURE 3: Experimental setup for modal analysis of the tensegrity
column, where (a) the position 1 corresponds to measurement of
cables 4_5and 5_6, and (b) the position 2 corresponds to measure-
ment of the cable 2_3

1 spots (virtual)
7

A

m !
[

1

J

Polytec PSV-500-3D SLDV system

(a) (b)

FIGURE 4: (a) Schematic of vibration measurement with the assis-
tance of the mirror on areas outside the FOV of the 3D SLDV, and
(b) actual and virtual laser spots on the cable 2_3 corresponding to
measurement with the mirror at the position 2

3.2 Modal parameter estimation of the tensegrity column

A total of 155 measurement points are assigned to the entire
tensegrity column. Distribution of these points and their numbers
are shown in Fig. 5, where blue rectangular markers represent
points at nodal points, black triangular markers represent points
on strut members, and red circular markers represent points on
cable members. More measurement points are assigned to cable
members than to strut members, since struts, owing to their much
higher stiffness, can be considered as rigid bodies in the experi-
ment. A frequency-domain analysis is conducted on responses of
all measurement points on the tensegrity column to obtain the av-
erage frequency response function (FRF), a peak-picking method
was used to identify its natural frequencies from the FRF, and
experimental modal analysis was conducted to obtain its mode
shapes [36].
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Iterms Numbers
\ Strut2 4 7-13
2 m Cable 2 6 14-27
Strut 3_6 28-33
Strut 1 _5 34-39
Cable 1 4 40-53
Cable 3 5 54-65
Cable 4 6 66-81
Cable 4 5 82-92
Cable 5 6 93-107
Cable 1_2 108-123
u2 Cable2 3 124-139
Cable 1 3 140-155

©-0 0-0 00 0000000

_.\e;
I

B Measurement points on nodes
< Measurement points on struts
O Measurement points on cables

FIGURE 5: Distribution of measurement points on the tensegrity
column, where blue rectangular markers represent points at nodal
points, black triangular markers represent points on strut mem-
bers, and red circular markers represent points on cable members

The log-log plot of the average FRF of all measurement
points on the tensegrity column is shown in Fig. 6. The first
15 elastic modes are identified and classified into five groups
based on their mode types, and marked by boxes in red dashed
lines. Selected examples representing each group, along with
their mode descriptions, are shown in Fig 7. The mode group 1
includes the 1% torsional mode of the tensegrity column, which is
also its 1% elastic mode. In this mode, triangular planes formed
by nodal points 1 through 3 and nodal points 4 through 6 rotate
in opposite directions, while cable and strut members maintain
a rigid-body status, resulting in torsional motion. The identified
natural frequency of the highest rigid-body mode of the tensegrity
column is 0.63 Hz, which is approximately 6.7% of its 1% elastic
mode frequency. Therefore, simulated boundary conditions using
strings, as shown in Fig. 3, can be considered as free boundary
conditions, as the frequency ratio is less than 10%, as proposed
by Ref. [36]. Modes 2 through 15 are pure cable modes without
nodal motions. The mode group 2 includes the 2" through 4
modes of the tensegrity column, which are the 1% bending modes
of its vertical cables. The mode group 3 includes the 5" and
6™ modes of the tensegrity column, which are the 1% bending
modes of its horizontal cables. The mode group 4 includes the
7% through 12" modes of the tensegrity column, which are the
2" bending modes of its vertical cables. The mode group 5
includes the 13" through 15" modes of the tensegrity column,
which are the 2" bending modes of its horizontal cables.

3.3 Discussion

A MAC value between mode shapes of two modes of a
structure can be used to evaluate their correlation [36], which can
be defined by

1{or} T {5}
oY Her D) {es Hes )

where ¢, and ¢, represent modal vectors of the 7 and s™ modes
of the structure, respectively, and the superscript T denotes the

MAC({er}.{es}) = X 100% (1)

=

: -
Group 3 Group 4
\ 7

=
o

Amplitude
=

b
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FIGURE 6: Log-log plot of the average FRF for 155 measurement

points on the tensegrity column, where the first 15 elastic modes

were identified, which were classified into five groups based on

their mode types and marked by boxes in red dashed lines

. f
3 j
OB o
2 bl o .2 1 .
Mode 1 Mode 2 Mode § Mode 9 Mode 14
1" torsional mode 5« bending mode  1*bending mode 2" bending mode 2" bending mode

of the tensegrity

column of vertical cables of horizontal cables of vertical cables of horizontal cables

FIGURE 7: Experimental mode shapes and descriptions of five
modes of the tensegrity column selected to represent each group

matrix transpose. A MAC value close to 100% indicates a high
correlation between the two modes, while a value close to O in-
dicates a low correlation. In this work, MAC values are obtained
for the first 15 modes of the tensegrity column, forming a matrix
shown in Fig. 8, which are also referred to as AutoMAC values.
Horizontal and vertical axes of the matrix show natural frequen-
cies of the first 15 modes, and boxes with red dashed lines are
used to mark mode groups. The color (or darkness) bar on the
right side of the figure indicates that darker colors (heavy dark-
ness) denote higher correlation, while lighter colors (or darkness)
denote lower correlation.

One can see that the MAC matrix is symmetrical and its di-
agonal values are all 100%, as ¢, and ¢4 of Eq. (1) are from the
same mode in these cases. This satisfies features of AutoMAC
values proposed in Ref. [36]. Off-diagonal values of the MAC
matrix for mode shapes from different mode groups are less than
10%, indicating that mode shapes from different mode groups
are almost uncorrelated. However, a few off-diagonal values of
the MAC matrix for mode shapes from the same mode group
are around 30%-60%. For example, the MAC value for modes 3
and 4 from the mode group 2 is 35%, whose natural frequencies
are 90.3 Hz and 91.3 Hz, respectively. Another instance is the
MAC value for modes 7 and 10 from the mode group 4, which
of 66%, with their natural frequencies being 170.3 Hz and 177.5
Hz, respectively. One possible reason for non-zero off-diagonal
values of the MAC matrix, as proposed in Ref. [36], is that the
number of measurement points is not sufficiently large to repre-
sent degrees of freedom of the actual structure. By considering
the complex 3D shape of the tensegrity column in this work and
the fact that relatively high MAC values are found within groups
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FIGURE 8: AutoMAC matrix of the first 15 experimental mode
shapes of the tensegrity column, where boxes with red dashed
lines are used to mark mode groups

instead of between groups, MAC values for 3D components of
mode shapes are calculated. This exploration aims to identify
another possible reason for relatively large off-diagonal values in
the MAC matrix. In the 3D MAC value calculation, the modal
vector ¢ in 1 can be replaced by ¢, ¢,, and ¢., representing
modal vector components along three axes of the global coordi-
nate system shown in Fig. 3. MAC values between modes 3 and 4
from the mode group 2 using their modal vectors along the x-axis
of the global coordinate system, those between modes 7 and 10
from the mode group 4 along x-axis, and those between modes 8
and 11 from the mode group 4 along y-axis are shown in Figs. 9a,
9b, and 9c, respectively. Off-diagonal MAC values in these cases
are close to 100%, indicating that these compared mode shapes
are highly correlated along one axis, potentially contributing to
the overall increase in MAC values in these cases. A further
comparison is conducted on mode shapes of modes 3 and 4 from
different views, as shown in Fig. 10. From Figs. 10a and 10b,
which show mode shapes of the tensegrity column from the xz
view for modes 3 and 4, respectively, one can see that they are
close to each other in both amplitude and phase, corresponding
to the MAC value of 96% in Fig. 9a. However, when examining
mode shapes from the yz view as shown in Figs. 10c and 10d,
differences become apparent. For instance, mode shapes of the
two modes of the cable 1_4 have different amplitudes and phases,
while those of cables 2_6 and 3_5 have slightly different ampli-
tudes but same phases. In summary, it is significant to obtain
3D vibrations and mode shapes of a structure with a complex 3D
shape, such as the tensegrity column in this work, for distinguish-
ing its modes, which can be indistinguishable from 1D vibration
and mode shapes.

It can be noted from Fig. 6 that peaks in the FRF of the
tensegrity column between mode groups 1 and 2 do not corre-
spond to actual modes. As an example, the deflection shape of
the tensegrity column at the frequency 63.4 Hz is shown in Fig.
11. The left part in Fig. 6 shows its overall deflection shape,
while the right part shows the deflection shape of nodal points
and cables of the bottom plane from the xy view. One can see that

100

1703 - 175.3 [T 50
60

10

179.1 100

Experiment

c
Experiment

Experiment

177.5 20

90.3 91.3 170.3 177.5 175.3 179.1
Experiment Experiment Experiment

(a) (b) ()

FIGURE 9: (a) MAC values between modes 3 and 4 using their
modal vectors along the x-axis of the global coordinate system,
(b) MAC values between modes 7 and 10 using their modal vectors
along the x-axis, and (c) MAC values between modes 8 and 11 us-
ing their modal vectors along the y-axis

ool

*3 e \}.3

— 2'\'3//

2o, 3
(a) (b) (c) (d)

FIGURE 10: Mode shapes of the tensegrity column of its (a) mode
3 from the xz view, (b) mode 4 from the xz view, (c) mode 3 in the
yz view, and (d) mode 4 from the y z view

cable and strut members are in rigid-body status, whose deflec-
tions are much larger than displacements of nodal points. Sig-
nificant discontinuities at nodal points make the deflection shape
excluded from real mode shapes, as shown in Fig. 11. Peaks
in the FRF corresponding to non-mode deflection shapes are po-
tentially caused by phase differences between different structural
members induced by measurement noise.

FIGURE 11: Deflection shape of the tensegrity column correspond-
ing to the frequency 63.4 Hz in its FRF, which serves as an example
of unreal mode shapes
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4. COMPARISON BETWEEN EXPERIMENTAL AND
NUMERICAL MODAL PARAMETERS OF THE
TENSEGRITY COLUMN

4.1 Numerical modeling and dynamic analysis methods of

the tensegrity column

Modeling of the tensegrity structure in this work follows five
assumptions [13, 14]: (1) The modeled tensegrity structure only
consists of cable and strut members that are connected through
frictionless pin-joints. (2) A level of self-stress is required to
stiffen the structure and avoid slacking cable members. (3) Mass
moments of inertia of cable and strut members along their axial
directions are neglected. (4) Only axial forces are transmitted in
members. Bar members can sustain both tension and compres-
sion forces, and cable members can only sustain tension forces.
Bending of cable and strut members, and buckling of strut mem-
bers do not occur. (5) Materials of cable and strut members
are elastic and homogeneous. Cross-sectional areas are constant
along lengths of cable and strut members. Thus, mass distribu-
tions of cable and strut members are uniform along their axial
directions.

The force density method with member grouping is used in
this work to determine the initial equilibrium configuration of the
tensegrity column. Force equilibrium equations for its i-th node
can be written as a system of nonlinear algebraic equations in
terms of nodal coordinates (x;, y;, y;):

ZT;(X -x7)=0
T

J

Tij
(y;=y;)=0

%:LU0> i) 2)
T -

Zi(Zi—Zj)ZO

7 Lij

where j denotes the number of a nodal point that is connected
to the i-th nodal point via a structural member, 7;; denotes the
internal force of the structural member, and L;; denotes the length
of the structural member. The force density g of a structural
member of the tensegrity column that connects the i-th nodal
point and the j-th nodal point is defined as

Ti .

qij = L—U 3)

Eq. 2 then becomes

Z%’j(xi_xj) =0

J

;ql'j(yi_)’j) =0 (4)
Zqij(zi—zj) =0

J

It can also be written in the following matrix form:

Dx=0
Dy=0 (%)
Dz=0

where the matrix D = CTQC , in which Q is a diagonal matrix
containing force densities and C is the branch node matrix, and x,
y, and z are coordinate vectors. For each member j that connects
nodes i and k, the matrix C is defined as

+1 fori(j) =1
C=1-1 fork(j)=1 (6)

0 otherwise

For a 3D tensegrity structure, achieving super-stability ne-
cessitates adherence to two pivotal criteria, as expounded in Ref.
[37]. First, coordinate vectors of the structure must be linearly in-
dependent. Second, the structure must satisfy the non-degeneracy
condition articulated as d* > d + 1, where d* denotes nullity of
the matrix D, and d represents the dimensional space, setat d = 3
for a 3D tensegrity structure. Thus, selection of force densities is
conducted through an iterative process. This iterative approach is
strategically designed, thereby ensuring that both linear indepen-
dence of coordinate vectors and the non-degeneracy condition are
simultaneously satisfied.

In this work, structural members, comprising both cables and
struts, are systematically classified into three distinct sets: set one
consists of three struts 1_5, 2_4, and 3_6; set two consists of six
horizontal cables 1_2,2_3,3_1,4_5,5_6, and 6_4 placed at the
top and bottom of the tensegrity column; and set three consists of
three vertical cables 1_4,2_6, and 3_5. Force densities assigned
to structural members within same predefined groups are the
same, with g1, g2, and g3 being force densities of sets one, two,
and three, respectively. This approach is in adherence to unilateral
property criteria, stipulating that strut members must be subjected
to compression, whereas cable members should sustain tension.
Consequently, force densities for strut members are designated as
negative values to reflect their compressive forces, while those for
cable members are assigned positive values, indicative of tensile
forces.

Subsequently, the CSD method [26] is used to conduct a
dynamic analysis on the numerical model, determining its theo-
retical modal parameters. Consider a strut member that connects
two nodal points of a tensegrity structure in a 3D global Cartesian
coordinate system. Global Cartesian coordinates of its two nodal
points are given as Xy = [xo, Yo, z0]T and X; = [x1, y1, z1]7, re-
spectively. The longitudinal direction of the strut member can be
expressed by a position vector Ry = X — X, and an independent
natural spatial variable & € [0, 1] is used to describe its internal
position. The position ug (&, t) of a differential element of a strut
member at the position & can be expressed as [38—40]

Ms(§7 t) = ﬂx(f’ t) +ﬁs(§s t)

o (7)
= " g, sin(mag)rs + [(1- )Xo +€Xi]
m=1

The internal term i is defined to satisfy only simple homoge-
neous boundary conditions, where N is a positive integer that
controls the complexity and accuracy of the method, and ¢3, are
generalized coordinates that describe the internal longitudinal
displacement of the strut member. The unit vector ry = Ry/L;
represents the longitudinal direction of the strut member, where
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Ly is the deformed member length subjected to a level of self-
stress [41]. The boundary-induced term i is defined to satisfy
boundary conditions, which are positions of nodal points in dy-
namic modeling of the tensegrity structure. The velocity i of the
differential element of the strut member can be obtained by taking
the time derivative of Eq. 7. Since the internal displacement de-
scribed by generalized coordinates is usually significantly small
than the deformed length of the bar member, it can be assumed
that ¢;,/Ls = 0. Therefore, terms in the velocity u associated
with ¢$, /L vanish and the velocity s becomes

Ns
(6,0 = )y sin(mre)ry + (1= )Xo+ X1 (8)

m=1

Similarly, for a cable member between nodes Xy and X
of the tensegrity structure in the 3D global Cartesian coordinate
system, its position u. (£, t) can also be expressed as a summation
of the internal term and the boundary-induced term:

uc(g’t)=ﬁc(§’t)+ﬁc(‘f’t) &)

where the boundary-induced term 7. has the same form as that
of the strut member in Eq. 7, and the internal term . differs
from that in Eq. 7 with an extra transverse term i’. besides the
longitudinal term zllc since the cable member is modeled as a taut
string with both longitudinal and transverse displacements, i.e.,

N; N;
i =il + i = Z gl sin(mné)r. + Z q'! sin(nné)w;
m=1 n=1 (10)

N;
+ Z q72 sin(nwé)w,
n=1

where N; and N, are positive integers that control the complexity
and accuracy of the method; ¢/,, ¢ii, and ¢ are generalized
coordinates that describe the internal displacement of the cable
member along its longitudinal and two transverse directions, re-
spectively; and unit vectors r. = R./L., w; = W /L;, and
wy = W, /L, represent three directions of the cable member, re-
spectively, in which the vector R, = X; — X, the vector W; can
be defined as one of the three possible forms: [yg—yi, x| —xo, 0],
[zo — 21,0,x1 —x0], and [0, zo — z1, Y1 — Yo], and the vector W,
can be obtained by R, x Wy. Scalars L| and L, are magnitudes
of vectors Wy and W, respectively.

The velocity . of a differential element of the cable member
can be obtained by taking the time derivative of Eq. (9). Since
the internal displacement described by generalized coordinates
is usually significantly smaller than the deformed length of the
cable member, it can be assumed that ¢/, /L. ~ 0, ¢!} /L; ~ 0, and
g /Ly ~ 0. Therefore, terms in the velocity . associated with
q'/Le, q;‘ /L1, and qj’.z /L vanish, and the velocity #. becomes

N; N:
ic(§.0) = ), dsin(mrf)re + ) [} sin(omywi
m=1 n=1

+q;7 sin(nré)wa] + (1 - )Xo +€X)

Kinetic and potential energies of cable and strut members can
then be easily obtained by using the position and velocity in Eqs.

7-11 in the global Cartesian coordinate system. Finally, nonlinear
equations of motion of cable and strut members can be obtained by
Lagrange’s equations. Nonlinear equations of motion of cable and
strut members can be linearized at an equilibrium configuration of
the tensegrity structure for vibration analysis. A dynamic model
of the entire tensegrity structure can be assembled in a straight-
forward way by using common nodal coordinates of structural
members, without a local-to-global coordinate transformation.
Theoretical parameters of the tensegrity structure from vibration
analysis can then be compared to those obtained experimentally,
following the flowchart shown in Fig. 12.

Input parameters

' l Dimensions of the tensegrity column | !
1 H

i | Transverse vibration of

] e | Vibration-based
: cables by the 3D SLDV Tensions of cables |1

parameter measurement

E Longitudinal vibration

i|of cables by the 3D Stiffness of cables | |
i | SLDV !

Form finding

| Update dimensions of the tensegrity column | ;
H

Update tensions of cables

Estimate compressions of struts I . .
| pre Numerical modeling

and analysis

Dynamic analysis using the
CSD method

| Natural frequency | | Mode shape l

Comparison between experimental
and numerical modal parameters

Model validation

FIGURE 12: Flowchart of numerical modeling and dynamic analy-
sis methods of the tensegrity column

4.2 Cable tension and axial stiffness estimation using the

3D SLDV

The purpose of this section is to determine tensions and ax-
ial stiffnesses of cable members of the tensegrity column through
modal analysis, referred to as vibration-based parameter mea-
surement in Fig. 12. The k™ transverse natural frequency a)‘]:
of a uniform string with fixed-fixed boundary conditions can be
expressed as [42]

T T T
W = iy = = k= = kg | — (12)
p  L\p pL

where k = 1,2, ... represents the order of the transverse natural

frequency of the cable, T denotes its tension, p denotes its mass

per unit length that is 0.074 1b/ft (0.11 kg/m) in this work, and L

is its length between two fixed ends. Therefore, the cable tension
can be calculated by

(WD?pL?  Qafi’pL?  4pL® .,

S s v s (fi) (13)

where f,;r is the k-th transverse natural frequency of the cable
in Hz, which can be directly obtained from its modal analysis.
Corresponding transverse mode shapes can be written as

Ui (%) = /piL sin(kn%) (14)
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Similarly, the j-th longitudinal natural frequency w]l.o of a
uniform string with fixed-fixed boundary conditions can be ex-
pressed as [42]

EA 7 |EA . |EA
WP = Biy|—— = JTr|— =T\ =5 (15)
P LY p pL

where j = 1,2, ... represents the order of the longitudinal nat-
ural frequency of the cable, and EA denotes its axial stiffness.
Therefore, the cable stiffness can be calculated by

_(WPPpL?  QrfPPpL? apr2
EA = j27T2 - j2ﬂ2 - j2 (JS ) (16)

where J;k’ is the longitudinal natural frequency of the cable in Hz,
which can be directly obtained from its modal analysis. Corre-
sponding longitudinal mode shapes can be written as

Uj(x) = piL sin (%) (17)

The experimental setup for measuring tensions and axial
stiffnesses of cable members is shown in Fig. 13. A novel
clamping device was designed, which consists of two optical
posts and machined clamps, to clamp a cable member at two
positions to simulate fixed boundaries. The detailed structure of
the clamp is zoomed in and displayed on the right side of Fig. 13.
Two thumb screws marked by red arrows were used to fix the cable
at one position, ensuring sufficient clearance between the cable
and the clamp to avoid potential error from contact. Additionally,
the tensegrity column was placed on three foam bases via its three
nodes, ensuring that the measured cable remained horizontal and
parallel to the optical table. Distances between two clamps and
the table were adjusted to be equal to avoid any additional tension
induced by bending of the measured cable.

The procedure for determining the tension of the cable 1_4 is
exemplified in this section and shown in Fig. 14. A pull-release
method was first used to provide an initial excitation to the mea-
sured cable. Free vibration responses of multiple points on the
cable, as shown in Fig. 14a, were measured to obtain its natural
frequencies via the fast Fourier transform (FFT), as shown in Fig.
14b. One can see that responses of different points in the fre-
quency domain align with each other, indicating the rapidity and
effectiveness of the pull-release method in obtaining f\, which
can be used to calculate T via Eq. 13. However, mode shapes of
the cable could not be obtained from free vibration response anal-
ysis due to absence of input excitation information to build the
FRF of the entire cable. An additional modal analysis method, us-
ing a shaker to excite the measured cable, was conducted to obtain
both its natural frequencies and mode shapes. As shown in Fig.
13, the shaker was attached to the left fixed end of the measured
cable, and a periodic chip with a frequency range of 0 to 500 Hz
was used for excitation. Identified natural frequencies and mode
shapes of the cable from the shaker test are shown in Figs. 14c and
14d, respectively. One can see that natural frequencies from two
test methods are in good agreement, with a maximum difference
of 0.26%. Additionally, the first three mode shapes identified

from the shaker test align with theoretical results derived from
Eq. 14. The right clamp was then repositioned to another location
corresponding to a reduced L after finishing the above free vibra-
tion test and shaker test, enabling execution of another set of tests
to validate the calculated cable tension. Calculated cable tensions
of the cable 1_4, obtained from two methods with two different
lengths, are listed in Table 3. Tensions of the cable 1_4 measured
in different conditions have differences less than 0.5%, validating
the accuracy of the cable tension measurement method used in
this work. For measuring longitudinal vibrations and obtaining
E As of cable members using Eq. 16, the shaker was rotated by
90 degrees from the position shown in Fig. 13, i.e., aligning it
parallel to the measured cable. Results of measured axial stiff-
nesses of cable members in this work are listed in Table 4. The
difference between E As from two tests with different lengths is
approximately 0.6%. Note that the pull-release method was not
used for longitudinal vibration measurement, as it is not suitable
for exciting longitudinal vibrations with high frequencies.

Details of the
clamping device

FIGURE 13: Experimental setup for vibration-based cable tension
and axial stiffness measurements
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FIGURE 14: Responses of three measurement points on the mea-
sured cable 1_4 in (a) the time domain and (b) the frequency domain
using the pull-release method, and identified (c) natural frequen-
cies and (d) mode shapes of the cable 1_4 from the shaker test
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TABLE 3: Tensions of the cable 1_4 measured by two methods with
two different lengths

Test method L(m) f"Hz) TN)
Free vibration test  0.422 115.6 104.7
Shaker test 0.422 115.6 104.7
Free vibration test  0.323 151.3 105.1
Shaker test 0.323 151.3 105.1

TABLE 4: Axial stiffnesses of cable members calculated using lon-
gitudinal vibration of the cable 1_4

L(m) f°MHz EAN)
0422 45654 1.64x10°
0.323 60156 1.63x10°

4.3 Modal parameters from the numerical model of the

tensegrity column

By following the flowchart in Fig. 12 and inputting measured
cable tensions and axial stiffnesses into the numerical model of
the tensegrity column, its dynamic responses and modal param-
eters were determined. A total of 37 modes can be extracted and
classified into five mode groups, aligning with those from the
experiment. Five selected numerical mode shapes are shown in
Fig. 15. The mode 1 with a natural frequency of 10.37 Hz corre-
sponds to the 1% torsional mode of the tensegrity column. Modes
2 through 7 with natural frequencies ranging from 97.61 Hz to
98.82 Hz correspond to the 1% bending modes of vertical ca-
bles. Modes 8 through 19 with natural frequencies ranging from
102.43 Hz to 104.53 Hz correspond to the 1% bending modes of
horizontal cables. Modes 20 through 25 with natural frequencies
ranging from 195.15 Hz to 196.01 Hz correspond to the 2" bend-
ing modes of vertical cables. Modes 26 through 37 with natural
frequencies ranging from 204.62 Hz to 207.60 Hz correspond
to the 2"! bending modes of horizontal cables. Observed mis-

1 1
Mode 25 Mode 28

1**bending mode 2" bending mode 2" bending mode
of vertical cables of horizontal cables of vertical cables of horizontal cables

A
Mode 3

1* torsional mode st bending mode

of the tensegrity
column

Mode 1

Mode 11

FIGURE 15: Numerical mode shapes and descriptions of five
modes of the tensegrity column selected to represent each group

alignment in numbers of identified modes between the numerical
model and experiment can be attributed to the fact that inter-
vals between natural frequencies in the same mode group from
the numerical model are considerably smaller than the frequency
resolution of the experiment. For instance, while two modes were
identified in the mode group 3 from the experiment, the numeri-
cal model has 12 modes within the same group. Accordingly, the
frequency resolution of the experiment was 0.31 Hz, whereas the
average value of intervals between natural frequencies of modes
in the mode group 3 from the numerical model was 0.19 Hz.

10

MAC values between mode shapes of the tensegrity column
from the experiment and those from its numerical model were
calculated using Eq. 1, and those larger than 78% were used to
identify mode pairs between experimental and numerical mode
shapes. Results shown in Fig. 16a indicate identification of one
mode pair from individual mode groups 1, 2, and 3, two mode
pairs from the mode group 4, and no mode pair from the group
5. Percentage differences between natural frequencies of paired
modes are calculated by using numerical ones as references and
less than 15%, as shown in Fig. 16b. Differences between
experimental and numerical modal parameters are potentially
from misalignment between the numerical model and the actual
structure at nodal points, which can lead to differences between
their cable lengths.

)
S

10.37

n

97.61

104.35

S

Numerical model

195.46

o

195.99

Natural frequency error (%)

Ly |
94 903 119.7 179.1 177.5 1 2 3 4 5
Experiment Mode pair index

(a) (b)

FIGURE 16: (a) MAC values between experimental and numerical
mode shapes and (b) differences between experimental and numer-
ical natural frequencies of paired modes

5. CONCLUSIONS

This work proposes a non-contact vibration measurement
method using a 3D SLDV for obtaining 3D full-field modal pa-
rameters of a tensegrity column. Structural member properties,
including cable tensions and axial stiffnesses, are measured using
a vibration-based method, which are used to build a numerical
model of the tensegrity column for its dynamic analysis. Com-
parisons between experimental and numerical modal parameters
of the tensegrity column are conducted. Some conclusions are
listed as follows:

1. With the assistance of a mirror, the FOV of the 3D SLDV
is extended, enabling measurements of vibrations at nodal
points, as well as cable and strut members of the tensegrity
column, to obtain its 3D full-field mode shapes;

2. Natural frequencies and mode shapes of the first 15 elastic
modes of the tensegrity column are identified from the ex-
periment and classified into five groups based on their mode
types. AutoMAC values of experimental mode shapes show
that obtaining 3D vibrations and mode shapes of a struc-
ture with a complex 3D shape, such as the tensegrity col-
umn in this work, is significant for distinguishing its modes,
which can be indistinguishable from 1D vibration and mode
shapes;

3. A cable clamping device is designed and used with the
3D SLDV to measure transverse and longitudinal vibrations
of cable members for determining accurate cable tensions
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and axial stiffnesses, respectively. A form-finding method
named the force density method with member grouping is
used to build the numerical model of the tensegrity column
with initial parameters, including cable tensions and axial
stiffnesses, obtained from vibration-based measurements;
and

4. The CSD method that avoids the oversimplification problem
in traditional methods for dynamic analysis of tensegrity
structures is used to obtain modal parameters of the tenseg-
rity column. Numerical modal parameters of the tenseg-
rity column are classified into five mode groups, aligning
with those identified from the experiment. Five mode pairs
between experimental and numerical results are identified.
Differences between natural frequencies of paired modes of
the tensegrity column are less than 15%, and MAC values
between experimental and numerical mode shapes of paired
modes are larger than 78%.

Some future work can be conducted on modifying the numerical
model by taking the effect of sizes of nodal points on modal
parameters of the tensegrity column into account.
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